TWI536747B - Analog-to-digital conversion apparatus and method thereof - Google Patents
Analog-to-digital conversion apparatus and method thereof Download PDFInfo
- Publication number
- TWI536747B TWI536747B TW103123708A TW103123708A TWI536747B TW I536747 B TWI536747 B TW I536747B TW 103123708 A TW103123708 A TW 103123708A TW 103123708 A TW103123708 A TW 103123708A TW I536747 B TWI536747 B TW I536747B
- Authority
- TW
- Taiwan
- Prior art keywords
- analog
- digital
- voltage
- code
- auxiliary
- Prior art date
Links
Landscapes
- Analogue/Digital Conversion (AREA)
Description
本發明是關於一種連續漸進式暫存器(successive- approximation-register;SAR)類比數位轉換器(analog-to-digital converters;ADC),特別是關於一種類比數位轉換裝置及其方法。The present invention relates to a continuous-approximation-register (SAR) analog-to-digital converter (ADC), and more particularly to an analog-to-digital converter and method thereof.
SAR ADC已廣泛地使用在許多應用中。SAR ADC是將類比輸入信號轉換成數位輸出資料。SAR ADC具有一SAR控制器以及一數位類比轉換器(digital-to-analog converter;DAC)。SAR控制器用以連續逼近,而DAC用以將數位碼轉換成電壓。為了使SAR ADC具有高解析度的轉換,通常需要使用高解析度的DAC。這樣於連續逼近時則需要的更多的步驟來更新數位碼,即,需要較長的時間來完成連續逼近,因而限制SAR ADC的轉換速度。簡言之,現有技術難以達到同時具有高解析度及高轉換速度。SAR ADCs have been widely used in many applications. The SAR ADC converts the analog input signal into digital output data. The SAR ADC has a SAR controller and a digital-to-analog converter (DAC). The SAR controller is used for continuous approximation, and the DAC is used to convert the digital code into a voltage. In order for a SAR ADC to have a high resolution conversion, a high resolution DAC is usually required. This requires more steps to update the digital code in the case of continuous approximation, ie, it takes a longer time to complete the continuous approximation, thus limiting the conversion speed of the SAR ADC. In short, the prior art is difficult to achieve while having high resolution and high conversion speed.
於是,期望能提供一種裝置及方法,其能提供具有在解析度及轉換速度間之間的可接受的平衡的SAR ADC。Accordingly, it would be desirable to provide an apparatus and method that provides a SAR ADC with an acceptable balance between resolution and conversion speed.
本發明之類比數位轉換裝置及其方法可允許一連續漸進式暫存器(successive- approximation-register;SAR)類比數位轉換器能具有轉換速度及解析度之間的可接收的平衡。The analog-to-digital conversion apparatus and method of the present invention can allow a continuous-approximation-register (SAR) analog-to-digital converter to have an acceptable balance between conversion speed and resolution.
在一實施例中,一種類比數位轉換裝置包括一主類比數位轉換器以及一輔類比數位轉換器。主類比數位轉換器用以將類比輸入信號轉換成主數位資料,而輔類比數位轉換器用以將同一類比輸入信號轉換成輔數位資料。主類比數位轉換器具有一第一解析度以及一第一轉換速度,而輔類比數位轉換器具有一第二解析度以及一第二轉換速度。其中第二解析度低於第一解析度,並且第二轉換速度快於第一轉換速度。In an embodiment, an analog to digital conversion device includes a main analog to digital converter and a secondary analog to digital converter. The main analog-to-digital converter is used to convert the analog input signal into main digital data, and the auxiliary analog digital converter is used to convert the same analog input signal into auxiliary digital data. The main analog-to-digital converter has a first resolution and a first conversion speed, and the auxiliary analog-to-digital converter has a second resolution and a second conversion speed. Wherein the second resolution is lower than the first resolution, and the second conversion speed is faster than the first conversion speed.
其中,主類比數位轉換器藉由執行連續漸進程序產生主數位資料。於此,連續漸進程序包括基於輔數位資料的值之快速追蹤步驟。The main analog-to-digital converter generates main digital data by performing a continuous progressive program. Here, the continuous progressive procedure includes a fast tracking step based on the value of the auxiliary digit data.
在一實施例中,一種類比數位轉換方法,包括:將類比輸入信號轉換成主數位資料、將同一類比輸入信號轉換成輔數位資料、以及執行包括基於輔數位資料的值的一快速追蹤步驟之一第一程序。於此,主類比數位轉換器具有一第一解析度以及一第一轉換速度,而輔類比數位轉換器具有一第二解析度以及一第二轉換速度。其中第二解析度低於第一解析度,並且第二轉換速度快於第一轉換速度。In an embodiment, an analog digital conversion method includes: converting an analog input signal into a main digital data, converting the same analog input signal into auxiliary digital data, and performing a fast tracking step including the value based on the auxiliary digital data. One of the first programs. Here, the main analog-to-digital converter has a first resolution and a first conversion speed, and the auxiliary analog-to-digital converter has a second resolution and a second conversion speed. Wherein the second resolution is lower than the first resolution, and the second conversion speed is faster than the first conversion speed.
在一實施例中,一種類比數位轉換方法包括:接收一類比輸入信號、取樣類比輸入信號來產生一第一電壓、使用一數位類比轉換器依據一數位碼產生一第二電壓、依據第一電壓與第二電壓之間的差的極性連續地更新數位碼以造成第二電壓逼近第一電壓、以及藉由依據一輔數位類比轉換器的輸出直接更新數位碼來越過數位碼的連續地更新步驟。In an embodiment, an analog-to-digital conversion method includes: receiving an analog input signal, sampling an analog input signal to generate a first voltage, and using a digital analog converter to generate a second voltage according to a digital code, according to the first The polarity of the difference between the voltage and the second voltage continuously updates the digital code to cause the second voltage to approximate the first voltage, and continuously updates the digital code by updating the digital code directly according to the output of the auxiliary digital analog converter step.
在一些實施例中,較高解析度但較低速度之主類比數位轉換器利用較低解析度但較高速度之輔類比數位轉換器來啟動載入連續漸進程序來連續漸進取樣的類比輸入信號。In some embodiments, a higher resolution but lower speed main analog digital converter utilizes a lower resolution but higher speed auxiliary analog to digital converter to initiate an analog input signal that is continuously progressively sampled by a continuous progressive program. .
在一些實施例中,類比數位轉換方法可包括連續執行較高解析度但較低速度之類比數位轉換以及較低解析度但較高速度之類比數位轉換、以及利用較低解析度但較高速度之類比數位轉換的結果透過越過具有多個步驟之連續漸進程序中的至少一步驟來加速連續漸進程序。其中,較高解析度但較低速度之類比數位轉換是基於連續漸進程序。In some embodiments, analog to digital conversion methods may include performing higher resolution but lower speed analog digital conversions and lower resolution but higher speed analog digital conversions, and utilizing lower resolution but higher speeds. The result of the analog-to-digital conversion accelerates the continuous progressive program by crossing at least one of the successive progressive programs having multiple steps. Among them, the analog conversion of higher resolution but lower speed is based on continuous progressive program.
以下之詳細描述係參照所附圖式,藉由圖式說明,揭露本發明各種可實行之實施例。所記載之實施例是明確且充分揭露,以致使所屬技術領域中具有通常知識者能據以實施。不同之實施例間並非相互排斥,某些實施例可與一個或一個以上之實施例進行合併而成為新的實施例。因此,下列詳細描述並非用以限定本發明。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following detailed description refers to the various embodiments of the present invention The described embodiments are clear and fully disclosed so that those of ordinary skill in the art can. Different embodiments are not mutually exclusive, and some embodiments may be combined with one or more embodiments to become a new embodiment. Therefore, the following detailed description is not intended to limit the invention.
第1圖是根據本發明一實施例之類比數位轉換裝置的功能方塊圖。參照第1圖,類比數位轉換裝置100包括一主數位類比轉換器(analog- to-digital converters;ADC)110以及一輔ADC 120。1 is a functional block diagram of an analog-to-digital conversion apparatus according to an embodiment of the present invention. Referring to FIG. 1, the analog-to-digital converter 100 includes a primary-to-digital converter (ADC) 110 and a secondary ADC 120.
主ADC 110接收一類比輸入信號VIN 並輸出主數位資料DOUT 。輔ADC 120接收同一類比輸入信號VIN ,但輸出輔數位資料DAUX 以及一邏輯信號DONE。於此,邏輯信號DONE用以信號通知類比數位轉換執行完成。來自輔ADC 120的邏輯信號DONE會提供給主ADC 110以啟動載入(bootstrap)主ADC 110的類比數位轉換。來自主ADC 110的主數位資料DOUT 與來自輔ADC 120的輔數位資料DAUX 均為同一類比輸入信號VIN 的數位表示。The main ADC 110 receives an analog input signal V IN and outputs main digital data D OUT . The auxiliary ADC 120 receives the same analog input signal V IN but outputs the auxiliary digital data D AUX and a logic signal DONE. Here, the logic signal DONE is used to signal that the analog digital conversion execution is completed. The logic signal DONE from the secondary ADC 120 is provided to the primary ADC 110 to initiate an analog digital conversion of the primary ADC 110. The master digital data D OUT from the primary ADC 110 and the secondary digital data D AUX from the secondary ADC 120 are both digital representations of the same analog input signal V IN .
然而,主ADC 110與輔ADC 120具有不同的類比數位轉換的解析度。特別是,輔ADC 120的解析度是低於主ADC 110的解析度。由於輔ADC 120的解析度較低,因此輔ADC 120較主ADC 110快完成類比數位轉換。在輔ADC 120完成類比數位轉換後,輔ADC 120拉起(assert)邏輯信號DONE,並提供輔數位資料DAUX 給主ADC 110作為主數位資料DOUT 的粗估值,藉以允許主ADC 110跳過不必要的轉換步驟,因而增加整體轉換速度。However, primary ADC 110 and secondary ADC 120 have different resolutions of analog to digital conversion. In particular, the resolution of the secondary ADC 120 is lower than the resolution of the primary ADC 110. Since the resolution of the secondary ADC 120 is low, the secondary ADC 120 performs analog digital conversion faster than the primary ADC 110. After the auxiliary ADC 120 completes the analog digital conversion, the secondary ADC 120 asserts the logic signal DONE and provides the auxiliary digital data D AUX to the primary ADC 110 as a rough estimate of the primary digital data D OUT , thereby allowing the primary ADC 110 to hop Unnecessary conversion steps, thus increasing the overall conversion speed.
於此,主ADC 110可為連續漸進式暫存器(successive- approximation-register;SAR)ADC。主ADC 110包括一取樣保持(sample-and-hold;S/H)電路111、一數位類比轉換器(digital- to-analog converter;DAC)112、一加總電路113、一比較器114以及一啟動載入式(bootstrapped)SAR控制器115。Here, the main ADC 110 can be a continuous-approximation-register (SAR) ADC. The main ADC 110 includes a sample-and-hold (S/H) circuit 111, a digital-to-analog converter (DAC) 112, a summing circuit 113, a comparator 114, and a A bootstrapped SAR controller 115 is activated.
取樣保持電路111將類比輸入信號VIN 取樣成一第一電壓V1 。DAC 112將一數位碼D轉換成一第二電壓V2 。加總電路113根據第一電壓V1 與第二電壓V2 產生一第三電壓V3 。於此,第三電壓V3 代表第一電壓V1 與第二電壓V2 之間的差。比較器114根據第三電壓V3 的極性的偵測結果(即,比較第三電壓V3 與接地準位)產生一決策信號DX 。啟動載入式SAR控制器115接收決策信號DX 、輔數位資料DAUX 以及邏輯信號DONE、依照決策信號DX 、輔數位資料DAUX 以及邏輯信號DONE執行一連續漸進程序來連續地更新數位碼D以使第二電壓V2 逐漸逼近第一電壓V1 、以及在連續漸進程序結束時基於數位碼D的最終值產生主數位資料DOUT 。於連續漸進程序的執行期間,當邏輯信號DONE被拉起時,啟動載入式SAR控制器115以輔數位資料DAUX 直接更新數位碼D並跳過原本應執行之至少一連續漸進步驟。The sample and hold circuit 111 samples the analog input signal V IN to a first voltage V 1 . The DAC 112 converts a digital code D into a second voltage V 2 . The summing circuit 113 generates a third voltage V 3 according to the first voltage V 1 and the second voltage V 2 . Here, the third voltage V 3 represents a difference between the first voltage V 1 and the second voltage V 2 . The comparator 114 generates a decision signal D X according to the detection result of the polarity of the third voltage V 3 (ie, comparing the third voltage V 3 with the ground level). The boot loadable SAR controller 115 receives the decision signal D X , the auxiliary bit data D AUX , and the logic signal DONE , performs a continuous progressive program according to the decision signal D X , the auxiliary bit data D AUX , and the logic signal DONE to continuously update the digital code. D generates the main digital data D OUT based on the second voltage V 2 gradually approaching the first voltage V 1 and at the end of the continuous progressive program based on the final value of the digital code D. During execution of the continuous progressive program, when the logic signal DONE is pulled up, the load-loading SAR controller 115 is activated to directly update the digital code D with the auxiliary digit data D AUX and skip at least one successive progressive step that should otherwise be performed.
在一實施例中,參照第2圖,能藉由具有取樣保持功能的數位類比轉換電路200來整合並實現取樣保持電路111、數位類比轉換器112及加總電路113的功能。數位類比轉換電路200包括一取樣開關210、一電容陣列220以及一DAC開關電路230。In one embodiment, referring to FIG. 2, the functions of the sample and hold circuit 111, the digital analog converter 112, and the summing circuit 113 can be integrated and implemented by the digital analog conversion circuit 200 having the sample and hold function. The digital analog conversion circuit 200 includes a sampling switch 210, a capacitor array 220, and a DAC switching circuit 230.
舉例來說,但不限於此,電容陣列220包括八個電容C1 ~C8 ,並且電容C1 ~C8 中之每一者均具有一頂板和一底板。各電容C1 ~C8 的頂板連接共同電路節點NX ,而各電容C1 ~C8 的底板連接各自的內部電路節點。例如,電容C1 ~C8 的底板分別連接內部電路節點N1 ~N8 。DAC開關電路230包括八個DAC開關231~238,並且DAC開關231~238分別對應於電容C1 ~C8 。數位碼D為八個子碼D1 ~D8 的組合。子碼D1 ~D8 分別控制DAC開關231~238。For example, but not limited to, the capacitor array 220 includes eight capacitors C 1 -C 8 , and each of the capacitors C 1 -C 8 has a top plate and a bottom plate. The top plates of the capacitors C 1 - C 8 are connected to the common circuit node N X , and the bottom plates of the capacitors C 1 - C 8 are connected to respective internal circuit nodes. For example, the bottom plates of the capacitors C 1 -C 8 are connected to the internal circuit nodes N 1 -N 8 , respectively . DAC DAC switch circuit 230 includes eight switches 231 to 238, and the DAC switches 231 to 238 respectively correspond to the capacitance C 1 ~ C 8. The digit code D is a combination of eight subcodes D 1 to D 8 . The subcodes D 1 to D 8 control the DAC switches 231 to 238, respectively.
在一實施例中,子碼D1 ~D8 中之每一者均具有3種可能值:「-1」、「0」、「1」。當子碼的值為「0」時,對應之DAC開關將對應之內部電路節點連接至接地。當子碼的值為「1」時,對應之DAC開關將對應之內部電路節點連接至負參考電壓-VR 。而當子碼的值為「-1」時,對應之DAC開關將對應之內部電路節點連接至正參考電壓VR 。In one embodiment, each of the subcodes D 1 -D 8 has three possible values: "-1", "0", "1". When the value of the subcode is "0", the corresponding DAC switch connects the corresponding internal circuit node to ground. When the value of the subcode is "1", the corresponding DAC switch connects the corresponding internal circuit node to the negative reference voltage -V R . When the value of the subcode is "-1", the corresponding DAC switch connects the corresponding internal circuit node to the positive reference voltage V R .
例如:當子碼D1 (D2 、D3 、、、或D8 )的值為「0」時,對應之DAC開關231(232、233、、、或238)將對應之內部電路節點N1 (N2 、N3 、、、或N8 )連接至接地。當子碼D1 (D2 、D3 、、、或D8 )的值為「1」時,對應之DAC開關231(232、233、、、或238)將對應之內部電路節點N1 (N2 、N3 、、、或N8 )連接至負參考電壓-VR 。當子碼D1 (D2 、D3 、、、或D8 )的值為「-1」時,對應之DAC開關231(232、233、、、或238)將對應之內部電路節點N1 (N2 、N3 、、、或N8 )連接至正參考電壓VR 。For example: When the subcode D 1 (D 2, D 3 ,,, or D 8) a value of "0", the switch corresponding to the DAC 231 (or 232, 233,, 238) corresponding to the internal circuit node N 1 (N 2 , N 3 , , , or N 8 ) is connected to ground. When the value of the subcode D 1 (D 2 , D 3 , , or D 8 ) is "1", the corresponding DAC switch 231 (232, 233, , or 238) will correspond to the internal circuit node N 1 ( N 2 , N 3 , , or N 8 ) is connected to the negative reference voltage -V R . When the value of the subcode D 1 (D 2 , D 3 , , or D 8 ) is "-1", the corresponding DAC switch 231 (232, 233, , or 238) will correspond to the internal circuit node N 1 (N 2 , N 3 , , or N 8 ) is connected to the positive reference voltage V R .
在(應用第2圖中之數位類比轉換電路200的第1圖中之主ADC 110所執行的)類比數位轉換的開始,所有子碼D1 ~D8 重置為「0」,因此所有內部電路節點N1 ~N8 連接至接地。At the beginning of the analog-to-digital conversion (executed by the main ADC 110 in the first diagram of the digital analog conversion circuit 200 in Fig. 2), all subcodes D 1 to D 8 are reset to "0", so all internal Circuit nodes N 1 ~N 8 are connected to ground.
在取樣期間(此時,取樣信號SAMP被拉起),共同電路節點NX 經由取樣開關210連接至類比輸入信號VIN ,因而藉由電容C1 ~C8 取樣類比輸入信號VIN 。During the sampling period (at this time, the sampling signal SAMP is pulled up), the common circuit node N X is connected to the analog input signal V IN via the sampling switch 210, and thus the analog input signal V IN is sampled by the capacitors C 1 to C 8 .
在取樣信號SAMP未拉起的情況下,取樣開關210打開,以及類比輸入信號VIN 的準位被保持並儲存在電容C1 ~C8 上;因而有效地實現第1圖中之取樣保持電路111的功能。換言之,第1圖中之第一電壓V1 是隱含且儲存在電容C1 ~C8 上。In the case where the sampling signal SAMP is not pulled up, the sampling switch 210 is turned on, and the level of the analog input signal V IN is held and stored on the capacitors C 1 to C 8 ; thus effectively implementing the sample and hold circuit in FIG. 1 111 features. In other words, the first voltage V 1 in FIG. 1 is implicit and stored on the capacitors C 1 -C 8 .
於連續漸進程序的執行期間,依據決策信號DX (如第1圖所示)的值連續更新子碼D8 、D7 、D6 、D5 、D4 、D3 、D2 、D1 ,以致使內部電路節點N8 、N7 、N6 、N5 、N4 、N3 、N2 、N1 有條件地切換成連接至正參考電壓VR 或負參考電壓-VR ;因而有效地實現第1圖中之DAC 112的功能。換言之,第1圖中之第二電壓V2 為內隱式且儲存在電容C1 ~C8 上。During the execution of the continuous progressive program, the subcodes D 8 , D 7 , D 6 , D 5 , D 4 , D 3 , D 2 , D 1 are successively updated according to the value of the decision signal D X (as shown in FIG. 1). So that the internal circuit nodes N 8 , N 7 , N 6 , N 5 , N 4 , N 3 , N 2 , N 1 are conditionally switched to be connected to the positive reference voltage V R or the negative reference voltage -V R ; The function of the DAC 112 in Fig. 1 is effectively realized. In other words, the second voltage V 2 in FIG. 1 is implicit and stored on the capacitors C 1 -C 8 .
由於第一電壓V1 及第二電壓V2 均為內隱式且儲存在電容C1 ~C8 上,因此其隱含地加總;因而有效地實現第1圖中之加總電路113的功能,並且在共同電路節點NX 的電壓位準(以下稱之為共模電位VX )則實現第1圖中之加總電路113的輸出,即,第三電壓V3 。Since the first voltage V 1 and the second voltage V 2 are both implicit and stored on the capacitors C 1 -C 8 , they are implicitly added; thus effectively implementing the summing circuit 113 in FIG. 1 The function, and at the voltage level of the common circuit node N X (hereinafter referred to as the common mode potential V X ), realizes the output of the summing circuit 113 in Fig. 1, that is, the third voltage V 3 .
請參照回第1圖,在任一實施例中,使用輔ADC 120來加速主ADC 110的轉換。因此,輔ADC 120之類比數位轉換的執行速度需快於主ADC 110。Referring back to FIG. 1, in either embodiment, the secondary ADC 120 is used to accelerate the conversion of the primary ADC 110. Therefore, the analog-to-digital conversion of the auxiliary ADC 120 is performed faster than the main ADC 110.
在一實施例中,輔ADC 120的解析度低於主ADC 110。舉例而言,較低解析度的ADC使用較小的電容以加速比較及穩定(settling),並且其可快於較高解析度的ADC。輔ADC 120具有低於主ADC 110的解析度但快於主ADC 110,以致於邏輯信號DONE會在主ADC 110完成轉換之前被拉起。In an embodiment, the secondary ADC 120 has a lower resolution than the primary ADC 110. For example, a lower resolution ADC uses a smaller capacitance to speed up comparison and settling, and it can be faster than a higher resolution ADC. The secondary ADC 120 has a lower resolution than the primary ADC 110 but is faster than the primary ADC 110 such that the logic signal DONE is pulled up before the primary ADC 110 completes the conversion.
在一實施例中,輔ADC 120為4位元ADC,因此其解析度小於主ADC 110的4個最高有效位元(more significant bit;MSB)。亦即,輔數位資料DAUX 為主ADC 110的4個最高有效位元之子碼{D8 、D7 、D6 、D5 }的大概估計。In one embodiment, the secondary ADC 120 is a 4-bit ADC and therefore has a lower resolution than the 4 most significant bits (MSBs) of the primary ADC 110. That is, the auxiliary digit data D AUX is a rough estimate of the subcodes {D 8 , D 7 , D 6 , D 5 } of the four most significant bits of the main ADC 110.
第3圖為第2圖所示電路之範例波形的示意圖。參照第1、2及3圖,在取樣信號SAMP被拉起的取樣期間,第二電壓V2 內隱地為零,而第一電壓V1 內隱地追蹤類比輸入信號VIN (此時即等於共模電位VX )。在時間點320(此時取樣信號SAMP未拉起),第一電壓V1 內隱地保持並且因此為共模電位VX 。然後,共模電位VX 的極性被解析為子碼D8 。在時間點328,子碼D8 被解析為-1(因共模電位VX 為負的)並更新之,其導致DAC開關238將內部電路節點N8 連接至正參考電壓VR (如第2圖所示),因而使得共模電位VX 更高。在每次按照子碼D8 的值穩定共模電位VX 之後,共模電位VX 的極性被解析為子碼D7 。在時間點327,子碼D7 被解析為1(因共模電位VX 為正的)並更新之,其導致DAC開關237將內部電路節點N7 連接至負參考電壓-VR (如第2圖所示),因而使得共模電位VX 更低。於每次按照子碼D8 的值穩定的期間,輔ADC 120完成其類比數位轉換。在時間點326,邏輯信號DONE被拉起並且輔數位資料DAUX 的值為可接受的。在這一刻,只有子碼D8 與子碼D7 被解析;然而,在輔數位資料DAUX (其為子碼{D8 、D7 、D6 、D5 }的大概估計)為可接受的時候,即可直接使用輔數位資料DAUX 來更新子碼{D8 、D7 、D6 、D5 }。亦即,能跨過解析子碼D6 、D5 的步驟,並且以基於輔數位資料DAUX 的值之「快速追蹤」步驟取代這些解析步驟。反之,若輔數位資料DAUX 不存在或不洽當,則這些解析步驟都是必需的。Figure 3 is a schematic diagram of an example waveform of the circuit shown in Figure 2. Referring to Figures 1, 2 and 3, during the sampling period in which the sampling signal SAMP is pulled up, the second voltage V 2 is implicitly zero, and the first voltage V 1 implicitly tracks the analog input signal V IN (in this case Equal to the common mode potential V X ). At time point 320 (when the sampling signal SAMP is not pulled), the first voltage V 1 and therefore is maintained implicitly common mode potential V X. Then, the polarity of the common mode potential V X is resolved into the subcode D 8 . At time 328, subcode D 8 is resolved to -1 (because common mode potential V X is negative) and updated, which causes DAC switch 238 to connect internal circuit node N 8 to positive reference voltage V R (eg, 2 is shown), thus making the common mode potential V X higher. After each time the common mode potential V X is stabilized in accordance with the value of the subcode D 8 , the polarity of the common mode potential V X is resolved into the subcode D 7 . At time 327, subcode D 7 is resolved to 1 (because the common mode potential V X is positive) and updated, which causes DAC switch 237 to connect internal circuit node N 7 to a negative reference voltage -V R (eg, As shown in FIG. 2), thus enabling lower common mode voltage V X. The secondary ADC 120 performs its analog digital conversion every time the value of the subcode D 8 is stabilized. At time point 326, the logic signal DONE is pulled up and the value of the auxiliary bit data D AUX is acceptable. At this moment, only the subcode D 8 and the subcode D 7 are parsed; however, the auxiliary digit data D AUX (which is a rough estimate of the subcode {D 8 , D 7 , D 6 , D 5 }) is acceptable. time, can be used directly to digital data D AUX auxiliary updated subcode {D 8, D 7, D 6, D 5}. That is, the steps of parsing the subcodes D 6 , D 5 can be crossed, and these parsing steps are replaced with a "fast track" step based on the value of the auxiliary digit data D AUX . Conversely, if the auxiliary digit data D AUX does not exist or is not appropriate, then these parsing steps are necessary.
在一實施例中,啟動載入式SAR控制器115包括且使用第4圖所示之邏輯表,以按照每個輔數位資料DAUX 的值(0至15之4位元數字)更新子碼{D8 、D7 、D6 、D5 }。In an embodiment, the boot loader SAR controller 115 includes and uses the logic table shown in FIG. 4 to update the subcodes according to the value of each of the auxiliary digit data D AUX (the 4-digit number from 0 to 15). {D 8 , D 7 , D 6 , D 5 }.
在另一實施例中,若邏輯表與在連續漸進程序中已解析的值(即在前述實施例中,述及之子碼{D8 、D7 })之間有不一致,依據第4圖所示之邏輯表則無法完全映射子碼{D8 、D7 、D6 、D5 }。當偵測到不一致時,將維持已解析的值,並更新剩餘的值(即,在前述實施例中之子碼{D6 、D5 }),以致於最小化子碼{D8 、D7 、D6 、D5 }與輔數位資料DAUX 之間的差異。In another embodiment, if there is an inconsistency between the logical table and the value that has been parsed in the continuous progressive program (ie, the subcode {D 8 , D 7 } mentioned in the foregoing embodiment), according to FIG. 4 The logical table shown cannot fully map the subcodes {D 8 , D 7 , D 6 , D 5 }. When the detected inconsistencies, will maintain the value parsed, and updates the remaining value (i.e., sub-code in the foregoing embodiment of {D 6, D 5}) , such that the minimum code facilitator {D 8, D 7 The difference between D 6 , D 5 } and the auxiliary digit data D AUX .
舉例而言,若子碼{D8 、D7 }已解析為{-1、1},但輔數位資料DAUX 為8(依據第5圖之邏輯表應映射為子碼{D8 、D7 、D6 、D5 }={1、-1、-1、-1}),因此維持子碼{D8 、D7 }為{-1、1}並更新子碼{D6 、D5 }為{-1、-1}。即,將子碼{D8 、D7 、D6 、D5 }設定成{-1、1、-1、-1},並且在未改變子碼{D8 、D7 }的已解析值之下此結果最相近於輔數位資料DAUX 為8。For example, if the subcode {D 8 , D 7 } has been resolved to {-1, 1}, but the auxiliary digit data D AUX is 8 (the logical table according to Figure 5 should be mapped to subcode {D 8 , D 7 , D 6 , D 5 }={1, -1, -1, -1}), thus maintaining the subcode {D 8 , D 7 } as {-1, 1} and updating the subcode {D 6 , D 5 } is {-1, -1}. That is, the subcodes {D 8 , D 7 , D 6 , D 5 } are set to {-1, 1, -1, -1}, and the resolved values of the subcodes {D 8 , D 7 } are not changed. This result is most similar to the auxiliary digit data D AUX of 8.
雖然輔數位資料DAUX 與已由主ADC 110解析之最高有效位元之間的差異可能造成錯誤的輸出資料(即,主數位資料DOUT ),然而只要在主ADC 110的最低有效位元(在第2圖之實施例中即對應子碼D1 ~D4 )之間實現及使用冗位(redundancy),此錯誤即能被容忍及修正。在最低有效位元使用冗位來修正最高有效位元的誤錯之原則為本領域所熟知,故於此不再贅述。Although the difference between the auxiliary digital data D AUX and the most significant bit that has been resolved by the primary ADC 110 may result in erroneous output data (ie, primary digital data D OUT ), as long as the least significant bit of the primary ADC 110 ( In the embodiment of Fig. 2, the redundancy and the redundancy are implemented between the corresponding subcodes D 1 to D 4 ), and this error can be tolerated and corrected. The principle of using redundancy in the least significant bits to correct errors in the most significant bits is well known in the art and will not be described again.
第1圖所示之啟動載入式SAR控制器115為有限狀態機制(finite state machine)。第5圖為實現第1圖所示之啟動載入式SAR控制器115的控制功能之一實施例的流程圖。參照第5圖,在ADC啟動(步驟501)後,ADC初始化數位碼D,即將子碼{D8 、D7 、、、D1 }均設為0(步驟503)。然後,ADC以電容C1 ~C8 取樣類比輸入信號VIN 取樣在(例如:透過拉起然後未拉起取樣信號SAMP,如第2圖所示)(步驟505)。接著,ADC藉由將一內部變數n設定為8(表示使用之電容數量)來開始連續漸進程序(步驟507)。The boot loadable SAR controller 115 shown in Fig. 1 is a finite state machine. Fig. 5 is a flow chart showing an embodiment of the control function of the boot loadable SAR controller 115 shown in Fig. 1. Referring to Fig. 5, after the ADC is started (step 501), the ADC initializes the digit code D, that is, sets the subcodes {D 8 , D 7 , , D 1 } to 0 (step 503). The ADC then samples the analog input signal V IN with a capacitance C 1 - C 8 (eg, by pulling up and then pulling up the sampled signal SAMP, as shown in FIG. 2) (step 505). Next, the ADC begins a continuous progressive process by setting an internal variable n to 8 (representing the number of capacitors used) (step 507).
然後,ADC檢查內部變數n是否為0(步驟509);若內部變數n不為0,則表示連續漸進程序尚未完成。並且,ADC檢查內部變數n是否大於4以及邏輯信號DONE是否拉起(步驟511)。若內部變數n不大於4或邏輯信號DONE未拉起,則偵測決策信號DX 的極性(步驟513)並基於決策信號DX 的極性更新子碼Dn (步驟515)。若內部變數n大於4且邏輯信號DONE亦拉起,則直接基於輔數位資料DAUX 更新子碼{D8 、D7 、D6 、D5 }(步驟521)並將內部變數n設為5(步驟522)以表示子碼D5 已更新。Then, the ADC checks if the internal variable n is 0 (step 509); if the internal variable n is not 0, it indicates that the continuous progressive program has not been completed. And, the ADC checks if the internal variable n is greater than 4 and whether the logic signal DONE is pulled up (step 511). If the internal variable n is not greater than 4 or the logic signal DONE is not pulled up, the polarity of the decision signal D X is detected (step 513) and the subcode D n is updated based on the polarity of the decision signal D X (step 515). If the internal variable n is greater than 4 and the logic signal DONE is also pulled up, the subcode {D 8 , D 7 , D 6 , D 5 } is updated directly based on the auxiliary digit data D AUX (step 521) and the internal variable n is set to 5 (Step 522) to indicate that subcode D 5 has been updated.
在子碼Dn 或子碼{D8 、D7 、D6 、D5 }更新(步驟515或步驟522)後,ADC等待電容C1 ~C8 穩定(步驟517)。然後,ADC減少內部變數n(步驟519),例如:ADC將內部變數n減去1。接著,迴圈回到檢查內部變數n是否為0(步驟509);若內部變數n為0,則表示連續漸進程序完成。然後,ADC基於子碼{D8 、D7 、D6 、D5 }計算主數位資料DOUT 的值(步驟527)。接著,ADC藉由迴圈回到步驟503來繼續往前執行下一類比數位轉換。After the subcode D n or the subcode {D 8 , D 7 , D 6 , D 5 } is updated (step 515 or step 522), the ADC waits for the capacitors C 1 - C 8 to stabilize (step 517). The ADC then reduces the internal variable n (step 519), for example: the ADC subtracts the internal variable n by one. Next, the loop returns to check if the internal variable n is 0 (step 509); if the internal variable n is 0, it indicates that the continuous progressive program is completed. The ADC then calculates the value of the main digital data D OUT based on the subcodes {D 8 , D 7 , D 6 , D 5 } (step 527). Next, the ADC returns to step 503 by looping to continue to perform the next analog-to-digital conversion.
在一實施例中,子碼D0 的值將被包括在計算主數位資料DOUT 中。在一些實施例中,主數位資料DOUT 是依據下列公式計算。In an embodiment, the value of subcode D 0 will be included in the calculation of the master digital data D OUT . In some embodiments, the master digital data D OUT is calculated according to the following formula.
(1) (1)
換言之,以由子碼控制其連接性之電容的權重來決定子碼Dn 的權重,並且將額外的子碼D0 的權重設定為1/2。若未使用步驟523及步驟525,那麼則將公式(1)中額外的子碼D0 的權重改為0。In other words, by the access control sub-code of which capacitor is connected to the discretion of the weight subcode weight n-D, and the additional weight of the subcode D 0 is set to 1/2 of the weight. If step 523 and step 525 are not used, then the weight of the extra subcode D 0 in equation (1) is changed to zero.
輔ADC 120只要在主ADC 110完成解析預期由輔ADC 120協助解析之最高有效位元之前完成類比數位轉換,輔ADC 120就可以由任意一種ADC實現。當輔ADC 120開始類比數位轉換時,邏輯信號DONE未拉起;當輔ADC 120完成類比數位轉換時,邏輯信號DONE拉起。The secondary ADC 120 can be implemented by any of the ADCs as long as the analog ADC is completed before the primary ADC 110 completes parsing the most significant bit that is expected to be resolved by the secondary ADC 120. When the auxiliary ADC 120 starts the analog-to-digital conversion, the logic signal DONE is not pulled up; when the secondary ADC 120 performs the analog-to-digital conversion, the logic signal DONE is pulled up.
在一實施例中,輔ADC 120為一快閃ADC。In an embodiment, the secondary ADC 120 is a flash ADC.
在一實施例中,輔ADC 120亦可為一SAR ADC。In an embodiment, the secondary ADC 120 can also be a SAR ADC.
在一實施例中,輔ADC 120可包括如第2圖所示之數位類比轉換電路200,但具有較小且較少的電容(以致使類比數位轉換可較快完成)。In an embodiment, the secondary ADC 120 may include a digital analog conversion circuit 200 as shown in FIG. 2, but with a smaller and lesser capacitance (so that analog digital conversion can be completed faster).
在一實施例中,輔ADC 120執行取樣保持功能的速度略快於主ADC 110,以致使較快完成類比數位轉換。In one embodiment, the secondary ADC 120 performs the sample and hold function slightly faster than the primary ADC 110 to cause the analog to digital conversion to be completed faster.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明,任何熟習相像技術者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。While the present invention has been described above in the foregoing embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of patent protection shall be subject to the definition of the scope of the patent application attached to this specification.
100‧‧‧類比數位轉換裝置
110‧‧‧主數位類比轉換器
111‧‧‧取樣保持電路
112‧‧‧數位類比轉換器
113‧‧‧加總電路
114‧‧‧比較器
115‧‧‧啟動載入式SAR控制器
120‧‧‧輔ADC
VIN‧‧‧類比輸入信號
DOUT‧‧‧主數位資料
DAUX‧‧‧輔數位資料
DONE‧‧‧邏輯信號
V1‧‧‧第一電壓
V2‧‧‧第二電壓
V3‧‧‧第三電壓
VX‧‧‧共模電壓
DX‧‧‧決策信號
D‧‧‧數位碼
200‧‧‧數位類比轉換電路
210‧‧‧取樣開關
220‧‧‧電容陣列
230‧‧‧DAC開關電路
231~238‧‧‧DAC開關
C1~C8‧‧‧電容
N1~N8‧‧‧內部電路節點
D1~D8‧‧‧子碼
VR‧‧‧正參考電壓
-VR‧‧‧負參考電壓
NX‧‧‧共同電路節點
SAMP‧‧‧取樣信號
501‧‧‧開始
503‧‧‧初始化{D8、D7、、、D1}為0
505‧‧‧在C1~C8上取樣VIN
507‧‧‧將n設為8
509‧‧‧n是否為0?
511‧‧‧n是否大於4及DONE是否為1?
513‧‧‧偵測DX
515‧‧‧基於DX更新Dn
517‧‧‧等待電容穩定
519‧‧‧n減去1
521‧‧‧基於DAUX更新{D8、D7、、、D1}
522‧‧‧將n設為5
523‧‧‧偵測DX
525‧‧‧基於Dx更新D0
527‧‧‧基於{D8、D7、、、D1}或基於{D8、D7、、、D0}計算DOUT
n‧‧‧內部變數
D0‧‧‧子碼
Dn‧‧‧子碼
320~324、326~328‧‧‧時間點100‧‧‧ analog digital converter
110‧‧‧Master digital analog converter
111‧‧‧Sampling and holding circuit
112‧‧‧Digital Analog Converter
113‧‧‧ total circuit
114‧‧‧ comparator
115‧‧‧Starting Loaded SAR Controller
120‧‧‧Secondary ADC
V IN ‧‧‧ analog input signal
D OUT ‧‧‧Master Digital Information
D AUX ‧‧‧Auxiliary data
DONE‧‧‧ logic signal
V 1 ‧‧‧First voltage
V 2 ‧‧‧second voltage
V 3 ‧‧‧ third voltage
V X ‧‧‧ Common mode voltage
D X ‧‧‧decision signal
D‧‧‧digit code
200‧‧‧Digital analog conversion circuit
210‧‧‧Sampling switch
220‧‧‧Capacitor array
230‧‧‧DAC Switch Circuit
231~238‧‧‧ DAC switch
C 1 ~ C 8 ‧‧‧ capacitor
N 1 ~N 8 ‧‧‧ internal circuit nodes
D 1 ~D 8 ‧‧‧ subcode
V R ‧‧‧ positive reference voltage
-V R ‧‧‧negative reference voltage
N X ‧‧‧Common Circuit Node
SAMP‧‧‧Sampling signal
Starting at 501‧‧
503‧‧‧Initialization {D 8 , D 7 , , D 1 } is 0
505‧‧‧Sampling V IN on C 1 ~C 8
507‧‧‧Set n to 8
Is 509‧‧‧n 0?
Is 511‧‧‧n greater than 4 and is DONE 1?
513‧‧‧Detecting D X
515‧‧‧Update D n based on D X
517‧‧‧ Waiting for capacitor stability
519‧‧‧n minus 1
521‧‧‧Updated based on D AUX {D 8 , D 7 , , D 1 }
522‧‧‧Set n to 5
523‧‧‧Detecting D X
525‧‧‧Update D 0 based on D x
527‧‧‧ Calculate D OUT based on {D 8 , D 7 , , D 1 } or based on {D 8 , D 7 , , D 0 }
n‧‧‧Internal variables
D 0 ‧‧‧ subcode
D n ‧‧‧ subcode
320~324, 326~328‧‧‧ time points
[第1圖]為根據本發明一實施例之連續漸進式暫存器(successive- approximation-register;SAR)類比數位轉換器的示意圖。 [第2圖]為實現第1圖中之取樣保持電路、數位類比轉換器、加總電路的整合功能的數位類比轉換電路之一實施例的示意圖。 [第3圖]為在主類比數位轉換器(analog- to-digital converters;ADC)接收輔類比數位轉換器的幫助之範例下,第2圖中之數位類比轉換電路之範例波形的示意圖。 [第4圖]為第1圖之主ADC利用輔ADC的輸出時所使用之邏輯表之一實施例的示意圖。 [第5圖]為第1圖之主ADC的運作流程圖。[FIG. 1] A schematic diagram of a continuous-approximation-register (SAR) analog-to-digital converter according to an embodiment of the present invention. [Fig. 2] A schematic diagram of an embodiment of a digital analog conversion circuit for realizing the integration function of the sample and hold circuit, the digital analog converter, and the summing circuit in Fig. 1. [Fig. 3] is a schematic diagram showing an example waveform of the digital analog conversion circuit in Fig. 2 in the example of the assistance of the analog analog-to-digital converters (ADC) receiving the auxiliary analog-to-digital converter. [Fig. 4] is a schematic diagram showing an embodiment of a logic table used when the primary ADC of Fig. 1 utilizes the output of the secondary ADC. [Fig. 5] is a flowchart showing the operation of the main ADC of Fig. 1.
100‧‧‧類比數位轉換裝置 100‧‧‧ analog digital converter
110‧‧‧主數位類比轉換器 110‧‧‧Master digital analog converter
111‧‧‧取樣保持電路 111‧‧‧Sampling and holding circuit
112‧‧‧數位類比轉換器 112‧‧‧Digital Analog Converter
113‧‧‧加總電路 113‧‧‧ total circuit
114‧‧‧比較器 114‧‧‧ comparator
115‧‧‧啟動載入式SAR控制器 115‧‧‧Starting Loaded SAR Controller
120‧‧‧輔ADC 120‧‧‧Secondary ADC
VIN‧‧‧類比輸入信號 V IN ‧‧‧ analog input signal
DOUT‧‧‧主數位資料 D OUT ‧‧‧Master Digital Information
DAUX‧‧‧輔數位資料 D AUX ‧‧‧Auxiliary data
DONE‧‧‧邏輯信號 DONE‧‧‧ logic signal
V1‧‧‧第一電壓 V 1 ‧‧‧First voltage
V2‧‧‧第二電壓 V 2 ‧‧‧second voltage
V3‧‧‧第三電壓 V 3 ‧‧‧ third voltage
DX‧‧‧決策信號 D X ‧‧‧decision signal
D‧‧‧數位碼 D‧‧‧digit code
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/045,821 US9007253B2 (en) | 2011-12-21 | 2013-10-04 | Successive-approximation-register analog-to-digital converter and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201515398A TW201515398A (en) | 2015-04-16 |
TWI536747B true TWI536747B (en) | 2016-06-01 |
Family
ID=52793605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103123708A TWI536747B (en) | 2013-10-04 | 2014-07-09 | Analog-to-digital conversion apparatus and method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104518798B (en) |
TW (1) | TWI536747B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10790843B2 (en) * | 2019-01-11 | 2020-09-29 | Realtek Semiconductor Corporation | Analog-to-digital converter device |
TWI779960B (en) * | 2021-12-09 | 2022-10-01 | 瑞昱半導體股份有限公司 | Analog-to-digital conversion circuit and method having speed-up comparison mechanism |
CN114978172B (en) * | 2022-06-21 | 2024-12-31 | 西安芯海微电子科技有限公司 | Analog-to-digital conversion circuit, control method, chip and electronic device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6603415B1 (en) * | 2001-07-30 | 2003-08-05 | Cirrus Logic, Inc. | Circuits and methods for latch metastability detection and compensation and systems using the same |
US8217822B2 (en) * | 2010-11-09 | 2012-07-10 | Microsoft Corporation | Resolution enhancing analog-to-digital conversion |
TWI452846B (en) * | 2010-12-16 | 2014-09-11 | Univ Nat Cheng Kung | Segmented analog-to-digital converter and method thereof |
-
2014
- 2014-07-09 TW TW103123708A patent/TWI536747B/en active
- 2014-08-11 CN CN201410392642.0A patent/CN104518798B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104518798A (en) | 2015-04-15 |
CN104518798B (en) | 2017-08-15 |
TW201515398A (en) | 2015-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI504157B (en) | Two-stage analog-to-digital converter using sar and tdc | |
US5675340A (en) | Charge-redistribution analog-to-digital converter with reduced comparator-hysteresis effects | |
TWI511467B (en) | Successive approximation register analog-digital converter and method for operating the same | |
US8981972B2 (en) | Background calibration of ADC reference voltage due to input signal dependency | |
US9362939B1 (en) | Reduction of input dependent capacitor DAC switching current in flash-SAR analog-to-digital converters | |
JP6111662B2 (en) | Analog / digital converter | |
CN110401449B (en) | A high-precision SAR ADC structure and calibration method | |
JP5869965B2 (en) | AD conversion circuit and AD conversion method | |
US9467161B1 (en) | Low-power, high-speed successive approximation register analog-to-digital converter and conversion method using the same | |
US8902092B2 (en) | Analog-digital conversion circuit and method | |
EP2686960A1 (en) | Adc calibration | |
TWI580193B (en) | Successive approximation register analog-to-digital converter and method for calibrating a comparator offset thereof | |
US10277243B2 (en) | Successive approximation register analog-to-digital converter combined with flash analog-to-digital converter | |
WO2016204827A1 (en) | Analog-digital converter and control method | |
US11349492B2 (en) | Analog-to-digital converter | |
TWI536747B (en) | Analog-to-digital conversion apparatus and method thereof | |
US8749412B1 (en) | Anti-noise successive approximation analog to digital conversion method | |
JP6636880B2 (en) | Amplifier circuit | |
JP2024526035A (en) | Successive Approximation Analog-to-Digital Converter | |
US20150318862A1 (en) | Systems and methods for data conversion | |
TWI566530B (en) | Successive approximation analog-to-digital converter and conversion method | |
US9007253B2 (en) | Successive-approximation-register analog-to-digital converter and method thereof | |
US12063053B2 (en) | Analog-to-digital converter | |
US12136931B2 (en) | Semiconductor device, analog-to-digital converter and analog-to-digital converting method | |
KR20160093159A (en) | Analog-to-digital converter and analog-to-digital converting method |