[go: up one dir, main page]

CN103811495A - Three-dimensional memory device and manufacturing method thereof - Google Patents

Three-dimensional memory device and manufacturing method thereof Download PDF

Info

Publication number
CN103811495A
CN103811495A CN201310016277.9A CN201310016277A CN103811495A CN 103811495 A CN103811495 A CN 103811495A CN 201310016277 A CN201310016277 A CN 201310016277A CN 103811495 A CN103811495 A CN 103811495A
Authority
CN
China
Prior art keywords
array
electric conductor
access device
word line
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310016277.9A
Other languages
Chinese (zh)
Inventor
简维志
李明修
龙翔澜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN103811495A publication Critical patent/CN103811495A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

The invention discloses a three-dimensional (3D) memory device and a manufacturing method thereof, wherein the three-dimensional memory device is based on a conductive column array and a plurality of patterned conductive layers, and the patterned conductive layers comprise: left and right conductors abut the pillars in the left and right interface regions. The memory elements in the left and right interface regions are comprised of programmable transition metal oxides or programmable resistive materials, the transition metal oxides being characterized by a built-in self-switching behavior. The pillars can be selected using two-dimensional decoding, and the left and right conductors in the plurality of planes can be selected using decoding in a third dimension, which is combined with the left and right selections.

Description

三维存储器装置及其制造方法Three-dimensional memory device and manufacturing method thereof

技术领域technical field

本发明是关于高密度存储器装置,特别是有关于配置有多平面的存储单元以提供三维(3D)阵列存储器装置及其制造方法。The present invention relates to high density memory devices, and more particularly to memory cells configured with multiple planes to provide a three-dimensional (3D) array memory device and method of manufacturing the same.

背景技术Background technique

随着集成电路的临界尺寸(critical dimensions)缩小到现有的存储单元技术的极限,设计者一直在寻找用于叠层多平面的存储单元的技术,以实现更大的存储容量,并实现更低的每位单位成本(costs per bit)。例如,在Johnson等人发表的“512-Mb PROM With a Three-Dimensional Array ofDiode/Anti-fuse Memory cells”IEEE J.of Solid-State Circuits,vol.38,no.11Nov.2003.文章中,交叉点阵列(cross-points array)技术已用于反熔丝存储器(anti-fuse memory)。在Johnson等人描述的设计中,在交叉点(cross-points)处的存储器元件(memory elements)提供了多层的字线与位线。存储器元件包括p+多晶硅阳极连接到字线,以及n-多晶硅阴极连接到位线,而阳极与阴极由反熔丝材料(anti-fuse material)分隔开。As the critical dimensions of integrated circuits shrink to the limits of existing memory cell technologies, designers have been looking for techniques for stacking multiple planes of memory cells to achieve larger storage capacities and achieve more Low cost per bit. For example, in "512-Mb PROM With a Three-Dimensional Array of Diode/Anti-fuse Memory cells" IEEE J.of Solid-State Circuits, vol.38, no.11Nov.2003. published by Johnson et al. Point array (cross-points array) technology has been used in anti-fuse memory (anti-fuse memory). In the design described by Johnson et al., memory elements at cross-points provide multiple layers of word and bit lines. The memory element includes a p+ polysilicon anode connected to a word line, and an n- polysilicon cathode connected to a bit line, and the anode and cathode are separated by an anti-fuse material.

在Johnson等人描述的流程中,每一存储器层需要多个临界光刻(critical lithography)步骤。因此,制造此装置所需要的临界光刻步骤的次数,须乘上实施的层数。然而临界光刻步骤是昂贵的,所以在制造集成电路时,应尽量减少使用临界光刻。因此,虽然使用3D阵列实现了较高密度的好处,但较高的制造成本,反而限制了此技术的使用。In the flow described by Johnson et al., multiple critical lithography steps are required for each memory layer. Therefore, the number of critical photolithographic steps required to fabricate the device must be multiplied by the number of layers implemented. However, critical lithography steps are expensive, so the use of critical lithography should be minimized when manufacturing integrated circuits. Therefore, although the use of 3D arrays achieves the benefits of higher density, the higher manufacturing cost limits the use of this technology.

一篇描述三维反熔丝式存储器技术的美国专利共同待审(co-pending)的申请案,此申请案于2009年4月27日申请,申请号为12/430,290,名称为“INTEGRATED CIRCUIT 3D MEMORY ARRAY ANDMANUFACTURING METHOD”,此申请案在此被纳入参考,如同已被充分阐述。A co-pending application for a U.S. patent describing 3D antifuse memory technology, filed April 27, 2009, application number 12/430,290, entitled "INTEGRATED CIRCUIT 3D MEMORY ARRAY ANDMANUFACTURING METHOD", this application is hereby incorporated by reference as if fully set forth.

理想的三维集成电路存储器的结构,是提供具有高密度和低制造成本的结构,且包括可靠与非常小的存储器元件。An ideal 3D integrated circuit memory structure would provide a structure with high density and low manufacturing cost, and include reliable and very small memory elements.

发明内容Contents of the invention

叙述于此的集成电路上的存储器装置,包括双存储单元结构(two-cellunit structures)的三维(3D)存储器阵列,此3D存储器阵列包括可编程与可擦除电阻元件(resistance elements)。3D阵列包括多个图案化导电体层(patterned conductor layers),而导电体层由绝缘层将之彼此分隔。在集成电路上包括存取装置阵列,配置存取装置阵列以提供存取延伸到3D阵列的个别柱体。图案化的导电体层(conductive layers)包括邻接于柱体的左侧与右侧导电体。这定义出在柱体与邻接的左侧与右侧导电体间的左侧与右侧界面区(interface region)。存储器元件提供在左侧与右侧界面区,而每一个存储器元件包括可编程与可擦除元件。如果有需要,组成还包括整流装置(rectifier)或其他开关。在此描述的例子中,可编程元件包括过渡金属氧化物,可编程元件特征为具有内建自我开关(built in self switching),因此能提供存储器元件与开关双功能。The memory devices on integrated circuits described herein include three-dimensional (3D) memory arrays of two-cell unit structures including programmable and erasable resistance elements. The 3D array includes a plurality of patterned conductor layers, and the conductor layers are separated from each other by insulating layers. An array of access devices is included on the integrated circuit configured to provide access to individual pillars extending to the 3D array. The patterned conductive layers include left and right conductive layers adjacent to the pillars. This defines left and right interface regions between the pillar and adjacent left and right electrical conductors. Memory elements are provided in left and right interface areas, and each memory element includes programmable and erasable elements. If necessary, the composition also includes rectifiers or other switches. In the example described here, the programmable element includes a transition metal oxide, and the programmable element is characterized as having built in self switching, thereby providing dual functions of a memory element and a switch.

在此叙述的装置包括列译码电路(row decoder circuits)与行译码电路(column decoder circuits)耦接至存取装置阵列(array of access devices),且配置以选择在导电柱阵列中的个别柱体。并且,左平面与右平面译码电路(decoding circuits)耦接至在多个图案化导电体层的左侧与右侧导电体。配置译码电路以施加偏压,进而导致在选定存储单元(selected cell)中的电流流动(current flow),以及至未选定存储单元(unselected cell)以反转(reverse)偏压到整流装置(rectifier)。The devices described herein include row decoder circuits and column decoder circuits coupled to an array of access devices and configured to select individual ones in the array of conductive posts. column. And, the left plane and the right plane decoding circuits are coupled to the left and right conductors in the plurality of patterned conductor layers. Configure the decode circuit to apply a bias, which in turn causes current flow in the selected cell, and to the unselected cell to reverse the bias to the rectified device (rectifier).

在叙述于此的结构中,阵列的柱体能包括半导体材料,具有第一导电类型(first conductivity type)的半导体材料电气连通(electricalcommunication)于相应的存取装置。并且,左侧与右侧导电体包括具有第二导电类型的半导体材料,使得在每一存储器元件中的整流装置,包括p-n结(p-n junction)。在其他实施例中,柱体包括金属或金属与其他导体或半导体材料的组合。In the configurations described herein, the pillars of the array can comprise semiconductor material having a first conductivity type in electrical communication with corresponding access devices. Also, the left and right conductors comprise a semiconductor material having a second conductivity type such that the rectifying means in each memory element includes a p-n junction. In other embodiments, the posts comprise metal or a combination of metal and other conductive or semiconducting materials.

在每一层的左侧与右侧导电体有着陆区(landing areas),着陆区与重迭的图案化导电体层(overlying patterned conductor layers)中的左侧与右侧导电体并未重迭(overlaid)。导线,例如是金属塞(metal plugs),穿过贯孔(vias)延伸到多个图案化导电体层,且接触着陆区。例如,在图案化金属层中的左侧与右侧连接点(connectors)连接到在贯孔的导线,进而与译码电路(decoding circuitry)连接,而左侧与右侧导电体是位于多个图案化导电体层的上方。On the left and right conductor landing areas of each layer, the landing areas do not overlap with the left and right conductors in the overlapping patterned conductor layers (overlaid). Wires, such as metal plugs, extend through the vias to the plurality of patterned conductor layers and contact the landing pads. For example, the left and right connectors in the patterned metal layer are connected to the wires in the through hole, and then connected to the decoding circuit, and the left and right conductors are located in multiple above the patterned conductor layer.

本发明也描述制造存储器装置的方法。多个图案化导电体层的形成,首先,通过形成多个导电材料毯覆层(blanket layers),而绝缘材料毯覆层在导电材料毯覆层间形成叠层。然后,刻蚀叠层处以定义出左侧与右侧导电体,以形成沟道(trenches)于叠层处中。沉积或形成一层存储器材料层在沟道的侧壁,然后,以导电材料充填沟道,导电材料如掺杂的半导体。其次,图案化在沟道的导电材料以形成柱体。然后,绝缘材料填入柱体(pillars)间。This disclosure also describes methods of fabricating memory devices. A plurality of patterned conductor layers are formed, firstly, by forming a plurality of blanket layers of conductive material, and blanket layers of insulating material are stacked between blanket layers of conductive material. Then, the stack is etched to define left and right conductors to form trenches in the stack. A layer of memory material is deposited or formed on the sidewall of the trench, and then the trench is filled with a conductive material, such as a doped semiconductor. Next, pattern the conductive material in the trenches to form the pillars. Then, insulating material is filled between the pillars.

编程存储单元可通过施加偏压,在所需的平面(desired plane)中的柱体与选定的左侧与右侧导电体间,以在界面区中编辑可编程电阻存储器元件(programmable resistance memory element)。整流装置提供了在柱体内的不同层的存储单元之间的隔绝,而整流装置是由在界面区域中,以p-n结或以其他方式所建立。当存储器元件具有临界特征(thresholdcharacteristic)时,开关功能可由存储器元件本身提供,而对存储单元不需要额外元件,以提供整流或开关功能。Programmable memory cells can be programmed by applying a bias between the pillars in the desired plane and the selected left and right conductors to program the programmable resistance memory element in the interface region element). The rectifying means provide isolation between memory cells of different layers within the column, and the rectifying means are established in the interface region, by p-n junctions or otherwise. When the memory element has a threshold characteristic, the switching function can be provided by the memory element itself, and no additional elements are required for the memory cell to provide rectification or switching functions.

为让本发明的上述内容能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下:In order to make the above content of the present invention more obvious and understandable, the following preferred embodiments are specifically cited below, and in conjunction with the accompanying drawings, the detailed description is as follows:

附图说明Description of drawings

图1绘示依照本发明一实施例的3D存储器结构的X-Z平面片视(sliceview)示意图。FIG. 1 is a schematic diagram of an X-Z plane slice view of a 3D memory structure according to an embodiment of the present invention.

图2绘示依照本发明一实施例的3D存储器结构的X-Y平面的示意图。FIG. 2 is a schematic diagram of an X-Y plane of a 3D memory structure according to an embodiment of the present invention.

图3A绘示如图1、图2中3D存储器结构中的双存储单元结构。图3B绘示在一实施例中,在柱体上两层存储单元的侧视图。FIG. 3A illustrates a double memory cell structure in the 3D memory structure shown in FIG. 1 and FIG. 2 . FIG. 3B shows a side view of two layers of memory cells on a pillar in one embodiment.

图4绘示依照本发明一实施例所述的3D存储器结构的部分透视图。FIG. 4 is a partial perspective view of a 3D memory structure according to an embodiment of the invention.

图5绘示4图结构中的Y-Z剖面图。FIG. 5 shows a Y-Z sectional view of the structure in FIG. 4 .

图6至图11绘示依照本发明一实施例的制造3D存储器结构的制造步骤流程图。6 to 11 are flow charts showing the manufacturing steps of manufacturing a 3D memory structure according to an embodiment of the present invention.

图12绘示依照本发明一实施例所述的3D存储器结构X-Y平面布局视图。FIG. 12 shows an X-Y plane layout view of a 3D memory structure according to an embodiment of the present invention.

图13绘示具共享垫片结构(shared pad structures)的叉形左/右导电体(forked left/right conductor)布局示意图。FIG. 13 is a schematic diagram of a forked left/right conductor layout with shared pad structures.

图14绘示在衬底上代表性柱状存取装置阵列的实施方式示意图。14 is a schematic diagram of an embodiment of a representative array of columnar access devices on a substrate.

图15图绘示金属氧化物存储器元件的IV曲线图。FIG. 15 is a graph illustrating an IV curve of a metal oxide memory device.

图16绘示在另一实施例中,柱体上两层存储单元的侧视图。FIG. 16 shows a side view of two layers of memory cells on a pillar in another embodiment.

图17绘示于一实施的例子中的一层及左/右译码装置的示意图。FIG. 17 is a schematic diagram of a layer and a left/right decoding device in an implementation example.

图18绘示于另一实施的例子中的一层及左/右译码装置的示意图。FIG. 18 is a schematic diagram of a layer and a left/right decoding device in another implementation example.

图19绘示包括3D,双存储单元结构存储器阵列的集成电路的简化图。19 is a simplified diagram of an integrated circuit including a 3D, dual memory cell structure memory array.

【主要元件符号说明】[Description of main component symbols]

81、82、83、84、130、131、132、493、495、497、1150-a、1150-b、1150-c、1151-a、1151-b、1151-c、1152-a、1152-b、1152-c、1153-a、1153-b、1153-c:柱体81, 82, 83, 84, 130, 131, 132, 493, 495, 497, 1150-a, 1150-b, 1150-c, 1151-a, 1151-b, 1151-c, 1152-a, 1152- b, 1152-c, 1153-a, 1153-b, 1153-c: cylinder

102:存储立方体102: Storage Cube

104:左侧平面译码装置104: left plane decoding device

105:右侧平面译码装置105: Right plane decoding device

106:柱状存取装置阵列106: columnar access device array

108:片译码装置108: slice decoding device

109:列译码装置109: column decoding device

110、112、114:切面110, 112, 114: facets

120、121、122、123、124、125、126、127、128、220、221、222、223、224、225、500、502、504:双存储单元结构120, 121, 122, 123, 124, 125, 126, 127, 128, 220, 221, 222, 223, 224, 225, 500, 502, 504: double storage unit structure

130-a、130-b:外衬130-a, 130-b: outer lining

134、135、136:位线134, 135, 136: bit lines

137、138、139:选择线137, 138, 139: selection line

141、141-L、141-R、142、142-R、143、143-L、144、144-R、145、146、410、411、412、413、414、415、417、418、1260-1、1260-2、1260-3、1261-1、1261-2、1261-3、1262-1、1262-2、1262-3、1263-1、1263-2、1263-3、1264-1、1264-2、1264-3:导电体141, 141-L, 141-R, 142, 142-R, 143, 143-L, 144, 144-R, 145, 146, 410, 411, 412, 413, 414, 415, 417, 418, 1260- 1, 1260-2, 1260-3, 1261-1, 1261-2, 1261-3, 1262-1, 1262-2, 1262-3, 1263-1, 1263-2, 1263-3, 1264-1, 1264-2, 1264-3: Conductor

266、267、268、1750、1751、1752、1850、1851、1852:层266, 267, 268, 1750, 1751, 1752, 1850, 1851, 1852: layers

310、320:介电绝缘体310, 320: Dielectric insulator

330、331、340、341:存储器元件330, 331, 340, 341: memory elements

330-l、330-u、340-l、340-u:上端区域330-l, 330-u, 340-l, 340-u: upper area

331-l、331-u、341-l、341-u:下端区域331-l, 331-u, 341-l, 341-u: lower area

425、426、427、428、429、430、431、432、433、434、435、437、439:金属氧化物结构425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 437, 439: metal oxide structures

492、494、496、498:绝缘柱492, 494, 496, 498: insulating post

500-L、502-L、504-L:左胞500-L, 502-L, 504-L: left cell

500-R、502-R、504-R:右胞500-R, 502-R, 504-R: right cell

520:栅极介电层520: gate dielectric layer

600:衬底的表面600: Surface of the substrate

601、602、603、604、1225、1226、1227、1228、1229、1230、1412、1701、1702、1703、1704、1705、1706、1801、1802、1803、1804、1805、1806:接点601, 602, 603, 604, 1225, 1226, 1227, 1228, 1229, 1230, 1412, 1701, 1702, 1703, 1704, 1705, 1706, 1801, 1802, 1803, 1804, 1805, 1806: contact

720:衬底720: Substrate

721、723、725、727:绝缘材料层721, 723, 725, 727: layer of insulating material

722、724、726、728:导电体材料层722, 724, 726, 728: conductor material layer

729:硬质掩模材料层729: Hard mask material layer

830、831、832、833:侧壁830, 831, 832, 833: side walls

845、846、847、848、1050、1051、1052、1053、1446:沟道845, 846, 847, 848, 1050, 1051, 1052, 1053, 1446: channels

940、941、942、943:金属氧化物存储器材料层940, 941, 942, 943: layers of metal oxide memory material

1104:存取层1104: access layer

1120:绝缘体1120: Insulator

1350、1351:延伸部1350, 1351: extension

1352、1353:着陆区1352, 1353: Landing area

1408:漏极接点1408: drain contact

1410:绝缘材料1410: insulating material

1412、1434:字线1412, 1434: word line

1436:漏极区域1436: Drain region

1438:衬底1438: Substrate

1440:源极接点1440: Source contact

1442:源极区域1442: source region

1444:硅化物盖1444: Silicide Cover

1445:介电层1445: dielectric layer

1448:双晶体管结构1448: Two-transistor structure

1500:IV曲线1500: IV curve

1710、1711、1810、1811:偶数/奇数选择线1710, 1711, 1810, 1811: Even/odd selection line

1720:选择线1720: select line

1722、1723、1820、1822、1823:层选择线1722, 1723, 1820, 1822, 1823: layer selection line

1858:左/右侧平面译码装置1858: Left/Right Plane Decoding Device

1860:阵列1860: array

1861:片译码装置1861: Chip decoding device

1863:行译码装置/页缓冲电路1863: Row decoding device/page buffer circuit

1865:总线1865: bus

1868:区块1868: Block

1871:数据输入线1871: Data input line

1872:输入/输出端的数据输出线1872: Data output line for input/output

1874:其他电路1874: Other Circuits

1875:集成电路1875: Integrated circuits

具体实施方式Detailed ways

以下提供对照本发明图1至图19的实施例的详细描述。A detailed description of the embodiment of the present invention with reference to FIGS. 1 to 19 is provided below.

图1为3D存储器结构的示意图,示意图显示位于3D结构的X-Z平面的110切面,112切面,114切面(slice)。在所示示意图中,有九个双存储单元结构(two-cell unit structures)120-128,每一个单元结构(unitstructure)具有两个存储单元,而存储单元具有个别的(separate)可编程元件及左端点与右端点(terminals)。3D存储器装置的实施例能包括在每切面上有许多个双存储单元结构。使用左侧平面译码装置(left planedecoder)104,右侧平面译码装置105,以及柱状存取装置阵列106,装置包括存储单元阵列(array of cells),是配置给左译码与右译码。在Z-方向行(column)(如双存储单元结构120、双存储单元结构123、双存储单元结构126)上的双存储单元结构(two-cell unit structures)的导电柱,经由导电柱(如柱体130)耦接到在柱状存取装置阵列(pillar access device array)106上的存取装置(access device),例如,在结构下方的集成电路衬底实施。同样的,用于双存储单元结构121、双存储单元结构124、双存储单元结构127的柱体(pillar)经由柱体131耦接到在柱状存取装置阵列106上,相对应的存取装置(access device)。用于双存储单元结构122、双存储单元结构125、双存储单元结构128的柱体(pillar)经由柱体132耦接到在柱状存取装置阵列106上。FIG. 1 is a schematic diagram of a 3D memory structure, which shows slices 110 , 112 , and 114 on the X-Z plane of the 3D structure. In the schematic diagram shown, there are nine two-cell unit structures 120-128, each unit structure having two memory cells with separate programmable elements and Left endpoint and right endpoint (terminals). Embodiments of the 3D memory device can include many dual memory cell structures per slice. Using the left plane decoder 104, the right plane decoder 105, and the columnar access device array 106, the device includes a memory cell array (array of cells), which is configured for left decoding and right decoding . Conductive pillars of double memory cell structures (two-cell unit structures) on the Z-direction row (column) (such as double memory cell structure 120, double memory cell structure 123, double memory cell structure 126), via conductive pillars (such as Pillars 130) are coupled to access devices on a pillar access device array 106, eg, implemented on an integrated circuit substrate beneath the structure. Similarly, the pillars (pillar) for the double storage unit structure 121, the double storage unit structure 124, and the double storage unit structure 127 are coupled to the columnar access device array 106 via the pillar 131, and the corresponding access device (access device). The pillars for the dual memory cell structure 122 , the dual memory cell structure 125 , and the dual memory cell structure 128 are coupled to the pillar access device array 106 via the pillar 132 .

在切面110,切面112及切面114上的特定层(例如是双存储单元结构120、双存储单元结构121、双存储单元结构122)中的双存储单元结构的左侧字线导线(如导电体141),被耦接至由左侧平面译码装置104选择的驱动装置(driver)。同样的,在切面110,切面112,切面114上的特定层(particular level)(如双存储单元结构120、双存储单元结构121、双存储单元结构122)中的双存储单元结构的右侧字线导线(如导电体142),被耦接至由右侧平面译码装置105选择的驱动装置(driver)。在包括双存储单元结构123、双存储单元结构124、双存储单元结构125层中的左侧字线导电体143及右侧字线导电体144,分别耦接至左侧平面译码装置104及右侧平面译码装置105。在包括双存储单元结构126、双存储单元结构127、双存储单元结构128层中的左侧字线导电体145及右侧字线导电体146,分别耦接至左侧平面译码装置104及右侧平面译码装置105。On the cut plane 110, on the cut plane 112 and the specific layer on the cut plane 114 (such as the double memory cell structure 120, the double memory cell structure 121, and the double memory cell structure 122), the left word line conductors (such as conductors) of the double memory cell structure 141 ), coupled to the driver selected by the left plane decoding device 104 . Similarly, in the section 110, the section 112, and the specific layer (particular level) on the section 114 (such as the double storage unit structure 120, the double storage unit structure 121, and the double storage unit structure 122), the right side word of the double storage unit structure A wire (such as the conductor 142 ) is coupled to a driver selected by the right plane decoding device 105 . The left word line conductor 143 and the right word line conductor 144 in the layer including the double memory cell structure 123, the double memory cell structure 124, and the double memory cell structure 125 are respectively coupled to the left plane decoding device 104 and the Right plane decoding device 105 . The left word line conductor 145 and the right word line conductor 146 in the layer including the double memory cell structure 126, the double memory cell structure 127, and the double memory cell structure 128 are respectively coupled to the left plane decoding device 104 and the Right plane decoding device 105 .

双存储单元结构120-双存储单元结构128包括可编程元件,如过渡金属氧化物,且如果需要的话,每一存储单元(cell)都包括如图1所示的如整流装置的开关。由过渡金属氧化物材料组成的存储单元(memory cell),例如是电阻式随机存取存储器(ReRAM)。过渡金属氧化物材料包括氧化钨(tungsten oxide)、氧化钛(titanium oxide)、氧化镍(nickel oxide)、氧化铝(aluminum oxide)、氧化铜(copper oxide)、氧化锆(zirconium oxide)、氧化铌(niobium oxide)、氧化钽的氮化钛氧化物(tantalum oxide titaniumnitride oxide)、铬掺杂锶锆氧化物(chromium doped SrZrO3)、铬掺杂锶钛氧化物(chromium doped SrTiO3)、镨钙锰氧化物(PCMO,PrCaMnO)、镧钙锰氧化物(LaCaMnO)等。Dual memory cell structure 120 - dual memory cell structure 128 includes a programmable element, such as a transition metal oxide, and if desired, each memory cell includes a switch such as a rectifying device as shown in FIG. 1 . A memory cell made of transition metal oxide material is, for example, a resistive random access memory (ReRAM). Transition metal oxide materials include tungsten oxide, titanium oxide, nickel oxide, aluminum oxide, copper oxide, zirconium oxide, niobium oxide (niobium oxide), tantalum oxide titaniumnitride oxide, chromium doped strontium zirconium oxide (chromium doped SrZrO 3 ), chromium doped strontium titanium oxide (chromium doped SrTiO 3 ), praseodymium calcium Manganese oxide (PCMO, PrCaMnO), lanthanum calcium manganese oxide (LaCaMnO), etc.

存储单元亦能由其他双端点(two-terminal)的电阻变化存储器装置(resistance-change memory devices),例如是相变化存储器(phase changememory)、传导桥存储器(conduction bridge memory)及自旋力矩传输存储器(Spin Torque Transfer memory,STT memory)等所组成。The memory cell can also be composed of other two-terminal resistance-change memory devices, such as phase change memory, conduction bridge memory, and spin torque transfer memory. (Spin Torque Transfer memory, STT memory) and so on.

柱体及左侧与右侧导电体能由导电金属或类金属(metal-like)材料组成,包括:如氮化钛(TiN)、镱(Yb)、铽(Tb)、钇(Y)、镧(La)、钪(Sc)、铪(Hf)、锆(Zr)、铝(Al)、钽(Ta)、钛(Ti)、钕(Nb)、铬(Cr)、钒(V)、锌(Zn)、钨(W)、钼(Mo)、铜(Cu)、铼(Re)、钌(Ru)、钴(Co)、镍(Ni)、铑(Rh)、铅(Pd)、铂(Pt)及其化合物与合金材料。此外,半导体可用于一些实施例。The pillars and the left and right conductors can be composed of conductive metals or metal-like materials, including: titanium nitride (TiN), ytterbium (Yb), terbium (Tb), yttrium (Y), lanthanum (La), scandium (Sc), hafnium (Hf), zirconium (Zr), aluminum (Al), tantalum (Ta), titanium (Ti), neodymium (Nb), chromium (Cr), vanadium (V), zinc (Zn), tungsten (W), molybdenum (Mo), copper (Cu), rhenium (Re), ruthenium (Ru), cobalt (Co), nickel (Ni), rhodium (Rh), lead (Pd), platinum (Pt) and its compounds and alloy materials. Additionally, semiconductors may be used in some embodiments.

存储单元的开关元件可由金属氧化物二极管(metal-oxide diode)、穿隧二极管(tunneling diode)或其他二极管结构组成。如下所述,通过使用存储器的非线性IV关系用以内建式自我开关(built-in self-switching)。更详细双存储单元结构提供如下。The switching elements of the memory cells may be composed of metal-oxide diodes, tunneling diodes, or other diode structures. As described below, built-in self-switching is achieved by using the memory's non-linear IV relationship. A more detailed dual memory cell structure is provided below.

正如可见的,当阻断在阵列中其他存储单元中的电流流向时,可以通过施加电压以使电流流经相应的柱体(如柱体130)及选定平面上所选定的一左侧和右侧导电体(如导电体143、导电体144两者之一)之间,建立(established)用以读取个别存储单元(individual cell)(如在双存储单元结构123中双存储单元的其中之一)的电流通路。As can be seen, while blocking the flow of current in other memory cells in the array, a voltage can be applied to cause current to flow through the corresponding pillar (such as pillar 130) and a selected left side of the selected plane. Between the right side conductor (such as conductor 143, one of conductor 144), set up (established) in order to read individual memory unit (individual cell) (as in double memory cell structure 123 in double memory cell) One of them) the current path.

在Z轴方向列(Z-direction column)(如双存储单元结构120、双存储单元结构123、双存储单元结构126)中,双存储单元结构120-双存储单元结构128的导电柱阵列(array of conductive pillars)的底部,经由对应的柱体130、柱体131、柱体132耦接于在柱状存取装置阵列106上对应的存取装置,例如是实施于结构下方的集成电路衬底。In the Z-direction column (Z-direction column) (such as double memory cell structure 120, double memory cell structure 123, double memory cell structure 126), the conductive column array (array) of double memory cell structure 120-double memory cell structure 128 of conductive pillars) are coupled to corresponding access devices on the columnar access device array 106 via corresponding pillars 130, 131, and 132, such as an integrated circuit substrate implemented under the structure.

在柱状存取装置阵列(pillar access device array)106中的存取装置,选择性的耦接双存储单元结构120-双存储单元结构128的一Z轴方向列至在Y轴方向延伸的多条位线134、位线135、位线136中对应的一位线。多条位线134、位线135、位线136中的位线耦接至列译码装置(columndecoder)109。The access device in the columnar access device array (pillar access device array) 106 selectively couples a column in the Z-axis direction of the double memory cell structure 120-double memory cell structure 128 to a plurality of rows extending in the Y-axis direction Corresponding bit lines among the bit line 134 , the bit line 135 , and the bit line 136 . One of the plurality of bit lines 134 , 135 , 136 is coupled to a column decoder 109 .

柱状存取装置阵列106中的晶体管的栅极,被耦接至在X轴方向延伸的选择线(select lines)137、选择线138、选择线139。选择线137、选择线138、选择线139耦接至片译码装置(slice decoder)108。The gates of the transistors in the columnar access device array 106 are coupled to select lines 137 , 138 , and 139 extending in the X-axis direction. The selection line 137 , the selection line 138 , and the selection line 139 are coupled to the slice decoder 108 .

图2为绘示位于3D结构中X-Y平面的层(levels)266、层267及层268的3D存储器结构示意图。左侧平面译码装置104及右侧平面译码装置105是图绘示于图中。示意图上的每一层(level)包括九个双存储单元结构。实施例中的每层可以包括许多存储单元(many cells)。示意图上在266层中单元结构的前列(front row)包括双存储单元结构120、双存储单元结构121及双存储单元结构122,对应于在图1绘示的切面(slice)的顶列(top row)。虽然阵列可能更大,例如是包括在每平面上有1000乘1000(1000×1000)个双存储单元,或更多个双存储单元。在层单元结构的X-Y排列中,双存储单元结构(two-cell unit structures)220-双存储单元结构225的结余(balance)显示为3乘3(3-by-3)。如图2所示,左导电体元件(left conductor element)141是设置以利用叉形导电体(forkedconductor)141-L,连接到在每隔一对(alternating pairs)的行(rows)之间的左侧导电体。同样的,交错(interleaved)于左导电体元件(left conductorelement)141的右导电体元件(right conductor element)142是使用叉形导电体(forked conductor)141-R,连接到在每隔另一对(other alternating pairs)的列(rows)之间的右侧导电体。如下所述,左侧和右侧导电体(conductors)在每一平面上能彼此分离,且通过贯孔(vias)连接到层迭的连接点上(overlying connectors),而非以叉形方式连接在平面上。FIG. 2 is a schematic diagram of a 3D memory structure showing levels 266 , 267 , and 268 on the X-Y plane of the 3D structure. The left plane decoding device 104 and the right plane decoding device 105 are shown in the figure. Each level on the schematic diagram includes nine double memory cell structures. Each layer in an embodiment may include many cells. On the schematic diagram, the front row (front row) of the unit structure in the 266 layer includes a double storage unit structure 120, a double storage unit structure 121 and a double storage unit structure 122, corresponding to the top row (top row) of the slice (slice) shown in FIG. 1 row). Although the array may be larger, for example including 1000 by 1000 (1000 x 1000) dual memory cells per plane, or more. In the X-Y arrangement of layer unit structures, the balance of two-cell unit structures 220-225 is shown as 3 by 3 (3-by-3). As shown in Figure 2, left conductor element (left conductor element) 141 is arranged to utilize forked conductor (forkedconductor) 141-L, is connected to every other pair of (alternating pairs) row (rows) between left conductor. Likewise, the right conductor element (right conductor element) 142 of the left conductor element (left conductorelement) 141 that is interleaved (interleaved) is to use forked conductor (forked conductor) 141-R, is connected to every other pair Right conductor between rows of (other alternating pairs). As described below, the left and right conductors can be separated from each other on each plane and connected to the overlying connectors through vias instead of being connected in a fork on the plane.

图3A绘示双存储单元结构。在图1及图2中使用代表单元结构的符号120可以如图所示,包括左侧导电体141-L,右侧导电体142-R,以及柱体130。介电绝缘体310与介电绝缘体320隔开(separate)柱体。存储器元件330,340包括可编程材料层,是位于柱体130的相反侧,以及在柱体130的相反侧的各自的表面(respective surfaces)与对应的左侧导电体141-L和右侧导电体142-R之间。因而,此结构单元提供两个存储单元,包括如图标示的存储单元1(CELL 1)及存储单元2(CELL 2),每存储单元包括可编程元件以及整流装置(rectifier)。FIG. 3A shows a dual memory cell structure. The symbol 120 used to represent the unit structure in FIG. 1 and FIG. 2 may include a left conductor 141 -L, a right conductor 142 -R, and a column 130 as shown in the figure. The dielectric insulator 310 separates the pillar from the dielectric insulator 320 . The memory elements 330, 340 include layers of programmable material that are located on opposite sides of the pillar 130, and the respective surfaces on the opposite sides of the pillar 130 are electrically conductive to the corresponding left conductor 141-L and the right conductor 141-L. Between body 142-R. Therefore, this structural unit provides two storage units, including storage unit 1 (CELL 1) and storage unit 2 (CELL 2) as shown in the figure, and each storage unit includes a programmable element and a rectifier (rectifier).

当柱体130包括导电体,如金属,金属氮化物,掺杂的多晶硅,以及其他导电体的时候,此例中的导电体141-L以及导电体142-R能包括过渡金属,如钨(tungsten)。在一些实施方式中,在存储器元件的相反侧上,使用p-型和n-型半导体,将用于存储单元的p-n结(p-njunction)的整流装置设置在界面区域中。When the posts 130 include conductors such as metals, metal nitrides, doped polysilicon, and other conductors, the conductors 141-L and 142-R in this example can include transition metals such as tungsten ( tungsten). In some embodiments, rectifying means for the p-n junction of the memory cell are provided in the interface region using p-type and n-type semiconductors on opposite sides of the memory element.

整流装置可通过在导电体与柱体间的p-n结,加以实施(implemented)。例如,依据固体电解质的整流装置,如硅化锗(germanium silicid)或其他合适的材料,可用以提供整流装置。其他代表性的固体电解质材料(solidelectrolyte materials),请参见Gopalakrishnan的美国第7,382,647号专利。The rectifying means can be implemented by a p-n junction between the conductor and the pillar. For example, a rectifying device based on a solid electrolyte, such as germanium silicide or other suitable materials, may be used to provide the rectifying device. For other representative solid electrolyte materials (solid electrolyte materials), please refer to US Patent No. 7,382,647 by Gopalakrishnan.

存储单元形成在柱体130与左侧导电体141-L或右侧导电体142-R交叉点上的界面区域,且存储单元可包括氧化钨或前述提及的金属氧化物的侧壁层(side wall layer)。在其他实施例中,其他存储器元件可使用包括反熔丝(anti-fuse)存储单元,而反熔丝(anti-fuse)存储单元包括二氧化硅、氮氧化硅(silicon oxynitride)或具有厚度5至10纳米且高电阻的二氧化硅。其他可使用的反熔丝材料,如氮化硅(silicon nitride)、氧化铝、氧化钽(tantalum oxide)、氧化镁(magnesium oxide)等。The memory cell is formed at the interface region at the intersection of the pillar 130 and the left conductor 141-L or the right conductor 142-R, and the memory cell may include a sidewall layer of tungsten oxide or the aforementioned metal oxide ( side wall layer). In other embodiments, other memory elements may be used including anti-fuse memory cells comprising silicon dioxide, silicon oxynitride or having a thickness of 5 to 10nm and high resistance silicon dioxide. Other antifuse materials that can be used, such as silicon nitride, aluminum oxide, tantalum oxide, magnesium oxide, etc.

施加偏压(Bias voltages)到单元结构,包括右字线电压VWL-R,左字线电压VWL-L,及柱体电压VB。Apply bias voltages (Bias voltages) to the cell structure, including the right word line voltage VWL-R, the left word line voltage VWL-L, and the pillar voltage VB.

图3B绘示在3D阵列中的两层的两个单元胞的侧面图,其中顶端层(top)的双单元(two-unit)胞,包括左侧导电体141-L与连接到柱体130的侧壁(side wall)存储器元件340,在柱体130相反侧的存储器元件330,以及右侧导电体142-R。在第二层的双单元(two-unit)胞包括一个双单元胞,而双单元胞包括左侧导电体143-L、连接到柱体130的侧壁(side wall)存储器元件341、设于柱体130相反侧的存储器元件331,以及右侧导电体144-R。在一些实施方式中,能够多于两层,例如8层、16层等。存储器元件340位在存储器元件341之上,且存储器元件340,存储器元件341两者都设置的柱体130的侧壁上。同样的,存储器元件330位在存储器元件331之上,并且,存储器元件330,存储器元件331两者都设置的柱体130的侧壁上。FIG. 3B shows a side view of two unit cells in two layers in a 3D array, wherein the top layer (top) double-unit (two-unit) cell includes a left conductor 141-L and is connected to a pillar 130. The memory element 340 on the side wall of the pillar 130, the memory element 330 on the opposite side of the pillar 130, and the right conductor 142-R. The two-unit cell in the second layer includes a two-unit cell, and the two-unit cell includes a left conductor 143-L, a side wall memory element 341 connected to the pillar 130, a memory element 341 located on the The memory element 331 on the opposite side of the pillar 130, and the right conductor 144-R. In some embodiments, there can be more than two layers, eg, 8 layers, 16 layers, etc. The memory element 340 is located above the memory element 341 , and both the memory element 340 and the memory element 341 are disposed on the sidewall of the pillar 130 . Likewise, the memory element 330 is located above the memory element 331 , and both the memory element 330 and the memory element 331 are disposed on the sidewall of the pillar 130 .

图4绘示部分3D结构,此结构包括如图1~图3所述的存储单元阵列。图4显示三层图案化导电体层,其中顶端层(top level)包括延伸X轴方向的图案化导电体410-导电体412,下一层(next level)包括图案化导电体413-导电体415,再下一层(next lower level)包括图案化导电体416-导电体418。在本例中,在顶端层(top)的可编程元件位在金属氧化物结构425-金属氧化物结构430上,而金属氧化物结构425-金属氧化物结构430形成于图案化导电体410-导电体412相反侧上。在金属氧化物结构431-金属氧化物结构432上的可编程元件形成在图案化导电体415相反侧上,在金属氧化物结构433-金属氧化物结构434上的可编程元件形成在图案化导电体418相反侧上。类似的可编程元件同样地形成于结构中其他图案化导电体的侧面上。3D结构包括导电柱阵列,而导电柱阵列包括在图标的结构背面的柱体81-柱体84,以及在图标的结构前面的柱体493、柱体495与柱体(pillar)497。绝缘柱体形成于柱体间与其相反侧上。因此,绝缘柱(insulating pillars)492、绝缘柱494、绝缘柱496与绝缘柱498显示在柱体493、柱体495与柱体497的相反侧上。FIG. 4 shows a partial 3D structure, which includes the memory cell array as described in FIGS. 1-3 . Figure 4 shows three layers of patterned conductor layers, wherein the top level (top level) includes a patterned conductor 410-conductor 412 extending in the X-axis direction, and the next level (next level) includes a patterned conductor 413-conductor 415, the next lower level includes patterned conductors 416-418. In this example, the programmable elements at the top layer (top) are located on the metal oxide structure 425-metal oxide structure 430, and the metal oxide structure 425-metal oxide structure 430 is formed on the patterned conductor 410- The conductor 412 is on the opposite side. The programmable elements on the metal oxide structure 431-metal oxide structure 432 are formed on the opposite side of the patterned conductor 415, and the programmable elements on the metal oxide structure 433-metal oxide structure 434 are formed on the patterned conductor. body 418 on the opposite side. Similar programmable elements are likewise formed on the sides of other patterned conductors in the structure. The 3D structure includes a conductive pillar array, and the conductive pillar array includes pillars 81 - 84 at the back of the icon structure, and pillars 493 , 495 , and 497 at the front of the icon structure. The insulating pillars are formed between the pillars and on the opposite side thereof. Thus, insulating pillars 492 , 494 , 496 , and 498 are shown on opposite sides of pillars 493 , 495 , and 497 .

图4绘示存取晶体管(access transistor)的另一种实现方式,要求柱体包括掺杂的半导体,且作为垂直选择晶体管(vertical select transistors)的通道区(channel regions)。选择线(select lines)137、选择线138及选择线139位于存储立方体(memory cube)102的下方且在X轴方向中延伸,而选择线137、选择线138、选择线139作为选择晶体管(select transistors)的栅极。柱体延伸通过选择线137、选择线138及选择线139到在X轴方向上延伸的位线134、位线135及位线136。在其它实施例中,选择晶体管(select transistors)可以形成在衬底的源极/漏极端与通道上,或其他方式。FIG. 4 shows another implementation of access transistors that requires pillars to include doped semiconductors and serve as channel regions for vertical select transistors. Select lines (select lines) 137, select lines 138 and select lines 139 are located below the storage cube (memory cube) 102 and extend in the X-axis direction, and select lines 137, select lines 138 and select lines 139 serve as select transistors (select gates of transistors). The pillars extend through select line 137 , select line 138 and select line 139 to bit line 134 , bit line 135 and bit line 136 extending in the X-axis direction. In other embodiments, select transistors may be formed on the source/drain terminals and the channel of the substrate, or otherwise.

图5绘示如图4中的结构的Y-Z平面的剖视图,其绘示沿着包括柱体497的双存储单元结构500、双存储单元结构502及双存储单元结构504。在适当情况下,图4中的编号是重复使用于图5中。FIG. 5 is a cross-sectional view of the Y-Z plane of the structure shown in FIG. 4 , along the dual memory cell structure 500 including the pillar 497 , the dual memory cell structure 502 and the dual memory cell structure 504 . Numbering from FIG. 4 is repeated in FIG. 5 where appropriate.

双存储单元结构500包括一左胞500-L与一右胞500-R。作为存储器元件的左胞500-L包括导电体418及金属氧化物结构433。作为存储器元件的右胞500-R包括导电体417及金属氧化物结构435。The dual memory cell structure 500 includes a left cell 500-L and a right cell 500-R. The left cell 500 -L as a memory element includes a conductor 418 and a metal oxide structure 433 . The right cell 500 -R as a memory element includes a conductor 417 and a metal oxide structure 435 .

双存储单元结构502包括左胞502-L与右胞502-R。作为存储器元件的左胞502-L包括导电体415及金属氧化物结构431。作为存储器元件的右胞502-R包括导电体414及金属氧化物结构437。The dual memory cell structure 502 includes a left cell 502-L and a right cell 502-R. Left cell 502 -L as a memory element includes electrical conductor 415 and metal oxide structure 431 . Right cell 502 -R, which is a memory element, includes electrical conductor 414 and metal oxide structure 437 .

双存储单元结构504包括一左胞504-L与一右胞504-R。作为存储器元件的左胞504-L包括导电体412及金属氧化物结构429。作为存储器元件的右胞504-R包括导电体411及金属氧化物结构439。The dual memory cell structure 504 includes a left cell 504-L and a right cell 504-R. Left cell 504 -L, which is a memory element, includes electrical conductor 412 and metal oxide structure 429 . The right cell 504 -R, which is a memory element, includes a conductor 411 and a metal oxide structure 439 .

字线中的每一层是由绝缘材料隔开,而绝缘材料如硅氮化物(siliconnitride)或二氧化硅。因此,两个Z轴方向列的存储单元由双胞结构单元500、双胞结构单元502及双胞结构单元504所提供。Each layer in the wordlines is separated by an insulating material such as silicon nitride or silicon dioxide. Therefore, two Z-axis columns of memory cells are provided by the twin structural unit 500 , the twin structural unit 502 and the twin structural unit 504 .

选择线137围绕柱体497,且延伸进入和离开如图5所示的剖面。栅极介电层(Gate dielectric)520分隔柱体497与选择线137。Selection line 137 surrounds cylinder 497 and extends into and out of the cross-section as shown in FIG. 5 . A gate dielectric 520 separates the pillar 497 from the select line 137 .

图6至图12绘示上述制造3D结构的各阶段制造流程。图6说明集成电路衬底的表面600上,用于连接3D结构的接点阵列(array of contacts)。接点阵列包括接点(如接点601-接点604),接点耦接至个别存取装置,且可以连接到在3D结构中的柱体。个别存取装置能形成在衬底上,且可包括如金属氧化物半导体晶体管(MOS transistors),而金属氧化物半导体晶体管具有耦接至设置在X轴方向字线的栅极,耦接至设置在Y轴方向源极线的源极(sources),以及耦接至接点(如接点601-接点604)的漏极。以适合的特定的操作下,通过偏压于字线及源极线,选择个别存取装置。在一些实施方式中,存取装置能包括垂直,环绕式栅极晶体管(surroundinggate transistors),而环绕式栅极晶体管上端的源极/漏极端耦接至柱体。FIG. 6 to FIG. 12 illustrate the various stages of the manufacturing process for manufacturing the above-mentioned 3D structure. FIG. 6 illustrates an array of contacts for connecting 3D structures on a surface 600 of an integrated circuit substrate. The contact array includes contacts (eg, contacts 601-604) that are coupled to individual access devices and can be connected to posts in the 3D structure. Individual access devices can be formed on the substrate, and may include, for example, metal oxide semiconductor transistors (MOS transistors), and the metal oxide semiconductor transistors have a gate coupled to a word line disposed in the X-axis direction, coupled to a disposed Sources of the source lines in the Y-axis direction, and drains coupled to contacts (such as contacts 601 - 604 ). Individual access devices are selected by biasing the word and source lines for the appropriate particular operation. In some embodiments, the access device can include vertical, surrounding gate transistors with upper source/drain terminals coupled to the pillars.

图7绘示在制造流程第一阶段中的侧面剖视图,为在衬底720上形成交替的(alternating)绝缘材料层721、绝缘材料层723、绝缘材料层725、绝缘材料层727及导电体材料(conductor material)层722、导电体材料层724、导电体材料层726、导电体材料层728之后的多层叠层材料(multilayerstack of materials)的侧面剖视图,其中绝缘材料层例如是二氧化硅或氮化硅,而导电体材料层例如是金属(如钨、n+多晶硅或其他掺杂的半导体、金属氮化物或金属与其他如金属氮化物导电体的组合)。在具代表性的结构中,交替的绝缘材料层厚度可为大约50纳米,而交替的导电体材料层厚度可为大约50纳米。在交替层728的顶端,能形成硬质掩模材料层729(如氮化硅)。7 shows a side cross-sectional view in the first stage of the manufacturing process for forming alternating (alternating) insulating material layers 721, insulating material layers 723, insulating material layers 725, insulating material layers 727 and conductor materials on a substrate 720. (conductor material) layer 722, conductor material layer 724, conductor material layer 726, conductor material layer 728 after the side cross-sectional view of the multilayer stack of materials (multilayerstack of materials), wherein the insulating material layer is for example silicon dioxide or nitrogen Silicon oxide, and the conductor material layer is, for example, metal (such as tungsten, n+ polysilicon or other doped semiconductors, metal nitride or a combination of metal and other conductors such as metal nitride). In a representative configuration, the alternating layers of insulating material can be about 50 nanometers thick, and the alternating layers of conductive material can be about 50 nanometers thick. On top of the alternating layers 728, a layer 729 of hard mask material (eg, silicon nitride) can be formed.

图8绘示使用第一光刻工艺结果的布局视图,光刻工艺定义出沟道(trenches)的图案,以及透过刻蚀如图6中所示的多层叠层材料,对叠层处进行图案化刻蚀(patterned etch of the stack)以形成沟道845-沟道848。光刻工艺露出接点(如接点604),接点被耦接至柱状存取装置(pillar accesscircuits)中的个别存取装置。非等向性反应离子刻蚀技术(Anisotropicreactive ion etching techniques)能用于刻蚀穿过导电层和氧化硅或氮化硅层,且具高深宽比(high aspect ratio)。沟道具有侧壁(sidewalls)830-侧壁833,而侧壁830-侧壁833为在结构各层中导电体材料层露出处。在具代表性的结构中,沟道845-沟道848的宽度可为如大约70纳米。FIG. 8 shows a layout view using the result of the first photolithography process, which defines the pattern of trenches, and by etching the multi-layer stack material as shown in FIG. A patterned etch of the stack is formed to form trenches 845-848. The photolithography process exposes contacts (eg, contacts 604 ) that are coupled to individual access devices in the pillar access circuits. Anisotropic reactive ion etching techniques can be used to etch through conductive layers and silicon oxide or silicon nitride layers with high aspect ratios. The trench has sidewalls 830-833 where the layers of conductive material are exposed in the various layers of the structure. In a representative structure, the width of channels 845-848 may be, for example, about 70 nanometers.

图9显示于流程中的较后阶段,为在接触导电体材料层的沟道845-沟道848侧壁上,形成金属氧化物存储器材料层(metal oxide memorymaterial)940-金属氧化物存储器材料层943后的阶段。例如,当导电体层包括钨或其他适于形成金属氧化物存储器材料的金属时,金属氧化物存储器材料可由沉积,或经由氧化用于导电层的金属而形成。于形成金属氧化物存储器材料后的流程,可包括沉积薄保护层,例如在金属氧化物材料上的p型多晶硅,然后,使用非等向性刻蚀工艺从沟道845-沟道848的底端移除所有存储器材料,最后露出接点(如接点604)。Figure 9 shows a later stage in the flow process, for forming a metal oxide memory material layer (metal oxide memory material) 940-metal oxide memory material layer on the sidewall of the channel 845-channel 848 contacting the conductor material layer The stage after 943. For example, when the conductor layer includes tungsten or other metal suitable for forming a metal oxide memory material, the metal oxide memory material can be formed by deposition, or via oxidation of the metal used for the conductive layer. The flow after forming the metal oxide memory material may include depositing a thin protective layer, such as p-type polysilicon on the metal oxide material, and then using an anisotropic etch process from the bottom of the channel 845 to the channel 848 All memory material is removed from the end, and finally the contacts (such as contacts 604) are exposed.

图10显示流程下一个阶段,此阶段为在图案化导电体之间的沟道中,填入作为柱体的材料,如p型多晶硅或金属,以及形成填充的沟道1050-沟道1053之后的阶段。在其他结构中,沟道能使用掺杂的半导体先做内衬(lined),然后使用金属充填,以改善结构的导电性,进而在结构的界面区域提供整流装置。Figure 10 shows the next stage of the process, which is after filling the trenches between the patterned conductors with material as pillars, such as p-type polysilicon or metal, and forming the filled trenches 1050-1053 stage. In other structures, the channel can be lined with a doped semiconductor and then filled with a metal to improve the conductivity of the structure and provide a rectifying device at the interface region of the structure.

图11显示使用第二光刻工艺定义出柱体图案。使用对柱体的材料有选择性的非等向性刻蚀工艺作填充沟道的图案化刻蚀(patterned etch of thefilled trenches),以定义出导电柱(柱体1150-a、柱体1150-b、柱体1150-c、柱体1151-a、柱体1151-b、柱体1151-c、柱体1152-a、柱体1152-b、柱体1152-c、柱体1153-a、柱体1153-b及柱体1153-c),以及在导电柱间产生垂直开孔(vertical openings)。导电柱连接于接点,包括接点604(未绘示,参阅第8及9图),进而到下方的个别存取装置。接着,将介电绝缘材料,如二氧化硅,填入柱体间,以在柱体间形成绝缘体列(如绝缘体1120)。FIG. 11 shows a pattern of pillars defined using a second photolithography process. A patterned etch of the filled trenches is performed using an anisotropic etch process selective to the material of the pillars to define the conductive pillars (pillar 1150-a, pillar 1150- b, cylinder 1150-c, cylinder 1151-a, cylinder 1151-b, cylinder 1151-c, cylinder 1152-a, cylinder 1152-b, cylinder 1152-c, cylinder 1153-a, pillars 1153-b and pillars 1153-c), and vertical openings are generated between the conductive pillars. The conductive studs are connected to contacts, including contact 604 (not shown, see FIGS. 8 and 9 ), and then to individual access devices below. Next, a dielectric insulating material, such as silicon dioxide, is filled between the pillars to form insulator rows (eg, insulator 1120 ) between the pillars.

图12说明在多个平面上,用于制作接点到左侧及右侧导电体(conductor lines)配置的上视图。在每一层上的左侧导电体(conductors)1261-1、导电体1261-2、导电体1261-3与导电体1263-1、导电体1263-2、导电体1263-3及右侧导电体1260-1、导电体1260-2、导电体1260-3、导电体1262-1、导电体1262-2、导电体1262-3与导电体1264-1、导电体1264-2、导电体1264-3具有配置成阶梯状图案(stair-step pattern),或其他图案的着陆区(标示为“L”或“R”),使得每一层上的着陆区不至于被层迭的图案化导电体层中任何左侧及右侧导电体所层迭。接点塞(Contact plugs)或其他导线(conductive lines)(未绘示)延伸穿过多个导电体层,然后接触着陆区。层迭的(overlying)图案化连接层包括在多个图案化导电体层上的左侧接点1228、接点1229、接点1230及右侧接点1225、接点1226、接点1227,且接触于导线(conductive lines),而此导线是接触左侧与右侧导电体的着陆区。左侧与右侧接点路由到(routed)到左与右平面译码电路(未绘示)。Figure 12 illustrates a top view of an arrangement for making contacts to left and right conductor lines on multiple planes. Left conductors (conductors) 1261-1, conductors 1261-2, conductors 1261-3 and conductors 1263-1, conductors 1263-2, conductors 1263-3 and right conductors on each layer Conductor 1260-1, Conductor 1260-2, Conductor 1260-3, Conductor 1262-1, Conductor 1262-2, Conductor 1262-3 and Conductor 1264-1, Conductor 1264-2, Conductor 1264 -3 have landing areas (marked as "L" or "R") configured in a stair-step pattern, or other pattern, so that the landing areas on each layer are not conductive by the layered pattern Any left and right conductors in the bulk layer are laminated. Contact plugs or other conductive lines (not shown) extend through the various layers of electrical conductors and then contact the landing pads. The stacked (overlying) patterned connection layer includes left contact 1228, contact 1229, contact 1230 and right contact 1225, contact 1226, contact 1227 on a plurality of patterned conductor layers, and is in contact with conductive lines (conductive lines ), and this wire is the landing area that touches the left and right conductors. The left and right contacts are routed to left and right plane decoding circuits (not shown).

图13绘示在另一个实施例中的一层(level)的布局图,布局图显示从图4的顶端层中的左侧导电体1260-3与右侧导电体1264-3耦接于延伸部(extensions)1350及延伸部1351(也被称为垫片),以连接左侧导电体与右侧导电体到左侧平面译码装置与右侧平面译码装置。可以看出,左侧导电体1261-3与左侧导电体1263-3耦接至延伸部1351,使延伸部可连接在着陆区1353上的接点塞,通过层迭的图案化导电体层(overlyingpatterned conductor layers)到连接译码装置电路。同样的,右侧导电体1260-3、右侧导电体1262-3与右侧导电体1264-3耦接至延伸部1350,使延伸部可连接在着陆区1352上的接点塞(Contact plugs),藉此连接到译码装置电路。FIG. 13 shows a layout diagram of a layer (level) in another embodiment. The layout diagram shows that the left conductor 1260-3 and the right conductor 1264-3 in the top layer of FIG. Extensions 1350 and extensions 1351 (also called pads) are used to connect the left and right conductors to the left plane decoding device and the right plane decoding device. It can be seen that the left conductor 1261-3 and the left conductor 1263-3 are coupled to the extension 1351, so that the extension can be connected to the contact plug on the landing area 1353, through the laminated patterned conductor layer ( overlyingpatterned conductor layers) to the circuit of the decoding device. Similarly, the right conductor 1260-3, the right conductor 1262-3 and the right conductor 1264-3 are coupled to the extension 1350, so that the extension can be connected to contact plugs on the landing area 1352. , thereby connecting to the decoding device circuit.

图14绘示一存取装置阵列的实施方式,而存取装置阵列适合用于在图1中所示的作为柱状存取装置阵列(pillar access device array)。如图14所示,在衬底上实施的存取层1104,包括具有上表面的绝缘材料1410,而接点阵列(如接点1412)曝露在绝缘材料上表面上。在漏极接点(draincontacts)1408的上表面提供用于个别柱体的接点,而漏极接点1408的上表面耦接至在存取层(access layer)中的金属氧化物半导体晶体管(MOStransistors)的漏极端点(drain terminals)1436。存取层1104,包括具有源极区域(source regions)1442的半导体本体及在存取层1104上的漏极区域1436。多晶硅字线1434设置在栅极介电层上,且在源极区域1442与漏极区域1436之间。如实施例所示,源极区域1442为邻接的金属氧化物半导体晶体管所共享,而形成双晶体管结构1448。衬底1438内的源极接点1440位于字线1434之间,且源极接点1440与源极区域1442接触。源极接点(source contacts)1440能连接至在金属层的位线(未绘示),而位线为垂直于字线,且在漏极接点行(columns of drain contacts)1408之间。硅化物盖(silicide caps)1444覆盖字线1434。介电层1445覆盖字线1434与硅化物盖1444。隔离沟道(Isolation trenches)1446将双晶体管结构1448从相邻的双晶体管结构分隔开。在此例中,晶体管充当存取装置(accessdevices)。个别柱体能耦接至接点1412且通过控制源极接点1440与字线1412的偏压加以个别选择。理所当然,其他结构可用以实现存取装置阵列,包括,如垂直金属氧化物半导体晶体管装置阵列(vertical MOS devicearray)。FIG. 14 illustrates an embodiment of an access device array suitable for use as a pillar access device array shown in FIG. 1 . As shown in FIG. 14, the access layer 1104 implemented on the substrate includes an insulating material 1410 having an upper surface, and an array of contacts (such as contacts 1412) is exposed on the upper surface of the insulating material. Contacts for individual pillars are provided on top surfaces of drain contacts 1408 coupled to MOS transistors in the access layer. Drain terminals 1436 . The access layer 1104 includes a semiconductor body having source regions 1442 and a drain region 1436 on the access layer 1104 . A polysilicon wordline 1434 is disposed on the gate dielectric layer between the source region 1442 and the drain region 1436 . As shown in the embodiment, the source region 1442 is shared by adjacent MOS transistors to form a dual transistor structure 1448 . A source contact 1440 within substrate 1438 is located between word lines 1434 , and source contact 1440 is in contact with source region 1442 . Source contacts 1440 can be connected to bit lines (not shown) on the metal layer that are perpendicular to the word lines and between columns of drain contacts 1408 . Silicide caps 1444 cover the word lines 1434 . A dielectric layer 1445 covers the word lines 1434 and the silicide cap 1444 . Isolation trenches 1446 separate two-transistor structures 1448 from adjacent two-transistor structures. In this example, transistors act as access devices. Individual pillars can be coupled to contacts 1412 and individually selected by controlling the bias voltages of source contacts 1440 and word lines 1412 . Of course, other structures can be used to implement the access device array, including, for example, a vertical MOS device array.

图15为过渡金属氧化物存储器元件的电流与电压的IV曲线图,过渡金属氧化物存储器元件可包括例如是氧化钨(tungsten oxide)。IV曲线1500显示非线性特性,可据以取代存储单元的个别的的开关元件(switching element)。可以看出,在临界电压(threshold voltage)VT以下,金属氧化物材料实质上(essentially)是阻断电流且为关闭状态,但当在临界电压(threshold voltage)VT以上,金属氧化物材料允许电流流通,所以是开启状态。因此,能依据具有这种特性的金属氧化物和其它存储器材料,内建自我开关。FIG. 15 is an IV curve diagram of current versus voltage of a transition metal oxide memory device, which may include, for example, tungsten oxide. The IV curve 1500 shows non-linear characteristics, which can be used to replace the individual switching elements of the memory cell. It can be seen that below the threshold voltage (threshold voltage) VT, the metal oxide material essentially blocks the current and is in an off state, but when it is above the threshold voltage (threshold voltage) VT, the metal oxide material allows the current Circulation, so it is open. Therefore, self-switching can be built in based on metal oxides and other memory materials with this property.

图16绘示在图3B中所示的两个单元结构的替代结构,配置(deploying)金属氧化物存储单元技术,如美国专利第8,279,656号所描述,此文献在此被纳入参考,如同已被充分阐述。图16显示在3D阵列的两层中,双单元胞的侧视图(在适当情况下,使用相同于图3B中的编号),其中顶端部的双单元胞包括左侧导电体141-L、连接至柱体130的侧璧存储器元件340、在柱体130相反侧的存储器元件330,以及右侧导电体142-R。在第二层的双单元胞包括左侧导电体143-L、连接至柱体130的侧璧存储器元件341、在柱体130相反侧的存储器元件331,以及右侧导电体144-R。如图16所示的另一选择是使用多层导电体的导电体141-L、导电体142-R、导电体143-L与导电体144-R,多层导电体包括不同的可氧化材料(oxidizablematerial)的衬垫(liner),例如氮化钛(TiN),氮化钛的氧化速度较块材(bulk material)慢,此处所指的块材例如是钨。当氧化导电体层而形成存储器元件时,钨芯(tungsten core)氧化的深度比导电体层的块材氧化的深度更深(在此例所指的深度是沿水平方向表示),按照这种方式,形成存储单元时,于侧壁的上端区域340-u、上端区域340-l及下端区域341-u、下端区域341-l、上端区域330-u、上端区域330-l、下端区域331-u及下端区域331-l的交叉点区域形成氮氧化钛(TiNOx)在氮化钛外衬垫的例子中,可看出柱体130也能包括具有氮化钛(TiN)外衬130-a与外衬130-b的钨芯。FIG. 16 shows an alternative structure to the two cell structure shown in FIG. 3B, deploying metal oxide memory cell technology as described in US Pat. No. 8,279,656, which is hereby incorporated by reference as if incorporated herein. fully elaborated. Figure 16 shows a side view of a twin cell in two layers of a 3D array (using the same numbering as in Figure 3B where appropriate), where the top twin cell includes a left conductor 141-L, a connection To the side wall memory element 340 of the pillar 130, the memory element 330 on the opposite side of the pillar 130, and the right conductor 142-R. The dual unit cell at the second level includes left conductor 143-L, sidewall memory element 341 connected to pillar 130, memory element 331 on the opposite side of pillar 130, and right conductor 144-R. Another option as shown in Figure 16 is to use conductor 141-L, conductor 142-R, conductor 143-L, and conductor 144-R of multilayer conductors comprising different oxidizable materials Liner (liner) of (oxidizable material), such as titanium nitride (TiN), the oxidation speed of titanium nitride is slower than bulk material (bulk material), and the bulk material referred to here is tungsten, for example. When the conductor layer is oxidized to form a memory element, the tungsten core is oxidized deeper than the bulk of the conductor layer (the depth referred to in this example is expressed along the horizontal direction), in this way , when forming a memory cell, in the upper end region 340-u, upper end region 340-l and lower end region 341-u, lower end region 341-l, upper end region 330-u, upper end region 330-l, lower end region 331-u of the sidewall The intersection region of u and the lower end region 331-1 forms titanium oxynitride (TiNOx). Tungsten core with outer lining 130-b.

如上所述,在一些实施方式中,能多于两层,如8层,16层等。存储器元件340在存储器元件341之上,而两者皆设置在柱体130的侧壁(sidewall)上。同样的,存储器元件330在存储器元件331之上,而两者皆设置在柱体130的侧壁上。As noted above, in some embodiments, there can be more than two layers, such as 8 layers, 16 layers, etc. The memory element 340 is above the memory element 341 , and both are disposed on the sidewall of the pillar 130 . Likewise, the memory element 330 is above the memory element 331 , and both are disposed on the sidewall of the pillar 130 .

图17与图18显示译码电路(decoding circuitry)的另一排列方式,译码电路提供用于在本文所述的存储器结构中,左导电体与右导电体的左层译码与右层译码(level decoding)。在图17,以层1750-层1752示意性表示3D阵列,包括交错的(interleaved)左导电体与右导电体,对于层1750为偶数的导电体141与奇数的导电体142,对于层1751为偶数的导电体143与奇数的导电体144,对于层1752为偶数的导电体145与奇数的导电体146。译码电路(decoding circuitry)包括晶体管,此晶体管具有栅极、源极与漏极,其中栅极耦接至偶数/奇数选择线1710与偶数/奇数选择线1711,源极耦接至层选择线1720、层选择线1722与层选择线1723,且在接点1701-接点1706处,漏极耦接至在不同层的垫片(pads)。17 and FIG. 18 show another arrangement of the decoding circuit. The decoding circuit is provided for left-layer decoding and right-layer decoding of the left conductor and the right conductor in the memory structure described herein. Code (level decoding). In FIG. 17, the 3D array is schematically represented by layer 1750-layer 1752, including interleaved (interleaved) left conductors and right conductors, for layer 1750, even conductors 141 and odd conductors 142, for layer 1751: The even-numbered conductors 143 and the odd-numbered conductors 144 are the even-numbered conductors 145 and the odd-numbered conductors 146 for the layer 1752 . The decoding circuit includes a transistor having a gate, a source and a drain, wherein the gate is coupled to the even/odd selection line 1710 and the even/odd selection line 1711, and the source is coupled to the layer selection line 1720 , layer selection line 1722 and layer selection line 1723 , and at contact 1701 - contact 1706 , the drain is coupled to pads in different layers.

在图18,以层1850-层1852示意性表示3D阵列,包括交错的(interleaved)左导电体与右导电体,对于层1850为偶数导电体141与奇数导电体142,对于层1851为偶数导电体143,与奇数导电体144,对于层1852为偶数导电体145与奇数导电体146。译码电路(decoding circuitry)包括晶体管,晶体管具有源极、栅极、漏极,其中源极耦接至偶数/奇数选择线1810与偶数/奇数选择线1811,栅极耦接至层选择线1820、层选择线1822与层选择线1823,以及在接点1801-接点1806处,漏极耦接至在不同层的垫片(pads)。In FIG. 18, the 3D array is schematically represented by layer 1850-layer 1852, including interleaved (interleaved) left and right conductors, for layer 1850, even conductors 141 and odd conductors 142, for layer 1851, even conductors Body 143 , and odd numbered conductor 144 , for layer 1852 are even numbered conductor 145 and odd numbered conductor 146 . The decoding circuit (decoding circuit) includes a transistor, and the transistor has a source, a gate, and a drain, wherein the source is coupled to the even/odd selection line 1810 and the even/odd selection line 1811, and the gate is coupled to the layer selection line 1820 , layer select line 1822 and layer select line 1823 , and at contact 1801 - contact 1806 , the drain is coupled to pads in different layers.

当使用层选择(level select)与偶/奇选择线在选定柱体(selected pillar)上以选择特定存储单元时,施加适当偏压以读取、编程或擦除在选定柱体和奇/偶选择在线,存取一个特定存储单元(specific cell)的译码方法能包括,开启在存取电路(access circuits)中,耦接至柱体的片选择线(slice selectline)与行选择线(column select line),以选择特定柱体(particular pillar)。When using the level select and even/odd select lines on selected pillars to select specific memory cells, apply the appropriate bias to read, program, or erase the selected pillars and odd /even select line, the decode method for accessing a specific cell (specific cell) can include, in the access circuits (access circuits), the slice select line (slice select line) and the row select line coupled to the column are turned on (column select line) to select a particular pillar.

图19为根据本发明的实施例中,集成电路的简化方块图。如本文所述实施的集成电路1875包括在衬底上的3D双存储单元结构金属氧化物存储器阵列1860。在总线(bus)1865,地址(addresses)提供给行译码装置/页缓冲电路(column decoder/page buffer circuits)1863、片译码装置(slicedecoder)1861以及左/右侧平面译码装置1858。对类似如图1中所示的阵列实施例中,用于个别柱体(individual pillars)的存取装置阵列位于阵列1860下方,且存取装置阵列耦接至片译码装置(slice decoder)1861及行译码装置/页缓冲电路(column decoder/page buffer circuits)1863。经由从在集成电路1875上的输入/输出端(input/output ports)的数据输入线(data-in line)1871,或从内部或外部的其他数据来源到集成电路1875,再到行译码装置/页缓冲电路(column decoder/page buffer circuits)1863,以提供数据。在所示的实施例中,在集成电路上包括其他电路1874,例如一般用途的处理器或特殊用途的应用电路(special purpose applicationcircuitry),或提供系统整合芯片(system-on-a-chip)功能的组合模块,组合模块为存储单元阵列所支持。经由从在集成电路1875上的行译码装置/页缓冲电路(column decoder/page buffer circuits)1863,到输入/输出端的数据输出线(data-out line)1872,或到内部或外部的其他数据目的地(datadestinations)再到集成电路1875,以提供数据。Figure 19 is a simplified block diagram of an integrated circuit in accordance with an embodiment of the present invention. An integrated circuit 1875 implemented as described herein includes a 3D dual memory cell structure metal oxide memory array 1860 on a substrate. In bus 1865, addresses are provided to column decoder/page buffer circuits 1863, slice decoder 1861 and left/right plane decoder 1858. For an embodiment of an array like that shown in FIG. 1 , an array of access devices for individual pillars is located below array 1860, and the array of access devices is coupled to slice decoder 1861 And row decoder/page buffer circuit (column decoder/page buffer circuits) 1863. Via a data-in line (data-in line) 1871 from an input/output port (input/output ports) on the integrated circuit 1875, or from other data sources inside or outside to the integrated circuit 1875, and then to the row decoding device /page buffer circuit (column decoder/page buffer circuits) 1863 to provide data. In the illustrated embodiment, other circuitry 1874 is included on the integrated circuit, such as a general purpose processor or special purpose application circuitry, or to provide system-on-a-chip functionality Combination module, the combination module is supported by the memory cell array. Via the line decoder/page buffer circuit (column decoder/page buffer circuits) 1863 on the integrated circuit 1875, to the data output line (data-out line) 1872 of the input/output terminal, or to other internal or external data The destinations (data destinations) go to the integrated circuit 1875 to provide data.

在此例子中实施的控制器,偏压安排状态机(bias arrangement statemachine)1869可透过在区块1868中电压的产生或提供,控制偏压安排供给电压(bias arrangement supply voltages)的应用,例如读取,编辑或擦除电压的应用。控制器可使用本技术领域中已知的专用的逻辑电路来实施。在替代实施例中,控制器包括一般用途处理器,一般用途处理器可在同一集成电路上实施,而集成电路执行计算机程序,控制装置的操作。在其他实施例中,专用的逻辑电路(special-purpose logic circuitry)与一般用途处理器的组合可用于控制器的实施。The controller implemented in this example, bias arrangement state machine (bias arrangement state machine) 1869 can control the application of bias arrangement supply voltages (bias arrangement supply voltages) through the generation or provision of voltage in block 1868, such as application of read, program or erase voltages. The controller can be implemented using dedicated logic circuits known in the art. In alternative embodiments, the controller includes a general purpose processor, which may be implemented on the same integrated circuit that executes the computer program that controls the operation of the device. In other embodiments, a combination of special-purpose logic circuitry and a general-purpose processor may be used for controller implementation.

特别当对于一个特定平面上,已达到存储器元件尺寸的物理极限(physical limitations)时,三维叠层为一有效的方式以降低半导体存储器每位的成本。针对3D阵列的先前技术,都需要几个临界光刻(criticallithography)步骤以在每个叠层层(stack layer)制造最小特征尺寸(featuresize)的元件。此外,用于存储器阵列的驱动器晶体管(driver transistors)的数量亦须乘以平面的数量。Three-dimensional stacking is an effective way to reduce the cost per bit of semiconductor memory, especially when the physical limitations of memory element size have been reached for a specific plane. Prior art for 3D arrays required several criticallithography steps to fabricate minimum feature size devices at each stack layer. In addition, the number of driver transistors used in the memory array must be multiplied by the number of planes.

本发明所揭露的技术包括高密度3D阵列,且仅需要一临界光刻(critical lithography)步骤即能图案化所有层。在图案化步骤中,各层是可共享存储器贯孔(memory via)及层互联件(layer interconnect)。此外,各层能共享字线及位线译码装置,以改善先前技术中多层结构所产生面积损失(area penalty)的问题。在此叙述用于金属氧化物及其他可编程电阻存储器的独特两双胞(two-2-cell)单元结构,在每一个存储器柱体的两侧(two sides of a memory pillar)还提供数据位置(data site)。使用存取装置阵列以选择个别存储器柱体。使用左字线与右字线以在选定的平面选择个别存储单元。The technology disclosed in the present invention includes high density 3D arrays and requires only one critical lithography step to pattern all layers. In the patterning step, the layers are shareable memory vias and layer interconnects. In addition, each layer can share word line and bit line decoding device, so as to improve the problem of area penalty caused by the multi-layer structure in the prior art. A unique two-2-cell cell structure is described here for metal oxide and other programmable resistive memories that also provide data locations on two sides of a memory pillar (data site). An array of access devices is used to select individual memory cylinders. The left and right word lines are used to select individual memory cells in a selected plane.

综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视随附的权利要求范围所界定的为准。To sum up, although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.

Claims (23)

1. a storage arrangement, comprising:
One access device array;
Multiple pattern conductive body layers, by multiple insulating barriers separately, to form this access device array, the plurality of pattern conductive body layer comprises multiple left sides electric conductor and multiple right sides electric conductor each other;
One conductive pole array, extend through the plurality of pattern conductive body layer, multiple cylinders in array, to contact the plurality of access device corresponding in this access device array, and define left side interface zone and right side interface zone, the plurality of left side and right side interface zone are arranged between the plurality of cylinder and adjacent left side electric conductor and right side electric conductor, and are on pattern conductive body layer corresponding in the plurality of pattern conductive body layer; And
Multiple memory components, are arranged in the plurality of left side interface zone and the plurality of right side interface zone, and every the plurality of memory component comprises a programmable storage material and an erasable memory material.
2. storage arrangement according to claim 1, comprising:
Multiple array decoding circuits (row decoding circuits) and multiple column decode circuitry (columndecoding circuits), be couple to this access device array, this access device array is arranged in this conductive pole array, and in order to select a cylinder; And
Multiple left plane decoding circuits and multiple right plane decoding circuit, be couple to the plurality of left side electric conductor and the plurality of right side electric conductor deposited in conductor layer the plurality of, to open the electric current of a selected memory cell (selected cell), and being closed in an electric current for selected memory cell (unselected cell) not, this selected memory cell is this Yu Gai right side, boundary zone, left side interface zone that is arranged in a selected pattern conductive body layer.
3. storage arrangement according to claim 1, wherein comprises at a cylinder of this conductive pole array:
One electric conductor is the access device that is electrically connected at a correspondence; And
One storage material layer, is between this electric conductor and the plurality of pattern conductive body layer, wherein comprises an active area at this programmable element of each this memory component, is arranged on this storage material layer in the plurality of left side and right side interface zone.
4. storage arrangement according to claim 1, wherein, at an access device of this access device array, comprising:
One transistor, has a grid, one first end points and one second end points; And
This access device array comprises a bit line, a word line, and this bit line is coupled to this first end points, and this word line is coupled to this grid, and wherein this second end points is coupled to the cylinder in a correspondence of this conductive pole array.
5. storage arrangement according to claim 1, wherein, at an access device of this access device array, comprising:
One vertical transistor, has one first source/drain end points, and this end points is coupled in this conductor pin array a corresponding conductor pin; And
This array, comprising:
One source pole line or a bit line, be coupled to this source/drain end points of this vertical transistor, and
One word line, provides a circulating type grid structure (surrounding gate structure).
6. storage arrangement according to claim 1, wherein at this electrode material of this access device of this access device array, comprise the composition of a metal, a metal nitride or a metal and metal nitride, and the plurality of pattern conductive body layer, comprise a metal and a transition metal oxide, this transition metal oxide is in the plurality of boundary zone, and this transition metal oxide has the characteristic of built-in self-switch.
7. storage arrangement according to claim 1, the wherein the plurality of left side electric conductor in the plurality of pattern conductive body layer and the plurality of right side electric conductor, is to be configured to touch corresponding a left side plane decoding circuit and right side plane decoding circuit.
8. storage arrangement according to claim 1, wherein this access device array is positioned at below the plurality of pattern conductive body layer.
9. storage arrangement according to claim 1, wherein:
The plurality of left side electric conductor in every one deck and the plurality of right side electric conductor, there are multiple touch-down zones, the plurality of touch-down zone is not by any the plurality of left side electric conductor and right side electric conductor institute stacking (overlaid), and the plurality of left side electric conductor and right side electric conductor are to be arranged in stacking the plurality of pattern conductive body layer; And, comprising:
Many wires, extend through the plurality of conductor layer and are contacted with the plurality of touch-down zone; And
The plurality of left side electric conductor and the plurality of right side electric conductor, be arranged on the top of the plurality of pattern conductive body layer, and be connected to the plurality of wire; And
The plurality of left side plane decoding circuit and the plurality of right side plane decoding circuit, be coupled to the plurality of left side electric conductor and the plurality of right side electric conductor.
10. storage arrangement according to claim 1, wherein the plurality of memory component comprises and crosses metal oxide, and this transition metal oxide has the feature of built-in self-switch.
11. 1 kinds of storage arrangements, comprising:
Multiple bit lines, is arranged in one first plane;
Select line, be arranged in one second plane, and this second plane parallel is in this first plane for many;
One cylinder choice device array, access device in array is the multiple crosspoints that are configured in corresponding the plurality of bit line and the plurality of selection line, often this cylinder choice device, there is one first end points, one second end points and one the 3rd end points, this first end points is this bit line being connected in this corresponding crosspoint, and this second end points is to be connected in one of this corresponding crosspoint to select line;
One conductive pole array, the multiple cylinders in array are the 3rd end points that are connected in corresponding access device, this access device is in access device array;
The 3D array of one sidewall memory component (sidewall memory elements), comprise transition metal oxide, and this transition metal oxide has built-in self-switch, the plurality of sidewall memory component in 3D array is to be configured in the side of the plurality of cylinder in array and to comprise the plurality of sidewall memory component, the plurality of sidewall memory component is on each cylinder, this sidewall memory component in 3D array, comprises a programmable storage material and an erasable memory material; And
Multipair word line structure, is to be orthogonal to this conductive pole array, and this every pair word line structure is that to be configured in 3D array corresponding layer upper, and the word line structure of a pair of given (given) in one deck, comprising:
One first word line structure, comprise that one first group of word line is coupled on the one first word line pad of this layer, at this every word line of first group, be to be connected in the plurality of sidewall memory component, the plurality of sidewall memory element is to be located between the alternate row of the plurality of cylinder in this conductive pole array;
One second word line structure, comprise that one second group of word line is coupled on one second yuan of line pad of this layer, and crisscross this word line of this first group of word line, every word line in this first group of word line, be connected to the plurality of sidewall memory component, the plurality of sidewall memory component is to be located between the alternate row of the plurality of cylinder in this conductive pole array.
12. storage arrangements according to claim 11, comprising:
One bit address decoding circuit (address decoding circuitry), be coupled to the plurality of bit line, for access one cylinder row, this address decoding circuitry, be coupled to the plurality of selection line, for access one cylinder sheet (slice of conductive pillars), this cylinder sheet (slice of conductive pillars) is orthogonal to this row, and this address decoding circuitry is coupled to the plurality of word line structure, for being accessed in one deck memory cell of this 3D array.
13. storage arrangements according to claim 11, the wherein the plurality of sidewall memory component in this 3D array, comprising:
Multiple double memory cell structures, are arranged on this cylinder, and this double memory cell structure on a given cylinder, comprising:
Along a memory component of the first side, be connected to this word line, this word line is on this first group of word line of this layer; And
The one second memory element of tossing about along a second-phase, is connected to this word line, and this word line is on this second group of word line of this layer.
14. storage arrangements according to claim 11, wherein the plurality of this sidewall memory component, comprising: a programmable resistance memory material.
15. storage arrangements according to claim 11, wherein the plurality of sidewall memory component, comprises a programmable resistance and a metal-oxide memory material, this metal-oxide memory material is characterized by has built-in self-switch.
16. storage arrangements according to claim 11, wherein the plurality of sidewall memory component, comprises this programmable resistance and a tungsten oxide storage material.
17. storage arrangements according to claim 11, further comprise:
One controller (controller), to edit and to wipe multiple selected memory cells.
The manufacture method of 18. 1 kinds of storage arrangements, comprising:
Form an access device array;
Forming multiple pattern conductive body layers (patterned conductorlayers), is to be separated from each other, and by multiple insulating barriers and this access device array, the plurality of pattern conductive body layer comprises multiple left sides electric conductor and right side electric conductor;
Form a conductive pole array, extend through the plurality of pattern conductive body layer, multiple cylinders in array, to contact the plurality of access device corresponding in this access device array, and define the interface zone on multiple left sides and right side, the plurality of interface zone is between the plurality of cylinder and the plurality of left side electric conductor and the plurality of right side electric conductor, and is on the corresponding pattern conductive body layer of the plurality of pattern conductive body layer; And
Forming multiple memory components, is the interface zone on the plurality of left side and right side, and each the plurality of memory component comprises: a transition metal oxide is the plurality of left side and the right side electric conductor in every one deck by oxidation.
19. manufacture methods according to claim 18, wherein form multiple desiring to make money or profit conductor layers, comprising:
Form multiple electric conducting materials (conductive material) blanket coating;
Form multiple insulating material blanket coating between the plurality of electric conducting material blanket coating, to form a lamination;
This lamination of etching, comprises that the plurality of blanket coating of etching is to define the plurality of left side and right side electric conductor.
20. manufacture methods according to claim 19, the wherein step of this lamination of etching, comprises by the multiple raceway grooves of the plurality of pattern conductive body layer etching, and the step that forms this conductive pole array comprises:
Forming a transition metal oxide, is in multiple trench sidewalls;
On this transition metal oxide with the plurality of raceway groove of an electrode material filling in the plurality of trench sidewalls; And
Patterned electrodes material in the plurality of raceway groove, to form those cylinder row.
21. manufacture methods according to claim 20, wherein this electrode material, comprises a metal nitride.
22. manufacture methods according to claim 18, comprising:
The plurality of conductor layer of patterning, makes to have multiple touch-down zones at the plurality of left side and the right side electric conductor of every one deck, and the plurality of touch-down zone is not stacked by any the plurality of left side and right side electric conductor institute, is to be arranged in stacked the plurality of pattern conductive body layer;
Form multiple perforations to expose the plurality of touch-down zone,
Form many wires (conductive lines) in the plurality of perforation, and
Form multiple tie points on the plurality of pattern conductive body layer, and contact with the plurality of wire in the plurality of perforation, the plurality of tie point is connected to decoding circuit.
23. manufacture methods according to claim 18, wherein this transition metal oxide is in the plurality of boundary zone, and has built-in self-switch.
CN201310016277.9A 2012-11-15 2013-01-16 Three-dimensional memory device and manufacturing method thereof Pending CN103811495A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261726987P 2012-11-15 2012-11-15
US61/726,987 2012-11-15

Publications (1)

Publication Number Publication Date
CN103811495A true CN103811495A (en) 2014-05-21

Family

ID=50708034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310016277.9A Pending CN103811495A (en) 2012-11-15 2013-01-16 Three-dimensional memory device and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN103811495A (en)
TW (1) TWI530953B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105990392A (en) * 2014-12-31 2016-10-05 力晶科技股份有限公司 Resistive random access memory and manufacturing method thereof
CN106486144A (en) * 2015-08-31 2017-03-08 旺宏电子股份有限公司 Memory structure
CN110911554A (en) * 2018-09-14 2020-03-24 东芝存储器株式会社 Storage device
CN113451269A (en) * 2020-03-25 2021-09-28 长鑫存储技术有限公司 Word line structure and semiconductor memory

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559585B (en) * 2014-10-28 2016-11-21 力晶科技股份有限公司 Resistive random access memory and method for manufacturing the same
US9875034B2 (en) 2016-04-07 2018-01-23 International Business Machines Corporation Delaying programming requests in flash memory
US10223004B2 (en) 2016-04-07 2019-03-05 International Business Machines Corporation Parallel read and writes in 3D flash memory
US10825867B2 (en) * 2018-04-24 2020-11-03 Micron Technology, Inc. Cross-point memory array and related fabrication techniques
US10818729B2 (en) * 2018-05-17 2020-10-27 Macronix International Co., Ltd. Bit cost scalable 3D phase change cross-point memory
US10559337B1 (en) * 2018-11-30 2020-02-11 Micron Technology, Inc. Vertical decoder
JP7303323B2 (en) * 2020-04-17 2023-07-04 長江存儲科技有限責任公司 memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252201A1 (en) * 2006-03-27 2007-11-01 Masaru Kito Nonvolatile semiconductor memory device and manufacturing method thereof
US20080175032A1 (en) * 2007-01-23 2008-07-24 Kabushiki Kaisha Toshiba Semiconductor memory and method for manufacturing the same
US20080265235A1 (en) * 2007-04-27 2008-10-30 Takeshi Kamigaichi Nonvolatile semiconductor memory device and manufacturing method thereof
CN102214638A (en) * 2010-04-06 2011-10-12 旺宏电子股份有限公司 Integrated circuit three-dimensional memory array and method of manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252201A1 (en) * 2006-03-27 2007-11-01 Masaru Kito Nonvolatile semiconductor memory device and manufacturing method thereof
US20080175032A1 (en) * 2007-01-23 2008-07-24 Kabushiki Kaisha Toshiba Semiconductor memory and method for manufacturing the same
US20080265235A1 (en) * 2007-04-27 2008-10-30 Takeshi Kamigaichi Nonvolatile semiconductor memory device and manufacturing method thereof
CN102214638A (en) * 2010-04-06 2011-10-12 旺宏电子股份有限公司 Integrated circuit three-dimensional memory array and method of manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105990392A (en) * 2014-12-31 2016-10-05 力晶科技股份有限公司 Resistive random access memory and manufacturing method thereof
CN105990392B (en) * 2014-12-31 2019-02-05 力晶科技股份有限公司 Resistive random access memory and manufacturing method thereof
CN106486144A (en) * 2015-08-31 2017-03-08 旺宏电子股份有限公司 Memory structure
CN106486144B (en) * 2015-08-31 2019-05-14 旺宏电子股份有限公司 memory structure
CN110911554A (en) * 2018-09-14 2020-03-24 东芝存储器株式会社 Storage device
CN113451269A (en) * 2020-03-25 2021-09-28 长鑫存储技术有限公司 Word line structure and semiconductor memory
WO2021190294A1 (en) * 2020-03-25 2021-09-30 长鑫存储技术有限公司 Word line structure and manufacturing method therefor, and semiconductor memory

Also Published As

Publication number Publication date
TW201419285A (en) 2014-05-16
TWI530953B (en) 2016-04-21

Similar Documents

Publication Publication Date Title
TWI530953B (en) 3d memory and decoding technologies
US20130094273A1 (en) 3d memory and decoding technologies
KR100994868B1 (en) Nonvolatile Semiconductor Memory and Manufacturing Method Thereof
JP5422231B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US8829646B2 (en) Integrated circuit 3D memory array and manufacturing method
US8173987B2 (en) Integrated circuit 3D phase change memory array and manufacturing method
KR101336413B1 (en) Integrated memory arrays, and methods of forming memory arrays
KR101141823B1 (en) Semiconductor integrated circuit device and method of fabricating the same
US8198618B2 (en) Nonvolatile memory device and manufacturing method thereof
US8399307B2 (en) Interconnects for stacked non-volatile memory device and method
US8384061B2 (en) Nonvolatile memory device and manufacturing method
TWI429061B (en) Integrated circuit three-dimensional memory array and manufacturing method
US9666641B2 (en) Compact three-dimensional memory
KR20170008198A (en) Transistor device with gate bottom isolation and method of making thereof
US8456888B2 (en) Semiconductor memory device including variable resistance elements and manufacturing method thereof
CN101866940A (en) Semiconductor memory and manufacturing method thereof
CN112185991A (en) Three-dimensional resistive memory and forming method thereof
CN113871414A (en) Three-dimensional phase change memory and manufacturing method thereof
US9035275B2 (en) Three dimensional memory array adjacent to trench sidewalls
US10079239B2 (en) Compact three-dimensional mask-programmed read-only memory
KR101049589B1 (en) Cell array of semiconductor memory device and manufacturing method thereof
KR101088487B1 (en) Method for manufacturing resistance change memory device array, electronics and device array with selection device and 3D structure resistance change memory device
JP2014082279A (en) Nonvolatile storage device and manufacturing method thereof
US8116113B2 (en) Cross-point semiconductor memory device and method of manufacturing the same
TW201334121A (en) Three dimensional memory array adjacent to trench sidewalls and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140521