TWI571997B - Semiconductor structure and manufacturing method for the same - Google Patents
Semiconductor structure and manufacturing method for the same Download PDFInfo
- Publication number
- TWI571997B TWI571997B TW103120636A TW103120636A TWI571997B TW I571997 B TWI571997 B TW I571997B TW 103120636 A TW103120636 A TW 103120636A TW 103120636 A TW103120636 A TW 103120636A TW I571997 B TWI571997 B TW I571997B
- Authority
- TW
- Taiwan
- Prior art keywords
- conductive
- layer
- openings
- semiconductor structure
- insulating
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Description
本發明是有關於一種半導體結構及其製造方法,且特別是有關於一種記憶體及其製造方法。 The present invention relates to a semiconductor structure and a method of fabricating the same, and more particularly to a memory and a method of fabricating the same.
近年來半導體元件的結構不斷地改變,且元件的記憶體儲存容量也不斷增加。記憶裝置係使用於許多產品之中,例如MP3播放器、數位相機、電腦檔案等等之儲存元件中。隨著應用的增加,對於記憶裝置的需求也趨向較小的尺寸、較大的記憶容量。因應這種需求,係需要製造高元件密度及具有小尺寸的記憶裝置。 In recent years, the structure of semiconductor elements has been constantly changing, and the memory storage capacity of the elements has also been increasing. Memory devices are used in many products, such as MP3 players, digital cameras, computer files, and the like. As applications increase, so does the demand for memory devices toward smaller sizes and larger memory capacities. In response to this demand, it is required to manufacture a memory device having a high component density and a small size.
因此,設計者們無不致力於開發一種三維記憶裝置,不但具有許多堆疊平面而達到更高的記憶儲存容量,具有更微小的尺寸,同時具備良好之特性與穩定性。 Therefore, designers are all committed to developing a three-dimensional memory device that not only has many stacked planes but also achieves higher memory storage capacity, has a smaller size, and has good characteristics and stability.
根據一實施例,揭露一種半導體結構,其包括一導電層、一導電構造、與一介電層。導電層定義出相鄰的數個第一開口。導電構造環繞導電層介於第一開口之間的部分。介電層分 開導電層與導電構造。 According to an embodiment, a semiconductor structure is disclosed that includes a conductive layer, a conductive structure, and a dielectric layer. The conductive layer defines a plurality of adjacent first openings. A conductive structure surrounds a portion of the conductive layer between the first openings. Dielectric layer The conductive layer and the conductive structure are opened.
根據另一實施例,揭露一種半導體結構,其包括堆疊的數個導電條紋、一導電構造、與一導電構造。導電構造環繞導電條紋。介電層分開導電條紋與導電構造。 In accordance with another embodiment, a semiconductor structure is disclosed that includes stacked conductive stripes, a conductive configuration, and a conductive configuration. The conductive structure surrounds the conductive stripes. The dielectric layer separates the conductive stripes from the conductive structure.
根據又另一實施例,揭露一種半導體結構的製造方法,其包括以下步驟。交互堆疊數個絕緣層與數個導電層。形成數個第一開口貫穿絕緣層與導電層。移除絕緣層被第一開口露出的部分,以在絕緣層中形成尺寸大於第一開口的數個第二開口。 形成一介電層覆蓋導電層被第一開口與第二開口露出的部分。形成數個導電構造於介電層上。 According to still another embodiment, a method of fabricating a semiconductor structure is disclosed that includes the following steps. Several insulating layers and several conductive layers are stacked alternately. A plurality of first openings are formed through the insulating layer and the conductive layer. A portion of the insulating layer exposed by the first opening is removed to form a plurality of second openings having a size larger than the first opening in the insulating layer. A dielectric layer is formed to cover a portion of the conductive layer exposed by the first opening and the second opening. A plurality of electrically conductive structures are formed on the dielectric layer.
102‧‧‧絕緣層 102‧‧‧Insulation
104‧‧‧導電層 104‧‧‧ Conductive layer
106‧‧‧半導體基板 106‧‧‧Semiconductor substrate
108‧‧‧硬遮罩 108‧‧‧hard mask
110‧‧‧第一開口 110‧‧‧ first opening
112‧‧‧第二開口 112‧‧‧ second opening
114‧‧‧第一方向 114‧‧‧First direction
116‧‧‧第二方向 116‧‧‧second direction
118‧‧‧部份 118‧‧‧Parts
120‧‧‧絕緣部分 120‧‧‧Insulation
122‧‧‧介電層 122‧‧‧ dielectric layer
124‧‧‧導電構造 124‧‧‧Electrical structure
126‧‧‧第一導電部分 126‧‧‧First conductive part
128‧‧‧第二導電部分 128‧‧‧Second conductive part
130‧‧‧絕緣插塞 130‧‧‧Insulated plug
132‧‧‧第三開口 132‧‧‧ third opening
134‧‧‧導電條紋 134‧‧‧ Conductive stripes
136‧‧‧第三方向 136‧‧‧ third direction
138‧‧‧導電連接 138‧‧‧Electrically connected
P1、P2‧‧‧間距 P1, P2‧‧‧ spacing
第1A圖至第5C圖繪示根據一實施例之半導體結構的製造方法。 FIGS. 1A through 5C illustrate a method of fabricating a semiconductor structure in accordance with an embodiment.
第1A圖至第5C圖繪示根據一實施例之半導體結構的製造方法。其中以A標示的係為半導體結構的上視圖(其中未繪示出硬遮罩108),標示為B與C的係為分別為半導體結構沿BB線與CC線的剖面圖。 FIGS. 1A through 5C illustrate a method of fabricating a semiconductor structure in accordance with an embodiment. The reference numeral A is a top view of the semiconductor structure (the hard mask 108 is not shown), and the lines labeled B and C are respectively a cross-sectional view of the semiconductor structure along the BB line and the CC line.
請參照第1A圖至第1C圖,絕緣層102與導電層104交互堆疊地形成在半導體基板106上。半導體基板106可包括矽基板、絕緣層上覆矽(SOI)、或其他合適的材料結構。絕緣層102 可包括氧化物、氮化物、氮氧化物,例如氧化矽、氮化矽、氮氧化矽,或其他合適的介電材料。可使用蝕刻製程,在最頂層之硬遮罩108(例如氮化矽)露出的導電層104(例如未摻雜的多晶矽)與絕緣層102(例如氧化矽)中定義出第一開口110。蝕刻製程包括例如濕式蝕刻、乾式蝕刻、或其他合適的方法。 Referring to FIGS. 1A to 1C, the insulating layer 102 and the conductive layer 104 are alternately stacked on the semiconductor substrate 106. The semiconductor substrate 106 can include a germanium substrate, an insulating layer overlying germanium (SOI), or other suitable material structure. Insulation layer 102 Oxides, nitrides, oxynitrides such as cerium oxide, cerium nitride, cerium oxynitride, or other suitable dielectric materials may be included. An etch process can be used to define a first opening 110 in the conductive layer 104 (e.g., undoped polysilicon) exposed from the topmost hard mask 108 (e.g., tantalum nitride) and the insulating layer 102 (e.g., tantalum oxide). The etching process includes, for example, wet etching, dry etching, or other suitable methods.
請參照第2A圖至第2C圖,移除絕緣層102被第一開口110露出的部分,以在絕緣層102中定義出第二開口112,其尺寸大於導電層104的第一開口110,並連通第一開口110。相較於導電層104,使用的蝕刻製程對於絕緣層102具有較高的蝕刻選擇性(亦即此蝕刻製程對絕緣層102的蝕刻速率高於導電層104,或者實質上不會蝕刻導電層104)。舉例來說,可利用氫氟酸稀釋溶液(DHF)、緩衝式氧化物蝕刻劑(buffered oxide etchant;BOE)、或其他合適的蝕刻劑移除氧化物絕緣層102。一實施例中,第一開口110在第一方向114上的間距(pitch)P1係大於在第二方向116上的間距P2,且蝕刻製程係控制(例如控制等向蝕刻製程的時間)移除絕緣層102特定尺寸的材料,藉此留下絕緣層102在第一方向114上之第一開口110之間的一部份118(第2A圖與第2C圖),並連通第二方向116上的第一開口(如第2A圖與第2B圖所示),以形成在第一方向114上彼此分開(第2A圖與第2C圖),且在第二方向116上呈同時連通不同第一開口110(第2A圖與第2B圖)形態的第二開口112。實施例中,在形成第二開口112之後,係留下絕緣層102位於第一開口110其中鄰近四個之間的絕緣部 分120(第2A圖),此絕緣部分120能支撐分開上、下方的導電層104,以避免導電層104變形短接或崩垮。 Referring to FIGS. 2A-2C, the portion of the insulating layer 102 exposed by the first opening 110 is removed to define a second opening 112 in the insulating layer 102, the size of which is larger than the first opening 110 of the conductive layer 104, and The first opening 110 is connected. The etching process used has a higher etch selectivity to the insulating layer 102 than the conductive layer 104 (ie, the etch rate of the etch process to the insulating layer 102 is higher than the conductive layer 104, or the conductive layer 104 is not substantially etched). ). For example, the oxide insulating layer 102 can be removed using a hydrofluoric acid dilute solution (DHF), a buffered oxide etchant (BOE), or other suitable etchant. In one embodiment, the pitch P1 of the first opening 110 in the first direction 114 is greater than the pitch P2 in the second direction 116, and the etching process control (eg, controlling the time of the etching process) is removed. The insulating layer 102 is of a material of a particular size, thereby leaving a portion 118 (Figs. 2A and 2C) of the insulating layer 102 between the first openings 110 in the first direction 114 and communicating with the second direction 116. The first openings (as shown in FIGS. 2A and 2B) are formed apart from each other in the first direction 114 (2A and 2C), and are simultaneously connected in the second direction 116 to be different. A second opening 112 in the form of an opening 110 (Figs. 2A and 2B). In an embodiment, after the second opening 112 is formed, the insulating layer 102 is left in the first opening 110, and the insulating portion between the four is adjacent Dividing 120 (Fig. 2A), the insulating portion 120 can support the upper and lower conductive layers 104 to avoid shorting or collapse of the conductive layer 104.
請參照第3A圖至第3C圖,形成介電層122以覆蓋第一開口110與第二開口112露出的所有導電層104與絕緣層102。以導電材料(例如P+型多晶矽、N+型多晶矽、TiN、TaN、W、Ti、Cu、或其他的共形導體(conformal conductors))填充導電層104的第一開口110與絕緣層102的第二開口112,以形成導電構造124在介電層122上,其中導電構造124包括填充在第一開口110的第一導電部分126,以及填充在第二開口112並連接第一導電部分126的第二導電部分128。可利用化學機械研磨製程,將硬遮罩108上方的介電層122與導電材料移除。第二導電部分128配置在導電層104的上、下方。此外,介電層122電性隔離導電層104與導電構造124,並電性隔離第一方向114上不同位置的導電構造124。 Referring to FIGS. 3A to 3C , a dielectric layer 122 is formed to cover all of the conductive layer 104 and the insulating layer 102 exposed by the first opening 110 and the second opening 112 . Filling the first opening 110 of the conductive layer 104 with the second of the insulating layer 102 with a conductive material (eg, P+ type polysilicon, N+ type polysilicon, TiN, TaN, W, Ti, Cu, or other conformal conductors) The opening 112 is formed to form the conductive structure 124 on the dielectric layer 122, wherein the conductive structure 124 includes a first conductive portion 126 filled in the first opening 110, and a second filled in the second opening 112 and connected to the first conductive portion 126 Conductive portion 128. The dielectric layer 122 over the hard mask 108 can be removed from the conductive material using a chemical mechanical polishing process. The second conductive portion 128 is disposed above and below the conductive layer 104. In addition, the dielectric layer 122 electrically isolates the conductive layer 104 from the conductive structure 124 and electrically isolates the conductive structures 124 at different locations in the first direction 114.
請參照第3B圖,導電構造124環繞在導電層104介於第一開口110之間的上、下表面與相對側壁上。單一個第二導電部分128係與不同第一開口110中的第一導電部分126重疊。 Referring to FIG. 3B, the conductive structure 124 surrounds the upper and lower surfaces and the opposite sidewalls of the conductive layer 104 between the first openings 110. A single second conductive portion 128 overlaps the first conductive portion 126 of the different first openings 110.
請參照第4A圖至第4C圖,形成絕緣插塞130,其穿過導電層104與絕緣層102,以電性絕緣導電構造124。絕緣插塞130的形成方法包括在導電層104與絕緣層102中定義出第三開口132,並以介電材料(例如氧化物)填充第三開口132而形成。可利用化學機械研磨製程,將硬遮罩108上方的介電材料移除。 一實施例中,絕緣插塞130係配置在第一方向114上的第一導電部分126之間,並至少鄰接第一導電部分126上(或第一開口110中)的介電層122,以與介電層122在導電層104中定義出往第一方向114延伸的導電條紋134(第4D圖,其僅繪示導電層104單一階層中的元件配置)。其他實施例中,在不影響導電構造124於第三方向136(垂直方向)上不同階層電性導通效果為前提下,絕緣插塞130亦可更延伸至接觸第一導電部分126。 Referring to FIGS. 4A-4C, an insulating plug 130 is formed through the conductive layer 104 and the insulating layer 102 to electrically insulate the conductive structure 124. The method of forming the insulating plug 130 includes defining a third opening 132 in the conductive layer 104 and the insulating layer 102, and forming the third opening 132 with a dielectric material such as an oxide. The dielectric material above the hard mask 108 can be removed using a chemical mechanical polishing process. In one embodiment, the insulating plugs 130 are disposed between the first conductive portions 126 in the first direction 114 and at least adjacent to the dielectric layer 122 on the first conductive portions 126 (or in the first openings 110). A conductive stripe 134 extending in the first direction 114 is defined in the conductive layer 104 with the dielectric layer 122 (FIG. 4D, which only shows the element configuration in a single layer of the conductive layer 104). In other embodiments, the insulating plug 130 may further extend to contact the first conductive portion 126 without affecting the electrical conduction effects of the different layers of the conductive structure 124 in the third direction 136 (vertical direction).
實施例之半導體結構係為三維堆疊記憶體陣列,其中往第一方向114延伸的導電條紋134係用作位元線,往第二方向116延伸的導電構造124係用作字元線。舉例來說,導電條紋134與導電構造124之間的介電層122可以是ONO結構、ONONO結構、ONONONO結構、或由穿隧材料(tunneling material)/捕捉材料(trapping material)/阻擋材料(blocking material)構成的材料層,應用於反及閘(NAND)之儲存材料。舉例來說,從內往外數的第一層氧化物與氮化物、以及第二層的氧化物(O1N1O2)係為穿隧材料,第二層氮化物(N2)為捕捉材料,第三層氧化物(O3)、或第三層氧化物/氮化物或第四層氧化物(O3/N3/O4)為阻擋材料。一實施例中,半導體結構使用鈦-鋁-氮-氧-矽(tantalum-alumina-nitride-oxide-silicon;TANOS)結構,其包括Si基底、氧化物/氮化矽/氧化鋁(OX/SiN/Al2O3)介電質、以及TaN閘極。 The semiconductor structure of an embodiment is a three-dimensional stacked memory array in which conductive stripes 134 extending in a first direction 114 are used as bit lines and conductive structures 124 extending in a second direction 116 are used as word lines. For example, the dielectric layer 122 between the conductive strips 134 and the conductive traces 124 can be an ONO structure, an ONONO structure, an ONONONO structure, or a tunneling material/trapping material/blocking material (blocking) The material layer formed by the material is applied to the storage material of the NAND gate. For example, the first layer of oxide and nitride from the inside to the outside, and the oxide of the second layer (O1N1O2) are tunneling materials, the second layer of nitride (N2) is the trapping material, and the third layer is oxidized. The material (O3), or the third layer oxide/nitride or the fourth layer oxide (O3/N3/O4) is a barrier material. In one embodiment, the semiconductor structure uses a tantalum-alumina-nitride-oxide-silicon (TANOS) structure including a Si substrate, an oxide/tantalum nitride/alumina (OX/SiN). /Al2O3) Dielectric, and TaN gate.
如第4B圖所示,裝置具有導電構造124(閘極)環繞 導電條紋134(位元線通道)的環繞式閘極(Gate-all-around,GAA)結構。此種結構的閘控制能力佳,且單元電流大,優於雙閘式(double gate)或單閘式(single gate)裝置。並且,由於位元線(導電條紋134)受到閘極環繞,作用上較不易受其他位元線的影響,因此位元線之間Z方向的耦合干擾較低。 As shown in FIG. 4B, the device has a conductive structure 124 (gate) surrounding A gate-all-around (GAA) structure of conductive strips 134 (bit line channels). This type of structure has excellent gate control capability and large cell current, which is superior to double gate or single gate devices. Moreover, since the bit line (the conductive stripe 134) is surrounded by the gate, the effect is less susceptible to other bit lines, so the coupling interference in the Z direction between the bit lines is lower.
在一些比較例中,位元線的形成是藉由圖案化導電層與絕緣層的堆疊,以形成長條狀的開口而定義出。換句話說,位元線形成過程中會發生整面側壁露出開口的情況。然而,高深寬比(aspect ratio)的位元線,其在兩側皆為開口而未受其他元件支撐的情況下,容易受到其他應力(例如浸液清洗步驟中,充滿在開口中的液體,或浸、拉動作中造成的應力)影響而發生彎曲(bending),使得結構受損甚至形成不期望的短路,降低產品良率。 In some comparative examples, the formation of bit lines is defined by patterning a stack of conductive layers and insulating layers to form elongated openings. In other words, the entire side wall is exposed to the opening during the formation of the bit line. However, a high aspect ratio bit line, which is open on both sides and not supported by other components, is susceptible to other stresses (eg, a liquid filled in the opening during the immersion cleaning step, The bending caused by the stress caused by the immersion and pulling action causes the structure to be damaged or even forms an undesired short circuit, which reduces the product yield.
在本揭露的實施例中,導電條紋134係利用圖案化開口(包括第一開口110與第三開口132)的方式形成,過程中用以形成導電條紋134的材料部分係受到支撐,因此(相較於比較例)具有較穩定的結構特徵,不容易發生形變的問題,且產品可靠性高。 In the embodiment of the present disclosure, the conductive strips 134 are formed by patterning openings (including the first opening 110 and the third opening 132), and the portion of the material used to form the conductive strips 134 is supported during the process. Compared with the comparative example, it has a relatively stable structural feature, is not prone to deformation, and has high product reliability.
請參照第5A圖至第5C圖,一些實施例中,亦可在導電構造124上形成沿第二方向116延伸、且互相分開的數個導電連接138,例如係字元線連接。亦可形成其他合適的接觸結構與層間介電層(未繪示)。 Referring to FIGS. 5A-5C, in some embodiments, a plurality of conductive connections 138 extending in the second direction 116 and separated from each other, such as a word line connection, may also be formed on the conductive structure 124. Other suitable contact structures and interlayer dielectric layers (not shown) may also be formed.
本揭露並不限於以上利用圖示說明的實施方式,亦 可根據實際需求或其他的設計適當地調變。 The disclosure is not limited to the above embodiments illustrated by the drawings, and It can be adjusted according to actual needs or other designs.
舉例來說,在實施例中,導電層104中單一階層的第一導電部分126(第一開口110)並不限於以上圖示的2x2的4個(之間定義出一個往第一方向114延伸的導電條紋134),而可任意使用其他更多的數量,例如9x8的64個(之間定義出8個往第一方向114延伸且藉由介電層122與絕緣插塞130電性隔離的導電條紋134),或9x16的128個等,其中往第二方向116延伸(8或16個中)的單一個第二導電部分128係同時與9個第一導電部分126重疊,以形成更多記憶單元的陣列裝置。 For example, in an embodiment, the first conductive portion 126 (first opening 110) of the single layer in the conductive layer 104 is not limited to the 4 of the 2x2 illustrated above (the upper one is defined to extend toward the first direction 114) Conductive strips 134), and any other number can be used arbitrarily, for example, 64 of 9x8 (eight defined between the first direction 114 and electrically isolated from the insulating plug 130 by the dielectric layer 122) Conductive stripes 134), or 128 of 9x16, etc., wherein a single second conductive portion 128 extending in the second direction 116 (in 8 or 16) simultaneously overlaps with the nine first conductive portions 126 to form more An array device of memory cells.
一些實施例中,第一開口110(第1A圖)可設計成在第一方向114上的間距P1係等於在第二方向116上的間距P2,且因此在進行蝕刻製程之後,形成的第二開口112不但在第二方向116上互相連接(如第2A圖所示),也在第一方向114上相互連接(未繪示)。雖然這會導致導電構造124同時往第一方向114與第二方向116連接延伸(未繪示),但在形成絕緣插塞130之後,由於導電構造124可透過絕緣插塞130彼此電性絕緣,並定義出沿第二方向116延伸的字元線,因此仍可形成出預期電性特徵的記憶裝置。在此例中,用以形成第二開口112的蝕刻製程係控制留下絕緣層102位於第一開口110其中鄰近四個之間的絕緣部分120,此絕緣部分120能支撐分開上、下方的導電層104,以避免導電層104變形短接或崩垮。 In some embodiments, the first opening 110 (FIG. 1A) can be designed such that the pitch P1 in the first direction 114 is equal to the pitch P2 in the second direction 116, and thus the second formed after the etching process is performed. The openings 112 are interconnected not only in the second direction 116 (as shown in FIG. 2A) but also in the first direction 114 (not shown). Although the conductive structure 124 is connected to the first direction 114 and the second direction 116 at the same time (not shown), after the insulating plug 130 is formed, the conductive structure 124 can be electrically insulated from each other through the insulating plug 130, and A word line extending along the second direction 116 is defined so that a memory device of the desired electrical characteristics can still be formed. In this example, the etching process for forming the second opening 112 controls the insulating portion 120 between the adjacent openings of the first opening 110, the insulating portion 120 capable of supporting the upper and lower conductive portions. Layer 104 prevents the conductive layer 104 from being deformed by shorting or collapse.
除了多層結構,介電層122也可使用單一層的結 構。實施例的介電元件,其材質可包括氧化物、氮化物、氮氧化物,例如氧化矽、氮化矽、或氮氧化矽,或其他合適的材料。導電元件可包括多晶矽、金屬例如氮化鈦(TiN)、鈦(Ti)、氮化鉭(TaN)、鉭(Ta)、金、鎢等合適的材料。 In addition to the multilayer structure, the dielectric layer 122 can also use a single layer of junctions. Structure. The dielectric component of the embodiment may be made of an oxide, a nitride, an oxynitride such as hafnium oxide, tantalum nitride, or hafnium oxynitride, or other suitable materials. The conductive element may comprise a polycrystalline germanium, a metal such as titanium nitride (TiN), titanium (Ti), tantalum nitride (TaN), tantalum (Ta), gold, tungsten, or the like.
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
102‧‧‧絕緣層 102‧‧‧Insulation
104‧‧‧導電層 104‧‧‧ Conductive layer
108‧‧‧硬遮罩 108‧‧‧hard mask
110‧‧‧第一開口 110‧‧‧ first opening
112‧‧‧第二開口 112‧‧‧ second opening
116‧‧‧第二方向 116‧‧‧second direction
122‧‧‧介電層 122‧‧‧ dielectric layer
124‧‧‧導電構造 124‧‧‧Electrical structure
126‧‧‧第一導電部分 126‧‧‧First conductive part
128‧‧‧第二導電部分 128‧‧‧Second conductive part
136‧‧‧第三方向 136‧‧‧ third direction
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103120636A TWI571997B (en) | 2014-06-16 | 2014-06-16 | Semiconductor structure and manufacturing method for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103120636A TWI571997B (en) | 2014-06-16 | 2014-06-16 | Semiconductor structure and manufacturing method for the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201601277A TW201601277A (en) | 2016-01-01 |
TWI571997B true TWI571997B (en) | 2017-02-21 |
Family
ID=55641314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103120636A TWI571997B (en) | 2014-06-16 | 2014-06-16 | Semiconductor structure and manufacturing method for the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI571997B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103094201A (en) * | 2011-11-04 | 2013-05-08 | 旺宏电子股份有限公司 | Memory device and method of manufacturing the same |
TW201409472A (en) * | 2012-08-23 | 2014-03-01 | Macronix Int Co Ltd | Semiconductor structure with improved capacitance of bit line |
-
2014
- 2014-06-16 TW TW103120636A patent/TWI571997B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103094201A (en) * | 2011-11-04 | 2013-05-08 | 旺宏电子股份有限公司 | Memory device and method of manufacturing the same |
TW201409472A (en) * | 2012-08-23 | 2014-03-01 | Macronix Int Co Ltd | Semiconductor structure with improved capacitance of bit line |
Also Published As
Publication number | Publication date |
---|---|
TW201601277A (en) | 2016-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9196627B2 (en) | Nonvolatile semiconductor memory device and method of fabricating the same | |
CN102544019B (en) | Nonvolatile semiconductor memory member and manufacture method thereof | |
CN106876397A (en) | Three-dimensional storage and forming method thereof | |
TWI595601B (en) | Memory device and method for fabricating the same | |
TWI508257B (en) | Three dimensional stacked semiconductor structure and method for manufacturing the same | |
US9455155B2 (en) | Semiconductor structure and manufacturing method for the same | |
CN107039450A (en) | Semiconductor device and its manufacture method | |
TWI550764B (en) | Semiconductor structure and method for manufacturing the same | |
TWI564996B (en) | Semiconductor device and manufacturing method thereof | |
TWI556356B (en) | Three-dimensional memory and method of forming the same | |
CN104576538B (en) | Memory and manufacturing method thereof | |
US9455265B2 (en) | Semiconductor 3D stacked structure and manufacturing method of the same | |
TWI462278B (en) | Semiconductor structure and manufacturing method of the same | |
TWI616986B (en) | Semiconductor structure and method for manufacturing the same | |
TWI571997B (en) | Semiconductor structure and manufacturing method for the same | |
TWI580086B (en) | Memory device and manufacturing method of the same | |
CN104810326B (en) | Three-dimensional memory and manufacturing method thereof | |
CN105280687B (en) | Semiconductor structure and manufacturing method thereof | |
CN106505001B (en) | Semiconductor structure and manufacturing method thereof | |
US9252231B2 (en) | Semiconductor structure and manufacturing method for the same | |
CN106298785A (en) | Semiconductor device and method for manufacturing the same | |
CN104766862A (en) | Three-dimensional memory structure and its manufacturing method | |
CN113053906A (en) | Memory element and manufacturing method thereof | |
CN105280590A (en) | Semiconductor structure and manufacturing method thereof | |
TWI565032B (en) | Memory device and method for fabricating the same |