TWI530953B - 3d memory and decoding technologies - Google Patents
3d memory and decoding technologies Download PDFInfo
- Publication number
- TWI530953B TWI530953B TW102100813A TW102100813A TWI530953B TW I530953 B TWI530953 B TW I530953B TW 102100813 A TW102100813 A TW 102100813A TW 102100813 A TW102100813 A TW 102100813A TW I530953 B TWI530953 B TW I530953B
- Authority
- TW
- Taiwan
- Prior art keywords
- array
- memory
- plane
- layer
- conductors
- Prior art date
Links
- 230000015654 memory Effects 0.000 title claims description 138
- 238000005516 engineering process Methods 0.000 title description 5
- 239000004020 conductor Substances 0.000 claims description 193
- 239000000463 material Substances 0.000 claims description 50
- 150000004706 metal oxides Chemical class 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- 229910044991 metal oxide Inorganic materials 0.000 claims description 18
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000011810 insulating material Substances 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 6
- 238000000059 patterning Methods 0.000 claims description 5
- 238000003491 array Methods 0.000 claims description 4
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 3
- 229910052805 deuterium Inorganic materials 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 239000007772 electrode material Substances 0.000 claims 4
- VVRQVWSVLMGPRN-UHFFFAOYSA-N oxotungsten Chemical compound [W]=O VVRQVWSVLMGPRN-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 116
- 239000000758 substrate Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 12
- 238000001459 lithography Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000009977 dual effect Effects 0.000 description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 8
- 239000012212 insulator Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- GWBBPJDMVAPKDD-UHFFFAOYSA-N [O-2].[Mn+2].[Ca+2].[Ba+2].[O-2].[O-2] Chemical compound [O-2].[Mn+2].[Ca+2].[Ba+2].[O-2].[O-2] GWBBPJDMVAPKDD-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229930091051 Arenine Natural products 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- CSLZEOQUCAWYDO-UHFFFAOYSA-N [O-2].[Ti+4].[Ta+5] Chemical compound [O-2].[Ti+4].[Ta+5] CSLZEOQUCAWYDO-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Description
本發明是關於高密度記憶體裝置,特別是有關於配置有多平面的記憶胞以提供三維(3D)陣列記憶體裝置。 This invention relates to high density memory devices, and more particularly to memory cells configured with multiple planes to provide a three dimensional (3D) array memory device.
隨著積體電路的臨界尺寸(critical dimensions)縮小到現有的記憶胞技術的極限,設計者一直在尋找用於堆疊多平面的記憶胞的技術,以實現更大的存儲容量,並實現更低的每位元單位成本(costs per bit)。例如,在Johnson等人發表的“512-Mb PROM With a Three-Dimensional Array of Diode/Anti-fuse Memory cells”IEEE J.of Solid-State Circuits,vol.38,no.11 Nov.2003.文章中,交叉點陣列(cross-points array)技術已用於反熔絲記憶體(anti-fuse memory)。在Johnson等人描述的設計中,在交叉點(cross-points)處的記憶體元件(memory elements)提供了多層的字元線與位元線。記憶體元件包括p+多晶矽陽極連接到字元線,以及n-多晶矽陰極連接到位元線,而陽極與陰極由反熔絲材料(anti-fuse material)分隔開。 As the critical dimensions of integrated circuits shrink to the limits of existing memory cell technology, designers are looking for techniques for stacking multi-plane memory cells to achieve greater memory capacity and lower implementations. Cost per bit (costs per bit). For example, in "512-Mb PROM With a Three-Dimensional Array of Diode/Anti-fuse Memory cells" IEEE J. of Solid-State Circuits, vol. 38, no. 11 Nov. 2003. Cross-points array technology has been used for anti-fuse memory. In the design described by Johnson et al., memory elements at cross-points provide multiple layers of word lines and bit lines. The memory component includes a p+ polysilicon anode connected to the word line, and an n-polysilicon cathode connected to the bit line, and the anode and cathode are separated by an anti-fuse material.
在Johnson等人描述的流程中,每一記憶體層需要數個臨界微影(critical lithography)步驟。因此,製造此裝置所需要的臨界微影步驟的次數,須乘上實施的層數。然而臨界微影步驟是昂貴的,所以在製造積體電路時,應盡量減少使用臨界微影。因此,雖然使用3D陣列實現了較高 密度的好處,但較高的製造成本,反而限制了此技術的使用。 In the flow described by Johnson et al., each memory layer requires several critical lithography steps. Therefore, the number of critical lithography steps required to fabricate the device must be multiplied by the number of layers implemented. However, the critical lithography step is expensive, so the use of critical lithography should be minimized when manufacturing integrated circuits. Therefore, although using a 3D array achieves a higher The benefits of density, but higher manufacturing costs, limit the use of this technology.
一篇描述三維反熔絲式記憶體技術的美國專利共同待審(co-pending)的申請案,此申請案於2009年4月27日申請,申請號為12/430,290,名稱為“INTEGRATED CIRCUIT 3D MEMORY ARRAY AND MANUFACTURING METHOD”,此申請案在此被納入參考,如同已被充分闡述。 A US patent co-pending application describing a three-dimensional anti-fuse memory technology application filed on April 27, 2009, with application number 12/430,290, entitled "INTEGRATED CIRCUIT" 3D MEMORY ARRAY AND MANUFACTURING METHOD", which is hereby incorporated by reference in its entirety herein.
理想的三維積體電路記憶體的結構,是提供具有高密度和低製造成本的結構,且包括可靠與非常小的記憶體元件。 The structure of an ideal three-dimensional integrated circuit memory is to provide a structure with high density and low manufacturing cost, and includes reliable and very small memory components.
敘述於此的積體電路上的記憶體裝置,包括雙胞單元結構(two-cell unit structures)的三維(3D)記憶體陣列,此3D記憶體陣列包括可程式化與可抹除電阻元件(resistance elements)。3D陣列包括複數個圖案化導電體層(patterned conductor layers),而導電體層由絕緣層將之彼此分隔。在積體電路上包括存取裝置陣列,配置存取裝置陣列以提供存取延伸到3D陣列的個別柱體。圖案化的導電體層(conductive layers)包括鄰接於柱體的左側與右側導電體。這定義出在柱體與鄰接的左側與右側導電體間的左側與右側界面區(interface region)。記憶體元件提供在左側與右側界面區,而每一個記憶體元件包括可程式化與可抹除元件。如果有需要,組成還包括整流裝置(rectifier)或 其他開關。在此描述的例子中,可程式化元件包括過渡金屬氧化物,可程式化元件特徵為具有內建自我開關(built in self switching),因此能提供記憶體元件與開關雙功能。 The memory device on the integrated circuit described herein includes a three-dimensional (3D) memory array of two-cell unit structures including a programmable and erasable resistor element ( Resistance elements). The 3D array includes a plurality of patterned conductor layers, and the conductor layers are separated from each other by an insulating layer. An array of access devices is included on the integrated circuit, and an array of access devices is configured to provide access to individual columns that extend into the 3D array. The patterned conductive layers include left and right conductors adjacent to the cylinder. This defines the left and right interface regions between the cylinder and the adjacent left and right conductors. Memory elements are provided in the left and right interface areas, and each memory element includes programmable and erasable elements. If necessary, the composition also includes a rectifier or Other switches. In the example described herein, the programmable element includes a transition metal oxide, and the programmable element is characterized by built-in self switching, thereby providing dual functions of the memory element and the switch.
在此敘述的裝置包括列解碼電路(row decoder circuits)與行解碼電路(column decoder circuits)耦接至存取裝置陣列(array of access devices),且配置以選擇在導電柱陣列中的個別柱體。並且,左平面與右平面解碼電路(decoding circuits)耦接至在複數個圖案化導電體層的左側與右側導電體。配置解碼電路以施加偏壓,進而導致在選定胞(selected cell)中的電流流動(current flow),以及至未選定胞(unselected cell)以反轉(reverse)偏壓到整流裝置(rectifier)。 The apparatus described herein includes a row decoder circuit and a column decoder circuit coupled to an array of access devices and configured to select individual pillars in the array of conductive pillars. . Also, left and right planar decoding circuits are coupled to the left and right conductors of the plurality of patterned conductor layers. The decoding circuit is configured to apply a bias voltage, which in turn causes current flow in the selected cell, and to an unselected cell to reverse bias to the rectifier.
在敘述於此的結構中,陣列的柱體能包括半導體材料,具有第一導電類型(first conductivity type)的半導體材料電氣連通(electrical communication)於相應的存取裝置。並且,左側與右側導電體包括具有第二導電類型的半導體材料,使得在每一記憶體元件中的整流裝置,包括p-n接面(p-n junction)。在其他實施例中,柱體包括金屬或金屬與其他導體或半導體材料的組合。 In the structure described herein, the pillars of the array can comprise a semiconductor material, and the first conductivity type of semiconductor material is electrically communicated to the respective access device. Also, the left and right conductors include a semiconductor material having a second conductivity type such that the rectifying means in each memory element includes a p-n junction. In other embodiments, the pillars comprise a combination of metal or metal with other conductors or semiconductor materials.
在每一層的左側與右側導電體有著陸區(landing areas),著陸區與重疊的圖案化導電體層(overlying patterned conductor layers)中的左側與右側導電體並未重疊(overlaid)。導線,例如係金屬塞(metal plugs),穿過貫孔(vias)延伸到複數個圖案化導電體層,且接觸著陸區。例如,在圖案化金屬層中的左側與右側連接點 (connectors)連接到在貫孔的導線,進而與解碼電路(decoding circuitry)連接,而左側與右側導電體係位於複數個圖案化導電體層的上方。 The left and right conductors on each side of the layer have landing areas that are not overlaid with the left and right conductors in the overlapping overlying patterned conductor layers. Wires, such as metal plugs, extend through the vias to a plurality of patterned conductor layers and contact the landing zone. For example, the left and right connection points in the patterned metal layer The connectors are connected to the wires in the vias and are then connected to the decoding circuitry, while the left and right conductive systems are above the plurality of patterned conductor layers.
本發明也描述製造記憶體裝置的方法。複數個圖案化導電體層的形成,首先,藉由形成複數個導電材料毯覆層(blanket layers),而絕緣材料毯覆層在導電材料毯覆層間形成堆疊。然後,蝕刻堆疊處以定義出左側與右側導電體,以形成溝槽(trenches)於堆疊處中。沉積或形成一層記憶體材料層在溝槽的側壁,然後,以導電材料充填溝槽,導電材料如摻雜的半導體。其次,圖案化在溝槽的導電材料以形成柱體。然後,絕緣材料填入柱體(pillars)間。 The invention also describes a method of making a memory device. The formation of a plurality of patterned conductor layers is first formed by forming a plurality of blanket layers of conductive material, and the blanket layer of insulating material forms a stack between the layers of conductive material blanket. The stack is then etched to define the left and right conductors to form trenches in the stack. A layer of memory material is deposited or formed on the sidewalls of the trench, and then the trench is filled with a conductive material such as a doped semiconductor. Second, the conductive material in the trench is patterned to form a pillar. The insulating material is then filled between the pillars.
編程記憶胞可藉由施加偏壓,在所需的平面(desired plane)中的柱體與選定的左側與右側導電體間,以在界面區中編輯可程式化電阻記憶體元件(programmable resistance memory element)。整流裝置提供了在柱體內的不同層的記憶胞之間的隔絕,而整流裝置係由在界面區域中,以p-n接面或以其他方式所建立。當記憶體元件具有臨界特徵(threshold characteristic)時,開關功能可由記憶體元件本身提供,而對記憶胞不需要額外組件,以提供整流或開關功能。 The programmable memory cell can be edited by programming a resistive memory device in the interface region by applying a bias voltage between the pillar in the desired plane and the selected left and right conductors. Element). The fairing provides isolation between memory cells of different layers within the column, and the fairing is established by p-n junctions or otherwise in the interface region. When the memory component has a threshold characteristic, the switching function can be provided by the memory component itself, while no additional components are needed for the memory cell to provide rectification or switching functionality.
為讓本發明之上述內容能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to make the above-mentioned contents of the present invention more comprehensible, the preferred embodiments are described below, and the detailed description is as follows:
以下提供對照本發明第1至19圖之實施例的詳細描述。 A detailed description of the embodiments of Figs. 1 to 19 of the present invention is provided below.
第1圖為3D記憶體結構的示意圖,示意圖顯示位於3D結構的X-Z平面的110切面,112切面,114切面(slice)。在所示示意圖中,有九個雙胞單元結構(two-cell unit structures)120-128,每一個單元結構(unit structure)具有兩個記憶胞,而記憶胞具有個別的(separate)可程式化元件及左端點與右端點(terminals)。3D記憶體裝置的實施例能包括在每切面上有許多個雙胞單元結構。使用左側平面解碼裝置(left plane decoder)104,右側平面解碼裝置105,以及柱狀存取裝置陣列106,裝置包括胞陣列(array of cells),係配置給左解碼與右解碼。在Z-方向行(column)(如雙胞單元結構120、雙胞單元結構123、雙胞單元結構126)上的雙胞單元結構(two-cell unit structures)的導電柱,經由導電柱(如柱體130)耦接到在柱狀存取裝置陣列(pillar access device array)106上的存取裝置(access device),例如,在結構下方的積體電路基板實施。同樣的,用於雙胞單元結構121、雙胞單元結構124、雙胞單元結構127的柱體(pillar)經由柱體131耦接到在柱狀存取裝置陣列106上,相對應的存取裝置(access device)。用於雙胞單元結構122、雙胞單元結構125、雙胞單元結構128的柱體(pillar)經由柱體132耦接到在柱狀存取裝置陣列106上。 Figure 1 is a schematic diagram of a 3D memory structure showing a 110 slice, 112 slice, and 114 slice in the X-Z plane of the 3D structure. In the schematic shown, there are nine two-cell unit structures 120-128, each unit structure has two memory cells, and the memory cells have separate (serial) stylization. Components and left and right terminals. Embodiments of a 3D memory device can include a plurality of twin cell structures on each slice. A left plane decoder 104, a right plane decoding device 105, and a columnar access device array 106 are used. The device includes an array of cells configured for left decoding and right decoding. Conductive columns of two-cell unit structures on the Z-direction column (eg, twin cell structure 120, twin cell structure 123, twin cell structure 126), via conductive pillars (eg, The post 130) is coupled to an access device on a pillar access device array 106, for example, an integrated circuit substrate underneath the structure. Similarly, a pillar for the twin cell structure 121, the twin cell structure 124, and the twin cell structure 127 is coupled to the columnar access device array 106 via the pillar 131, and the corresponding access is performed. Access device. A pillar for the twin cell structure 122, the twin cell structure 125, and the twin cell structure 128 is coupled to the columnar access device array 106 via the pillars 132.
在切面110,切面112及切面114上的特定層(例如係雙胞單元結構120、雙胞單元結構121、雙胞單元結構122)中的雙胞單元結構的左側字元線導線(如導電體141),係 耦接至由左側平面解碼裝置104選擇的驅動裝置(driver)。同樣的,在切面110,切面112,切面114上的特定層(particular level)(如雙胞單元結構120、雙胞單元結構121、雙胞單元結構122)中的雙胞單元結構的右側字元線導線(如導電體142),係耦接至由右側平面解碼裝置105選擇的驅動裝置(driver)。在包括雙胞單元結構123、雙胞單元結構124、雙胞單元結構125層中的左側字元線導電體143及右側字元線導電體144,分別耦接至左側平面解碼裝置104及右側平面解碼裝置105。在包括雙胞單元結構126、雙胞單元結構127、雙胞單元結構128層中的左側字元線導電體145及右側字元線導電體146,分別耦接至左側平面解碼裝置104及右側平面解碼裝置105。 Left-hand word line conductors (eg, electrical conductors) of a twin cell structure in a particular layer (eg, twin cell structure 120, twin cell structure 121, twin cell structure 122) on slice 110, slice 112, and slice 114 141), Department It is coupled to a driver selected by the left side planar decoding device 104. Similarly, the right side of the twin cell structure in the section 110, the facet 112, and the particular level on the facet 114 (eg, the twin cell structure 120, the twin cell structure 121, the twin cell structure 122) A wire conductor (e.g., electrical conductor 142) is coupled to a driver selected by the right side planar decoding device 105. The left word line conductor 143 and the right word line conductor 144 in the double cell structure 123, the twin cell structure 124, and the twin cell structure 125 are respectively coupled to the left side planar decoding device 104 and the right plane. Decoding device 105. The left word line conductor 145 and the right word line conductor 146 in the double cell structure 126, the twin cell structure 127, and the double cell structure 128 are respectively coupled to the left side planar decoding device 104 and the right side plane. Decoding device 105.
雙胞單元結構120-雙胞單元結構128包括可程式化元件,如過渡金屬氧化物,且如果需要的話,每一單胞(cell)都包括如第1圖所示之如整流裝置的開關。由過渡金屬氧化物材料組成之記憶胞(memory cell),例如係電阻式隨機存取記憶體(ReRAM)。過渡金屬氧化物材料包括氧化鎢(tung sten oxide)、氧化鈦(titanium oxide)、氧化鎳(nickel oxide)、氧化鋁(aluminum oxide)、氧化銅(copper oxide)、氧化鋯(zirconium oxide)、氧化鈮(niobium oxide)、氧化鉭的氮化鈦氧化物(tantalum oxide titanium nitride oxide)、鉻摻雜鍶鋯氧化物(chromium doped SrZrO3)、鉻摻雜鍶鈦氧化物(chromium doped SrTiO3)、鐠鈣錳氧化物(PCMO,PrCaMnO)、鑭鈣錳氧化物(LaCaMnO)等。 The twin cell structure 120-dual cell structure 128 includes a programmable element, such as a transition metal oxide, and each cell, if desired, includes a switch such as a rectifying device as shown in FIG. A memory cell composed of a transition metal oxide material is, for example, a resistive random access memory (ReRAM). Transition metal oxide materials include tung sten oxide, titanium oxide, nickel oxide, aluminum oxide, copper oxide, zirconium oxide, oxidation Niobium oxide, tantalum oxide titanium nitride oxide, chromium doped SrZrO 3 , chromium doped SrTiO 3 , Barium calcium manganese oxide (PCMO, PrCaMnO), barium calcium manganese oxide (LaCaMnO), and the like.
記憶胞亦能由其他雙端點(two-terminal)的電阻變化記憶體裝置(resistance-change memory devices),例如係相變化記憶體(phase change memory)、傳導橋記憶體(conduction bridge memory)及自旋力矩傳輸記憶體(Spin Torque Transfer memory,STT memory)等所組成。 Memory cells can also be provided by other two-terminal resistance-change memory devices, such as phase change memory, conduction bridge memory, and Spin Torque Transfer Memory (STT memory), etc.
柱體及左側與右側導電體能由導電金屬或類金屬(metal-like)材料組成,包括:如氮化鈦(TiN)、鐿(Yb)、鋱(Tb)、釔(Y)、鑭(La)、鈧(Sc)、鉿(Hf)、鋯(Zr)、鋁(Al)、鉭(Ta)、鈦(Ti)、釹(Nb)、鉻(Cr)、釩(V)、鋅(Zn)、鎢(W)、鉬(Mo)、銅(Cu)、錸(Re)、釕(Ru)、鈷(Co)、鎳(Ni)、銠(Rh)、鉛(Pd)、鉑(Pt)及其化合物與合金材料。此外,半導體可用於一些實施例。 The pillars and the left and right conductors can be composed of a conductive metal or a metal-like material, including, for example, titanium nitride (TiN), yttrium (Yb), tantalum (Tb), yttrium (Y), and lanthanum (La). ), strontium (Sc), hafnium (Hf), zirconium (Zr), aluminum (Al), tantalum (Ta), titanium (Ti), niobium (Nb), chromium (Cr), vanadium (V), zinc (Zn) ), tungsten (W), molybdenum (Mo), copper (Cu), ruthenium (Re), ruthenium (Ru), cobalt (Co), nickel (Ni), rhodium (Rh), lead (Pd), platinum (Pt ) and its compounds and alloy materials. Additionally, semiconductors can be used in some embodiments.
記憶胞的開關元件可由金屬氧化物二極體(metal-oxide diode)、穿隧二極體(tunneling diode)或其他二極體結構組成。如下所述,藉由使用記憶體的非線性IV關係用以內建式自我開關(built-in self-switching)。更詳細雙胞單元結構提供如下。 The switching element of the memory cell may be composed of a metal-oxide diode, a tunneling diode or other diode structure. Built-in self-switching is used by using the nonlinear IV relationship of the memory as described below. A more detailed twin cell structure is provided below.
正如可見的,當阻斷在陣列中其他胞中的電流流向時,可以藉由施加電壓以使電流流經相應的柱體(如柱體130)及選定平面上所選定的一左側和右側導電體(如導電體143、導電體144兩者之一)之間,建立(established)用以讀取個別單胞(individual cell)(如在雙胞單元結構123中雙胞的其中之一)的電流通路。 As can be seen, when blocking the flow of current in other cells in the array, a voltage can be applied to cause current to flow through the corresponding cylinder (e.g., cylinder 130) and a selected left and right conductivity on the selected plane. Between the body (such as one of the electrical conductor 143 and the electrical conductor 144), it is established to read an individual cell (such as one of the twin cells in the twin cell structure 123). Current path.
在Z軸方向列(Z-direction column)(如雙胞單元結構120、雙胞單元結構123、雙胞單元結構126)中,雙胞單 元結構120-雙胞單元結構128的導電柱陣列(array of conductive pillars)的底部,經由對應的柱體130、柱體131、柱體132耦接於在柱狀存取裝置陣列106上對應的存取裝置,例如係實施於結構下方的積體電路基板。 In the Z-direction column (eg, the twin cell structure 120, the twin cell structure 123, the twin cell structure 126), the double cell The bottom of the array of conductive pillars of the meta-structure 120-twin cell structure 128 is coupled to the columnar access device array 106 via the corresponding pillar 130, the pillar 131, and the pillar 132. The access device is, for example, an integrated circuit substrate that is implemented under the structure.
在柱狀存取裝置陣列(pillar access device array)106中的存取裝置,選擇性的耦接雙胞單元結構120-雙胞單元結構128的一Z軸方向列至在Y軸方向延伸的複數條位元線134、位元線135、位元線136中對應的一位元線。複數條位元線134、位元線135、位元線136中的位元線耦接至列解碼裝置(column decoder)109。 The access device in the pillar access device array 106 selectively couples a Z-axis direction column of the twin cell structure 120-dual cell structure 128 to a complex number extending in the Y-axis direction A corresponding one of the bit line 134, the bit line 135, and the bit line 136. The bit lines in the plurality of bit lines 134, the bit lines 135, and the bit lines 136 are coupled to a column decoder 109.
柱狀存取裝置陣列106中的電晶體的閘極,係耦接至在X軸方向延伸的選擇線(select lines)137、選擇線138、選擇線139。選擇線137、選擇線138、選擇線139耦接至片解碼裝置(slice decoder)108。 The gate of the transistor in the array of columnar access devices 106 is coupled to select lines 137, select lines 138, and select lines 139 that extend in the X-axis direction. The select line 137, the select line 138, and the select line 139 are coupled to a slice decoder 108.
第2圖為繪示位於3D結構中X-Y平面的層(levels)266、層267及層268的3D記憶體結構示意圖。左側平面解碼裝置104及右側平面解碼裝置105係圖繪示於圖中。示意圖上的每一層(level)包括九個雙胞單元結構。實施例中的每層可以包括許多胞(many cells)。示意圖上在266層中單元結構的前列(front row)包括雙胞單元結構120、雙胞單元結構121及雙胞單元結構122,對應於在第1圖繪示的切面(slice)的頂列(top row)。雖然陣列可能更大,例如係包括在每平面上有1000乘1000(1000X1000)個雙胞單元,或更多個雙胞單元。在層單元結構的X-Y排列中,雙胞單元結構(two-cell unit structures)220-雙胞單 元結構225的結餘(balance)顯示為3乘3(3-by-3)。如第2圖所示,左導電體元件(left conductor element)141係設置以利用叉形導電體(forked conductor)141-L,連接到在每隔一對(alternating pairs)的行(rows)之間的左側導電體。同樣的,交錯(interleaved)於左導電體元件(left conductor element)141的右導電體元件(right conductor element)142係使用叉形導電體(forked conductor)141-R,連接到在每隔另一對(other alternating pairs)的列(rows)之間的右側導電體。如下所述,左側和右側導電體(conductors)在每一平面上能彼此分離,且通過貫孔(vias)連接到層疊的連接點上(overlying connectors),而非以叉形方式連接在平面上。 FIG. 2 is a schematic diagram showing the structure of a 3D memory of layers 266, 267, and 268 in the X-Y plane of the 3D structure. The left side plane decoding device 104 and the right side plane decoding device 105 are shown in the figure. Each level on the schematic includes nine twin cell structures. Each layer in the examples can include many cells. The front row of the unit structure in the 266 layer in the schematic diagram includes a twin cell structure 120, a twin cell structure 121, and a twin cell structure 122, corresponding to the top column of the slice depicted in FIG. 1 ( Top row). Although the array may be larger, for example, it includes 1000 by 1000 (1000 x 1000) twin cells per plane, or more than two twin cells. In the X-Y arrangement of the layer unit structure, two-cell unit structures 220-twin The balance of the meta structure 225 is shown as 3 by 3 (3-by-3). As shown in Fig. 2, a left conductor element 141 is provided to be connected to rows in alternate pairs by using a forked conductor 141-L. The left side conductor between. Similarly, the right conductor element 142 interleaved to the left conductor element 141 is connected to each other using a forked conductor 141-R The right conductor between the rows of the other alternating pairs. As described below, the left and right conductors can be separated from each other on each plane and connected to the overlapping connectors by vias instead of being connected to the plane in a forked manner. .
第3A圖繪示雙胞單元結構。在第1及2圖中使用代表單元結構的符號120可以如圖所示,包括左側導電體141-L,右側導電體142-R,以及柱體130。介電絕緣體310與介電絕緣體320隔開(separate)柱體。記憶體元件330,340包括可程式化材料層,係位在柱體130的相反側,以及在柱體130的相反側的各自的表面(respective surfaces)與對應的左側導電體141-L和右側導電體142-R之間。因而,此結構單元提供兩個記憶胞,包括如圖標示的胞1(CELL 1)及胞2(CELL 2),每單胞包括可程式化元件以及整流裝置(rectifier)。 Figure 3A shows the structure of the twin cell. The symbols 120 representing the unit structure used in FIGS. 1 and 2 may include a left side conductor 141-L, a right side conductor 142-R, and a cylinder 130 as shown. The dielectric insulator 310 is separated from the dielectric insulator 320 by a column. The memory elements 330, 340 include a layer of programmable material centered on opposite sides of the cylinder 130, and respective surfaces on opposite sides of the cylinder 130 and corresponding left conductors 141-L and right conductors Between 142-R. Thus, the structural unit provides two memory cells, including cells 1 (CELL 1) and cells 2 (CELL 2) as indicated, each cell comprising a programmable element and a rectifier.
當柱體130包括導電體,如金屬,金屬氮化物,摻雜的多晶矽,以及其他導電體的時候,此例中的導電體141-L以及導電體142-R能包括過渡金屬,如鎢(tungsten)。在 一些實施方式中,在記憶體元件的相反側上,使用p-型和n-型半導體,將用於記憶胞的p-n接面(p-n junction)的整流裝置設置在界面區域中。 When the pillar 130 includes an electrical conductor such as a metal, a metal nitride, a doped polysilicon, and other electrical conductors, the electrical conductor 141-L and the electrical conductor 142-R in this example can include a transition metal such as tungsten ( Tungsten). in In some embodiments, a rectifying device for the p-n junction of the memory cell is disposed in the interface region on the opposite side of the memory device using p-type and n-type semiconductors.
整流裝置可藉由在導電體與柱體間的p-n接面,加以實施(implemented)。例如,依據固體電解質的整流裝置,如矽化鍺(germanium silicid)或其他合適的材料,可用以提供整流裝置。其他代表性的固體電解質材料(solid electrolyte materials),請參見Gopalakrishnan的美國第7,382,647號專利。 The rectifying means can be implemented by a p-n junction between the conductor and the cylinder. For example, a rectifying device based on a solid electrolyte, such as a germanium silicid or other suitable material, can be used to provide a rectifying device. For other representative solid electrolyte materials, see U.S. Patent No. 7,382,647 to Gopalakrishnan.
記憶胞形成在柱體130與左側導電體141-L或右側導電體142-R交叉點上的界面區域,且記憶胞可包括氧化鎢或前述提及的金屬氧化物的側壁層(side wall layer)。在其他實施例中,其他記憶體元件可使用包括反熔絲(anti-fuse)記憶胞,而反熔絲(anti-fuse)記憶胞包括二氧化矽、氮氧化矽(silicon oxynitride)或具有厚度5至10奈米且高電阻的二氧化矽。其他可使用的反熔絲材料,如氮化矽(silicon nitride)、氧化鋁、氧化鉭(tantalum oxide)、氧化鎂(magnesium oxide)等。 The memory cell forms an interface region at the intersection of the pillar 130 and the left conductor 141-L or the right conductor 142-R, and the memory cell may include tungsten oxide or a side wall layer of the aforementioned metal oxide. ). In other embodiments, other memory elements may be used including anti-fuse memory cells, while anti-fuse memory cells include ceria, silicon oxynitride or have thickness 5 to 10 nm high resistance ruthenium dioxide. Other antifuse materials that can be used, such as silicon nitride, aluminum oxide, tantalum oxide, magnesium oxide, and the like.
施加偏壓(Bias voltages)到單元結構,包括右字元線電壓VWL-R,左字元線電壓VWL-L,及柱體電壓VB。 Bias voltages are applied to the cell structure, including the right word line voltage V WL -R, the left word line voltage V WL -L , and the column voltage V B .
第3B圖繪示在3D陣列中的兩層的兩個單元胞的側面圖,其中頂端層(top)的雙單元(two-unit)胞,包括左側導電體141-L與連接到柱體130的側壁(side wall)記憶體元件340,在柱體130相反側的記憶體元件330,以及右側導電體142-R。在第二層的雙單元(two-unit)胞包 括一個雙單元胞,而雙單元胞包括左側導電體143-L、連接到柱體130的側壁(side wall)記憶體元件341、設於柱體130相反側的記憶體元件331,以及右側導電體144-R。在一些實施方式中,能夠多於兩層,例如8層、16層等。記憶體元件340位在記憶體元件341之上,且記憶體元件340,記憶體元件341兩者都設置的柱體130的側壁上。同樣的,記憶體元件330位在記憶體元件331之上,並且,記憶體元件330,記憶體元件331兩者都設置的柱體130的側壁上。 FIG. 3B is a side view of two unit cells of two layers in a 3D array, wherein a two-unit cell of the top layer includes a left side conductor 141-L and is connected to the pillar 130. A side wall memory element 340, a memory element 330 on the opposite side of the pillar 130, and a right side conductor 142-R. Two-unit cell pack in the second layer A double cell is included, and the dual cell includes a left side conductor 143-L, a side wall memory element 341 connected to the column 130, a memory element 331 disposed on the opposite side of the column 130, and a right side conductive Body 144-R. In some embodiments, more than two layers can be used, such as 8 layers, 16 layers, and the like. The memory element 340 is located above the memory element 341, and both the memory element 340 and the memory element 341 are disposed on the sidewall of the cylinder 130. Similarly, the memory component 330 is located above the memory component 331, and the memory component 330 and the memory component 331 are disposed on the sidewalls of the pillar 130.
第4圖繪示部分3D結構,此結構包括如第1~3圖所述的記憶胞陣列。第4圖顯示三層圖案化導電體層,其中頂端層(top level)包括延伸X軸方向的圖案化導電體410-導電體412,下一層(next level)包括圖案化導電體413-導電體415,再下一層(next lower level)包括圖案化導電體416-導電體418。在本例中,在頂端層(top)的可程式化元件位在金屬氧化物結構425-金屬氧化物結構430上,而金屬氧化物結構425-金屬氧化物結構430形成於圖案化導電體410-導電體412相反側上。在金屬氧化物結構431-金屬氧化物結構432上的可程式化元件形成在圖案化導電體415相反側上,在金屬氧化物結構433-金屬氧化物結構434上的可程式化元件形成在圖案化導電體418相反側上。類似的可程式化元件同樣地形成於結構中其他圖案化導電體的側面上。3D結構包括導電柱陣列,而導電柱陣列包括在圖示的結構背面的柱體81-柱體84,以及在圖示的結構前面的柱體493、柱體495與柱體(pillar)497。絕 緣柱體形成於柱體間與其相反側上。因此,絕緣柱(insulating pillars)492、絕緣柱494、絕緣柱496與絕緣柱498顯示在柱體493、柱體495與柱體497的相反側上。 Figure 4 illustrates a partial 3D structure including a memory cell array as described in Figures 1-3. 4 shows a three-layer patterned conductor layer, wherein a top level includes a patterned electrical conductor 410-conductor 412 extending in the X-axis direction, and a next level includes a patterned electrical conductor 413-conductor 415 The next lower level includes a patterned electrical conductor 416 - electrical conductor 418. In this example, the programmable element on the top layer is on the metal oxide structure 425-metal oxide structure 430, and the metal oxide structure 425-metal oxide structure 430 is formed on the patterned conductor 410. On the opposite side of the conductor 412. A programmable element on metal oxide structure 431 - metal oxide structure 432 is formed on the opposite side of patterned conductor 415, and a programmable element on metal oxide structure 433 - metal oxide structure 434 is formed in the pattern The conductor 418 is on the opposite side. Similar programmable elements are likewise formed on the sides of other patterned electrical conductors in the structure. The 3D structure includes an array of conductive pillars, while the array of conductive pillars includes a cylinder 81-cylinder 84 on the back of the illustrated structure, and a cylinder 493, a cylinder 495, and a pillar 497 in front of the illustrated structure. Absolutely The edge cylinder is formed on the opposite side of the cylinder. Therefore, insulating pillars 492, insulating pillars 494, insulating pillars 496, and insulating pillars 498 are shown on the opposite sides of the cylinder 493, the cylinder 495, and the cylinder 497.
第4圖繪示存取電晶體(access transistor)的另一種實現方式,要求柱體包括摻雜的半導體,且作為垂直選擇電晶體(vertical select transistors)的通道區(channel regions)。選擇線(select lines)137、選擇線138及選擇線139位於記憶立方體(memory cube)102的下方且在X軸方向中延伸,而選擇線137、選擇線138、選擇線139作為選擇電晶體(select transistors)的閘極。柱體延伸通過選擇線137、選擇線138及選擇線139到在X軸方向上延伸的位元線134、位元線135及位元線136。在其它實施例中,選擇電晶體(select transistors)可以形成在基板的源極/汲極端與通道上,或其他方式。 Figure 4 illustrates another implementation of an access transistor that requires the pillar to include a doped semiconductor and serve as channel regions for the vertical select transistors. Select lines 137, select lines 138, and select lines 139 are located below the memory cube 102 and extend in the X-axis direction, while select lines 137, select lines 138, select lines 139 are selected transistors ( Select transistors). The pillars extend through select line 137, select line 138, and select line 139 to bit line 134, bit line 135, and bit line 136 that extend in the X-axis direction. In other embodiments, select transistors may be formed on the source/deuterium terminals and channels of the substrate, or other means.
第5圖繪示如第4圖中的結構之Y-Z平面的剖視圖,其繪示沿著包括柱體497的雙胞單元結構500、雙胞單元結構502及雙胞單元結構504。在適當情況下,第4圖中的編號係重複使用於第5圖中。 5 is a cross-sectional view of the Y-Z plane of the structure as in FIG. 4, showing the twin cell structure 500, the twin cell structure 502, and the twin cell structure 504 along the column 497. Where appropriate, the numbers in Figure 4 are reused in Figure 5.
雙胞單元結構500包括一左胞500-L與一右胞500-R。做為記憶體元件的左胞500-L包括導電體418及金屬氧化物結構433。做為記憶體元件的右胞500-R包括導電體417及金屬氧化物結構435。 The twin cell structure 500 includes a left cell 500-L and a right cell 500-R. The left cell 500-L as a memory element includes an electrical conductor 418 and a metal oxide structure 433. The right cell 500-R as a memory element includes an electrical conductor 417 and a metal oxide structure 435.
雙胞單元結構502包括左胞502-L與右胞502-R。做為記憶體元件的左胞502-L包括導電體415及金屬氧化物結構431。做為記憶體元件的右胞502-R包括導電體414及 金屬氧化物結構437。 The twin cell structure 502 includes a left cell 502-L and a right cell 502-R. The left cell 502-L as a memory element includes an electrical conductor 415 and a metal oxide structure 431. The right cell 502-R as a memory element includes an electrical conductor 414 and Metal oxide structure 437.
雙胞單元結構504包括一左胞504-L與一右胞504-R。做為記憶體元件的左胞504-L包括導電體412及金屬氧化物結構429。做為記憶體元件的右胞504-R包括導電體411及金屬氧化物結構439。 The twin cell structure 504 includes a left cell 504-L and a right cell 504-R. The left cell 504-L, which is a memory element, includes an electrical conductor 412 and a metal oxide structure 429. The right cell 504-R as a memory element includes an electrical conductor 411 and a metal oxide structure 439.
字元線中的每一層是由絕緣材料隔開,而絕緣材料如矽氮化物(silicon nitride)或二氧化矽。因此,兩個Z軸方向列的單胞由雙胞結構單元500、雙胞結構單元502及雙胞結構單元504所提供。 Each of the word lines is separated by an insulating material such as silicon nitride or hafnium oxide. Thus, the unit cells of the two Z-axis directions are provided by the twin structural unit 500, the twin structural unit 502, and the twin structural unit 504.
選擇線137圍繞柱體497,且延伸進入和離開如第5圖所示的剖面。閘極介電層(Gate dielectric)520分隔柱體497與選擇線137。 The selection line 137 surrounds the cylinder 497 and extends into and out of the section as shown in FIG. A gate dielectric 520 separates the pillar 497 from the selection line 137.
圖6至12繪示上述製造3D結構的各階段製造流程。第6圖說明積體電路基板的表面600上,用於連接3D結構的接點陣列(array of contacts)。接點陣列包括接點(如接點601-接點604),接點耦接至個別存取裝置,且可以連接到在3D結構中的柱體。個別存取裝置能形成在基板上,且可包括如金氧半導體電晶體(MOS transistors),而金氧半導體電晶體具有耦接至設置在X軸方向字元線的閘極,耦接至設置在Y軸方向源極線的源極(sources),以及耦接至接點(如接點601-接點604)的汲極。以適合的特定的操作下,藉由偏壓於字元線及源極線,選擇個別存取裝置。在一些實施方式中,存取裝置能包括垂直,環繞式閘極電晶體(surrounding gate transistors),而環繞式閘極電晶體上端的源極/汲極端耦接至柱體。 6 to 12 illustrate the manufacturing process of each stage of the above-described manufacturing 3D structure. Fig. 6 is a view showing an array of contacts for connecting a 3D structure on the surface 600 of the integrated circuit substrate. The contact array includes contacts (e.g., contacts 601 - 604) that are coupled to individual access devices and that can be connected to the posts in the 3D structure. Individual access devices can be formed on the substrate, and can include, for example, MOS transistors, and the MOS transistors have a gate coupled to the word line disposed in the X-axis direction, coupled to the set The source of the source line in the Y-axis direction, and the drain of the coupling to the contact (such as contact 601 - contact 604). The individual access devices are selected by biasing the word lines and source lines in a suitable particular operation. In some embodiments, the access device can include vertical, surrounding gate transistors, and the source/turner terminal of the upper end of the wraparound gate transistor is coupled to the post.
第7圖繪示在製造流程第一階段中的側面剖視圖,係為在基板720上形成交替的(alternating)絕緣材料層721、絕緣材料層723、絕緣材料層725、絕緣材料層727及導電體材料(conductor material)層722、導電體材料層724、導電體材料層726、導電體材料層728之後的多層堆疊材料(multilayer stack of materials)的側面剖視圖,其中絕緣材料層例如係二氧化矽或氮化矽,而導電體材料層例如係金屬(如鎢、n+多晶矽或其他摻雜的半導體、金屬氮化物或金屬與其他如金屬氮化物導電體的組合)。在具代表性的結構中,交替的絕緣材料層厚度可為大約50奈米,而交替的導電體材料層厚度可為大約50奈米。在交替層728的頂端,能形成硬質光罩材料層729(如氮化矽)。 7 is a side cross-sectional view showing the first stage of the manufacturing process, in which an alternating insulating material layer 721, an insulating material layer 723, an insulating material layer 725, an insulating material layer 727, and an electrical conductor are formed on the substrate 720. A side cross-sectional view of a multilayer stack of materials, such as a conductor material layer 722, a conductor material layer 724, a conductor material layer 726, and a conductor material layer 728, wherein the insulating material layer is, for example, cerium oxide or The tantalum nitride layer, such as a metal (such as tungsten, n+ polysilicon or other doped semiconductors, metal nitrides or combinations of metals and other metal nitride conductors). In a representative configuration, the alternating layers of insulating material may be about 50 nanometers thick, and the alternating layers of conductive material may have a thickness of about 50 nanometers. At the top of alternating layers 728, a layer of hard mask material 729 (e.g., tantalum nitride) can be formed.
第8圖繪示使用第一微影製程結果的佈局視圖,微影製程定義出溝槽(trenches)的圖案,以及透過蝕刻如第6圖中所示的多層堆疊材料,對堆疊處進行圖案化蝕刻(patterned etch of the stack)以形成溝槽845-溝槽848。微影製程露出接點(如接點604),接點係耦接至柱狀存取裝置(pillar access circuits)中的個別存取裝置。非等向性反應離子蝕刻技術(Anisotropic reactive ion etching techniques)能用於蝕刻穿過導電層和氧化矽或氮化矽層,且具高深寬比(high aspect ratio)。溝槽具有側壁(sidewalls)830-側壁833,而側壁830-側壁833為在結構各層中導電體材料層露出處。在具代表性的結構中,溝槽845-溝槽848的寬度可為如大約70奈米。 Figure 8 illustrates a layout view using the results of the first lithography process, the lithography process defines a pattern of trenches, and patterning the stack by etching a multilayer stack of materials as shown in Figure 6 The patterned etch of the stack is formed to form trenches 845 - trenches 848. The lithography process exposes contacts (e.g., contacts 604) that are coupled to individual access devices in the column access circuits. Anisotropic reactive ion etching techniques can be used to etch through a conductive layer and a tantalum oxide or tantalum nitride layer with a high aspect ratio. The trenches have side walls 830 - sidewalls 833, while sidewalls 830 - sidewalls 833 are exposed at the layers of electrical conductor material in the various layers of the structure. In a representative configuration, the width of the trench 845-trench 848 can be, for example, about 70 nanometers.
第9圖顯示於流程中之較後階段,為在接觸導電體材料 層的溝槽845-溝槽848側壁上,形成金屬氧化物記憶體材料層(metal oxide memory material)940-金屬氧化物記憶體材料層943後的階段。例如,當導電體層包括鎢或其他適於形成金屬氧化物記憶體材料的金屬時,金屬氧化物記憶體材料可由沉積,或經由氧化用於導電層的金屬而形成。於形成金屬氧化物記憶體材料後的流程,可包括沉積薄保護層,例如在金屬氧化物材料上的p型多晶矽,然後,使用非等向性蝕刻製程從溝槽845-溝槽848的底端移除所有記憶體材料,最後露出接點(如接點604)。 Figure 9 shows the later stages of the process, in contact with the conductor material. The trenches 845 of the layers - the trenches 848 sidewalls, form a metal oxide memory material 940 - metal oxide memory material layer 943. For example, when the conductor layer includes tungsten or other metal suitable for forming a metal oxide memory material, the metal oxide memory material may be formed by deposition, or by oxidizing a metal for the conductive layer. The process after forming the metal oxide memory material can include depositing a thin protective layer, such as a p-type polysilicon on a metal oxide material, and then using an anisotropic etch process from the bottom of the trench 845-trench 848 The end removes all memory material and finally exposes the contacts (eg, contact 604).
第10圖顯示流程下一個階段,此階段為在圖案化導電體之間的溝槽中,填入做為柱體的材料,如p型多晶矽或金屬,以及形成填充的溝槽1050-溝槽1053之後的階段。在其他結構中,溝槽能使用摻雜的半導體先做內襯(lined),然後使用金屬充填,以改善結構的導電性,進而在結構的界面區域提供整流裝置。 Figure 10 shows the next stage of the process, in which the trenches between the patterned conductors are filled with a material that is a cylinder, such as a p-type polysilicon or metal, and a filled trench 1050-groove. The stage after 1053. In other constructions, the trench can be lined with a doped semiconductor and then filled with metal to improve the electrical conductivity of the structure, thereby providing a rectifying device at the interface region of the structure.
第11圖顯示使用第二微影製程定義出柱體圖案。使用對柱體的材料有選擇性的非等向性蝕刻製程作填充溝槽的圖案化蝕刻(patterned etch of the filled trenches),以定義出導電柱(柱體1150-a、柱體1150-b、柱體1150-c、柱體1151-a、柱體1151-b、柱體1151-c、柱體1152-a、柱體1152-b、柱體1152-c、柱體1153-a、柱體1153-b及柱體1153-c),以及在導電柱間產生垂直開孔(vertical openings)。導電柱連接於接點,包括接點604(未繪示,參閱第8及9圖),進而到下方的個別存取裝置。接著,將介電絕緣材料,如二氧化矽,填入柱體間,以在柱體間 形成絕緣體列(如絕緣體1120)。 Figure 11 shows the definition of the cylinder pattern using the second lithography process. Patterned etch of the filled trenches using a selective anisotropic etching process for the material of the pillar to define a conductive pillar (cylinder 1150-a, cylinder 1150-b) , cylinder 1150-c, cylinder 1151-a, cylinder 1151-b, cylinder 1151-c, cylinder 1152-a, cylinder 1152-b, cylinder 1152-c, cylinder 1153-a, column The body 1153-b and the cylinder 1153-c), and the vertical openings are formed between the conductive columns. The conductive posts are connected to the contacts, including contacts 604 (not shown, see Figures 8 and 9), and then to the individual access devices below. Next, a dielectric insulating material, such as cerium oxide, is filled between the cylinders to form between the cylinders. An insulator column (such as insulator 1120) is formed.
第12圖說明在複數個平面上,用於製作接點到左側及右側導電體(conductor lines)配置的上視圖。在每一層上的左側導電體(conductors)1261-1、導電體1261-2、導電體1261-3與導電體1263-1、導電體1263-2、導電體1263-3及右側導電體1260-1、導電體1260-2、導電體1260-3、導電體1262-1、導電體1262-2、導電體1262-3與導電體1264-1、導電體1264-2、導電體1264-3具有配置成階梯狀圖案(stair-step pattern),或其他圖案的著陸區(標示為“L”或“R”),使得每一層上的著陸區不至於被層疊的圖案化導電體層中任何左側及右側導電體所層疊。接點塞(Contact plugs)或其他導線(conductive lines)(未繪示)延伸穿過複數個導電體層,然後接觸著陸區。層疊的(overlying)圖案化連接層包括在複數個圖案化導電體層上的左側接點1228、接點1229、接點1230及右側接點1225、接點1226、接點1227,且接觸於導線(conductive lines),而此導線係接觸左側與右側導電體的著陸區。左側與右側接點路由到(routed)到左與右平面解碼電路(未繪示)。 Figure 12 illustrates a top view of the configuration of the contacts to the left and right conductor lines on a plurality of planes. The left side conductors 1261-1, the conductors 1261-2, the conductors 1261-3 and the conductors 1263-1, the conductors 1263-2, the conductors 1263-3, and the right side conductors 1260- on each layer 1. The conductor 1260-2, the conductor 1260-3, the conductor 1262-1, the conductor 1262-2, the conductor 1262-3 and the conductor 1264-1, the conductor 1262-2, and the conductor 1264-3 have Configured as a stair-step pattern, or a landing zone of other patterns (labeled "L" or "R") such that the landing zone on each layer is not to any left side of the layered patterned conductor layer and The right side conductors are stacked. Contact plugs or other conductive lines (not shown) extend through a plurality of conductor layers and then contact the landing zone. The overlying patterned connection layer includes left side contacts 1228, contacts 1229, contacts 1230 and right side contacts 1225, contacts 1226, contacts 1227 on a plurality of patterned conductor layers, and is in contact with the wires ( Conductive lines), and this wire is in contact with the landing zone of the left and right conductors. The left and right contacts are routed to the left and right plane decoding circuits (not shown).
第13圖繪示在另一個實施例中的一層(level)的佈局圖,佈局圖顯示從第4圖的頂端層中的左側導電體1260-3與右側導電體1264-3耦接於延伸部(extensions)1350及延伸部1351(也被稱為墊片),以連接左側導電體與右側導電體到左側平面解碼裝置與右側平面解碼裝置。可以看出,左側導電體1261-3與左側導電體1263-3耦接至延伸 部1351,使延伸部可連接在著陸區1353上的接點塞,藉由層疊的圖案化導電體層(overlying patterned conductor layers)到連接解碼裝置電路。同樣的,右側導電體1260-3、右側導電體1262-3與右側導電體1264-3耦接至延伸部1350,使延伸部可連接在著陸區1352上的接點塞(Contact plugs),藉此連接到解碼裝置電路。 Figure 13 is a plan view showing a level in another embodiment. The layout shows that the left side conductor 1260-3 and the right side conductor 1264-3 in the top layer of Fig. 4 are coupled to the extension. Extensions 1350 and extensions 1351 (also referred to as spacers) connect the left and right conductors to the left side plane decoding device and the right side plane decoding device. It can be seen that the left side conductor 1261-3 is coupled to the left side conductor 1263-3 to extend The portion 1351 is such that the extension portion can be connected to the contact plug on the landing region 1353 by laminating overlying patterned conductor layers to the connection decoding device circuit. Similarly, the right side conductor 1260-3, the right side conductor 1262-3 and the right side conductor 1264-3 are coupled to the extension 1350 so that the extension can be connected to the contact plugs on the landing area 1352. This is connected to the decoding device circuit.
第14圖繪示一存取裝置陣列的實施方式,而存取裝置陣列適合用於在第1圖中所示的做為柱狀存取裝置陣列(pillar access device array)。如第14圖所示,在基板上實施的存取層1104,包括具有上表面的絕緣材料1410,而接點陣列(如接點1412)曝露在絕緣材料上表面上。在汲極接點(drain contacts)1408的上表面提供用於個別柱體的接點,而汲極接點1408的上表面耦接至在存取層(access layer)中的金氧半導體電晶體(MOS transistors)的汲極端點(drain terminals)1436。存取層1104,包括具有源極區域(source regions)1442的半導體本體及在存取層1104上的汲極區域1436。多晶矽字元線1434設置在閘極介電層上,且在源極區域1442與汲極區域1436之間。如實施例所示,源極區域1442為鄰接的金氧半導體電晶體所共用,而形成雙電晶體結構1448。基板1438內的源極接點1440位於字元線1434之間,且源極接點1440與源極區域1442接觸。源極接點(source contacts)1440能連接至在金屬層的位元線(未繪示),而位元線為垂直於字元線,且在汲極接點行(columns of drain contacts)1408之間。矽化物蓋(silicide caps)1444覆蓋字元線 1434。介電層1445覆蓋字元線1434與矽化物蓋1444。隔離溝槽(Isolation trenches)1446將雙電晶體結構1448從相鄰的雙電晶體結構分隔開。在此例中,電晶體充當存取裝置(access devices)。個別柱體能耦接至接點1412且藉由控制源極接點1440與字元線1412的偏壓加以個別選擇。理所當然,其他結構可用以實現存取裝置陣列,包括,如垂直金氧半導體電晶體裝置陣列(vertical MOS device array)。 Figure 14 illustrates an embodiment of an access device array, and the access device array is suitable for use as a pillar access device array as shown in Figure 1. As shown in Fig. 14, the access layer 1104 implemented on the substrate includes an insulating material 1410 having an upper surface, and an array of contacts (e.g., contacts 1412) is exposed on the upper surface of the insulating material. Contact points for individual pillars are provided on the upper surface of the drain contacts 1408, and the upper surface of the drain contacts 1408 is coupled to the MOS transistor in the access layer (MOS transistors) drain terminals 1436. Access layer 1104 includes a semiconductor body having source regions 1442 and a drain region 1436 on access layer 1104. Polycrystalline germanium word line 1434 is disposed over the gate dielectric layer and between source region 1442 and drain region 1436. As shown in the embodiment, source region 1442 is shared by adjacent MOS transistors to form dual transistor structure 1448. The source contact 1440 in the substrate 1438 is between the word lines 1434 and the source contact 1440 is in contact with the source region 1442. The source contacts 1440 can be connected to bit lines (not shown) in the metal layer, and the bit lines are perpendicular to the word lines, and in the columns of drain contacts 1408 between. Silicide caps 1444 covering word lines 1434. Dielectric layer 1445 covers word line 1434 and telluride cover 1444. Isolation trenches 1446 separate the dual transistor structures 1448 from adjacent dual crystal structures. In this case, the transistor acts as an access device. Individual pillars can be coupled to contacts 1412 and individually selected by controlling the bias of source contact 1440 and word line 1412. Of course, other structures can be used to implement an array of access devices, including, for example, a vertical MOS device array.
第15圖為過渡金屬氧化物記憶體元件的電流與電壓的IV曲線圖,過渡金屬氧化物記憶體元件可包括例如係氧化鎢(tungsten oxide)。IV曲線1500顯示非線性特性,可據以取代記憶胞之個別的的開關元件(switching element)。可以看出,在臨界電壓(threshold voltage)VT以下,金屬氧化物材料實質上(essentially)係阻斷電流且為關閉狀態,但當在臨界電壓(threshold voltage)VT以上,金屬氧化物材料允許電流流通,所以是開啟狀態。因此,能依據具有這種特性的金屬氧化物和其它記憶體材料,內建自我開關。 Figure 15 is a graph of current versus voltage for a transition metal oxide memory device, which may include, for example, tungsten oxide. The IV curve 1500 shows a non-linear characteristic that can be substituted for the individual switching elements of the memory cell. It can be seen that below the threshold voltage V T , the metal oxide material is essentially blocking current and is in a closed state, but when it is above a threshold voltage V T , the metal oxide material The current is allowed to flow, so it is on. Therefore, self-switching can be built in accordance with metal oxides and other memory materials having such characteristics.
第16圖繪示在第3B圖中所示的兩個單元結構的替代結構,配置(deploying)金屬氧化物記憶胞技術,如美國專利第8,279,656號所描述,此文獻在此被納入參考,如同已被充分闡述。第16圖顯示在3D陣列的兩層中,雙單元胞的側視圖(在適當情況下,使用相同於第3B圖中的編號),其中頂端部的雙單元胞包括左側導電體141-L、連接至柱體130的側璧記憶體元件340、在柱體130相反側 的記憶體元件330,以及右側導電體142-R。在第二層的雙單元胞包括左側導電體143-L、連接至柱體130的側璧記憶體元件341、在柱體130相反側的記憶體元件331,以及右側導電體144-R。如第16圖所示的另一選擇是使用多層導電體之導電體141-L、導電體142-R、導電體143-L與導電體144-R,多層導電體包括不同的可氧化材料(oxidizable material)的襯墊(liner),例如氮化鈦(TiN),氮化鈦的氧化速度較塊材(bulk material)慢,此處所指之塊材例如係鎢。當氧化導電體層而形成記憶體元件時,鎢芯(tungsten core)氧化的深度比導電體層的塊材氧化的深度更深(在此例所指的深度係沿水平方向表示),按照這種方式,形成記憶胞時,於側壁的上端區域340-u、上端區域340-1及下端區域341-u、下端區域341-1、上端區域330-u、上端區域330-1、下端區域331-u及下端區域331-1的交叉點區域形成氮氧化鈦(TiNOx)在氮化鈦外襯墊的例子中,可看出柱體130也能包括具有氮化鈦(TiN)外襯130-a與外襯130-b的鎢芯。 Figure 16 is a diagram showing an alternative structure of the two unit structures shown in Figure 3B, a metal oxide memory cell technique, as described in U.S. Patent No. 8,279,656, the disclosure of which is incorporated herein by reference. Has been fully elaborated. Figure 16 shows a side view of the dual cells in the two layers of the 3D array (using the same number in Figure 3B where appropriate), wherein the double cells at the top end include the left conductor 141-L, The side memory device 340 is connected to the column 130, the memory element 330 on the opposite side of the column 130, and the right side conductor 142-R. The dual cells in the second layer include a left side conductor 143-L, a side memory element 341 connected to the cylinder 130, a memory element 331 on the opposite side of the cylinder 130, and a right side conductor 144-R. Another option as shown in Fig. 16 is to use the conductor 141-L of the multilayer conductor, the conductor 142-R, the conductor 143-L and the conductor 144-R, and the multilayer conductor includes different oxidizable materials ( A lining of a oxidizable material, such as titanium nitride (TiN), which is slower to oxidize than a bulk material, such as tungsten. When the conductor layer is oxidized to form a memory element, the tungsten core is oxidized to a depth deeper than the bulk of the conductor layer (in this example, the depth is expressed in the horizontal direction), in this manner, When the memory cell is formed, the upper end region 340-u of the sidewall, the upper end region 340-1 and the lower end region 341-u, the lower end region 341-1, the upper end region 330-u, the upper end region 330-1, the lower end region 331-u, and The intersection region of the lower end region 331-1 forms titanium oxynitride (TiNO x ). In the example of the titanium nitride outer liner, it can be seen that the pillar 130 can also include a titanium nitride (TiN) outer liner 130-a and The tungsten core of the outer liner 130-b.
如上所述,在一些實施方式中,能多於兩層,如8層,16層等。記憶體元件340在記憶體元件341之上,而兩者皆設置在柱體130的側壁(sidewall)上。同樣的,記憶體元件330在記憶體元件331之上,而兩者皆設置在柱體130的側壁上。 As noted above, in some embodiments, there can be more than two layers, such as 8 layers, 16 layers, and the like. The memory element 340 is above the memory element 341, and both are disposed on the side wall of the cylinder 130. Similarly, the memory component 330 is above the memory component 331, and both are disposed on the sidewalls of the cylinder 130.
第17與18圖顯示解碼電路(decoding circuitry)的另一排列方式,解碼電路提供用於在本文所述的記憶體結構中,左導電體與右導電體的左層解碼與右層解碼(level decoding)。在第17圖,以層1750-層1752示意性表示3D陣列,包括交錯的(interleaved)左導電體與右導電體,對於層1750為偶數之導電體141與奇數之導電體142,對於層1751為偶數之導電體143與奇數之導電體144,對於層1752為偶數之導電體145與奇數之導電體146。解碼電路(decoding circuitry)包括電晶體,此電晶體具有閘極、源極與汲極,其中閘極耦接至偶數/奇數選擇線1710與偶數/奇數選擇線1711,源極耦接至層選擇線1720、層選擇線1722與層選擇線1723,且在接點1701-接點1706處,汲極耦接至在不同層的墊片(pads)。 Figures 17 and 18 show another arrangement of decoding circuitry for providing left layer decoding and right layer decoding for left and right conductors in the memory structure described herein (level Decoding). In Fig. 17, a 3D array is schematically represented by a layer 1750-layer 1752, including interleaved left and right conductors, an even number of conductors 141 and an odd number of conductors 142 for layer 1750, for layer 1751 The even number of electrical conductors 143 and the odd number of electrical conductors 144 are an even number of electrical conductors 145 and odd electrical conductors 146 for layer 1752. The decoding circuitry includes a transistor having a gate, a source and a drain, wherein the gate is coupled to the even/odd select line 1710 and the even/odd select line 1711, and the source is coupled to the layer select Line 1720, layer select line 1722 and layer select line 1723, and at contact 1701 - contact 1706, the drain is coupled to pads at different layers.
在第18圖,以層1850-層1852示意性表示3D陣列,包括交錯的(interleaved)左導電體與右導電體,對於層1850為偶數導電體141與奇數導電體142,對於層1851為偶數導電體143,與奇數導電體144,對於層1852為偶數導電體145與奇數導電體146。解碼電路(decoding circuitry)包括電晶體,電晶體具有源極、閘極、汲極,其中源極耦接至偶數/奇數選擇線1810與偶數/奇數選擇線1811,閘極耦接至層選擇線1820、層選擇線1822與層選擇線1823,以及在接點1801-接點1806處,汲極耦接至在不同層的墊片(pads)。 In Fig. 18, a 3D array is schematically represented by a layer 1850 - layer 1852, including interleaved left and right conductors, an even conductor 141 and an odd conductor 142 for layer 1850 and an even number for layer 1851 The conductor 143, and the odd conductor 144, are an even conductor 145 and an odd conductor 146 for the layer 1852. The decoding circuitry includes a transistor having a source, a gate, and a drain, wherein the source is coupled to the even/odd select line 1810 and the even/odd select line 1811, and the gate is coupled to the layer select line 1820, layer select line 1822 and layer select line 1823, and at junction 1801-contact 1806, the drain is coupled to pads at different layers.
當使用層選擇(level select)與偶/奇選擇線在選定柱體(selected pillar)上以選擇特定胞時,施加適當偏壓以讀取、編程或抹除在選定柱體和奇/偶選擇線上,存取一個特定胞(specific cell)的解碼方法能包括,開啟在存取電路(access circuits)中,耦接至柱體的片選擇線(slice select line)與行選擇線(column select line),以選擇特定柱體(particular pillar)。 When using a level select and even/odd selection line on a selected pillar to select a particular cell, apply the appropriate bias to read, program, or erase the selected column and odd/even selection. On the line, the decoding method of accessing a specific cell can include opening a slice select line (slice select) coupled to the column in an access circuit Line) and column select line to select a particular pillar.
第19圖為根據本發明的實施例中,積體電路的簡化方塊圖。如本文所述實施的積體電路1875包括在基板上的3D雙胞單元結構金屬氧化物記憶體陣列1860。在匯流排(bus)1865,位址(addresses)提供給行解碼裝置/頁緩衝電路(column decoder/page buffer circuits)1863、片解碼裝置(slice decoder)1861以及左/右側平面解碼裝置1858。對類似如第1圖中所示的陣列實施例中,用於個別柱體(individual pillars)的存取裝置陣列位於陣列1860下方,且存取裝置陣列耦接至片碼裝置(slice decoder)1861及行解碼裝置/頁緩衝電路(column decoder/page buffer circuits)1863。經由從在積體電路1875上的輸入/輸出端(input/output ports)的數據輸入線(data-in line)1871,或從內部或外部的其他數據來源到積體電路1875,再到行解碼裝置/頁緩衝電路(column decoder/page buffer circuits)1863,以提供數據。在所示的實施例中,在積體電路上包括其他電路1874,例如一般用途的處理器或特殊用途的應用電路(special purpose application circuitry),或提供系統整合晶片(system-on-a-chip)功能的組合模組,組合模組為記憶胞陣列所支持。經由從在積體電路1875上的行解碼裝置/頁緩衝電路(column decoder/page buffer circuits)1863,到輸入/輸出端的數據輸出線(data-out line)1872,或到內部或外部的其他數據目的地(data destinations)再到積體電路1875,以提供數據。 Figure 19 is a simplified block diagram of an integrated circuit in accordance with an embodiment of the present invention. The integrated circuit 1875 implemented as described herein includes a 3D dual cell structure metal oxide memory array 1860 on a substrate. At the bus 1865, addresses are provided to a column decoder/page buffer circuits 1863, a slice decoder 1861, and a left/right plane decoding device 1858. For an array embodiment similar to that shown in FIG. 1, an access device array for individual pillars is located below the array 1860, and the access device array is coupled to a slice decoder 1861. And column decoder/page buffer circuits 1863. Via the data-in line 1871 from the input/output ports on the integrated circuit 1875, or from other internal or external data sources to the integrated circuit 1875, to the line decoding Column decoder/page buffer circuits 1863 are provided to provide data. In the illustrated embodiment, other circuitry 1874 is included on the integrated circuit, such as a general purpose processor or special purpose application circuitry, or a system integrated chip (system-on-a-chip). The functional combination module, the combination module is supported by the memory cell array. Via data decoder line/page buffer circuits 1863 from the integrated circuit 1875, data output line (data-out line) 1872, or other data to internal or external data. The data destinations are then passed to the integrated circuit 1875 to provide data.
在此例子中實施的控制器,偏壓安排狀態機(bias arrangement state machine)1869可透過在區塊1868中電壓的產生或提供,控制偏壓安排供給電壓(bias arrangement supply voltages)的應用,例如讀取,編輯或抹除電壓的應用。控制器可使用本技術領域中已知的專用的邏輯電路來實施。在替代實施例中,控制器包括一般用途處理器,一般用途處理器可在同一積體電路上實施,而積體電路執行電腦程式,控制裝置的操作。在其他實施例中,專用的邏輯電路(special-purpose logic circuitry)與一般用途處理器的組合可用於控制器的實施。 The controller implemented in this example, a bias arrangement state machine 1869, can control the application of bias arrangement supply voltages by generating or providing a voltage in block 1868, for example An application that reads, edits, or erases voltage. The controller can be implemented using dedicated logic circuitry as is known in the art. In an alternate embodiment, the controller includes a general purpose processor that can be implemented on the same integrated circuit, and the integrated circuit executes the computer program to control the operation of the device. In other embodiments, a combination of special-purpose logic circuitry and a general purpose processor can be used for the implementation of the controller.
特別當對於一個特定平面上,已達到記憶體元件尺寸的物理極限(physical limitations)時,三維堆疊為一有效的方式以降低半導體記憶體每位元的成本。針對3D陣列的先前技術,都需要幾個臨界微影(critical lithography)步驟以在每個堆疊層(stack layer)製造最小特徵尺寸(feature size)的元件。此外,用於記憶體陣列的驅動器電晶體(driver transistors)的數量亦須乘以平面的數量。 Especially when the physical limitations of the memory element size have been reached for a particular plane, three-dimensional stacking is an effective way to reduce the cost per bit of the semiconductor memory. Prior to the prior art of 3D arrays, several critical lithography steps were required to fabricate elements of the smallest feature size at each stack layer. In addition, the number of driver transistors for the memory array must also be multiplied by the number of planes.
本發明所揭露的技術包括高密度3D陣列,且僅需要一臨界微影(critical lithography)步驟即能圖案化所有層。在圖案化步驟中,各層係可共用記憶體貫孔(memory via)及層互聯件(layer interconnect)。此外,各層能共用字元線及位元線解碼裝置,以改善先前技術中多層結構所產生面積損失(area penalty)的問題。在此敘述用於金屬氧化物及其他可程式化電阻記憶體的獨特兩雙胞(two-2-cell)單元結構,在每一個記憶體柱體的兩側(two sides of a memory pillar)還提供數據位置(data site)。使用存取裝置陣列以選擇個別記憶體柱體。使用左字元線與右字元線以在選定的平面選擇個別胞。 The techniques disclosed herein include high density 3D arrays and require only a critical lithography step to pattern all layers. In the patterning step, each layer can share a memory via and a layer interconnect. In addition, the layers can share the word line and bit line decoding means to improve the area penalty caused by the multilayer structure of the prior art. A unique two-cell structure for metal oxides and other programmable resistive memories is described here, on both sides of each memory cartridge (two sides of a Memory pillar) also provides a data site. An array of access devices is used to select individual memory cartridges. The left and right word lines are used to select individual cells in the selected plane.
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
81、82、83、84、130、131、132、493、495、497、1150-a、1150-b、1150-c、1151-a、1151-b、1151-c、1152-a、1152-b、1152-c、1153-a、1153-b、1153-c‧‧‧柱體 81, 82, 83, 84, 130, 131, 132, 493, 495, 497, 1150-a, 1150-b, 1150-c, 1151-a, 1151-b, 1151-c, 1152-a, 1152- b, 1152-c, 1153-a, 1153-b, 1153-c‧‧‧ cylinder
102‧‧‧記憶立方體 102‧‧‧Memory Cube
104‧‧‧左側平面解碼裝置 104‧‧‧Left plane decoding device
105‧‧‧右側平面解碼裝置 105‧‧‧Right plane decoding device
106‧‧‧柱狀存取裝置陣列 106‧‧‧Room Access Array
108‧‧‧片解碼裝置 108‧‧‧chip decoding device
109‧‧‧列解碼裝置 109‧‧‧ column decoding device
110、112、114‧‧‧切面 110, 112, 114‧‧ ‧ facets
120、121、122、123、124、125、126、127、128、220、221、222、223、224、225、500、502、504‧‧‧雙胞單元結構 120, 121, 122, 123, 124, 125, 126, 127, 128, 220, 221, 222, 223, 224, 225, 500, 502, 504 ‧ ‧ twin cell structure
130-a、130-b‧‧‧外襯 130-a, 130-b‧‧‧ lining
134、135、136‧‧‧位元線 134, 135, 136‧‧ ‧ bit line
137、138、139‧‧‧選擇線 137, 138, 139‧‧‧ selection line
141、141-L、141-R、142、142-R、143、143-L、144、144-R、145、146、410、411、412、413、414、415、417、418、1260-1、1260-2、1260-3、1261-1、1261-2、1261-3、1262-1、1262-2、1262-3、1263-1、1263-2、1263-3、1264-1、1264-2、1264-3‧‧‧導電體 141, 141-L, 141-R, 142, 142-R, 143, 143-L, 144, 144-R, 145, 146, 410, 411, 412, 413, 414, 415, 417, 418, 1260- 1, 1260-2, 1260-3, 1261-1, 1261-2, 1261-3, 1262-1, 1262-2, 1262-3, 1263-1, 1263, 2, 1263-3, 1264-1, 1264-2, 1264-3‧‧‧Electrical conductor
266、267、268、1750、1751、1752、1850、1851、1852‧‧‧層 266, 267, 268, 1750, 1751, 1752, 1850, 1851, 1852‧ ‧ layers
310、320‧‧‧介電絕緣體 310, 320‧‧‧ dielectric insulator
330、331、340、341‧‧‧記憶體元件 330, 331, 340, 341‧‧‧ memory components
330-1、330-u、340-1、340-u‧‧‧上端區域 330-1, 330-u, 340-1, 340-u‧‧‧ upper area
331-1、331-u、341-1、341-u‧‧‧下端區域 331-1, 331-u, 341-1, 341-u‧‧‧ lower end area
425、426、427、428、429、430、431、432、433、434、435、437、439‧‧‧金屬氧化物結構 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 437, 439‧‧‧ metal oxide structures
492、494、496、498‧‧‧絕緣柱 492, 494, 496, 498‧‧ ‧ insulation columns
500-L、502-L、504-L‧‧‧左胞 500-L, 502-L, 504-L‧‧‧ left cell
500-R、502-R、504-R‧‧‧右胞 500-R, 502-R, 504-R‧‧ ‧ right cell
520‧‧‧閘極介電層 520‧‧‧ gate dielectric layer
600‧‧‧基板的表面 600‧‧‧ surface of the substrate
601、602、603、604、1225、1226、1227、1228、1229、1230、1412、1701、1702、1703、1704、1705、1706、1801、1802、1803、1804、1805、1806‧‧‧接點 601, 602, 603, 604, 1225, 1226, 1227, 1228, 1229, 1230, 1412, 1701, 1702, 1703, 1704, 1705, 1706, 1801, 1802, 1803, 1804, 1805, 1806 ‧ ‧ contacts
720‧‧‧基板 720‧‧‧Substrate
721、723、725、727‧‧‧絕緣材料層 721, 723, 725, 727‧‧ ‧ layers of insulating material
722、724、726、728‧‧‧導電體材料層 722, 724, 726, 728‧‧‧ conductor material layer
729‧‧‧硬質光罩材料層 729‧‧‧Hard mask material layer
830、831、832、833‧‧‧側壁 830, 831, 832, 833 ‧ ‧ side walls
845、846、847、848、1050、1051、1052、1053、1446‧‧‧溝槽 845, 846, 847, 848, 1050, 1051, 1052, 1053, 1446‧‧‧ trenches
940、941、942、943‧‧‧金屬氧化物記憶體材料層 940, 941, 942, 943‧‧‧ metal oxide memory material layer
1104‧‧‧存取層 1104‧‧‧ access layer
1120‧‧‧絕緣體 1120‧‧‧Insulator
1350、1351‧‧‧延伸部 1350, 1351‧‧‧ extension
1352、1353‧‧‧著陸區 1352, 1353‧‧‧ Landing area
1408‧‧‧汲極接點 1408‧‧‧汲 contact
1410‧‧‧絕緣材料 1410‧‧‧Insulation materials
1412、1434‧‧‧字元線 1412, 1434‧‧‧ character line
1436‧‧‧汲極區域 1436‧‧‧Bungee area
1438‧‧‧基板 1438‧‧‧Substrate
1440‧‧‧源極接點 1440‧‧‧Source contact
1442‧‧‧源極區域 1442‧‧‧ source area
1444‧‧‧矽化物蓋 1444‧‧‧ Telluride cover
1445‧‧‧介電層 1445‧‧‧ dielectric layer
1448‧‧‧雙電晶體結構 1448‧‧‧Double crystal structure
1500‧‧‧IV曲線 1500‧‧‧IV curve
1710、1711、1810、1811‧‧‧偶數/奇數選擇線 1710, 1711, 1810, 1811‧‧‧ even/odd selection lines
1720‧‧‧選擇線 1720‧‧‧Selection line
1722、1723、1820、1822、1823‧‧‧層選擇線 1722, 1723, 1820, 1822, 1823‧‧‧ layer selection line
1858‧‧‧左/右側平面解碼裝置 1858‧‧‧Left/Right Plane Decoding Device
1860‧‧‧陣列 1860‧‧‧Array
1861‧‧‧片碼裝置 1861‧‧‧ chip device
1863‧‧‧行解碼裝置/頁緩衝電路 1863‧‧‧ line decoding device / page buffer circuit
1865‧‧‧匯流排 1865‧‧ ‧ busbar
1868‧‧‧區塊 1868‧‧‧ Block
1871‧‧‧數據輸入線 1871‧‧‧Data input line
1872‧‧‧輸入/輸出端的數據輸出線 1872‧‧‧Data output line for input/output
1874‧‧‧其他電路 1874‧‧‧Other circuits
1875‧‧‧積體電路 1875‧‧‧ integrated circuit
第1圖繪示依照本發明一實施例之3D記憶體結構的X-Z平面片視(slice view)示意圖。 FIG. 1 is a schematic diagram of an X-Z plane slice view of a 3D memory structure according to an embodiment of the invention.
第2圖繪示依照本發明一實施例之3D記憶體結構的X-Y平面的示意圖。 2 is a schematic diagram of an X-Y plane of a 3D memory structure in accordance with an embodiment of the present invention.
第3A圖繪示如第1、2圖中3D記憶體結構中的雙胞單元結構。 Figure 3A shows the structure of the twin cell in the 3D memory structure as in Figures 1 and 2.
第3B圖繪示在一實施例中,在柱體上兩層記憶胞的側視圖。 Figure 3B depicts a side view of two layers of memory cells on a cylinder in one embodiment.
第4圖繪示依照本發明一實施例所述的3D記憶體結構的部分透視圖。 4 is a partial perspective view of a 3D memory structure in accordance with an embodiment of the invention.
第5圖繪示第4圖結構中的Y-Z剖面圖。 Fig. 5 is a cross-sectional view showing the Y-Z in the structure of Fig. 4.
第6至11圖繪示依照本發明一實施例之製造3D記憶體結構的製造步驟流程圖。 6 to 11 are flow charts showing the manufacturing steps of fabricating a 3D memory structure in accordance with an embodiment of the present invention.
第12圖繪示依照本發明一實施例所述之3D記憶體結構X-Y平面佈局視圖。 FIG. 12 is a view showing a layout of a 3D memory structure in an X-Y plane according to an embodiment of the invention.
第13圖繪示具共享墊片結構(shared pad structures)的叉形左/右導電體(forked left/right conductor)佈局示意圖。 Figure 13 is a schematic diagram showing the layout of a forked left/right conductor with shared pad structures.
第14圖繪示在基板上代表性柱狀存取裝置陣列的實施方式示意圖。 Figure 14 is a schematic diagram showing an embodiment of a representative array of columnar access devices on a substrate.
第15圖繪示金屬氧化物記憶體元件的IV曲線圖。 Figure 15 is a graph showing the IV of a metal oxide memory device.
第16圖繪示在另一實施例中,柱體上兩層記憶胞的側視圖。 Figure 16 is a side elevational view of two layers of memory cells on a cylinder in another embodiment.
第17圖繪示於一實施的例子中之一層及左/右解碼裝置的示意圖。 Figure 17 is a schematic diagram showing one layer and a left/right decoding device in an example of an implementation.
第18圖繪示於另一實施的例子中之一層及左/右解碼裝置的示意圖。 Figure 18 is a schematic diagram showing one of the layers and the left/right decoding device in another example of the implementation.
第19圖繪示包括3D,雙胞單元結構記憶體陣列的積體電路的簡化圖。 Figure 19 is a simplified diagram of an integrated circuit including a 3D, twin cell structured memory array.
102‧‧‧記憶立方體 102‧‧‧Memory Cube
104‧‧‧左側平面解碼裝置 104‧‧‧Left plane decoding device
105‧‧‧右側平面解碼裝置 105‧‧‧Right plane decoding device
106‧‧‧柱狀存取裝置陣列 106‧‧‧Room Access Array
108‧‧‧片解碼裝置 108‧‧‧chip decoding device
109‧‧‧列解碼裝置 109‧‧‧ column decoding device
110、112、114‧‧‧切面 110, 112, 114‧‧ ‧ facets
120、121、122、123、124、125、126、127、128‧‧‧雙胞單元結構 120, 121, 122, 123, 124, 125, 126, 127, 128‧‧‧ double cell structure
130、131、132‧‧‧柱體 130, 131, 132‧‧‧ columns
134、135、136‧‧‧位元線 134, 135, 136‧‧ ‧ bit line
137、138、139‧‧‧選擇線 137, 138, 139‧‧‧ selection line
141、142、143、144、145、146‧‧‧導電體141, 142, 143, 144, 145, 146‧‧‧ electrical conductors
Claims (23)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261726987P | 2012-11-15 | 2012-11-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201419285A TW201419285A (en) | 2014-05-16 |
TWI530953B true TWI530953B (en) | 2016-04-21 |
Family
ID=50708034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102100813A TWI530953B (en) | 2012-11-15 | 2013-01-09 | 3d memory and decoding technologies |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103811495A (en) |
TW (1) | TWI530953B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI696269B (en) * | 2018-05-17 | 2020-06-11 | 旺宏電子股份有限公司 | Memory and method of manufacturing integrated circuit |
TWI738380B (en) * | 2020-04-17 | 2021-09-01 | 大陸商長江存儲科技有限責任公司 | Memory element |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI559585B (en) * | 2014-10-28 | 2016-11-21 | 力晶科技股份有限公司 | Resistive random access memory and method for manufacturing the same |
TWI559586B (en) * | 2014-12-31 | 2016-11-21 | 力晶科技股份有限公司 | Resistive random access memory and method for manufacturing the same |
CN106486144B (en) * | 2015-08-31 | 2019-05-14 | 旺宏电子股份有限公司 | memory structure |
US9875034B2 (en) | 2016-04-07 | 2018-01-23 | International Business Machines Corporation | Delaying programming requests in flash memory |
US10223004B2 (en) | 2016-04-07 | 2019-03-05 | International Business Machines Corporation | Parallel read and writes in 3D flash memory |
US10825867B2 (en) * | 2018-04-24 | 2020-11-03 | Micron Technology, Inc. | Cross-point memory array and related fabrication techniques |
JP2020047663A (en) * | 2018-09-14 | 2020-03-26 | キオクシア株式会社 | Storage device |
US10559337B1 (en) | 2018-11-30 | 2020-02-11 | Micron Technology, Inc. | Vertical decoder |
CN113451269B (en) * | 2020-03-25 | 2022-07-22 | 长鑫存储技术有限公司 | Word line structure and semiconductor memory |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5016832B2 (en) * | 2006-03-27 | 2012-09-05 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
JP5091491B2 (en) * | 2007-01-23 | 2012-12-05 | 株式会社東芝 | Nonvolatile semiconductor memory device |
JP2008277543A (en) * | 2007-04-27 | 2008-11-13 | Toshiba Corp | Nonvolatile semiconductor memory device |
US20110241077A1 (en) * | 2010-04-06 | 2011-10-06 | Macronix International Co., Ltd. | Integrated circuit 3d memory array and manufacturing method |
-
2013
- 2013-01-09 TW TW102100813A patent/TWI530953B/en active
- 2013-01-16 CN CN201310016277.9A patent/CN103811495A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI696269B (en) * | 2018-05-17 | 2020-06-11 | 旺宏電子股份有限公司 | Memory and method of manufacturing integrated circuit |
US10818729B2 (en) | 2018-05-17 | 2020-10-27 | Macronix International Co., Ltd. | Bit cost scalable 3D phase change cross-point memory |
TWI738380B (en) * | 2020-04-17 | 2021-09-01 | 大陸商長江存儲科技有限責任公司 | Memory element |
US11557329B2 (en) | 2020-04-17 | 2023-01-17 | Yangtze Memory Technologies Co., Ltd. | Memory device |
US12119084B2 (en) | 2020-04-17 | 2024-10-15 | Yangtze Memory Technologies Co., Ltd. | Memory device |
Also Published As
Publication number | Publication date |
---|---|
TW201419285A (en) | 2014-05-16 |
CN103811495A (en) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI530953B (en) | 3d memory and decoding technologies | |
US20130094273A1 (en) | 3d memory and decoding technologies | |
KR100994868B1 (en) | Nonvolatile Semiconductor Memory and Manufacturing Method Thereof | |
US8384061B2 (en) | Nonvolatile memory device and manufacturing method | |
KR101141823B1 (en) | Semiconductor integrated circuit device and method of fabricating the same | |
US8198618B2 (en) | Nonvolatile memory device and manufacturing method thereof | |
US7755093B2 (en) | Semiconductor storage device and method of manufacturing the same | |
JP5422231B2 (en) | Nonvolatile semiconductor memory device and manufacturing method thereof | |
TWI462355B (en) | Integrated circuit 3d phase change memory array and manufacturing method | |
TWI489592B (en) | Integrated circuit 3d memory array and manufacturing method | |
US8575590B2 (en) | Nonvolatile semiconductor memory device | |
US8471233B2 (en) | Semiconductor memory and method of manufacturing the same | |
US9048423B2 (en) | Memory storage device and method of manufacturing the same | |
US8981330B2 (en) | Thermally-confined spacer PCM cells | |
US9035275B2 (en) | Three dimensional memory array adjacent to trench sidewalls | |
JP2023067794A (en) | semiconductor equipment | |
US9006701B2 (en) | Non-volatile memory device having bit lines and source lines arranged in parallel and manufacturing method thereof | |
KR101088487B1 (en) | Method for manufacturing resistance change memory device array, electronics and device array with selection device and 3D structure resistance change memory device | |
CN102332454B (en) | One-time programmable memory cell, memory and preparation method thereof | |
KR101049589B1 (en) | Cell array of semiconductor memory device and manufacturing method thereof | |
JP2006332671A (en) | Phase change memory device and manufacturing method therefor | |
US8116113B2 (en) | Cross-point semiconductor memory device and method of manufacturing the same | |
TW201334121A (en) | Three dimensional memory array adjacent to trench sidewalls and manufacturing method thereof | |
CN102339949A (en) | High-reliability one-time programmable storage unit, memory and preparation method thereof | |
KR101127251B1 (en) | Highly integrated non-volatile memory and the manufacturing method thereof |