TWI527254B - Solar cell module and method for manufacturing the same - Google Patents
Solar cell module and method for manufacturing the same Download PDFInfo
- Publication number
- TWI527254B TWI527254B TW103128176A TW103128176A TWI527254B TW I527254 B TWI527254 B TW I527254B TW 103128176 A TW103128176 A TW 103128176A TW 103128176 A TW103128176 A TW 103128176A TW I527254 B TWI527254 B TW I527254B
- Authority
- TW
- Taiwan
- Prior art keywords
- solar cell
- type
- conductive
- finger electrodes
- conductive strips
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title description 3
- 210000004027 cell Anatomy 0.000 claims description 107
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 238000013007 heat curing Methods 0.000 claims description 14
- 239000004033 plastic Substances 0.000 claims description 12
- 229920003023 plastic Polymers 0.000 claims description 12
- 210000003850 cellular structure Anatomy 0.000 claims description 4
- 238000005476 soldering Methods 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims 3
- 230000001070 adhesive effect Effects 0.000 claims 3
- 239000011248 coating agent Substances 0.000 claims 3
- 238000000576 coating method Methods 0.000 claims 3
- 239000004020 conductor Substances 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 description 28
- 239000000758 substrate Substances 0.000 description 10
- 238000009413 insulation Methods 0.000 description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明是有關於一種形成太陽能電池模組的方法,尤其是有關於一種使用導電條連接複數個太陽能電池元件之形成太陽能電池模組的方法。 The present invention relates to a method of forming a solar cell module, and more particularly to a method of forming a solar cell module by using a conductive strip to connect a plurality of solar cell elements.
對於傳統的太陽能電池結構而言,上電極係配置於矽基板的上表面,下電極係配置於矽基板的下表面。然而矽基板的上表面係用以接收太陽光的照射,因此位於上表面的上電極則會遮蔽部分的入射光線,因而降低太陽能電池的光電轉換效率。因此目前的技術則發展出將上電極移至矽基板的下表面,使得上下電極(或稱p型電極與n型電極)一同配置於矽基板的下表面,具有此種結構之太陽能電池稱之為背接觸式(back contact)太陽能電池。背接觸式太陽能電池大致可分為四種類型結構:交指式背電極(interdigitated back contact,IBC)太陽能電池、射極穿透式(emitter wrap through,EWT)背電極太陽能電池、金屬穿透式(metallization wrap through,MWT)背電極太陽能電池與金屬繞邊式(metallization wrap around,MWA)背電極太陽能電池,其中以交指式背電極太陽能電池較為常見。 In the conventional solar cell structure, the upper electrode is disposed on the upper surface of the tantalum substrate, and the lower electrode is disposed on the lower surface of the tantalum substrate. However, the upper surface of the ruthenium substrate is used to receive the illumination of sunlight, so that the upper electrode on the upper surface shields part of the incident light, thereby reducing the photoelectric conversion efficiency of the solar cell. Therefore, the current technology has developed to move the upper electrode to the lower surface of the ruthenium substrate, so that the upper and lower electrodes (or p-type electrodes and n-type electrodes) are disposed together on the lower surface of the ruthenium substrate, and the solar cell having such a structure is called It is a back contact solar cell. Back contact solar cells can be roughly classified into four types of structures: interdigitated back contact (IBC) solar cells, emitter wrap through (EWT) back electrode solar cells, and metal penetrating (metallization wrap through, MWT) back electrode solar cells and metallization wrap around (MWA) back electrode solar cells, of which interdigitated back electrode solar cells are more common.
請參閱圖1所繪示之傳統交指式背電極太陽能電池100的上視圖。如圖1所示,傳統太陽能電池100包含n型擴散區111、p型擴散區121、n型匯流電極112、p型匯流電極122、複數條n型指狀電極113、與複數條p型指狀電極123。上述n型擴散區111係為梳狀排列,p型擴散區121則環繞於n型擴散區111周圍。此外,上述p型匯流電極122與複數條p型指狀電極123皆配置於p型擴散區121上且三者相互電性連接。上述n型匯流電極112與複數條n型指狀電極113皆配置於n型擴散區111上且三者相互電性連接。 Please refer to the top view of the conventional interdigital back electrode solar cell 100 illustrated in FIG. 1 . As shown in FIG. 1, the conventional solar cell 100 includes an n-type diffusion region 111, a p-type diffusion region 121, an n-type bus electrode 112, a p-type bus electrode 122, a plurality of n-type finger electrodes 113, and a plurality of p-type fingers. Electrode 123. The n-type diffusion regions 111 are arranged in a comb shape, and the p-type diffusion regions 121 surround the n-type diffusion regions 111. In addition, the p-type bus electrode 122 and the plurality of p-type finger electrodes 123 are disposed on the p-type diffusion region 121 and the three are electrically connected to each other. The n-type bus electrode 112 and the plurality of n-type finger electrodes 113 are disposed on the n-type diffusion region 111 and the three are electrically connected to each other.
此外,對於交指式背電極太陽能電池100而言,當光線照射矽基板上表面並產生了電子電洞對之後,電子會往n型擴散區111聚集,電洞則會往p型擴散區121聚集。然而,對於在n型擴散區111中心上方的矽基板表面所產生的電子電洞對而言,若電洞要移動至p型擴散區121的距離,則相對於電子要移動至其下方之n型擴散區111的距離相對較遠。此外,對於在p型擴散區121中心上方的矽基板表面所產生的電子電洞而言,若電子要移動到n型擴散區111的距離,則相較於電洞要移動至其下方之p型擴散區121的距離來的相對較遠。值得注意的是,在n型矽基板中,基板表面受光照射所產生的電洞屬於少數載子,而電子則屬於多數載子。因此若n型擴散區111的面積過大,容易使得電洞要移動至p型擴散區121的距離過長,則少數載子(電洞)很容易在移動過程中損失,使得短路電流(short circuit current,Isc)降低,進而影響太陽能電池的效率。但若縮小n型擴散區111的面積,則會影響多數載子的傳導阻值。此外,較大的p型擴散區121的面積有利於收集更多的少數載子以提升Isc,進 而提升太陽能電池的光電轉換效率。但較大的p型擴散區121卻會使得電子移動至n型擴散區111的距離變長,當電子移動的阻值變大,則會降低填充因數(fill factor,FF),進而降低光電轉換效率。 In addition, in the interdigitated back electrode solar cell 100, after the light is irradiated onto the upper surface of the substrate and an electron hole pair is generated, the electrons are concentrated toward the n-type diffusion region 111, and the hole is directed to the p-type diffusion region 121. Gather. However, for the pair of electron holes generated on the surface of the germanium substrate above the center of the n-type diffusion region 111, if the hole is to be moved to the distance of the p-type diffusion region 121, the electron is moved to the lower side below the n The distance of the type diffusion region 111 is relatively far. Further, for an electron hole generated on the surface of the ruthenium substrate above the center of the p-type diffusion region 121, if the electrons are moved to the distance of the n-type diffusion region 111, the hole is moved to the lower side than the hole. The distance of the type diffusion region 121 is relatively far. It is worth noting that in the n-type germanium substrate, the holes generated by the light irradiation of the substrate surface belong to a minority carrier, and the electrons belong to the majority carrier. Therefore, if the area of the n-type diffusion region 111 is too large, and the distance from the hole to the p-type diffusion region 121 is easily made too long, a minority carrier (hole) is easily lost during the movement, so that the short circuit (short circuit) Current, Isc) reduces, which in turn affects the efficiency of the solar cell. However, if the area of the n-type diffusion region 111 is reduced, the conduction resistance of most carriers will be affected. In addition, the area of the larger p-type diffusion region 121 is advantageous for collecting more minority carriers to enhance the Isc. And improve the photoelectric conversion efficiency of solar cells. However, the larger p-type diffusion region 121 causes the distance of electrons to move to the n-type diffusion region 111 to become longer. When the resistance of the electron movement becomes larger, the fill factor (FF) is lowered, thereby reducing the photoelectric conversion. effectiveness.
為解決匯流電極下方過大的n型擴散區域或過大的p型擴散區域所導致的問題,美國專利US7,804,022揭露圖2A所示之太陽能電池元件,以及美國專利US2005/0268959則揭露圖2B之包含兩個太陽能電池元件的太陽能電池模組。 In order to solve the problem caused by an excessive n-type diffusion region or an excessively large p-type diffusion region under the bus electrode, the solar cell element shown in FIG. 2A is disclosed in US Pat. No. 7,804,022, and the disclosure of FIG. 2B is disclosed in US Patent No. 2005/0268959. A solar cell module of two solar cell elements.
請參閱圖2A,太陽能電池元件200包括匯流電極202與指狀電極204。相較於傳統長方形之大面積的匯流電極,太陽能電池元件200之匯流電極202被縮小成複數個方形圖案並配置於太陽能電池元件200的邊緣區域。換句話說,當匯流電極202的面積縮小,意味著位於匯流電極202下方之擴散區域的面積也可同時縮小,如此可解決匯流電極202下方過大的n型擴散區域或過大的p型擴散區域所導致的問題。然而,在上述太陽能電池元件200的中間區域並無任何匯流電極202。因此對於電子或電洞而言,要從指狀電極204匯聚至匯流電極202的距離變長。如此則不利於電子或電洞的傳遞。此外,因太陽能電池元件200之縮小的匯流電極202配置在元件邊緣,因此位於太陽能電池元件200之邊緣區域的指狀電極204需要重新排列設計,以便於使指狀電極204能夠直接連接至縮小的方形匯流電極202。 Referring to FIG. 2A, the solar cell element 200 includes a bus electrode 202 and a finger electrode 204. The bus electrode 202 of the solar cell element 200 is reduced to a plurality of square patterns and disposed in an edge region of the solar cell element 200, compared to a bus electrode having a large area of a conventional rectangular shape. In other words, when the area of the bus electrode 202 is reduced, it means that the area of the diffusion region under the bus electrode 202 can be simultaneously reduced, so that an excessive n-type diffusion region or an excessively large p-type diffusion region under the bus electrode 202 can be solved. The problem caused. However, there is no bus electrode 202 in the intermediate portion of the above solar cell element 200. Therefore, for electrons or holes, the distance from the finger electrodes 204 to the bus electrodes 202 becomes longer. This is not conducive to the transmission of electrons or holes. In addition, since the reduced bus electrode 202 of the solar cell element 200 is disposed at the edge of the element, the finger electrodes 204 located at the edge regions of the solar cell element 200 need to be rearranged so that the finger electrodes 204 can be directly connected to the reduced Square bus electrode 202.
同時參閱圖2B。因上述匯流電極202的特殊設計,使得具有太陽能電池元件200a的電池片與具有太陽能電池元件200b的電池片之間無法利用傳統的串焊技術來串接彼此之匯流電極202,因此需搭配特殊設計的焊帶206才能實現 兩電池片的串接。 See also Figure 2B. Because of the special design of the above-mentioned bus electrode 202, the battery piece having the solar cell element 200a and the cell piece having the solar cell element 200b cannot be connected to each other by the conventional string welding technology, so a special design is required. The solder ribbon 206 can be realized The two cells are connected in series.
為了解決上述缺點,本發明中提供一種使用導電條連接複數個太陽能電池元件之形成太陽能電池模組的方法,可以簡化太陽能電池元件模組化的製程。 In order to solve the above disadvantages, the present invention provides a method for forming a solar cell module by connecting a plurality of solar cell elements using a conductive strip, which simplifies the process of modularizing the solar cell elements.
本發明之一目的在於提供一種形成太陽能電池模組的方法,其使用導電條連接複數個太陽能電池元件,以簡化太陽能電池元件模組化的製程。 It is an object of the present invention to provide a method of forming a solar cell module that uses a conductive strip to connect a plurality of solar cell elements to simplify the process of modularizing the solar cell components.
本發明之另一目的在於提供一種形成太陽能電池模組的方法,其使用導電條連接複數個太陽能電池元件,以節省製造匯流電極的步驟與成本。 Another object of the present invention is to provide a method of forming a solar cell module that uses a conductive strip to connect a plurality of solar cell elements to save the steps and costs of manufacturing the bus electrodes.
為達成上述目的,在一具體實施例中,本發明提供一種形成太陽能電池模組的方法,包括以下步驟:提供複數個太陽能電池元件,其中任一太陽能電池元件包括:彼此平行且交錯排列之複數條p型指狀電極與複數條n型指狀電極,形成於太陽能電池元件之同一側表面;形成複數個絕緣墊於複數條p型指狀電極與複數條n型指狀電極上;以及提供複數條導電條,以垂直於複數條p型指狀電極與複數條n型指狀電極之方式,形成電性連接於太陽能電池元件上。其中,兩相鄰導電條係藉由複數個絕緣墊,而分別與複數條p型指狀電極與複數條n型指狀電極電性隔離,而分別形成一n型導電條與一p型導電條,以分別連接相鄰之太陽能電池元件的p型導電條與n型導電條。 In order to achieve the above object, in one embodiment, the present invention provides a method of forming a solar cell module, comprising the steps of: providing a plurality of solar cell elements, wherein any of the solar cell elements comprises: a plurality of parallel and staggered pairs a p-type finger electrode and a plurality of n-type finger electrodes are formed on the same side surface of the solar cell element; forming a plurality of insulating pads on the plurality of p-type finger electrodes and the plurality of n-type finger electrodes; A plurality of conductive strips are electrically connected to the solar cell element in a manner perpendicular to the plurality of p-type finger electrodes and the plurality of n-type finger electrodes. The two adjacent conductive strips are electrically isolated from the plurality of p-type finger electrodes and the plurality of n-type finger electrodes by a plurality of insulating pads, respectively forming an n-type conductive strip and a p-type conductive Strips to respectively connect p-type conductive strips and n-type conductive strips of adjacent solar cell elements.
為達成上述目的,在另一具體實施例中,本發明更提供一種形成太陽能電池模組的方法,包括以下步驟:提 供複數個太陽能電池元件,其中任一太陽能電池元件包括:彼此平行且交錯排列之複數條p型指狀電極與複數條n型指狀電極,形成於太陽能電池元件之同一側表面;提供複數條導電條,其中任一導電條之一表面上提供複數個絕緣墊,複數個絕緣墊對應於複數條p型指狀電極或複數條n型指狀電極;以及將複數條導電條電性連接於太陽能電池元件上,使得複數條導電條垂直於複數條p型指狀電極與複數條n型指狀電極。其中,兩相鄰導電條係藉由複數個絕緣墊,而分別與複數條p型指狀電極與複數條n型指狀電極電性隔離,而分別形成一n型導電條與一p型導電條,以分別連接相鄰之太陽能電池元件的p型導電條與n型導電條。 In order to achieve the above object, in another specific embodiment, the present invention further provides a method for forming a solar cell module, comprising the steps of: Providing a plurality of solar cell elements, wherein any one of the solar cell elements comprises: a plurality of p-type finger electrodes and a plurality of n-type finger electrodes arranged in parallel and staggered with each other, formed on the same side surface of the solar cell element; a plurality of insulating pads on a surface of one of the conductive strips, the plurality of insulating pads corresponding to the plurality of p-type finger electrodes or the plurality of n-type finger electrodes; and electrically connecting the plurality of conductive strips The solar cell component has a plurality of conductive strips perpendicular to the plurality of p-type finger electrodes and a plurality of n-type finger electrodes. The two adjacent conductive strips are electrically isolated from the plurality of p-type finger electrodes and the plurality of n-type finger electrodes by a plurality of insulating pads, respectively forming an n-type conductive strip and a p-type conductive Strips to respectively connect p-type conductive strips and n-type conductive strips of adjacent solar cell elements.
為達成上述目的,在一具體實施例中,本發明更提供一種太陽能電池模組,包括:複數個太陽能電池元件,其中任一太陽能電池元件包括:彼此平行且交錯排列之複數條p型指狀電極與複數條n型指狀電極,形成於該太陽能電池元件之同一側表面;複數個絕緣墊,形成於該複數條p型指狀電極與該複數條n型指狀電極上;以及複數條導電條,以垂直於該複數條p型指狀電極與該複數條n型指狀電極之方式,形成電性連接於該太陽能電池元件上;其中該複數條導電條之相鄰兩者,係藉由該複數個絕緣墊,而分別與該複數條p型指狀電極與該複數條n型指狀電極電性隔離,而分別形成一n型導電條與一p型導電條,以分別連接相鄰之太陽能電池元件的p型導電條與n型導電條。 In order to achieve the above object, in a specific embodiment, the present invention further provides a solar cell module comprising: a plurality of solar cell elements, wherein any of the solar cell elements comprises: a plurality of p-type fingers parallel and staggered with each other An electrode and a plurality of n-type finger electrodes are formed on the same side surface of the solar cell element; a plurality of insulating pads are formed on the plurality of p-type finger electrodes and the plurality of n-type finger electrodes; and a plurality of The conductive strip is electrically connected to the solar cell element perpendicular to the plurality of p-type finger electrodes and the plurality of n-type finger electrodes; wherein the plurality of conductive strips are adjacent to each other The plurality of insulating pads are electrically isolated from the plurality of p-type finger electrodes and the plurality of n-type finger electrodes, respectively, and an n-type conductive strip and a p-type conductive strip are respectively formed to respectively connect P-type conductive strips and n-type conductive strips of adjacent solar cell elements.
100‧‧‧太陽能電池元件 100‧‧‧Solar battery components
111‧‧‧n型擴散區 111‧‧‧n type diffusion zone
121‧‧‧p型擴散區 121‧‧‧p type diffusion zone
112‧‧‧n型匯流電極 112‧‧‧n type bus electrode
122‧‧‧p型匯流電極 122‧‧‧p type bus electrode
113‧‧‧n型指狀電極 113‧‧‧n type finger electrode
123‧‧‧p型指狀電極 123‧‧‧p type finger electrode
200‧‧‧太陽能電池元件 200‧‧‧Solar battery components
200a‧‧‧太陽能電池元件 200a‧‧‧Solar battery components
200b‧‧‧太陽能電池元件 200b‧‧‧Solar battery components
202‧‧‧匯流電極 202‧‧‧Concurrent electrode
204‧‧‧指狀電極 204‧‧‧ finger electrodes
206‧‧‧焊帶 206‧‧‧ soldering tape
300‧‧‧太陽能電池元件 300‧‧‧Solar battery components
301‧‧‧p型指狀電極 301‧‧‧p type finger electrode
302‧‧‧n型指狀電極 302‧‧‧n type finger electrode
311‧‧‧絕緣墊 311‧‧‧Insulation mat
312‧‧‧絕緣墊 312‧‧‧Insulation mat
321‧‧‧p型導電條 321‧‧‧p type conductive strip
322‧‧‧n型導電條 322‧‧‧n type conductive strip
600‧‧‧太陽能電池元件 600‧‧‧Solar battery components
601‧‧‧p型指狀電極 601‧‧‧p type finger electrode
602‧‧‧n型指狀電極 602‧‧‧n type finger electrode
611‧‧‧絕緣墊 611‧‧‧Insulation mat
612‧‧‧絕緣墊 612‧‧‧Insulation mat
621‧‧‧p型導電條 621‧‧‧p type conductive strip
622‧‧‧n型導電條 622‧‧‧n type conductive strip
a-a’、b-b’‧‧‧切線 A-a’, b-b’‧‧‧ tangent
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。其中:圖1係為傳統交指式背電極太陽能電池100的上視圖;圖2A係為美國專利US7,804,022所揭露之太陽能電池元件的結構示意圖;圖2B係為美國專利US2005/0268959所揭露之包含兩個太陽能電池元件的太陽能電池模組;圖3A至圖5B係為本發明一具體實施例之一種形成太陽能電池模組之方法的流程示意圖;以及圖6A至圖8B係為本發明另一具體實施例之一種形成太陽能電池模組之方法的流程示意圖。 The above and other objects, features and advantages of the present invention will become more <RTIgt; 1 is a top view of a conventional interdigitated back electrode solar cell 100; FIG. 2A is a schematic structural view of a solar cell element disclosed in US Pat. No. 7,804,022; FIG. 2B is a disclosure of US Patent No. 2005/0268959 A solar cell module including two solar cell elements; FIG. 3A to FIG. 5B are schematic diagrams showing a method of forming a solar cell module according to an embodiment of the present invention; and FIGS. 6A to 8B are another embodiment of the present invention. A schematic flow diagram of a method of forming a solar cell module in accordance with a specific embodiment.
為說明本發明之要義,請參閱圖3A至圖5B,其係為本發明一具體實施例之一種形成太陽能電池模組之方法的流程示意圖。其中,圖3A係根據本發明一具體實施例所繪示之太陽能電池元件的結構上視圖;圖3B係為圖3A之沿a-a’切線之橫截面圖。在圖3A中,太陽能電池元件300包括:彼此平行且交錯排列之複數條p型指狀電極301與複數條n型指狀電極302,形成於太陽能電池元件之同一側表面,如圖3B所示。 To illustrate the gist of the present invention, please refer to FIG. 3A to FIG. 5B , which are schematic flowcharts of a method for forming a solar cell module according to an embodiment of the present invention. 3A is a structural top view of a solar cell element according to an embodiment of the present invention; and FIG. 3B is a cross-sectional view taken along line a-a' of FIG. 3A. In FIG. 3A, the solar cell element 300 includes a plurality of p-type finger electrodes 301 and a plurality of n-type finger electrodes 302 which are parallel and staggered with each other, and are formed on the same side surface of the solar cell element, as shown in FIG. 3B. .
較佳地,本具體實施例之太陽能電池元件300為交指式背電極太陽能電池。然,交指式背電極之結構與設置方式係屬習知技藝,在本說明書中不予贅述。 Preferably, the solar cell element 300 of the present embodiment is an interdigitated back electrode solar cell. However, the structure and arrangement of the interdigitated back electrode are well-known techniques and will not be described in detail in this specification.
在圖4A中,複數個絕緣墊311與312形成於複數條p型指狀電極301與複數條n型指狀電極上302。圖4B 係為圖4A之沿a-a’切線之橫截面圖。在圖4B中,絕緣墊311覆蓋p型指狀電極301。依此可推,絕緣墊312覆蓋n型指狀電極302。較佳地,絕緣墊311與312係以印刷的方式形成。 In FIG. 4A, a plurality of insulating pads 311 and 312 are formed on a plurality of p-type finger electrodes 301 and a plurality of n-type finger electrodes 302. Figure 4B It is a cross-sectional view taken along line a-a' of Fig. 4A. In FIG. 4B, the insulating pad 311 covers the p-type finger electrode 301. Accordingly, the insulating pad 312 covers the n-type finger electrode 302. Preferably, the insulating pads 311 and 312 are formed in a printed manner.
在圖5A中,複數條導電條321與322係以垂直於複數條p型指狀電極301與複數條n型指狀電極302之方式,形成於太陽能電池元件300上。因此,相鄰兩導電條322與321,係藉由複數個絕緣墊311與312,而分別與複數條p型指狀電極301與複數條n型指狀電極302電性隔離,而分別形成一n型導電條322與一p型導電條321,以分別連接相鄰之太陽能電池元件的p型導電條321與n型導電條322,進而形成包含複數個太陽能電池元件300之太陽能電池模組(圖中未示)。圖5B係為圖5A之沿a-a’切線之橫截面圖。在圖5B中,導電條322覆蓋絕緣墊311,以連接n型指狀電極302,以成為n型導電條322。依此可推,導電條321覆蓋絕緣墊312,以連接p型指狀電極301,以成為p型導電條321。 In FIG. 5A, a plurality of conductive strips 321 and 322 are formed on the solar cell element 300 so as to be perpendicular to the plurality of p-type finger electrodes 301 and the plurality of n-type finger electrodes 302. Therefore, the adjacent two conductive strips 322 and 321 are electrically isolated from the plurality of p-type finger electrodes 301 and the plurality of n-type finger electrodes 302 by a plurality of insulating pads 311 and 312, respectively. An n-type conductive strip 322 and a p-type conductive strip 321 are respectively connected to the p-type conductive strip 321 and the n-type conductive strip 322 of the adjacent solar cell element, thereby forming a solar cell module including a plurality of solar cell elements 300 ( Not shown in the figure). Figure 5B is a cross-sectional view taken along line a-a' of Figure 5A. In FIG. 5B, the conductive strip 322 covers the insulating pad 311 to connect the n-type finger electrode 302 to become the n-type conductive strip 322. Accordingly, the conductive strip 321 covers the insulating pad 312 to connect the p-type finger electrode 301 to become the p-type conductive strip 321 .
較佳地,導電條321與322係可為金屬而以焊接的方式形成、金屬條塗佈導電塑膠而以黏貼或加熱固化的方式形成、導電塑膠而以黏貼或加熱固化的方式形成或是金屬條與導電塑膠而以黏貼或加熱固化的方式形成。 Preferably, the conductive strips 321 and 322 are formed of a metal and welded, the metal strip is coated with a conductive plastic and formed by adhesion or heat curing, and the conductive plastic is formed by adhesion or heat curing or metal. The strip is formed with a conductive plastic and adhered by heat or heat.
本發明更提供另一具體實施例。請參閱圖6A至圖7B,其係為本發明另一具體實施例之一種形成太陽能電池模組之方法的流程示意圖。其中,圖6A係根據本發明一具體實施例所繪示之太陽能電池元件的結構上視圖;圖6B係為圖6A之沿b-b’切線之橫截面圖。在圖6A中,太陽能電池元件600包括:彼此平行且交錯排列之複數條p型指狀電極601與複數條n型指狀電極602,形成於太陽能電池元件之同一側 表面,如圖6B所示。 The invention further provides another embodiment. Please refer to FIG. 6A to FIG. 7B , which are schematic flowcharts of a method for forming a solar cell module according to another embodiment of the present invention. 6A is a structural top view of a solar cell element according to an embodiment of the present invention; and FIG. 6B is a cross-sectional view taken along line b-b' of FIG. 6A. In FIG. 6A, the solar cell element 600 includes a plurality of p-type finger electrodes 601 and a plurality of n-type finger electrodes 602 which are parallel and staggered, and are formed on the same side of the solar cell elements. The surface is as shown in Fig. 6B.
較佳地,本具體實施例之太陽能電池元件600為交指式背電極太陽能電池。然,交指式背電極之結構與設置方式係屬習知技藝,在本說明書中不予贅述。 Preferably, the solar cell element 600 of the present embodiment is an interdigitated back electrode solar cell. However, the structure and arrangement of the interdigitated back electrode are well-known techniques and will not be described in detail in this specification.
在圖7A中,提供複數條導電條621與622,其中任一導電條621或622之一表面上提供複數個絕緣墊612或611,複數個絕緣墊612或611對應於複數條n型指狀電極602或複數條p型指狀電極601。圖7B係為圖7A之沿b-b’切線之橫截面圖。在圖7B中,導電條622之一表面上提供複數個絕緣墊611,對應於複數條p型指狀電極601。依此可推,導電條621之一表面上提供複數個絕緣墊612,對應於複數條n型指狀電極602。較佳地,絕緣墊611與612係以印刷的方式形成。 In FIG. 7A, a plurality of conductive strips 621 and 622 are provided, and a plurality of insulating pads 612 or 611 are provided on one surface of one of the conductive strips 621 or 622, and the plurality of insulating pads 612 or 611 correspond to a plurality of n-type fingers. Electrode 602 or a plurality of p-type finger electrodes 601. Figure 7B is a cross-sectional view taken along line b-b' of Figure 7A. In FIG. 7B, a plurality of insulating pads 611 are provided on one surface of the conductive strips 622, corresponding to a plurality of p-type finger electrodes 601. Accordingly, a plurality of insulating pads 612 are provided on one surface of the conductive strip 621, corresponding to the plurality of n-type finger electrodes 602. Preferably, the insulating pads 611 and 612 are formed in a printed manner.
最後,如圖8A所示,複數條導電條621與622貼合於該太陽能電池元件600上,使得複數條導電條621與622垂直於複數條p型指狀電極601與複數條n型指狀電極602。因此,相鄰兩導電條622與621,係藉由複數個絕緣墊611與612,而分別與複數條p型指狀電極601與複數條n型指狀電極602電性隔離,而分別形成一n型導電條622與一p型導電條621,以分別連接相鄰之太陽能電池元件的p型導電條621與n型導電條622,進而形成包含複數個太陽能電池元件600之太陽能電池模組(圖中未示)。圖8B係為圖8A之沿b-b’切線之橫截面圖。在圖8B中,導電條622覆蓋絕緣墊611,以連接n型指狀電極602,以成為n型導電條622。依此可推,導電條621覆蓋絕緣墊612,以連接p型指狀電極601,以成為p型導電條621。 Finally, as shown in FIG. 8A, a plurality of conductive strips 621 and 622 are attached to the solar cell element 600 such that the plurality of conductive strips 621 and 622 are perpendicular to the plurality of p-type finger electrodes 601 and a plurality of n-type fingers. Electrode 602. Therefore, the adjacent two conductive strips 622 and 621 are electrically isolated from the plurality of p-type finger electrodes 601 and the plurality of n-type finger electrodes 602 by a plurality of insulating pads 611 and 612, respectively, and respectively form a The n-type conductive strip 622 and the p-type conductive strip 621 respectively connect the p-type conductive strip 621 and the n-type conductive strip 622 of the adjacent solar cell elements, thereby forming a solar cell module including a plurality of solar cell elements 600 ( Not shown in the figure). Figure 8B is a cross-sectional view taken along line b-b' of Figure 8A. In FIG. 8B, the conductive strip 622 covers the insulating pad 611 to connect the n-type finger electrode 602 to become the n-type conductive strip 622. Accordingly, the conductive strip 621 covers the insulating pad 612 to connect the p-type finger electrode 601 to become the p-type conductive strip 621.
較佳地,導電條621與622係可為金屬而以焊接的方式形成、金屬條塗佈導電塑膠而以黏貼或加熱固化的方式形成、導電塑膠而以黏貼或加熱固化的方式形成、或是金屬條與導電塑膠而以黏貼或加熱固化的方式形成。 Preferably, the conductive strips 621 and 622 are formed of a metal and welded, the metal strip is coated with a conductive plastic and formed by adhesion or heat curing, and the conductive plastic is formed by adhesion or heat curing, or The metal strip and the conductive plastic are formed by adhesion or heat curing.
由以上的說明,當可了解,本發明使用導電條連接複數個太陽能電池元件,以簡化太陽能電池元件模組化的製程。更由於在太陽能電池元件上並未使用匯流電極來連接指狀電極,而直接以導電條取代,更可以節省製造匯流電極的步驟與成本。 From the above description, it can be understood that the present invention uses a conductive strip to connect a plurality of solar cell elements to simplify the process of modularizing the solar cell elements. Moreover, since the bus electrodes are not connected to the finger electrodes on the solar cell elements and are directly replaced by the bus bars, the steps and costs of manufacturing the bus electrodes can be saved.
雖然本發明已用具體實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above with respect to the specific embodiments thereof, it is not intended to limit the scope of the present invention, and it is possible to make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
300‧‧‧太陽能電池元件 300‧‧‧Solar battery components
301‧‧‧p型指狀電極 301‧‧‧p type finger electrode
302‧‧‧n型指狀電極 302‧‧‧n type finger electrode
311‧‧‧絕緣墊 311‧‧‧Insulation mat
312‧‧‧絕緣墊 312‧‧‧Insulation mat
321‧‧‧p型導電條 321‧‧‧p type conductive strip
322‧‧‧n型導電條 322‧‧‧n type conductive strip
a-a’‧‧‧切線 A-a’‧‧‧ tangent
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103128176A TWI527254B (en) | 2014-08-15 | 2014-08-15 | Solar cell module and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103128176A TWI527254B (en) | 2014-08-15 | 2014-08-15 | Solar cell module and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201607060A TW201607060A (en) | 2016-02-16 |
TWI527254B true TWI527254B (en) | 2016-03-21 |
Family
ID=55810161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103128176A TWI527254B (en) | 2014-08-15 | 2014-08-15 | Solar cell module and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI527254B (en) |
-
2014
- 2014-08-15 TW TW103128176A patent/TWI527254B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201607060A (en) | 2016-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5709797B2 (en) | Solar cell and solar cell module | |
CN102292824B (en) | Solar cell | |
CN104810412B (en) | solar cell and module thereof | |
JP5149376B2 (en) | Solar cell element and solar cell module | |
EP2869350A1 (en) | Solar cell module | |
WO2016090332A1 (en) | Photovoltaic electrode design with contact pads for cascaded application | |
WO2016045227A1 (en) | Main-gate-free and high-efficiency back contact solar cell module, assembly and preparation process | |
WO2017177726A1 (en) | Solar cell module and method for manufacturing same, assembly, and system | |
KR20140037999A (en) | Solar cell and manufacturing method thereof | |
TW201318187A (en) | Solar cell and its module | |
CN105374897A (en) | Solar cell module and manufacturing method thereof | |
JP2017135383A (en) | Solar cell and solar cell module | |
JP6064769B2 (en) | Solar cell module and solar cell | |
KR20180001203A (en) | Solar cell module | |
WO2019114242A1 (en) | Flexible solar cell module | |
JP3198443U (en) | Solar cell module | |
TWI527254B (en) | Solar cell module and method for manufacturing the same | |
TW201306283A (en) | Back contact solar cell and method of manufacturing same | |
TWI556455B (en) | Solar cell, module comprising the same and method of manufacturing the same | |
JP2012019047A (en) | Solar cell and lead wire joining method of the same | |
CN105226110B (en) | Solar cell element | |
TWI517419B (en) | Solar cell device | |
CN204067391U (en) | solar cell module | |
KR102157599B1 (en) | Solar cell module | |
JP6325925B2 (en) | Solar cell module and method for manufacturing solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |