[go: up one dir, main page]

TWI477049B - A power conversion device with a high conversion ratio - Google Patents

A power conversion device with a high conversion ratio Download PDF

Info

Publication number
TWI477049B
TWI477049B TW102102209A TW102102209A TWI477049B TW I477049 B TWI477049 B TW I477049B TW 102102209 A TW102102209 A TW 102102209A TW 102102209 A TW102102209 A TW 102102209A TW I477049 B TWI477049 B TW I477049B
Authority
TW
Taiwan
Prior art keywords
diode
switching element
side coil
coupled
voltage
Prior art date
Application number
TW102102209A
Other languages
Chinese (zh)
Other versions
TW201431264A (en
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW102102209A priority Critical patent/TWI477049B/en
Publication of TW201431264A publication Critical patent/TW201431264A/en
Application granted granted Critical
Publication of TWI477049B publication Critical patent/TWI477049B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

具高升轉換比之電力轉換裝置Power conversion device with high up conversion ratio

本發明是有關於一種升壓電路,特別是指一種具高升轉換比之電力轉換裝置。The present invention relates to a booster circuit, and more particularly to a power converter having a high upshift ratio.

已知的高升壓電路設計,像是利用串接升壓轉換器的方式來達到高升壓轉換,或是利用耦合電感(Coupling Inductor)、電荷幫浦(Charge Pump)等方式來進行電壓疊加以提高升壓比,甚至有的結合以上兩種方法來達到更高的升壓轉換。不過以上所提出的架構皆各有其缺點,如電路架構過於複雜,使用大量電感、電容及開關等被動元件,導致整體電路效率不佳;或是只能應用於低功率場合;或是輸出端為浮接式,即使有好的高升壓比,卻反而限制其應用的場合;還有些電路,開關元件為浮動式而非置於接地端,因此需要額外的隔離驅動器,不僅增加成本也提高了整個系統設計的複雜度。此外,許多電路架構為了提高升壓比而使用高階的控制器,不易控制。Known high-boost circuit designs, such as using a series-connected boost converter to achieve high-boost conversion, or using a coupling inductor (Coupling Inductor), charge pump (Charge Pump), etc. In order to increase the boost ratio, some even combine the above two methods to achieve higher boost conversion. However, the above proposed architectures have their own shortcomings, such as the circuit architecture is too complex, using a large number of passive components such as inductors, capacitors and switches, resulting in poor overall circuit efficiency; or can only be used in low-power applications; or output For floating type, even if there is a good high boost ratio, it limits its application; some circuits, the switching elements are floating rather than grounded, so additional isolation drivers are needed, which not only increases the cost but also increases the cost. The complexity of the entire system design. In addition, many circuit architectures use high-order controllers to increase boost ratios and are difficult to control.

因此,本發明之目的,即在提供一種具高升轉換比之電力轉換裝置。Accordingly, it is an object of the present invention to provide a power conversion apparatus having a high up conversion ratio.

於是,本發明具高升轉換比之電力轉換裝置適用於將一輸入電壓進行升壓,該電力轉換裝置包含一儲能電感、一儲能電容、一第一二極體、一第二二極體、一第三二極體、一耦合電感、一靴帶電容、一第一開關元件及一第二開關元件。Therefore, the power conversion device of the present invention having a high-up conversion ratio is suitable for boosting an input voltage, and the power conversion device includes a storage inductor, a storage capacitor, a first diode, and a second diode. a third diode, a coupled inductor, a bootband capacitor, a first switching component, and a second switching component.

該儲能電感具有一接收該輸入電壓的第一端及一第二端;該儲能電容具有一與該儲能電感之第一端耦接的第一端及一第二端;該第一二極體具有一與該儲能電感之第二端耦接的陽極及一與該儲能電容之第二端耦接的陰極;該第二二極體具有一與該儲能電容之第二端耦接的陽極及一陰極;該耦合電感具有一一次側線圈及一二次側線圈,該二次側線圈及該一次側線圈的匝數比n,該一次側線圈具有一與該第二二極體的陰極耦接的第一端及一第二端,該二次側線圈具有一與該第二二極體的陰極及該一次側線圈的第一端耦接的第一端及一第二端;該第三二極體具有一與該一次側線圈之第二端耦接的陽極及一陰極。The energy storage inductor has a first end and a second end receiving the input voltage; the storage capacitor has a first end and a second end coupled to the first end of the energy storage inductor; The diode has an anode coupled to the second end of the energy storage inductor and a cathode coupled to the second end of the storage capacitor; the second diode has a second and a storage capacitor An anode coupled to the terminal and a cathode; the coupled inductor has a primary side coil and a secondary side coil, the secondary side coil and the primary side coil have a turns ratio n, and the primary side coil has a first a first end and a second end of the cathode of the diode, the second side coil having a first end coupled to the cathode of the second diode and the first end of the primary coil a second terminal; the third diode has an anode and a cathode coupled to the second end of the primary side coil.

該靴帶電容具有一與該二次側線圈之第二端耦接的第一端及一與該第一二極體的陽極耦接的第二端;該第一開關元件與該靴帶電容之第二端耦接且受外部控制導通與否;該第二開關元件與該一次側線圈之第二端及該第三二極體之陽極耦接且受外部控制導通與否。The shoe strap capacitor has a first end coupled to the second end of the secondary side coil and a second end coupled to the anode of the first diode; the first switching element and the boot capacitor The second end is coupled to and controlled by external control; the second switching element is coupled to the second end of the primary side coil and the anode of the third diode and is electrically controlled by external control.

當該第一開關元件不導通及該第二開關元件不導通時,該第一二極體導通、該第三二極體導通及該第二二極體截止,該儲能電感之跨壓為該儲能電容之跨壓且該儲能電感進行去磁;當該第一開關元件導通及該第二開關元件導通時,該儲能電感之跨壓為該輸入電壓而進行激磁,該第一二極體截止、該第三二極體截止及該第二二極體導通,且該輸入電壓加上該儲能電容之跨壓與該二次側線圈之跨壓對該靴帶電容充電,令該二次側線圈上跨壓為n倍該一次側線圈 上之跨壓。When the first switching element is non-conducting and the second switching element is non-conducting, the first diode is turned on, the third diode is turned on, and the second diode is turned off, and the voltage across the storage inductor is The energy storage capacitor is biased and the energy storage inductor is demagnetized; when the first switching element is turned on and the second switching element is turned on, the voltage across the energy storage inductor is excited by the input voltage, the first The diode is turned off, the third diode is turned off, and the second diode is turned on, and the input voltage plus the voltage across the storage capacitor and the voltage across the secondary coil charge the shoe capacitor. Let the secondary side coil have a voltage of n times the primary side coil Over the pressure.

較佳的,該第一開關元件及該第二開關元件皆為一接地的非浮動式開關元件。Preferably, the first switching element and the second switching element are both grounded non-floating switching elements.

較佳的,該靴帶電容的電容值足以使得其跨壓於穩態時保持在(1+n)倍的該輸入電壓加上(1+n)倍的該儲能電容之跨壓。Preferably, the capacitance of the shoe strap capacitor is sufficient to maintain (1 + n) times the input voltage plus (1 + n) times the voltage across the storage capacitor across the steady state.

本發明具高升轉換比之電力轉換裝置之功效在於:設計者可以利用二次側線圈及一次側線圈的匝數比n來調整其升壓比以增加其設計彈性,且所使用之開關元件為非浮動式,整體驅動方式簡單以及實用。The power conversion device with high conversion ratio of the present invention has the effect that the designer can adjust the boosting ratio of the secondary side coil and the primary side coil by using the turns ratio n to increase the design flexibility, and the switching element used is Non-floating, the overall drive is simple and practical.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。The foregoing and other objects, features, and advantages of the invention are set forth in the <RTIgt;

參閱圖1,本發明之較佳實施例中,一種具高升轉換比之電力轉換裝置100適用於將一輸入電壓vi 進行升壓,該電力轉換裝置100包含一儲能電感L1 、一儲能電容C1 、一第一二極體D1 、一第二二極體D2 、一第三二極體D3 、一第一開關元件S1 、一耦合電感15、一靴帶電容C2 、一第二開關元件S2 、一輸出電容Co 及一輸出電阻RoReferring to FIG. 1, in a preferred embodiment of the present invention, a power conversion device 100 having a high-up conversion ratio is adapted to boost an input voltage v i , and the power conversion device 100 includes a storage inductor L 1 and a storage device. Capacitor C 1 , a first diode D 1 , a second diode D 2 , a third diode D 3 , a first switching element S 1 , a coupled inductor 15 , and a bootstrap capacitor C 2 , a second switching element S 2 , an output capacitor C o and an output resistor R o .

儲能電感L1 具有一接收輸入電壓vi 的第一端111及一第二端112;儲能電容C1 具有一與儲能電感L1 之第一端111耦接的第一端121及一第二端122;第一二極體D1 具有一與儲能電感L1 之第二端耦接的陽極131及一與儲能電容C1 之第二端122耦接的陰極132;第二二極體D2 具有一與儲能電容C1 之第二端122耦接的陽極141及一陰極142。The storage inductor L 1 has a first end 111 and a second end 112 that receive the input voltage v i ; the storage capacitor C 1 has a first end 121 coupled to the first end 111 of the storage inductor L 1 and a second end 122; the first diode D 1 has an anode 131 coupled to the second end of the storage inductor L 1 and a cathode 132 coupled to the second end 122 of the storage capacitor C 1 ; The diode D 2 has an anode 141 and a cathode 142 coupled to the second end 122 of the storage capacitor C 1 .

耦合電感15具有一一次側線圈N1 及一二次側線圈N2 ,二次側線圈N2 及一次側線圈N1 的匝數比n,一次側線圈N1 具有一與第二二極體D2 的陰極142耦接的第一端151(非打點端)及一第二端(打點端)152,二次側線圈N2 具有一與第二二極體D2 的陰極142及一次側線圈N1 的第一端151耦接的第一端(打點端)161及一第二端(非打點端)162;第三二極體D3 具有一與一次側線圈N1 之第二端152耦接的陽極171及一與輸出電容Co 之一端及輸出電阻Ro 之一端耦接的陰極172,輸出電容Co 之另一端及輸出電阻Ro 之另一端則接地。Coupled inductor 15 having a primary side coil N 1, and a secondary winding N 2, N 2 and the secondary winding side of the primary turns ratio N 1 n, N 1 having a primary side coil and a second diode The cathode 142 of the body D 2 is coupled to the first end 151 (non-tapping end) and a second end (dip end) 152, the secondary side coil N 2 has a cathode 142 of the second diode D 2 and the primary The first end 151 of the side coil N 1 is coupled to the first end (punch end) 161 and the second end (non-tap end) 162; the third diode D 3 has a second and the second side coil N 1 end 152 is coupled to the anode 171 and the 172, the other end of the other end of the output capacitor C o and an output resistor R o and the end of an end of the output capacitor C o and an output coupled to resistor R o of the cathode is grounded.

靴帶電容C2 具有一與二次側線圈N2 之第二端162耦接的第一端181及一與該第一二極體D1 的陽極耦接的第二端182。靴帶電容C2 的電容值足以使得其跨壓於穩態時保持在(1+n)倍的輸入電壓加上(1+n)倍的儲能電容C1 之跨壓。The shoe strap capacitor C 2 has a first end 181 coupled to the second end 162 of the secondary side coil N 2 and a second end 182 coupled to the anode of the first diode D 1 . Bootstrap capacitance value of the capacitance C 2 is sufficient such that when the voltage across it is maintained at a steady state (1 + n) times the input voltage plus (1 + n) times the energy storage capacitor voltage across C. 1.

該第一開關元件S1 與該靴帶電容C2 之第二端182耦接;該第二開關元件S2 與該一次側線圈N1 之第二端152及該第三二極體D3 之陽極171耦接;較佳的,第一開關元件S1 及第二開關元件S1 均為接地的非浮動式開關元件,如:n通道金氧半場效電晶體具有一用來控制導通與否的閘極(G)、一源極(S)及一汲極(D),各開關的閘極(G)做為控制端,第一開關元件S1 的第一端201為源極(S)耦接靴帶電容C2 之第二端182及第二開關元件S2 的第一端301為源極(S)耦 接一次側線圈N1 的第二端152,第一開關元件S1 的第二端202為汲極(D)及第二開關元件S2 的第二端302為汲極(D)且皆為接地。The first switching element S 1 is coupled to the second end 182 of the boot band capacitor C 2 ; the second switching element S 2 and the second end 152 of the primary side coil N 1 and the third diode D 3 The anode 171 is coupled to the anode 171. Preferably, the first switching element S 1 and the second switching element S 1 are grounded non-floating switching elements. For example, the n-channel MOS field-effect transistor has a function for controlling conduction and No gate (G), a source (S) and a drain (D), the gate (G) of each switch is used as a control terminal, and the first terminal 201 of the first switching element S 1 is a source ( S) coupling the second end 182 of the shoe strap capacitor C 2 and the first end 301 of the second switching element S 2 to be a source (S) coupled to the second end 152 of the primary side coil N 1 , the first switching element S the second end 202 is a drain (D) and a second switching element S 2 is the second end 302 of the drain (D) and are all grounded.

參閱圖2,vi 為輸入電壓、vo 為輸出電壓、ii 為輸入電流,iDS1 為第一開關元件S1 上之電流、iDS2 為第二開關元件S2 上之電流、iD1 為第一二極體D1 上之電流、iD2 為第二二極體D2 上之電流、iD3 為第三二極體D3 上之電流、iC1 為儲能電容C1 上之電流、iL1 為儲能電感L1 上之電流、i1 為一次側線圈N1 之電流、i2 為二次側線圈N2 之電流及流經靴帶電容C2 上之電流、iLm 為激磁電感Lm 上之電流、i3 為一次側線圈N1 與激磁電感Lm 上之電流總和。Referring to FIG. 2, v i is the input voltage, v o is the output voltage, i i is the input current, i DS1 is the current on the first switching element S 1 , i DS2 is the current on the second switching element S 2 , i D1 The current on the first diode D 1 , i D2 is the current on the second diode D 2 , i D3 is the current on the third diode D 3 , and i C1 is the storage capacitor C 1 Current, i L1 is the current on the storage inductor L 1 , i 1 is the current of the primary side coil N 1 , i 2 is the current of the secondary side coil N 2 , and the current flowing through the boot capacitor C 2 , i Lm The current on the magnetizing inductance L m , i 3 is the sum of the currents on the primary side coil N 1 and the exciting inductance L m .

vgS1 為第一開關元件S1 之閘極驅動訊號、vgS2 為第二開關元件S2 之閘極驅動訊號、vDS1 為第一開關元件S1 之跨壓、vDS2 為第二開關元件S2 之跨壓、vL1 為儲能電感L1 之跨壓、vN1 為一次側線圈N1 或激磁電感Lm 之跨壓、vN2 為二次側線圈N2 之跨壓、vC1 為儲能電容C1 之跨壓、vC2 為靴帶電容C2 之跨壓。v gS1 is the gate driving signal of the first switching element S 1 , v gS2 is the gate driving signal of the second switching element S 2 , v DS1 is the voltage across the first switching element S 1 , and v DS2 is the second switching element The voltage across S 2 , v L1 is the voltage across the energy storage inductor L 1 , v N1 is the voltage across the primary side coil N 1 or the magnetizing inductance L m , v N2 is the voltage across the secondary side coil N 2 , v C1 The voltage across the storage capacitor C 1 and v C2 are the cross-pressure of the bootstrap capacitor C 2 .

為了方便分析,設定條件如下:當切換週期為T s 時,則第一開關元件S1 及第二開關元件S2 之導通時間為DT s ,而第一開關元件S1 及第二開關元件S2 之截止時間為(1-D )T s 。第第一開關元件S1 、二開關元件S2 、第一二極體D1 、第二二極體D2 及第三二極體D3 均視為理想元件,即開關切換時間、導通電阻、二極體反向恢復時間與順向導通壓降均忽略不計。儲能電感L1 、耦合電感15、儲能電容C1 與靴帶電容 C2 均不考慮寄生電阻,且靴帶電容C2 足夠大,使其跨壓於穩態時會保持在(1+n)倍的輸入電壓vi 加上(1+n)倍的儲能電容C1 上之跨壓vC1 。耦合電感15之耦合係數為一,整體電路操作於連續導通模式下。For the convenience of analysis, the setting conditions are as follows: when the switching period is T s , the on-time of the first switching element S 1 and the second switching element S 2 is DT s , and the first switching element S 1 and the second switching element S The cutoff time of 2 is (1- D ) T s . The first switching element S 1 , the two switching elements S 2 , the first diode D 1 , the second diode D 2 and the third diode D 3 are regarded as ideal components, that is, switching time and on-resistance The reverse recovery time of the diode and the forward voltage drop are negligible. The energy storage inductor L 1 , the coupled inductor 15, the storage capacitor C 1 and the boot capacitor C 2 do not take into account the parasitic resistance, and the shoe capacitor C 2 is large enough to remain at (1+) when the voltage is across the steady state. n) The input voltage v i is added (1 + n) times the voltage across the storage capacitor C 1 across the voltage v C1 . The coupling coefficient of the coupled inductor 15 is one, and the overall circuit operates in the continuous conduction mode.

參閱圖3,是如圖2基於上述各元件的電流波形及電壓波形的時序圖,以下將配合圖4及圖5介紹本發明的兩種控制模式。3 is a timing chart based on current waveforms and voltage waveforms of the above-described respective elements as shown in FIG. 2. Hereinafter, two control modes of the present invention will be described with reference to FIGS. 4 and 5.

參閱圖4,第一模式為時間區間t 0 t t 1 ,此時的第一開關元件S1 導通及第二開關元件S2 導通,儲能電感L1 兩端之跨壓為vi ,故儲能電感L1 進行激磁。同時,第一二極體D1 截止和第三二極體D3 截止,第二二極體D2 導通,激磁電感Lm 上跨壓為輸入電源vi 加上儲能電容C1 上之跨壓vC1 ,令激磁電感Lm 進行激磁。Referring to Figure 4, the first mode is the time interval t 0 t t 1, in this case a first switching element S 1 is turned on and the second switching element S 2 is turned on, the voltage across the inductor L 1 of the two ends of v i, so energizing the inductor L 1. At the same time, the first diode D 1 is turned off and the third diode D 3 is turned off, the second diode D 2 is turned on, and the voltage across the magnetizing inductance L m is the input power source v i plus the storage capacitor C 1 The magnetizing inductance L m is excited across the voltage v C1 .

另外,輸入電源vi 加上儲能電容C1 上之跨壓vC1 與二次側線圈N2 之跨壓vN2 對靴帶電容C2 充電,此時二次側線圈N2 上跨壓為n倍的一次側線圈N1 上之跨壓vN1 。其相關之微分方程式如公式1。Further, the input power v i and v C1 plus the voltage across the secondary winding N 1 of the voltage across the energy storage capacitor C 2 V N2 of the bootstrap capacitor C 2 charged, then the voltage across the secondary winding N 2 It is n times the cross-over voltage V N1 on the primary side coil N 1 . Its associated differential equation is Equation 1.

由於匝數比n如公式2。Since the turns ratio n is as in Equation 2.

根據公式2可得知一次側線圈N1 之電流i1 和二次側線圈N2 之電流i2 之關係及一次側線圈N1 之跨壓vN1 和二次側線圈N2 之跨壓vN2 之關係如下述公式3及公式4。According to Equation 2 can know a current of the primary side coil N 1 i N 1 and the secondary coil of the current i 2 2 The relationship between N and the primary side coil of a voltage across the v N1 and the voltage across the secondary winding N 2 of the V The relationship of N2 is as shown in the following formula 3 and formula 4.

i 1 =n ×i 2 公式3 i 1 = n × i 2 formula 3

v N 2 =n ×v N 1 公式4 v N 2 = n × v N 1 Equation 4

將公式3帶入公式1,經整理後,可得公式5。Put Equation 3 into Equation 1, and after finishing, Equation 5 can be obtained.

另外,靴帶電容C2 之跨壓vC2 可表示為公式6。In addition, the span voltage v C2 of the shoe strap capacitor C 2 can be expressed as Equation 6.

v C 2 =v N 1 +v N 2 =(1+n )×(v i +v C 1 ) 公式6 v C 2 = v N 1 + v N 2 = (1+ n ) × ( v i + v C 1 ) Equation 6

參閱圖5,第二模式為時間區間t 1 t t 0 +T s ,此時的第一開關元件S1 截止及第二開關元件S2 截止,第二二極體D2 截止,第一二極體D1 導通和第三二極體D3 導通,儲能電感 L1 兩端之跨壓為-vC1 ,故儲能電感L1 進行去磁,並對輸出電容Co 進行充電,而激磁電感Lm 兩端之跨壓為vi +vC1 +vC2 -vN2 -vo ,故激磁電感Lm 進行去磁,其相關的微分方程式如公式7。Referring to Figure 5, the second mode is the time interval t 1 t t 0 + T s, at this time the first switching element S 1 is turned off and the second switching element S 2 is turned off, the second diode D 2 is turned off, the first diode D 1 is turned on and the third diode D 3 When turned on, the voltage across the energy storage inductor L 1 is -v C1 , so the energy storage inductor L 1 is demagnetized and the output capacitor C o is charged, and the voltage across the excitation inductor L m is v i + v C1 +v C2 -v N2 -v o , so the magnetizing inductance L m is demagnetized, and its associated differential equation is as in Equation 7.

第二模式中,一次側線圈N1 之電流i1 、二次側線圈N2 之電流i2 和激磁電感Lm 上之電流iLm 關係如公式8。The second mode, the current of the primary side coil N 1 i 1, the secondary winding N 2 of the current i 2 and the magnetizing inductor current relationship of m L i Lm Equation 8.

i 2 =-i 1 -i Lm 公式8 i 2 =- i 1 - i Lm Equation 8

將公式3帶入公式8,可將二次側線圈N2 之電流i2 改寫為公式9。By introducing Equation 3 into Equation 8, the current i 2 of the secondary side coil N 2 can be rewritten to Equation 9.

另外,由公式7可得一次側線圈N1 之跨壓vN1 如公式10。In addition, the voltage across the primary side coil N 1 , v N1 , is obtained by Equation 7 as Equation 10.

v N 1 =-v N 2 +v C 2 +v C 1 +v i -v o 公式10 v N 1 =- v N 2 + v C 2 + v C 1 + v i - v o Equation 10

將公式4帶入公式10,可將一次側線圈N1 之跨壓vN1 改寫成 By introducing Equation 4 into Equation 10, the cross-over voltage V N1 of the primary side coil N 1 can be rewritten into

將公式3、公式6、公式9和公式11帶入公式7,可得公式12。Equation 3, Equation 6, Equation 9, and Equation 11 are brought into Equation 7, and Equation 12 is obtained.

若〈x〉代表變數x的平均值,其中,x可為電壓或電流,則如公式13。If <x> represents the average of the variables x, where x can be voltage or current, then Equation 13.

故可由公式5與公式12得知其平均方程式如公式14。Therefore, the average equation such as Equation 14 can be known from Equation 5 and Equation 12.

其中,d為用以驅動第一開關元件S1 及第二開關元件S2 之閘極控制訊號的責任週期。Where d is a duty cycle for driving the gate control signals of the first switching element S 1 and the second switching element S 2 .

由於先前以假設靴帶電容C2 夠大,大到可以維持一個穩定的電壓,因此可以根據安培-秒平衡,使得〈i2 〉可用〈iLm 〉來表示,如公式15。Since it was previously assumed that the shoe strap capacitance C 2 is large enough to maintain a stable voltage, it can be expressed in terms of ampere-second balance such that <i 2 〉 can be expressed by <i Lm 〉, as in Equation 15.

因此,將公式15代入公式14,整理後可得公式16。Therefore, formula 15 is substituted into formula 14, and formula 16 is obtained.

為了得到此轉換器之小訊號模型,對公式16進行擾動和線性化。首先將〈x〉以直流穩態值X加上一交流擾動量來表示,這個交流擾動量是遠小於穩態直流值,如公式 17。In order to obtain a small signal model for this converter, Equation 16 is perturbed and linearized. First, add <x> to the DC steady-state value X plus an AC disturbance. To show that this AC disturbance is much smaller than the steady-state DC value, as in Equation 17.

將公式17代入公式16,可得公式18。Substituting Equation 17 into Equation 16, Equation 18 is obtained.

將公式18捨去直流項與小擾動之高階項,則可得公式19。Equation 19 is obtained by rounding off the high-order term of the DC term and the small perturbation.

根據公式19可得其小訊號模型,如圖6所示。同理,將公式18捨去交流項與小擾動之高階項,則可得公式20。According to the formula 19, the small signal model can be obtained, as shown in FIG. 6. In the same way, formula 20 can be obtained by rounding off the high-order term of the alternating term and the small perturbation.

參閱圖7,將電感視為短路及電容視為開路,則可得到大訊號模型,根據此大訊號模型可得公式21。Referring to Figure 7, the inductor is considered to be a short circuit and the capacitor is considered to be an open circuit, and a large signal model can be obtained. According to this large signal model, Equation 21 can be obtained.

故可得此轉換器之電壓轉換比如公式22。Therefore, the voltage conversion of this converter can be obtained as in Equation 22.

參閱圖8,電力轉換裝置100採用一回授控制系統3,回授控制系統3的規格如表1所示。Referring to FIG. 8, the power conversion apparatus 100 employs a feedback control system 3, and the specifications of the feedback control system 3 are as shown in Table 1.

回授控制系統3用以驅動第一開關元件S1 及第二開關元件S2 的導通與否,回授控制系統3包括一分壓電路(Voltage Divider)30、一比較器31、一誤差放大器(Error Amplifier)32、一脈波寬度調變器(Pulse-Width Modulator)33和閘極驅動器(Gate Drivers)34組合而成,除此之外,vref 為參考電壓。The feedback control system 3 is configured to drive the conduction of the first switching element S 1 and the second switching element S 2 , and the feedback control system 3 includes a voltage divider circuit (Voltage Divider) 30 , a comparator 31 , and an error An amplifier (Error Amplifier) 32, a pulse width modulator (Pulse-Width Modulator) 33, and a gate driver (Gate Drivers) 34 are combined, and v ref is a reference voltage.

參閱圖9,為100%額定負載且輸入電壓vi =24伏時,第一開關元件S1 之閘極驅動訊號vgS1 的波形、第二開關元件S2 之閘極驅動訊號vgS2 的波形、流經儲能電感L1 之電流i L 1 的波形。Referring to Figure 9, at 100% of rated load and the input voltage v i = 24 volts, the first switching element S 1 of the gate drive signal V GS1 waveform, the waveform of the second switching element S 2 of the gate of the drive signal v gS2 The waveform of the current i L 1 flowing through the storage inductor L 1 .

參閱圖10,為100%額定負載且輸入電壓vi =24伏時,第一開關元件S1 之閘極驅動訊號vgS1 的波形、第二開關元件S2 之閘極驅動訊號vgS2 的波形、流經耦合電感15的一次側線圈N1 之電流i3 的波形、流經耦合電感15的二次側線 圈N2 之電流i2 的波形。Referring to Figure 10, at 100% of rated load and the input voltage v i = 24 volts, the first switching element S 1 of the gate drive signal V GS1 waveform, the waveform of the second switching element S 2 of the gate of the drive signal v gS2 The waveform of the current i 3 flowing through the primary side coil N 1 of the coupled inductor 15 and the current i 2 flowing through the secondary side coil N 2 of the coupled inductor 15 .

參閱圖11,為100%額定負載且輸入電壓vi =24伏時,第一開關元件S1 之閘極驅動訊號vgS1 的波形、第二開關元件S2 之閘極驅動訊號vgS2 的波形、流經第一開關元件S1 上之電流iDS1 、流經第二開關元件S2 上之電流iDS2 的波形。Referring to Figure 11, at 100% of rated load and the input voltage v i = 24 volts, the first switching element S 1 of the gate drive signal V GS1 waveform, the waveform of the second switching element S 2 of the gate of the drive signal v gS2 , a current flowing through the first switching element on the S 1 i DS1, the electric current flowing through the second switching element 2 S i DS2 waveform.

參閱圖12,為100%額定負載且輸入電壓vi =24伏時,第一開關元件S1 之閘極驅動訊號vgS1 的波形、第二開關元件S2 之閘極驅動訊號vgS2 的波形、儲能電容C1 之跨壓vC1 的波形、靴帶電容C2 之跨壓vC2 的波形。Referring to Figure 12, at 100% of rated load and the input voltage v i = 24 volts, the first switching element S 1 of the gate drive signal V GS1 waveform, the waveform of the second switching element S 2 of the gate of the drive signal v gS2 The waveform of the voltage across the voltage c C1 of the storage capacitor C 1 and the voltage across the pressure V C2 of the shoe capacitor C 2 .

參閱圖13,為100%額定負載且輸入電壓vi =24伏時,第一開關元件S1 之閘極驅動訊號vgS1 的波形、第一二極體D1 上之電壓vD1 的波形、第二二極體D2 上之電壓vD2 的波形,及第三二極體D3 上之電壓vD3 的波形。Referring to FIG. 13, when the input voltage v i is 24 volts, the waveform of the gate driving signal v gS1 of the first switching element S 1 , the waveform of the voltage v D1 on the first diode D 1 , The waveform of the voltage v D2 on the second diode D 2 and the waveform of the voltage v D3 on the third diode D 3 .

綜上所述,本發明具高升轉換比之電力轉換裝置100之功效在於:設計者可以利用二次側線圈N2 及一次側線圈N1 的匝數比n來調整其升壓比以增加其設計彈性,且所使用之第二開關元件S2 為非浮動式,整體驅動方式簡單以及實用,故確實能達成本發明之目的。In summary, the power conversion device 100 of the present invention having a high up conversion ratio has the effect that the designer can adjust the boost ratio by using the turns ratio n of the secondary side coil N 2 and the primary side coil N 1 to increase the boost ratio thereof. The design flexibility, and the second switching element S 2 used is non-floating, and the overall driving method is simple and practical, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.

100‧‧‧電力轉換裝置100‧‧‧Power conversion device

111‧‧‧儲能電感的第一端111‧‧‧ first end of the energy storage inductor

112‧‧‧儲能電感的第二端112‧‧‧The second end of the energy storage inductor

121‧‧‧儲能電容的第一端121‧‧‧First end of the storage capacitor

122‧‧‧儲能電容的第二端122‧‧‧Second end of the storage capacitor

131‧‧‧第一二極體的陽極131‧‧‧Anode of the first diode

132‧‧‧第一二極體的陰極132‧‧‧The cathode of the first diode

141‧‧‧第二二極體的陽極141‧‧‧Anode of the second diode

142‧‧‧第二二極體的陰極142‧‧‧ cathode of the second diode

15‧‧‧耦合電感15‧‧‧Coupled inductor

151‧‧‧一次側線圈的第一端151‧‧‧First end of the primary side coil

152‧‧‧一次側線圈的第二端152‧‧‧second end of the primary side coil

161‧‧‧二次側線圈的第一端161‧‧‧ the first end of the secondary coil

162‧‧‧二次側線圈的第二端162‧‧‧second end of the secondary coil

171‧‧‧第三二極體的陽極171‧‧‧ anode of the third diode

172‧‧‧第三二極體的陰極172‧‧‧ cathode of the third diode

181‧‧‧靴帶電容的第一端181‧‧‧ Boots with the first end of the capacitor

182‧‧‧靴帶電容的第二端182‧‧‧ Boots with the second end of the capacitor

201‧‧‧第一開關元件的第一端201‧‧‧First end of the first switching element

202‧‧‧第一開關元件的第二端202‧‧‧The second end of the first switching element

301‧‧‧第二開關元件的第一端301‧‧‧ the first end of the second switching element

302‧‧‧第二開關元件的第二端302‧‧‧second end of the second switching element

C1 ‧‧‧儲能電容C 1 ‧‧‧ storage capacitor

C2 ‧‧‧靴帶電容C 2 ‧‧‧boot with capacitor

Co ‧‧‧輸出電容C o ‧‧‧output capacitor

D1 ‧‧‧第一二極體D 1 ‧‧‧First Diode

D2 ‧‧‧第二二極體D 2 ‧‧‧Secondary

D3 ‧‧‧第三二極體D 3 ‧‧‧third diode

L1 ‧‧‧儲能電感L 1 ‧‧‧ storage inductor

Ro ‧‧‧輸出電阻R o ‧‧‧ output resistance

S1 ‧‧‧第一開關元件S 1 ‧‧‧first switching element

S2 ‧‧‧第二開關元件S 2 ‧‧‧Second switching element

vi ‧‧‧輸入電壓v i ‧‧‧ input voltage

vo ‧‧‧輸出電壓v o ‧‧‧output voltage

圖1是一電路圖,說明本發明具高升轉換比之電力轉換 裝置之較佳實施例;圖2是一電路圖,說明本發明具高升轉換比之電力轉換裝置標示各元件對應的電流及電壓;圖3是一波形時序圖,說明如圖2各元件的電流波形及電壓波形;圖4是一電路示意圖,說明本發明具高升轉換比之電力轉換裝置於第一模式的導通路徑;圖5是一電路示意圖,說明本發明具高升轉換比之電力轉換裝置於第二模式的導通路徑;圖6是一電路示意圖,說明本發明具高升轉換比之電力轉換裝置的小訊號模型;圖7是一電路示意圖,說明本發明具高升轉換比之電力轉換裝置的大訊號模型;圖8是一電路方塊圖,說明本發明具高升轉換比之電力轉換裝置之較佳實施例採用的回授控制系統;及圖9至圖13是波形圖,說明本發明具高升轉換比之電力轉換裝置的模擬結果。1 is a circuit diagram illustrating power conversion of the present invention with a high conversion ratio 2 is a circuit diagram illustrating the current and voltage corresponding to each component of the power conversion device having a high up conversion ratio according to the present invention; FIG. 3 is a waveform timing diagram illustrating the current waveform of each component of FIG. And a voltage waveform; FIG. 4 is a circuit diagram illustrating a conduction path of the power conversion device with a high up conversion ratio in the first mode of the present invention; FIG. 5 is a circuit diagram illustrating the power conversion device with a high conversion ratio of the present invention. FIG. 6 is a circuit diagram illustrating a small signal model of the power conversion device with high rise conversion ratio of the present invention; FIG. 7 is a circuit diagram illustrating a large signal of the power conversion device with high rise conversion ratio of the present invention. FIG. 8 is a circuit block diagram illustrating a feedback control system employed in a preferred embodiment of the power conversion apparatus of the present invention having a high up conversion ratio; and FIGS. 9-13 are waveform diagrams illustrating the present invention having a high up conversion ratio The simulation result of the power conversion device.

100‧‧‧電力轉換裝置100‧‧‧Power conversion device

111‧‧‧儲能電感的第一端111‧‧‧ first end of the energy storage inductor

112‧‧‧儲能電感的第二端112‧‧‧The second end of the energy storage inductor

121‧‧‧儲能電容的第一端121‧‧‧First end of the storage capacitor

122‧‧‧儲能電容的第二端122‧‧‧Second end of the storage capacitor

131‧‧‧第一二極體的陽極131‧‧‧Anode of the first diode

132‧‧‧第一二極體的陰極132‧‧‧The cathode of the first diode

141‧‧‧第二二極體的陽極141‧‧‧Anode of the second diode

142‧‧‧第二二極體的陰極142‧‧‧ cathode of the second diode

15‧‧‧耦合電感15‧‧‧Coupled inductor

151‧‧‧一次側線圈的第一端151‧‧‧First end of the primary side coil

152‧‧‧一次側線圈的第二端152‧‧‧second end of the primary side coil

161‧‧‧二次側線圈的第一端161‧‧‧ the first end of the secondary coil

162‧‧‧二次側線圈的第二端162‧‧‧second end of the secondary coil

171‧‧‧第三二極體的陽極171‧‧‧ anode of the third diode

172‧‧‧第三二極體的陰極172‧‧‧ cathode of the third diode

181‧‧‧靴帶電容的第一端181‧‧‧ Boots with the first end of the capacitor

182‧‧‧靴帶電容的第二端182‧‧‧ Boots with the second end of the capacitor

201‧‧‧第一開關元件的第一端201‧‧‧First end of the first switching element

202‧‧‧第一開關元件的第二端202‧‧‧The second end of the first switching element

301‧‧‧第二開關元件的第一端301‧‧‧ the first end of the second switching element

302‧‧‧第二開關元件的第二端302‧‧‧second end of the second switching element

C1 ‧‧‧儲能電容C 1 ‧‧‧ storage capacitor

C2 ‧‧‧靴帶電容C 2 ‧‧‧boot with capacitor

Co ‧‧‧輸出電容C o ‧‧‧output capacitor

D1 ‧‧‧第一二極體D 1 ‧‧‧First Diode

D2 ‧‧‧第二二極體D 2 ‧‧‧Secondary

D3 ‧‧‧第三二極體D 3 ‧‧‧third diode

S1 ‧‧‧第一開關元件S 1 ‧‧‧first switching element

L1 ‧‧‧儲能電感L 1 ‧‧‧ storage inductor

Ro ‧‧‧輸出電阻R o ‧‧‧ output resistance

S2 ‧‧‧第二開關元件S 2 ‧‧‧Second switching element

vi ‧‧‧輸入電壓v i ‧‧‧ input voltage

vo ‧‧‧輸出電壓v o ‧‧‧output voltage

Claims (3)

一種具高升轉換比之電力轉換裝置,適用於將一輸入電壓進行升壓,該電力轉換裝置包含:一儲能電感,具有一接收該輸入電壓的第一端及一第二端;一儲能電容,具有一與該儲能電感之第一端耦接的第一端及一第二端;一第一二極體,具有一與該儲能電感之第二端耦接的陽極及一與該儲能電容之第二端耦接的陰極;一第二二極體,具有一與該儲能電容之第二端耦接的陽極及一陰極;一耦合電感,具有一一次側線圈及一二次側線圈,該二次側線圈及該一次側線圈的匝數比n,該一次側線圈具有一與該第二二極體的陰極耦接的第一端及一第二端,該二次側線圈具有一與該第二二極體的陰極及該一次側線圈的第一端耦接的第一端及一第二端;一第三二極體,具有一與該一次側線圈之第二端耦接的陽極及一陰極;一靴帶電容,具有一與該二次側線圈之第二端耦接的第一端及一與該第一二極體的陽極耦接的第二端;一第一開關元件,與該靴帶電容之第二端耦接且受外部控制導通與否;及一第二開關元件,與該一次側線圈之第二端及該第三二極體之陽極耦接且受外部控制導通與否; 當該第一開關元件不導通及該第二開關元件不導通時,該第一二極體導通、該第三二極體導通及該第二二極體截止,該儲能電感之跨壓為該儲能電容之跨壓且該儲能電感進行去磁;當該第一開關元件導通及該第二開關元件導通時,該儲能電感之跨壓為該輸入電壓而進行激磁,該第一二極體截止、該第三二極體截止及該第二二極體導通,且該輸入電壓加上該儲能電容之跨壓與該二次側線圈之跨壓對該靴帶電容充電,令該二次側線圈上跨壓為n倍該一次側線圈上之跨壓。A power conversion device with a high-rise conversion ratio, which is suitable for boosting an input voltage, the power conversion device comprising: a storage inductor having a first end and a second end receiving the input voltage; The capacitor has a first end and a second end coupled to the first end of the energy storage inductor; a first diode having an anode coupled to the second end of the energy storage inductor and a a cathode coupled to the second end of the storage capacitor; a second diode having an anode coupled to the second end of the storage capacitor and a cathode; a coupled inductor having a primary coil and a secondary side coil having a turns ratio n of the secondary side coil and the primary side coil, the primary side coil having a first end and a second end coupled to the cathode of the second diode The secondary side coil has a first end and a second end coupled to the cathode of the second diode and the first end of the primary side coil; a third diode having a primary side coil The second end is coupled to the anode and a cathode; a bootband capacitor has a second and the second side coil a first end coupled to the end and a second end coupled to the anode of the first diode; a first switching element coupled to the second end of the strap capacitor and externally controlled to conduct; And a second switching element coupled to the second end of the primary side coil and the anode of the third diode and controlled by external control; When the first switching element is non-conducting and the second switching element is non-conducting, the first diode is turned on, the third diode is turned on, and the second diode is turned off, and the voltage across the storage inductor is The energy storage capacitor is biased and the energy storage inductor is demagnetized; when the first switching element is turned on and the second switching element is turned on, the voltage across the energy storage inductor is excited by the input voltage, the first The diode is turned off, the third diode is turned off, and the second diode is turned on, and the input voltage plus the voltage across the storage capacitor and the voltage across the secondary coil charge the shoe capacitor. The cross-over pressure on the secondary side coil is n times the cross-pressure on the primary side coil. 依據申請專利範圍第1項所述之具高升轉換比之電力轉換裝置,其中,該第一開關元件及該第二開關元件皆為一接地的非浮動式開關元件。The power conversion device with a high-rise conversion ratio according to claim 1, wherein the first switching element and the second switching element are both grounded non-floating switching elements. 依據申請專利範圍第1項所述之具高升轉換比之電力轉換裝置,其中,該靴帶電容的電容值足以使得其跨壓於穩態時保持在(1+n)倍的該輸入電壓加上(1+n)倍的該儲能電容之跨壓。A power conversion device with a high-up conversion ratio according to claim 1, wherein the capacitance of the boot band capacitor is sufficient to maintain the input voltage (1+n) times when it is across a steady state. The (1+n) times the voltage across the storage capacitor.
TW102102209A 2013-01-21 2013-01-21 A power conversion device with a high conversion ratio TWI477049B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102102209A TWI477049B (en) 2013-01-21 2013-01-21 A power conversion device with a high conversion ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102102209A TWI477049B (en) 2013-01-21 2013-01-21 A power conversion device with a high conversion ratio

Publications (2)

Publication Number Publication Date
TW201431264A TW201431264A (en) 2014-08-01
TWI477049B true TWI477049B (en) 2015-03-11

Family

ID=51797086

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102102209A TWI477049B (en) 2013-01-21 2013-01-21 A power conversion device with a high conversion ratio

Country Status (1)

Country Link
TW (1) TWI477049B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565207B (en) * 2016-01-19 2017-01-01 國立臺北科技大學 Isolated high-step-up dc-dc converter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554014B (en) * 2015-06-01 2016-10-11 遠東科技大學 High step-up dc power converter
CN114583963B (en) * 2020-12-02 2024-06-14 艾科微电子(深圳)有限公司 Flyback converter and control method thereof
CN117220501B (en) * 2023-09-15 2024-03-12 君翰玺(上海)医疗器械有限公司 Power supply system of denture processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200937153A (en) * 2008-02-18 2009-09-01 Univ Nat Taipei Technology Boost converting system capable of increasing boost ratio
CN101647182A (en) * 2006-12-30 2010-02-10 先进模拟科技公司 The efficient DC/DC electric pressure converter that comprises the rearmounted transducer of boost inductance formula switch preregulator and capacitance-type switch
TW201025808A (en) * 2008-12-17 2010-07-01 Univ Nat Taipei Technology High boost converter
TW201249085A (en) * 2011-05-19 2012-12-01 Univ Nat Taipei Technology Boost converter circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647182A (en) * 2006-12-30 2010-02-10 先进模拟科技公司 The efficient DC/DC electric pressure converter that comprises the rearmounted transducer of boost inductance formula switch preregulator and capacitance-type switch
TW200937153A (en) * 2008-02-18 2009-09-01 Univ Nat Taipei Technology Boost converting system capable of increasing boost ratio
TW201025808A (en) * 2008-12-17 2010-07-01 Univ Nat Taipei Technology High boost converter
TW201249085A (en) * 2011-05-19 2012-12-01 Univ Nat Taipei Technology Boost converter circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565207B (en) * 2016-01-19 2017-01-01 國立臺北科技大學 Isolated high-step-up dc-dc converter

Also Published As

Publication number Publication date
TW201431264A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
US10263528B2 (en) Resonant converter with adaptive switching frequency and the method thereof
US8837174B2 (en) Switching power-supply apparatus including switching elements having a low threshold voltage
US9997988B2 (en) Zero-crossing detection circuit
US9698690B2 (en) Control method and control circuit for four-switch buck-boost converter
US8710905B2 (en) Bias voltage generating circuit and switching power supply thereof
US20170033697A1 (en) Voltage peak detection circuit and detection method
EP2526615B1 (en) Power conversion with zero voltage switching
CN108933515B (en) Flyback converter controller, flyback converter and operation method thereof
CN105515378A (en) Hysteretic control DC/DC converter device and operating method thereof
TWI477049B (en) A power conversion device with a high conversion ratio
EP3324707B1 (en) Isolated single-ended primary inductor converter with voltage clamp circuit
US20120033469A1 (en) Electric Power Conversion System Having An Adaptable Transformer Turns Ratio For Improved Efficiency
WO2013173160A2 (en) Switched mode power converter for high voltage applications
Ayachit et al. Open-loop small-signal transfer functions of the quadratic buck PWM DC-DC converter in CCM
TWI514730B (en) Ultra high step-down converter
CN106655764A (en) interleaved buck converter
TWI586092B (en) Single stage AC to DC converter
CN103441668A (en) High-gain boost DC-DC converter allowing pseudo continuous work
Pop-Călimanu et al. A new hybrid Boost-L converter
CN104270009A (en) Multi-output power circuit and air conditioner
TWI477043B (en) Power conversion circuit with high boost gain
US8421436B2 (en) Step-down converter maintaining stable operation at start up
CN210780559U (en) Single-stage double-cut type wide input range power supply conversion circuit
TWI501525B (en) High step-up converter based on multi-winding coupled inductor and charge pump capacitor
CN105576956B (en) Power circuit and Switching Power Supply

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees