TWI501525B - High step-up converter based on multi-winding coupled inductor and charge pump capacitor - Google Patents
High step-up converter based on multi-winding coupled inductor and charge pump capacitor Download PDFInfo
- Publication number
- TWI501525B TWI501525B TW103114212A TW103114212A TWI501525B TW I501525 B TWI501525 B TW I501525B TW 103114212 A TW103114212 A TW 103114212A TW 103114212 A TW103114212 A TW 103114212A TW I501525 B TWI501525 B TW I501525B
- Authority
- TW
- Taiwan
- Prior art keywords
- winding
- diode
- coupled
- output
- pump capacitor
- Prior art date
Links
- 238000004804 winding Methods 0.000 title claims description 79
- 239000003990 capacitor Substances 0.000 title claims description 50
- 238000010079 rubber tapping Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000005284 excitation Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明是有關於一種升壓轉換器,特別是指一種基於多繞組耦合電感及電荷幫浦電容之高升壓轉換器。The invention relates to a boost converter, in particular to a high boost converter based on a multi-winding coupled inductor and a charge pump capacitor.
已知的高升壓電路設計,像是利用串接升壓轉換器的方式來達到高升壓轉換,或是利用耦合電感、電荷幫浦等方式來進行電壓疊加以提高升壓比,甚至有的結合以上兩種方法來達到更高的升壓轉換。不過以上所提出的架構皆各有其缺點,如電路架構過於複雜,使用大量電感、電容及開關等被動元件,導致整體電路效率不佳;或是只能應用於低功率場合;還有些電路,開關元件為浮動式而非置於接地端,因此需要額外的隔離驅動器,不僅增加成本也提高了整個系統設計的複雜度。另外,幫浦電容的使用雖然可達到更高的升壓轉換,但會產生湧浪電流(surge current)而降低電容的使用壽命,且耦合電感的漏電感能量造成開關元件上的電壓突波(spike)。Known high-boost circuit designs, such as the use of a series-connected boost converter to achieve high-boost conversion, or the use of coupled inductors, charge pumps, etc. for voltage superposition to increase the boost ratio, and even Combine the above two methods to achieve higher boost conversion. However, the above proposed architectures have their own shortcomings. For example, the circuit architecture is too complicated, and a large number of passive components such as inductors, capacitors, and switches are used, resulting in poor overall circuit efficiency; or can only be applied to low-power applications; The switching elements are floating rather than grounded, so additional isolation drivers are required, which not only adds cost but also increases the complexity of the overall system design. In addition, although the use of the pump capacitor can achieve higher boost conversion, it will generate a surge current and reduce the life of the capacitor, and the leakage inductance energy of the coupled inductor causes a voltage surge on the switching element ( Spike).
因此,本發明之目的,即在提供一種基於多繞 組耦合電感及電荷幫浦電容之高升壓轉換器。Therefore, the object of the present invention is to provide a multi-winding based A set of high-boost converters with coupled inductors and charge pump capacitors.
於是,本發明基於多繞組耦合電感及電荷幫浦電容之高升壓轉換器適用於將一輸入電壓進行升壓以產生一輸出電壓,該高升壓轉換器包含一第一二極體、一幫浦電容、一耦合電感、一輸出二極體、一第二二極體、一輸出電容及一開關元件。Therefore, the high boost converter of the present invention based on a multi-winding coupled inductor and a charge pump capacitor is adapted to boost an input voltage to generate an output voltage, the high boost converter comprising a first diode, a A pump capacitor, a coupled inductor, an output diode, a second diode, an output capacitor, and a switching element.
該第一二極體具有一接收該輸入電壓的陽極及一陰極。該幫浦電容具有一與該第一二極體的陰極耦接的一端。該耦合電感具有一第一繞組、一第二繞組及一第三繞組,該第一繞組、該第二繞組及該第三繞組的匝數比為1:1:n,該第一繞組具有接收該輸入電壓的一打點端與一非打點端,該第二繞組具有一與該第一二極體的陰極耦接的打點端及一非打點端,該第三繞組具有一與該第一繞組的非打點端耦接的打點端及一與該幫浦電容的另一端耦接的非打點端。該輸出二極體具有一與該第二繞組之非打點端耦接的陽極及一陰極。該第二二極體具有一與該第一繞組的非打點端耦接的陽極及一與該第二繞組之非打點端耦接的陰極。該開關元件耦接該輸出二極體之陽極及該第二二極體之陰極。The first diode has an anode and a cathode that receive the input voltage. The pump capacitor has an end coupled to the cathode of the first diode. The coupled inductor has a first winding, a second winding and a third winding. The first winding, the second winding and the third winding have a turns ratio of 1:1:n, and the first winding has a receiving a punctual end of the input voltage and a non-tapping end, the second winding has a striking end coupled to the cathode of the first diode and a non-tapping end, the third winding having a first winding The non-tapping end coupled to the striking end and a non-tapping end coupled to the other end of the pump capacitor. The output diode has an anode coupled to the non-doped end of the second winding and a cathode. The second diode has an anode coupled to the non-tapping end of the first winding and a cathode coupled to the non-tapping end of the second winding. The switching element is coupled to the anode of the output diode and the cathode of the second diode.
當該開關元件導通時,該第一二極體順偏和該第二二極體順偏,該輸出二極體逆偏,該第三繞組的激磁電感激磁,該幫浦電容充電,令該輸出電容釋放能量以產生該輸出電壓;當該開關元件不導通時,該第一二極體逆偏和該第二二極體逆偏,該輸出二極體順偏,該第三繞組 的激磁電感去磁且該幫浦電容放電。When the switching element is turned on, the first diode is biased and the second diode is biased, the output diode is reverse biased, the exciting inductance of the third winding is excited, and the pump capacitor is charged. The output capacitor releases energy to generate the output voltage; when the switching element is not conducting, the first diode is reverse biased and the second diode is reverse biased, and the output diode is biased, the third winding The magnetizing inductance is demagnetized and the pump capacitor is discharged.
較佳的,該開關元件為一接地的非浮動式開關元件。Preferably, the switching element is a grounded non-floating switching element.
本發明基於多繞組耦合電感及電荷幫浦電容之高升壓轉換器之功效在於:設計者可以利用第一繞組、第二繞組及第三繞組的匝數比為1:1:n來調整其升壓比以增加其設計彈性,且第三繞組與幫浦電容串聯而降低電容充電造成的湧浪電流,並可回收激磁電感的能量避免開關元件的突波。The effect of the present invention is based on a multi-winding coupled inductor and a high-boost converter of a charge pump capacitor: the designer can adjust the turns ratio of the first winding, the second winding, and the third winding by 1:1:n. The boost ratio increases the design flexibility, and the third winding is connected in series with the pump capacitor to reduce the surge current caused by the capacitor charging, and the energy of the magnetizing inductor can be recovered to avoid the surge of the switching element.
100‧‧‧高升壓轉換器100‧‧‧High Boost Converter
N2 ‧‧‧第二繞組N 2 ‧‧‧second winding
1‧‧‧耦合電感1‧‧‧coupled inductor
N3 ‧‧‧第三繞組N 3 ‧‧‧third winding
Ce‧‧‧幫浦電容Ce‧‧‧ pump capacitor
Ro ‧‧‧輸出電阻R o ‧‧‧ output resistance
Co‧‧‧輸出電容Co‧‧‧ output capacitor
Q‧‧‧開關元件Q‧‧‧Switching elements
D1 ‧‧‧第一二極體D 1 ‧‧‧First Diode
Vi ‧‧‧輸入電壓V i ‧‧‧ input voltage
D2 ‧‧‧第二二極體D 2 ‧‧‧Secondary
Vo ‧‧‧輸出電壓V o ‧‧‧output voltage
DO ‧‧‧輸出二極體D O ‧‧‧ output diode
N1 ‧‧‧第一繞組N 1 ‧‧‧first winding
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一電路圖,說明本發明基於多繞組耦合電感及電荷幫浦電容之高升壓轉換器之較佳實施例;圖2是一波形時序圖,說明如圖2各元件的電流波形及電壓波形;圖3是一電路示意圖,說明本發明基於多繞組耦合電感及電荷幫浦電容之高升壓轉換器於第一模式的導通路徑;圖4是一電路示意圖,說明本發明基於多繞組耦合電感及電荷幫浦電容之高升壓轉換器於第二模式的導通路徑;圖5至圖10是波形圖,說明本發明基於多繞組耦合電感及電荷幫浦電容之高升壓轉換器的模擬結果。Other features and effects of the present invention will be apparent from the following description of the drawings. FIG. 1 is a circuit diagram illustrating the high boost converter of the present invention based on a multi-winding coupled inductor and a charge pump capacitor. 2 is a waveform timing diagram illustrating current waveforms and voltage waveforms of the components of FIG. 2; FIG. 3 is a circuit diagram illustrating the high boost of the present invention based on multi-winding coupled inductors and charge pump capacitors. The conduction path of the converter in the first mode; FIG. 4 is a circuit diagram illustrating the conduction path of the high-boost converter based on the multi-winding coupled inductor and the charge pump capacitor in the second mode; FIG. 5 to FIG. The waveform diagram illustrates the simulation results of the high boost converter based on the multi-winding coupled inductor and the charge pump capacitor of the present invention.
參閱圖1,本發明之較佳實施例中,一種基於多繞組耦合電感及電荷幫浦電容之高升壓轉換器100適用於將一輸入電壓Vi 進行升壓以產生一輸出電壓Vo ,該高升壓轉換器100包含一第一二極體D1 、一第二二極體D2 、一幫浦電容Ce 、一耦合電感1、一開關元件Q、一輸出二極體DO 、一輸出電容Co 及一輸出電阻Ro 。Referring to FIG. 1, in a preferred embodiment of the present invention, a high-boost converter 100 based on a multi-winding coupled inductor and a charge pump capacitor is adapted to boost an input voltage V i to generate an output voltage V o . The high boost converter 100 includes a first diode D 1 , a second diode D 2 , a pump capacitor C e , a coupled inductor 1 , a switching element Q , and an output diode D O . An output capacitor C o and an output resistor R o .
第一二極體D1 具有一接收輸入電壓Vi 的陽極及一陰極。幫浦電容Ce 具有一與第一二極體D1 的陰極耦接的一端。The first diode D 1 has an anode receiving an input voltage V i and a cathode. The pump capacitor C e has an end coupled to the cathode of the first diode D 1 .
耦合電感1具有一第一繞組N1 、一第二繞組N2 及一第三繞組N3 ,第一繞組N1 、第二繞組N2 及第三繞組N3 的匝數比為1:1:n,第一繞組N1 具有接收輸入電壓的一打點端與一非打點端,該第二繞組N2 具有一與第一二極體D1 的陰極耦接的打點端及一非打點端,第三繞組N3 具有一與第一繞組N1 的非打點端耦接的打點端及一與幫浦電容Ce 的另一端耦接的非打點端。The coupled inductor 1 has a first winding N 1 , a second winding N 2 and a third winding N 3 . The turns ratio of the first winding N 1 , the second winding N 2 and the third winding N 3 is 1:1. :n, the first winding N 1 has a punctual end and a non-tapping end receiving the input voltage, and the second winding N 2 has a striking end coupled to the cathode of the first diode D 1 and a non-tapping end The third winding N 3 has a dot end coupled to the non-tapping end of the first winding N 1 and a non-draining end coupled to the other end of the pump capacitor C e .
輸出二極體DO 具有一與第二繞組N2 之非打點端耦接的陽極及一陰極。第二二極體D2 具有一與第一繞組N1 的非打點端耦接的陽極及一與第二繞組N2 之非打點端耦接的陰極。開關元件Q耦接輸出二極體Do 之陽極及第二二極體D2 之陰極;較佳的,開關元件Q為一接地的非浮動式開關元件,如:一n通道金氧半場效電晶體具有一閘極(G)、一源極(S)及一汲極(D),閘極(G)做為控制端,用來控制開 關元件導通與否,汲極(D)則耦接第二二極體D2 之陰極及輸出二極體Do 之陽極,源極(S)為接地。The output diode D O has an anode coupled to the non-doped end of the second winding N 2 and a cathode. The second diode D 2 has an anode coupled to the non-tapping end of the first winding N 1 and a cathode coupled to the non-tapping end of the second winding N 2 . The switching element Q is coupled to the anode of the output diode D o and the cathode of the second diode D 2 . Preferably, the switching element Q is a grounded non-floating switching element, such as: an n-channel MOSFET. The transistor has a gate (G), a source (S) and a drain (D), and the gate (G) serves as a control terminal for controlling whether the switching element is turned on or off, and the drain (D) is coupled. Connect the cathode of the second diode D 2 and the anode of the output diode D o , and the source (S) is grounded.
參閱圖2,是如圖1基於上述各元件的電流波形及電壓波形的時序圖,其中,vgs 為開關元件Q之閘極驅動訊號、vds 為開關元件Q之跨壓、Vi 為輸入電壓、Vo 為輸出電壓、ii 為第一繞組N1 之電流、i2 為第二繞組N2 之電流、i3 為第三繞組N3 之電流、ie 為流經幫浦電容Ce 上之電流、iLm 為激磁電感Lm 上之電流、iD1 為第一二極體D1 上之電流、iD2 為第二二極體D2 上之電流、iDo 為輸出二極體Do 之電流,及ii 為輸入電流。Referring to FIG. 2, FIG. 1 is a timing diagram of current waveforms and voltage waveforms based on the above components, wherein v gs is a gate driving signal of the switching element Q, v ds is a voltage across the switching element Q, and V i is an input. The voltage, Vo is the output voltage, i i is the current of the first winding N 1 , i 2 is the current of the second winding N 2 , i 3 is the current of the third winding N 3 , i e is the flow through the pump capacitor C The current on e , i Lm is the current on the magnetizing inductance L m , i D1 is the current on the first diode D 1 , i D2 is the current on the second diode D 2 , i Do is the output dipole The current of body D o , and i i is the input current.
為了方便分析,設定條件如下:開關元件Q、第一二極體D1 、輸出二極體Do 及第二二極體D2 視為理想元件,即開關切換時間、導通電阻、二極體反向恢復時間與順向導通壓降均忽略不計。耦合電感1、與幫浦電容Ce 均不考慮寄生電阻,且幫浦電容Ce 可保持在(n+1)倍的輸入電壓vi 。整體電路操作於連續導通模式下。第一繞組N1 之電流i1 第二繞組N2 之電流i2 皆為電流i。For the convenience of analysis, the setting conditions are as follows: the switching element Q, the first diode D 1 , the output diode D o , and the second diode D 2 are regarded as ideal components, that is, switching time, on-resistance, and diode Both the reverse recovery time and the forward voltage drop are negligible. The coupled inductor 1 and the pump capacitor C e do not consider the parasitic resistance, and the pump capacitor C e can be maintained at (n+1) times the input voltage v i . The overall circuit operates in continuous conduction mode. A first current winding N 1 i 1 of the second winding N 2 of the current i 2 are both current i.
以下將配合圖3及圖4介紹本發明的兩種控制模式。The two control modes of the present invention will be described below with reference to Figs. 3 and 4.
參閱圖3,第一模式為時間區間t 0 t t 1 ,此時的開關元件Q導通,第一二極體D1 順偏和第二二極體D2 順偏,輸出二極體Do 逆偏,第三繞組N3 激磁電壓n ×v i 且幫浦電容Ce 充電,令該輸出電容Co 釋放能量以產生輸出電壓。其相關之方程式如公式1。Referring to Figure 3, the first mode is the time interval t 0 t t 1 , at this time, the switching element Q is turned on, the first diode D 1 is biased and the second diode D 2 is biased, the output diode D 0 is reverse biased, and the third winding N 3 is excited by the voltage n × v i and the pump capacitor C e is charged, so that the output capacitor C o releases energy to generate an output voltage. Its associated equation is as in Equation 1.
參閱圖4,第二模式為時間區間t 1 t t 0 +T s ,此時的開關元件Q不導通,第一二極體D1 逆偏和第二二極體D2 逆偏,輸出二極體Do 順偏,第三繞組N3 去磁,且幫浦電容Ce 放電,其相關的方程式如公式2。根據公式1及公式2,可得電壓轉換比如公式3,其中,D為占空比。Referring to Figure 4, the second mode is the time interval t 1 t t 0 + T s , the switching element Q at this time is not turned on, the first diode D 1 is reverse biased and the second diode D 2 is reverse biased, the output diode D o is biased, and the third winding N 3 goes Magnetic, and the pump capacitor C e is discharged, and its associated equation is as shown in Equation 2. According to Equation 1 and Equation 2, a voltage conversion such as Equation 3 can be obtained, where D is the duty ratio.
高升壓轉換器100的規格包括:輸入電壓(Vi )為12伏;輸出電壓(Vo )為120伏;額定輸出功率(Po,rated )為60瓦;輸出最小功率(Po,min )為6瓦;系統切換頻率(fs )為100k赫茲;輸出電容Co 之容值選用330μF;第一二極體D1 、第二二極體D2 、輸出二極體DO 型號為STPS20170CT;開關元件Q型號為AP70T15GP-HF。The specifications of the high boost converter 100 include: the input voltage (V i ) is 12 volts; the output voltage (V o ) is 120 volts; the rated output power (P o,rated ) is 60 watts; and the output minimum power (P o, Min ) is 6 watts; the system switching frequency (f s ) is 100 kHz; the output capacitor C o has a capacitance of 330 μF; the first diode D 1 , the second diode D 2 , and the output diode D O model It is STPS20170CT; the switching element Q model is AP70T15GP-HF.
為了保持穩定電壓,假設幫浦電容Ce 在放電週期的輸入電壓的峰對峰(peak-to-peak)的電壓漣波設定為0.1%,關於幫浦電容Ce 之容值設計方式主要是依據公式4來進行設計,依據公式4代入相關參數計算幫浦電容Ce 容 值可到55.56μF,本實施例則選用容值68μF。In order to maintain voltage stability, assuming pump capacitance C e peak input voltage of the discharge cycle of the peak (peak-to-peak) voltage ripple is set to 0.1%, with respect to capacitance design approach pump capacitance C e of mainly 4 be designed according to the formula, the correlation parameter calculation pump capacitor may be the capacitance C e 55.56μF generations in accordance with equation 4, the present embodiment is selected capacitance 68μF.
激磁電感Lm 的電感值設計可參考公式5,依據公式5代入相關參數計算激磁電感Lm 的電感值最小可到288μH,本實施例則選用電感值291μH。Inductance value of magnetizing inductance L m of the design can refer to Equation 5, the correlation parameter is calculated inductance of magnetizing inductance L m according to Equation 5 generations minimum 288μH, the present embodiment the selection of the inductance value 291μH.
參閱圖5至圖7,分別為10%、50%及100%額定負載,開關元件Q之閘極驅動訊號vgs 、流經第一繞組N1 之電流i1 流經第二繞組N2 之電流i2 ,及流經幫浦電容Ce 之電流ie 。Referring to FIG. 5 to FIG. 7, respectively 10%, 50% and 100% of rated load, the switching element Q of the gate drive signal v gs, currents flowing through the first winding N 1 i 1 flowing through the second winding of N 2 the current i 2, and the pump current flowing through the capacitance C e i e.
參閱圖8至圖10,分別為10%、50%及100%額定負載,開關元件Q之閘極驅動訊號vgs 、開關元件Q之跨壓vds 、流經幫浦電容Ce 之電流ie ,及流經輸出二極體Do 之電流iDo 。Referring to Figures 8 to 10, the 10%, 50%, and 100% rated loads, the gate drive signal v gs of the switching element Q, the voltage across the voltage of the switching element V ds , and the current flowing through the pump capacitor C e e , and the current i Do flowing through the output diode D o .
綜上所述,本發明之功效在於:設計者可以利用第一繞組N1 、第二繞組N2 及第三繞組N3 的匝數比來調整其升壓比以增加其設計彈性,第三繞組N3 與幫浦電容Ce 串聯而降低電容充電造成的湧浪電流,並回收激磁電感能量避免開關元件Q的突波,故確實能達成本發明之目的。In summary, the effect of the present invention is that the designer can adjust the boosting ratio of the first winding N 1 , the second winding N 2 and the third winding N 3 to increase the design flexibility, and thirdly The winding N 3 is connected in series with the pump capacitor C e to reduce the surge current caused by the charging of the capacitor, and recovers the excitation inductance energy to avoid the surge of the switching element Q, so that the object of the present invention can be achieved.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.
100‧‧‧高升壓轉換器100‧‧‧High Boost Converter
N1 ‧‧‧第一繞組N 1 ‧‧‧first winding
1‧‧‧耦合電感1‧‧‧coupled inductor
N2 ‧‧‧第二繞組N 2 ‧‧‧second winding
Ce ‧‧‧幫浦電容C e ‧‧‧ pump capacitor
N3 ‧‧‧第三繞組N 3 ‧‧‧third winding
Co ‧‧‧輸出電容C o ‧‧‧output capacitor
Ro ‧‧‧輸出電阻R o ‧‧‧ output resistance
D1 ‧‧‧第一二極體D 1 ‧‧‧First Diode
Q‧‧‧開關元件Q‧‧‧Switching elements
D2 ‧‧‧第二二極體D 2 ‧‧‧Secondary
vi ‧‧‧輸入電壓v i ‧‧‧ input voltage
DO ‧‧‧輸出二極體D O ‧‧‧ output diode
vo ‧‧‧輸出電壓v o ‧‧‧output voltage
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103114212A TWI501525B (en) | 2014-04-18 | 2014-04-18 | High step-up converter based on multi-winding coupled inductor and charge pump capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103114212A TWI501525B (en) | 2014-04-18 | 2014-04-18 | High step-up converter based on multi-winding coupled inductor and charge pump capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI501525B true TWI501525B (en) | 2015-09-21 |
TW201541828A TW201541828A (en) | 2015-11-01 |
Family
ID=54608175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103114212A TWI501525B (en) | 2014-04-18 | 2014-04-18 | High step-up converter based on multi-winding coupled inductor and charge pump capacitor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI501525B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105406751A (en) * | 2015-12-30 | 2016-03-16 | 哈尔滨工业大学 | Three-winding coupling inductance type Z-source inverter circuit with high step-up ratio ability |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060226816A1 (en) * | 2005-04-11 | 2006-10-12 | Yuan Ze University | Boost converter utilizing bi-directional magnetic energy transfer of coupling inductor |
US20070216390A1 (en) * | 2006-03-17 | 2007-09-20 | Yuan Ze University | High-efficiency high-voltage difference ratio bi-directional converter |
CN100414824C (en) * | 2004-06-19 | 2008-08-27 | 燕山大学 | Magnetic integrated DC/DC conversion step-up transmission ratio expansion circuit |
TWI305076B (en) * | 2005-06-17 | 2009-01-01 | Univ Yuan Ze | High-efficiency signle-stage bidirectional converter with multi-input power sources |
TW201143267A (en) * | 2010-05-31 | 2011-12-01 | Univ Nat Cheng Kung | Multi-winding high step-up DC-DC converter |
TWI412221B (en) * | 2010-10-18 | 2013-10-11 | Univ Nat Taipei Technology | High boost ratio converter |
-
2014
- 2014-04-18 TW TW103114212A patent/TWI501525B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100414824C (en) * | 2004-06-19 | 2008-08-27 | 燕山大学 | Magnetic integrated DC/DC conversion step-up transmission ratio expansion circuit |
US20060226816A1 (en) * | 2005-04-11 | 2006-10-12 | Yuan Ze University | Boost converter utilizing bi-directional magnetic energy transfer of coupling inductor |
TWI305076B (en) * | 2005-06-17 | 2009-01-01 | Univ Yuan Ze | High-efficiency signle-stage bidirectional converter with multi-input power sources |
US20070216390A1 (en) * | 2006-03-17 | 2007-09-20 | Yuan Ze University | High-efficiency high-voltage difference ratio bi-directional converter |
TW201143267A (en) * | 2010-05-31 | 2011-12-01 | Univ Nat Cheng Kung | Multi-winding high step-up DC-DC converter |
TWI412221B (en) * | 2010-10-18 | 2013-10-11 | Univ Nat Taipei Technology | High boost ratio converter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105406751A (en) * | 2015-12-30 | 2016-03-16 | 哈尔滨工业大学 | Three-winding coupling inductance type Z-source inverter circuit with high step-up ratio ability |
Also Published As
Publication number | Publication date |
---|---|
TW201541828A (en) | 2015-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110266184B (en) | Hybrid switched capacitor converter with zero voltage switching | |
US7535733B2 (en) | Method of controlling DC-to-DC converter whereby switching control sequence applied to switching elements suppresses voltage surges at timings of switch-off of switching elements | |
US9793810B2 (en) | Control method for zero voltage switching buck-boost power converters | |
CN203788130U (en) | Enhancement-depletion mode device combined synchronous switching circuit | |
KR20190064963A (en) | DC to DC Converting System | |
JP5547849B2 (en) | DC power supply circuit | |
TWI666863B (en) | High boost DC converter | |
TWI477049B (en) | A power conversion device with a high conversion ratio | |
CN103915991A (en) | Switching circuit of depletion type component with RCD network and design method thereof | |
TWI586092B (en) | Single stage AC to DC converter | |
TWI501525B (en) | High step-up converter based on multi-winding coupled inductor and charge pump capacitor | |
TWI412221B (en) | High boost ratio converter | |
JP2006191711A (en) | Dc converter | |
JP2013027124A (en) | Switching power supply circuit | |
JP2018085873A (en) | Switching power supply device of zero-volt switching system | |
TWI444811B (en) | High boost ratio circuit | |
CN103731029B (en) | Voltage reducing type direct current converter | |
CN210111855U (en) | Double-channel JFET type self-excited staggered parallel DC-DC converter | |
TWI455465B (en) | High pressurization device | |
CN107302309B (en) | Method and apparatus for adaptive timing of zero voltage transition power converters | |
JP5260809B1 (en) | DC power supply circuit | |
TWI477043B (en) | Power conversion circuit with high boost gain | |
KR100994953B1 (en) | Non-isolation type DC/DC Step-up Converter | |
TWI489753B (en) | Combined boost converter | |
TW201325052A (en) | Improved boost converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |