CN204067391U - solar cell module - Google Patents
solar cell module Download PDFInfo
- Publication number
- CN204067391U CN204067391U CN201420461132.XU CN201420461132U CN204067391U CN 204067391 U CN204067391 U CN 204067391U CN 201420461132 U CN201420461132 U CN 201420461132U CN 204067391 U CN204067391 U CN 204067391U
- Authority
- CN
- China
- Prior art keywords
- solar cell
- type bus
- bus electrodes
- cell element
- conductive adhesive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000853 adhesive Substances 0.000 claims description 29
- 230000001070 adhesive effect Effects 0.000 claims description 29
- 238000000034 method Methods 0.000 abstract description 4
- 210000004027 cell Anatomy 0.000 abstract 10
- 239000002390 adhesive tape Substances 0.000 abstract 4
- 210000003850 cellular structure Anatomy 0.000 abstract 2
- 238000009792 diffusion process Methods 0.000 description 25
- 239000000758 substrate Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000000969 carrier Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域 technical field
本实用新型涉及一种太阳能电池模组,尤其涉及一种使用导电胶条连接多个太阳能元件的太阳能电池模组。 The utility model relates to a solar battery module, in particular to a solar battery module using conductive adhesive strips to connect a plurality of solar elements. the
背景技术 Background technique
对于传统的太阳能电池结构而言,上电极配置在硅基板的上表面,下电极配置在硅基板的下表面。然而硅基板的上表面是用于接收太阳光的照射,因此位于上表面的上电极则会遮蔽部分的入射光线,因而降低太阳能电池的光电转换效率。因此目前的技术则发展出将上电极移至硅基板的下表面,使得上下电极(或称P型电极与n型电极)一同配置在硅基板的下表面,具有此种结构的太阳能电池称为背接触式(back contact)太阳能电池。背接触式太阳能电池大致可分为四种类型结构:交指式背电极(interdigitated back contact,IBC)太阳能电池、射极穿透式(emitter wrap through,EWT)背电极太阳能电池、金属穿透式(metallization wrap through,MWT)背电极太阳能电池与金属饶边式(metallization wrap around,MWA)背电极太阳能电池,其中以交指式背电极太阳能电池较为常见。 For the traditional solar cell structure, the upper electrode is arranged on the upper surface of the silicon substrate, and the lower electrode is arranged on the lower surface of the silicon substrate. However, the upper surface of the silicon substrate is used to receive sunlight, so the upper electrode on the upper surface will block part of the incident light, thereby reducing the photoelectric conversion efficiency of the solar cell. Therefore, the current technology has developed to move the upper electrode to the lower surface of the silicon substrate, so that the upper and lower electrodes (or p-type electrodes and n-type electrodes) are arranged on the lower surface of the silicon substrate together. A solar cell with this structure is called Back contact solar cells. Back contact solar cells can be roughly divided into four types of structures: interdigitated back contact (IBC) solar cells, emitter wrap through (EWT) back electrode solar cells, metal penetration (metallization wrap through, MWT) back electrode solar cells and metallization wrap around (MWA) back electrode solar cells, among which interdigitated back electrode solar cells are more common. the
请参阅图1所示的传统交指式背电极太阳能电池100的上视图。如图1所示,传统太阳能电池100包含n型扩散区111、p型扩散区121、n型汇流电极112、P型汇流电极122、多条n型指状电极113、与多条p型指状电极123。上述n型扩散区111为梳状排列,p型扩散区121则环绕在n型扩散区111周围。此外,上述p型汇流电极122与多条p型指状电极123皆配置在p型扩散区121上且三者相互电性连接。上述n型汇流电极112与多条n型指状电极113皆配置在n型扩散区111上且三者相互电性连接。 Please refer to the top view of a conventional interdigitated back electrode solar cell 100 shown in FIG. 1 . As shown in FIG. 1 , a conventional solar cell 100 includes an n-type diffusion region 111, a p-type diffusion region 121, an n-type bus electrode 112, a p-type bus electrode 122, a plurality of n-type finger electrodes 113, and a plurality of p-type finger electrodes. shape electrode 123 . The n-type diffusion region 111 is arranged in a comb shape, and the p-type diffusion region 121 surrounds the n-type diffusion region 111 . In addition, the p-type bus electrode 122 and the plurality of p-type finger electrodes 123 are all disposed on the p-type diffusion region 121 and electrically connected to each other. The n-type bus electrode 112 and the plurality of n-type finger electrodes 113 are all disposed on the n-type diffusion region 111 and electrically connected to each other. the
此外,对于交指式背电极太阳能电池100而言,当光线照射硅基板上 表面并产生了电子电洞对之后,电子会往n型扩散区111聚集,电洞则会往p型扩散区121聚集。然而,对于在n型扩散区111中心上方的硅基板表面所产生的电子电洞对而言,若电洞要移动至p型扩散区121的距离,则相对于电子要移动至其下方的n型扩散区111的距离相对较远。此外,对于在p型扩散区121中心上方的硅基板表面所产生的电子电洞而言,若电子要移动到n型扩散区111的距离,则相较于电洞要移动至其下方的p型扩散区121的距离来的相对较远。值得注意的是,在n型硅基板中,基板表面受光照射所产生的电洞属于少数载子,而电子则属于多数载子。因此若n型扩散区111的面积过大,容易使得电洞要移动至p型扩散区121的距离过长,则少数载子(电洞)很容易在移动过程中损失,使得短路电流(short circuit current,Isc)降低,进而影响太阳能电池的光电转换效率。但若缩小n型扩散区111的面积,则会影响多数载子的传导阻值。此外,较大的p型扩散区121的面积有利于收集更多的少数载子以提升Isc,进而提升太阳能电池的光电转换效率。但较大的p型扩散区121却会使得电子移动至n型扩散区111的距离变长,当电子移动的阻值变大,则会降低填充因数(fill factor,FF),进而降低光电转换效率。 In addition, for the interdigitated back electrode solar cell 100, when the light irradiates the upper surface of the silicon substrate and generates electron-hole pairs, the electrons will gather toward the n-type diffusion region 111, and the electron holes will flow toward the p-type diffusion region 121. gather. However, for the electron-hole pairs generated on the surface of the silicon substrate above the center of the n-type diffusion region 111, if the holes move to the distance of the p-type diffusion region 121, then the electrons move to the n-hole below it. The distance between the diffused regions 111 is relatively long. In addition, for the electron holes generated on the surface of the silicon substrate above the center of the p-type diffusion region 121, if the electrons want to move to the distance of the n-type diffusion region 111, compared with the distance that the holes need to move to the p-type region below it. The distance from the type diffusion region 121 is relatively far. It is worth noting that in the n-type silicon substrate, the holes generated on the surface of the substrate by light irradiation belong to the minority carriers, while the electrons belong to the majority carriers. Therefore, if the area of the n-type diffusion region 111 is too large, the distance for the holes to move to the p-type diffusion region 121 is too long, and the minority carriers (holes) are easily lost during the movement, causing short-circuit current (short circuit current) circuit current, Isc) decreases, which in turn affects the photoelectric conversion efficiency of solar cells. However, if the area of the n-type diffusion region 111 is reduced, the conduction resistance of the majority carriers will be affected. In addition, a larger area of the p-type diffusion region 121 is beneficial to collect more minority carriers to increase Isc, thereby increasing the photoelectric conversion efficiency of the solar cell. However, the larger p-type diffusion region 121 will make the distance for electrons to move to the n-type diffusion region 111 longer. When the resistance value of electron movement becomes larger, the fill factor (fill factor, FF) will be reduced, thereby reducing the photoelectric conversion. efficiency. the
为解决汇流电极下方过大的n型扩散区域或过大的p型扩散区域所导致的问题,美国专利US7,804,022揭露图2A所示的太阳能电池元件,以及美国专利US2005/0268959则揭露图2B的包含两个太阳能电池元件的太阳能电池模组。 In order to solve the problems caused by too large n-type diffusion area or too large p-type diffusion area under the bus electrode, US Patent No. 7,804,022 discloses the solar cell element shown in Figure 2A, and US Patent No. 2005/0268959 discloses Figure 2B A solar cell module containing two solar cell elements. the
请参阅图2A,太阳能电池元件200包括汇流电极202与指状电极204.相较于传统方长形的太面积的汇流电极,太阳能电池元件200的汇流电极202被缩小成多个方形图案并配置在太阳能电池元件200的边缘区域。换句话说,当汇流电极202的面积缩小,意味着位于汇流电极202下方的扩散区域的面积也可同时缩小,如此可解决汇流电极202下方过大的n型扩散区域或者过大的p型扩散区域所导致的问题。然而,在上述太阳能电池元 件200的中间区域并无任何汇流电极202。因此对于电子或者电洞而言,要从指状电极204汇聚至汇流电极202的距离变长。如此则不利用电子或电洞的传导。此外,因太阳能电池元件200的缩小的汇流电极202配置在元件边缘,因此位于太阳能电池元件200的边缘区域的指状电极203需要重新排列设计,以便于使指状电极204能够直接连接至缩小的方形汇流电极202。 Please refer to FIG. 2A , the solar cell element 200 includes a bus electrode 202 and a finger electrode 204. Compared with the traditional square rectangular bus electrode with too large area, the bus electrode 202 of the solar cell element 200 is reduced into a plurality of square patterns and configured In the edge region of the solar cell element 200 . In other words, when the area of the bus electrode 202 is reduced, it means that the area of the diffusion region under the bus electrode 202 can also be reduced at the same time, which can solve the problem of excessive n-type diffusion region or excessive p-type diffusion region under the bus electrode 202. problems caused by the region. However, there is no bus electrode 202 in the middle region of the above-mentioned solar cell element 200. Therefore, for electrons or holes, the distance to converge from the finger electrode 204 to the bus electrode 202 becomes longer. This does not utilize the conduction of electrons or holes. In addition, because the shrunk bus electrodes 202 of the solar cell element 200 are arranged on the edge of the element, the finger electrodes 203 located at the edge region of the solar cell element 200 need to be rearranged so that the finger electrodes 204 can be directly connected to the shrunk bus electrode 204. Square bus electrodes 202 . the
同时参阅图2B。因上述汇流电极202的特殊设计,使得具有太阳能电池元件200a的电池片与具有太阳能电池元件200b的电池片之间无法利用传统的串焊技术来串接彼此的汇流电极202,因此需搭配特殊设计的焊带206才能实现两电池片的串联。 See also Figure 2B. Due to the special design of the above-mentioned bus electrodes 202, it is impossible to connect the bus electrodes 202 in series between the cells with the solar cell elements 200a and the cells with the solar cell elements 200b using the traditional serial welding technology, so a special design is required. Only the welding ribbon 206 can realize the series connection of two battery slices. the
为了解决上述缺点,本实用新型中提供一种使用导电胶条连接多个太阳能电池元件的太阳能电池模组,可以简化太阳能电池元件模组化的制程。 In order to solve the above disadvantages, the utility model provides a solar cell module using conductive adhesive strips to connect a plurality of solar cell elements, which can simplify the modularization process of the solar cell elements. the
实用新型内容 Utility model content
本实用新型提供一种太阳能电池模组,其使用导电胶条连接多个太阳能电池元件,以简化太阳能电池元件模组化的制程。 The utility model provides a solar battery module, which uses conductive adhesive strips to connect multiple solar battery elements to simplify the modularization process of the solar battery elements. the
本实用新型提供一种太阳能电池模组,包括:多个太阳能电池元件,其中每一太阳能电池元件包括: The utility model provides a solar battery module, including: a plurality of solar battery elements, wherein each solar battery element includes:
彼此平行且交错排列的多条p型汇流电极与多条n型汇流电极,其中,任意两个相邻的太阳能电池元件的所述多条p型汇流电极与所述多条n型汇流电极的排列顺序相反;以及 A plurality of p-type bus electrodes and a plurality of n-type bus electrodes parallel to each other and arranged in a staggered manner, wherein the plurality of p-type bus electrodes and the plurality of n-type bus electrodes of any two adjacent solar cell elements in reverse order; and
多条导电胶条,黏贴在所述多条p型汇流电极与该多条n型汇流电极上,使得第一太阳能电池元件的p型汇流电极与与其相邻的第二太阳能电池元件的n型汇流电极通过所述导电胶条相连,且若所述第一太阳能电池元件还与第三太阳能电池元件相邻,则所述第一太阳能电池元件的n型汇流电极与所述第三太阳能电池元件的p型汇流电极通过所述导电胶条相连。 A plurality of conductive adhesive strips, pasted on the plurality of p-type bus electrodes and the plurality of n-type bus electrodes, so that the p-type bus electrodes of the first solar cell element are connected to the n-type bus electrodes of the adjacent second solar cell elements. n-type bus electrodes are connected through the conductive adhesive strips, and if the first solar cell element is also adjacent to the third solar cell element, the n-type bus electrodes of the first solar cell element and the third solar cell The p-type bus electrodes of the components are connected through the conductive adhesive strips. the
本实用新型提供一种太阳能电池模组,包括:多个太阳能电池元件,其 中每一太阳能电池元件包括: The utility model provides a solar battery module, including: a plurality of solar battery elements, wherein each solar battery element includes:
彼此平行且交错排列的多条p型汇流电极与多条n型汇流电极,其中任意两个相邻的太阳能电池元件的所述多条p型汇流电极与所述多条n型汇流电极的排列顺序相同;以及 A plurality of p-type bus electrodes and a plurality of n-type bus electrodes arranged parallel to each other in a staggered manner, wherein the arrangement of the plurality of p-type bus electrodes and the plurality of n-type bus electrodes of any two adjacent solar cell elements in the same order; and
多条导电胶条,黏贴在所述多条p型汇流电极与所述多条n型汇流电极上,使得第一太阳能电池元件的p型汇流电极与与其相邻的第二太阳能电池元件的n型汇流电极通过所述导电胶条相连,且若所述第一太阳能电池元件还与第三太阳能电池元件相邻,则所述第一太阳能电池元件的n型汇流电极与所述第三太阳能电池元件的p型汇流电极通过所述导电胶条相连。 A plurality of conductive adhesive strips, pasted on the plurality of p-type bus electrodes and the plurality of n-type bus electrodes, so that the p-type bus electrodes of the first solar cell element and the adjacent second solar cell elements The n-type bus electrode is connected through the conductive adhesive strip, and if the first solar cell element is also adjacent to the third solar cell element, the n-type bus electrode of the first solar cell element is connected to the third solar cell element. The p-type bus electrodes of the battery elements are connected through the conductive adhesive strips. the
附图说明 Description of drawings
为让本实用新型的上述和其他目的、特征和优点能更明显易懂、下文特举较佳实施例,并配合所附图式,做详细说明如下。其中: In order to make the above and other objects, features and advantages of the present invention more comprehensible, preferred embodiments are specifically cited below, and are described in detail as follows in conjunction with the accompanying drawings. in:
图1为传统交指式背电极太阳能电池100的上视图; 1 is a top view of a conventional interdigitated back electrode solar cell 100;
图2A为美国专利US7,804,022所揭露的太阳能电池元件的结构示意图; FIG. 2A is a schematic structural view of a solar cell element disclosed in U.S. Patent No. 7,804,022;
图2B为美国专利US2005/0268959所揭露的包含两个太阳能电池元件的太阳能电池模组; Figure 2B is a solar cell module comprising two solar cell elements disclosed in US Patent US2005/0268959;
图3A为本实用新型一个具体实施例的待模组化太阳能电池元件; Figure 3A is a solar cell element to be modularized in a specific embodiment of the present invention;
图3B为本实用新型一个具体实施例中包含图3A的太阳能电池元件的太阳能电池模组; Fig. 3B is a solar cell module comprising the solar cell element of Fig. 3A in a specific embodiment of the utility model;
图4A为本实用新型另一具体实施例的待模组化太阳能电池元件; Fig. 4A is the solar cell element to be modularized in another specific embodiment of the present invention;
图4B为本实用新型另一具体实施例中一个包含图4A的太阳能电池元件的太阳能电池模组;以及 Fig. 4B is a solar cell module comprising the solar cell element of Fig. 4A in another specific embodiment of the utility model; and
图5为本实用新型另一具体实施例中的一个包含图4A的太阳能电池元件的太阳能电池模组。 FIG. 5 is a solar cell module including the solar cell element of FIG. 4A in another embodiment of the present invention. the
具体实施方式 Detailed ways
为说明本实用信息的要义,请参阅图3A与图3B,其分别为本实用新型一具体实施例的待模组化太阳能电池元件300以及包含上述太阳能电池元件300的太阳能电池模组350。如图3A与3B所示,太阳能电池模组350包括多个电池元件300。必须注意的是,在本具体实施例中,是以,但不限于,三个太阳能电池元件300的组合作为说明。然而本技术领域中具有通常知识者,在不脱离本实用新型的精神和范围内,适当可作各种的更动与润饰,因此本实用新型的保护范围应当以本申请权利要求书的范围所界定的为准。 To illustrate the gist of the practical information, please refer to FIG. 3A and FIG. 3B , which are respectively a solar cell element 300 to be modularized and a solar cell module 350 including the solar cell element 300 according to a specific embodiment of the present invention. As shown in FIGS. 3A and 3B , a solar battery module 350 includes a plurality of battery elements 300 . It should be noted that in this specific embodiment, a combination of three solar cell elements 300 is used as an illustration, but not limited thereto. However, those skilled in the art can appropriately make various changes and modifications without departing from the spirit and scope of the present utility model. Therefore, the protection scope of the present utility model should be defined by the scope of the claims of this application. defined shall prevail. the
在图3A与图3B中,每一个太阳能电池元件300包括:彼此平行且交错排列的多条p型汇流电极301与多条n型汇流电极302,其中,任意两个相邻的太阳能电池元件300的多条p型汇流电极301与多条n型汇流电极302的排列顺序相反。太阳能电池元件300的多条p型汇流电极301与多条n型汇流电极302分别用来连接太阳能电池元件300上的p型交指式背电极与n型交指式背电极(图中未示),且该些交指式背电极是与汇流电极301与302相互垂直。交指式背电极的结构与设置方式是现有技术,在本说明书中不予赘述。 In FIG. 3A and FIG. 3B , each solar cell element 300 includes: a plurality of p-type bus electrodes 301 and a plurality of n-type bus electrodes 302 arranged parallel to each other and staggered, wherein any two adjacent solar cell elements 300 The arrangement order of the plurality of p-type bus electrodes 301 and the plurality of n-type bus electrodes 302 is opposite. The multiple p-type bus electrodes 301 and the multiple n-type bus electrodes 302 of the solar cell element 300 are respectively used to connect the p-type interdigitated back electrode and the n-type interdigitated back electrode on the solar cell element 300 (not shown in the figure). ), and the interdigitated back electrodes are perpendicular to the bus electrodes 301 and 302 . The structure and arrangement of the interdigitated back electrodes are prior art and will not be repeated in this specification. the
图3B中,太阳能电池元件300的多条p型汇流电极301与多条n型汇流电极302上方黏贴了多条导电胶条305。使得第一太阳能电池元件300的p型汇流电极与与其相邻的第二太阳能电池元件300的n型汇流电极通过导电胶条305相连,且若第一太阳能电池元件300还与第三太阳能电池元件300相邻,则第一太阳能电池元件300的n型汇流电极与第三太阳能电池元件300的p型汇流电极通过导电胶条305相连。其中,第一、第二及第三仅仅用于区别三个不同的太阳能电池元件,并不对太阳能电池元件造成任何限定。 In FIG. 3B , a plurality of conductive adhesive strips 305 are pasted on top of the plurality of p-type bus electrodes 301 and the plurality of n-type bus electrodes 302 of the solar cell element 300 . The p-type bus electrode of the first solar cell element 300 is connected to the n-type bus electrode of the second solar cell element 300 adjacent to it through the conductive adhesive strip 305, and if the first solar cell element 300 is also connected to the third solar cell element 300 adjacent to each other, the n-type bus electrode of the first solar cell element 300 is connected to the p-type bus electrode of the third solar cell element 300 through the conductive adhesive strip 305 . Wherein, the first, second and third are only used to distinguish three different solar cell elements, and do not impose any limitation on the solar cell elements. the
较佳地,如图3B所示,多条导电胶条305为长条状。 Preferably, as shown in FIG. 3B , the plurality of conductive adhesive strips 305 are long strips. the
本实用新型还提供另一具体实施例,请参阅图4A与图4B,其分别为本实用新型另一具体实施例的待模组化太阳能电池元件400以及包含上述太阳能电池元件400的太阳能模组450。如图4A与图4B所示,太阳能电池模组350包括多个太阳能电池元件400。必须注意的是,在本具体实施例中,是以,但不限于,三个太阳能电池元件400的组合作为说明。然而本技术领域中具有通常知识者,在不脱离本实用新型的精神和范围内,适当可做各种的更动与润饰,因此,本实用新型的保护应当以本申请权利要求书的范围所界定的为准。 The utility model also provides another specific embodiment, please refer to FIG. 4A and FIG. 4B , which are respectively another specific embodiment of the utility model to be modularized solar cell element 400 and a solar module including the above-mentioned solar cell element 400 450. As shown in FIG. 4A and FIG. 4B , the solar cell module 350 includes a plurality of solar cell elements 400 . It should be noted that in this specific embodiment, a combination of three solar cell elements 400 is used as an illustration, but not limited thereto. However, those skilled in the art can properly make various changes and modifications without departing from the spirit and scope of the present utility model. Therefore, the protection of the present utility model should be within the scope of the claims of this application defined shall prevail. the
在图4A与图4B中,每一太阳能电池元件400包括:彼此平行且交错排列的多条p型汇流电极401与多条n型汇流电极402,其中,任意两个相邻的太阳能电池元件400的多条p型汇流电极401与多条n型汇流电极402的排列顺序相同。太阳能电池元件400的多条p型汇流电极401与多条n型汇流电极402分别用来连接太阳能电池元件400上的p型指交式背电极与n型指交式背电极(图中未示),且该些指交式背电极与汇流电极401与402互相垂直。然,交指式背电极的结构与设置方式为现有技术,在本说明书中不予赘述。 In FIG. 4A and FIG. 4B , each solar cell element 400 includes: a plurality of p-type bus electrodes 401 and a plurality of n-type bus electrodes 402 arranged parallel to each other and staggered, wherein any two adjacent solar cell elements 400 The arrangement order of the plurality of p-type bus electrodes 401 and the plurality of n-type bus electrodes 402 is the same. The plurality of p-type bus electrodes 401 and the plurality of n-type bus electrodes 402 of the solar cell element 400 are respectively used to connect the p-type interdigitated back electrode and the n-type interdigitated back electrode on the solar cell element 400 (not shown in the figure). ), and the interdigitated back electrodes and the bus electrodes 401 and 402 are perpendicular to each other. However, the structure and arrangement of the interdigitated back electrodes are prior art and will not be repeated in this specification. the
与图4B中,太阳能电池元件400的多条p型汇流电极401与多条n型汇流电极402上方黏贴了多条导电胶条405。使得第一太阳能电池元件400的p型汇流电极与与其相邻的第二太阳能电池元件400的n型汇流电极通过导电胶条405相连,且若第一太阳能电池元件400还与第三太阳能电池元件400相邻,则第一太阳能电池元件400的n型汇流电极与第三太阳能电池元件400的p型汇流电极通过导电胶条405相连。 As in FIG. 4B , multiple conductive adhesive strips 405 are pasted on the multiple p-type bus electrodes 401 and the multiple n-type bus electrodes 402 of the solar cell element 400 . The p-type bus electrode of the first solar cell element 400 is connected to the n-type bus electrode of the second solar cell element 400 adjacent to it through the conductive adhesive strip 405, and if the first solar cell element 400 is also connected to the third solar cell element 400 adjacent to each other, the n-type bus electrode of the first solar cell element 400 is connected to the p-type bus electrode of the third solar cell element 400 through the conductive adhesive strip 405 . the
较佳地,如图4B所示,多条导电胶条405为长条状,且中间具有Z字型弯折。 Preferably, as shown in FIG. 4B , the plurality of conductive adhesive strips 405 are long strips with zigzag bends in the middle. the
必须注意的是,图4B所示的多条导电胶条405的形状仅为本实用新型中的一个具体实施例,其特征在于导电胶条405所连接的p型汇流电极401 与n型汇流电极402在两个相邻的太阳能电池元件400上产生偏移。因此,图4B所示的多条导电胶条405的形状不能用于限制本实用新型。举例而言,本实用新型还可提供另一包含图4A的太阳能电池元件的太阳能电池模组,如图5所示。 It must be noted that the shape of a plurality of conductive adhesive strips 405 shown in Figure 4B is only a specific embodiment of the utility model, which is characterized in that the p-type bus electrodes 401 and n-type bus electrodes connected by the conductive adhesive strips 405 402 produces an offset on two adjacent solar cell elements 400 . Therefore, the shapes of the plurality of conductive adhesive strips 405 shown in FIG. 4B cannot be used to limit the present invention. For example, the present invention can also provide another solar cell module including the solar cell element shown in FIG. 4A , as shown in FIG. 5 . the
在图5中,太阳能电池模组550包括多个太阳能电池元件400。太阳能电池元件400已如上叙述,故不再重复。图5与图4B所示的多条导电胶条405的形状不同在于图5中的多条导电胶条505为长条状,且中间具有一个S字型弯折,其所连接的p型汇流电极401与n型汇流电极402在两个相邻的太阳能电池元件400上产生偏移。 In FIG. 5 , a solar cell module 550 includes a plurality of solar cell elements 400 . The solar cell element 400 has been described above, so it will not be repeated. The difference between the shapes of the multiple conductive strips 405 shown in Figure 5 and Figure 4B is that the multiple conductive strips 505 in Figure 5 are long strips with an S-shaped bend in the middle, and the p-type bus connected The electrode 401 and the n-type bus electrode 402 are offset on two adjacent solar cell elements 400 . the
虽然笨实用新型已经使用如上的具体实施例揭露,然其并非用于限定本实用新型,本实用新型所属技术领域中具有通常知识者,在不脱离本实用新型的精神和范围内,应当可作各种更动与润饰,因此本实用新型的保护范围应当以本申请权利要求书的范围所界定的为准。 Although the utility model has been disclosed using the above specific embodiments, it is not intended to limit the utility model. Those with ordinary knowledge in the technical field of the utility model should be able to use it without departing from the spirit and scope of the utility model. Various changes and modifications, so the protection scope of the present utility model should be defined by the scope of the claims of the present application. the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420461132.XU CN204067391U (en) | 2014-08-15 | 2014-08-15 | solar cell module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420461132.XU CN204067391U (en) | 2014-08-15 | 2014-08-15 | solar cell module |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204067391U true CN204067391U (en) | 2014-12-31 |
Family
ID=52208845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420461132.XU Expired - Fee Related CN204067391U (en) | 2014-08-15 | 2014-08-15 | solar cell module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204067391U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016184456A1 (en) * | 2015-05-19 | 2016-11-24 | Hanwha Q Cells Gmbh | Solar module with central interconnection |
-
2014
- 2014-08-15 CN CN201420461132.XU patent/CN204067391U/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016184456A1 (en) * | 2015-05-19 | 2016-11-24 | Hanwha Q Cells Gmbh | Solar module with central interconnection |
CN107851673A (en) * | 2015-05-19 | 2018-03-27 | 韩华Qcells有限公司 | Solar energy module with central interconnection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107768449B (en) | Solar cell module | |
CN204538036U (en) | Solar panel, solar cell, solar cell panel assembly and solar battery apparatus | |
CN104810412B (en) | solar cell and module thereof | |
CN105529373B (en) | A kind of front electrode of crystal silicon solar batteries | |
CN102347388B (en) | solar cell module | |
CN105702755B (en) | A kind of front electrode of crystal silicon solar batteries | |
CN107611183B (en) | Cell, cell matrix, solar cell and cell preparation method | |
CN103928555A (en) | A solar cell module | |
CN105679850A (en) | Crystalline silicon solar cell | |
WO2017128658A1 (en) | Crystalline silicon solar cell | |
CN105679849B (en) | A kind of crystal silicon solar batteries | |
CN105374897A (en) | Solar cell module and manufacturing method thereof | |
CN105552144B (en) | A kind of front electrode of crystal silicon solar batteries | |
CN105552145B (en) | A kind of crystal silicon solar batteries | |
TWI502756B (en) | Solar cell with thick and thin bus bar electrodes | |
CN204067391U (en) | solar cell module | |
CN204315581U (en) | A kind of crystal silicon solar batteries | |
CN108336163B (en) | A P-type double-sided solar cell module | |
TWI509816B (en) | Solar cell with wide and narrow electrode blocks and solar cell using the same | |
JP3198451U (en) | 4 busbar solar cells | |
TWI556455B (en) | Solar cell, module comprising the same and method of manufacturing the same | |
CN210110793U (en) | Solar cell and photovoltaic module | |
TWI445186B (en) | Non-linear design of sunnyside contact solar cells | |
KR102157599B1 (en) | Solar cell module | |
CN221900017U (en) | Back contact solar cell and photovoltaic module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141231 Termination date: 20190815 |