TWI490859B - Memory array device and method of operating the same - Google Patents
Memory array device and method of operating the same Download PDFInfo
- Publication number
- TWI490859B TWI490859B TW100116945A TW100116945A TWI490859B TW I490859 B TWI490859 B TW I490859B TW 100116945 A TW100116945 A TW 100116945A TW 100116945 A TW100116945 A TW 100116945A TW I490859 B TWI490859 B TW I490859B
- Authority
- TW
- Taiwan
- Prior art keywords
- applying
- memory
- voltage
- memory cell
- bias
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Description
本案是關於一種記憶體陣列裝置,特別是關於不受溫度影響的記憶體陣列裝置。This case relates to a memory array device, and more particularly to a memory array device that is not affected by temperature.
傳統的相變化記憶體操作在單極模式(unipolar mode),其意謂著重設電流及設定電流的方向相同。記憶體狀態是藉由相變化物質的相來定義,相包含用來作為高電阻狀態的非晶相(amorphous),以及用來作為低電阻狀態的結晶(crystalline)相。操作於單極模式下的記憶胞具有小尺寸的記憶胞陣列、在低溫的範圍(低於攝氏85)較佳的資料保存能力、以及可操作於高速的優點。The conventional phase change memory operates in a unipolar mode, which means that the direction of the set current and the set current are the same. The state of the memory is defined by the phase of the phase change material, which contains an amorphous phase for use as a high resistance state and a crystalline phase for use as a low resistance state. The memory cells operating in the unipolar mode have a small size memory cell array, a good data retention capability in a low temperature range (below 85 degrees Celsius), and an advantage of being operable at high speed.
請參閱第一圖(a),其為習知記憶胞與單極定址電路10的示意圖。記憶胞101包含第一電極1011、第二電極1012、以及位於第一電極1011與第二電極1012之間的記憶材料1013。單極定址電路102包含電晶體103、位元線104、字元線105、以及源極線107。Please refer to the first figure (a), which is a schematic diagram of a conventional memory cell and unipolar addressing circuit 10. The memory cell 101 includes a first electrode 1011, a second electrode 1012, and a memory material 1013 between the first electrode 1011 and the second electrode 1012. The unipolar addressing circuit 102 includes a transistor 103, a bit line 104, a word line 105, and a source line 107.
請參閱第一圖(b),其為在單極操作下的閘極電壓的波形圖。橫軸代表時間,以奈秒為單位,縱軸代表電壓,以伏特為單位。在第一圖(b)中的波形WF1代表施加於電晶體103的閘極的電壓Vg1 的波形,電壓Vg1 等於施加於字元線105的電壓VWL1 。在第一圖(a)中的記憶胞101受到定址電路102的一第一偏壓操作,該第一偏壓操作可使記憶胞101程式化為高電阻狀態。該第一偏壓操作包含:施加電壓VBL1 =4伏特於位元線104、施加電壓VWL1 於字元線105、施加電壓Vsub=0伏特於電晶體103的基底B、以及施加電壓VSL1 =0伏特於源極線107。Please refer to the first diagram (b), which is a waveform diagram of the gate voltage under unipolar operation. The horizontal axis represents time in nanoseconds and the vertical axis represents voltage in volts. The waveform of the voltage V g1 represents a first waveform WF1 view (b) is applied to the gate electric crystal 103, is equal to the voltage V g1 is applied to the word line voltage V WL1 105 is. The memory cell 101 in the first diagram (a) is subjected to a first bias operation of the addressing circuit 102, which can cause the memory cell 101 to be programmed into a high resistance state. The first biasing operation includes applying a voltage V BL1 = 4 volts to the bit line 104, applying a voltage V WL1 to the word line 105, applying a voltage Vsub = 0 volt to the substrate B of the transistor 103, and applying a voltage V SL1 =0 volts on source line 107.
在第一圖(b)中,波形WF1的上升期間、波寬、以及下降期間分別為19奈秒、70奈秒、以及2奈秒,當電壓VWL1 在19奈秒的上升期間從0伏特快速地上升至2.4伏特後,電壓VWL1 在2.4伏特維持70奈秒,此時通過記憶胞101的電流為相對較高的電流I1=600微安培(如第一圖(a)所示),然後電壓VWL1 在2奈秒的下降期間從2.4伏特快速地下降至0伏特。波形WF1形成的高電流及快速下降過程,使記憶材料1013形成非晶相,該非晶相會形成記憶材料1013的高電阻狀態。In the first diagram (b), the rising period, the wave width, and the falling period of the waveform WF1 are 19 nanoseconds, 70 nanoseconds, and 2 nanoseconds, respectively, when the voltage V WL1 rises from 0 volts during the rise of 19 nanoseconds. After rapidly rising to 2.4 volts, the voltage V WL1 is maintained at 2.4 nanoseconds at 2.4 volts, at which time the current through the memory cell 101 is a relatively high current I1 = 600 microamperes (as shown in the first diagram (a)), The voltage V WL1 then quickly drops from 2.4 volts down to 0 volts during a 2 nanosecond drop. The high current and rapid descent process formed by the waveform WF1 causes the memory material 1013 to form an amorphous phase which will form a high resistance state of the memory material 1013.
請參閱第一圖(c),其為習知記憶胞與單極定址電路的示意圖。在第一圖(c)中的單極定址電路112與第一圖(a)中的單極定址電路102的差異在於所施加於字元線105的電壓VWL2 。請參閱第一圖(d),其為在單極操作下的閘極電壓的波形圖。橫軸代表時間,以奈秒為單位,縱軸代表電壓,以伏特為單位。在第一圖(c)中的波形WF2代表施加於電晶體103的閘極電壓Vg2 的波形,閘極電壓Vg2 等於施加於字元線105的電壓VWL2 。在第一圖(d)中的記憶胞101受到單極定址電路102的一第二偏壓操作,該第二偏壓操作可使記憶胞101抹除為低電阻狀態。該第二偏壓操作包含:施加電壓VBL1 =4伏特於位元線104、施加電壓VWL2 於字元線105、施加電壓Vsub=0伏特於電晶體103的基底B、以及施加電壓VSL1 =0伏特於源極線107。Please refer to the first figure (c), which is a schematic diagram of a conventional memory cell and a unipolar addressing circuit. The difference between the unipolar addressing circuit 112 in the first diagram (c) and the unipolar addressing circuit 102 in the first diagram (a) is the voltage V WL2 applied to the word line 105. Please refer to the first diagram (d), which is a waveform diagram of the gate voltage under unipolar operation. The horizontal axis represents time in nanoseconds and the vertical axis represents voltage in volts. The waveform WF2 in the first diagram (c) represents the waveform of the gate voltage V g2 applied to the transistor 103, and the gate voltage V g2 is equal to the voltage V WL2 applied to the word line 105. The memory cell 101 in the first diagram (d) is subjected to a second bias operation of the monopole addressing circuit 102, which erases the memory cell 101 to a low resistance state. The second biasing operation includes: applying a voltage V BL1 = 4 volts to the bit line 104, applying a voltage V WL2 to the word line 105, applying a voltage Vsub = 0 volt to the substrate B of the transistor 103, and applying a voltage V SL1 =0 volts on source line 107.
在第一圖(d)中,波形WF2的上升期間、波寬、以及下降期間分別為100奈秒、400奈秒、以及2000奈秒,當電壓VWL2 在100奈秒的上升期間從0伏特上升至1.2伏特後,電壓VWL2 在1.2伏特維持400奈秒,此時通過記憶胞101的電流為相對較低的電流I2=350微安培(如第一圖(c)所示),然後電壓VWL2 在2000奈秒的下降期間從1.2伏特相對緩慢地下降至0伏特。波形WF2形成的低電流及緩慢下降過程,使記憶材料1013形成結晶相,該結晶相會造成記憶材料1013的低電阻狀態。In the first diagram (d), the rising period, the wave width, and the falling period of the waveform WF2 are 100 nanoseconds, 400 nanoseconds, and 2000 nanoseconds, respectively, when the voltage V WL2 rises from 0 volts during the rise of 100 nanoseconds. After rising to 1.2 volts, the voltage V WL2 is maintained at 400 ns at 1.2 volts, at which time the current through the memory cell 101 is a relatively low current I2 = 350 microamperes (as shown in Figure (c)), then the voltage V WL2 drops relatively slowly from 1.2 volts to 0 volts during a 2000 nanosecond drop. The low current and slow descent process formed by the waveform WF2 causes the memory material 1013 to form a crystalline phase which causes a low resistance state of the memory material 1013.
雖然操作於單極模式下的由記憶胞101所形成的記憶胞陣列具有較小尺寸、在低溫的範圍(低於攝氏85)較佳的資料保存能力、以及可操作於高速的優點,但是當記憶胞101在非晶狀態下卻很容易受到高溫的影響而產生熱退火(annealing),使得材料由非晶相轉變為低電阻狀態的結晶相,也就是說,儲存於記憶胞101的資料受到高溫的影響而被抹除,此為操作於單極模式下的記憶胞101的缺點。Although the memory cell array formed by the memory cell 101 operating in the unipolar mode has a smaller size, a better data retention capability in a low temperature range (less than 85 degrees Celsius), and an advantage of being operable at a high speed, when The memory cell 101 is easily exposed to high temperature in an amorphous state to cause thermal annealing, so that the material is transformed from an amorphous phase to a crystalline phase of a low resistance state, that is, the data stored in the memory cell 101 is subjected to It is erased by the influence of high temperature, which is a disadvantage of the memory cell 101 operating in the unipolar mode.
然而,另一種操作模式稱為雙極操作模式可使記憶胞不易受溫度的影響。請參閱第二圖(a),其為習知記憶胞與雙極定址電路20的示意圖。記憶胞201包含第三電極2011、第四電極2012、以及位於第三電極2011與第四電極2012之間的記憶材料2013。雙極定址電路202包含電晶體203、位元線204、字元線205、以及源極線207。However, another mode of operation, called the bipolar mode of operation, makes the memory cells less susceptible to temperature. Please refer to the second figure (a), which is a schematic diagram of a conventional memory cell and bipolar addressing circuit 20. The memory cell 201 includes a third electrode 2011, a fourth electrode 2012, and a memory material 2013 between the third electrode 2011 and the fourth electrode 2012. The bipolar addressing circuit 202 includes a transistor 203, a bit line 204, a word line 205, and a source line 207.
請參閱第二圖(b),其為在雙極操作下的閘極電壓的波形圖。橫軸代表時間,以奈秒為單位,縱軸代表電壓,以伏特為單位。在第二圖(b)中的波形WF3代表施加於電晶體203的閘極電壓Vg3 的波形,閘極電壓Vg3 等於施加於字元線205的電壓VWL3 。在第二圖(a)中的記憶胞201受到定址電路202的一第三偏壓操作,該第三偏壓操作可使記憶胞201程式化為高電阻狀態。該第三偏壓操作包含:施加電壓VBL2 =0伏特於位元線204、施加電壓VWL3 於字元線205、施加電壓Vsub=0伏特於電晶體203的基底B、以及施加電壓VSL2 =4伏特於源極線207。Please refer to the second diagram (b), which is a waveform diagram of the gate voltage under bipolar operation. The horizontal axis represents time in nanoseconds and the vertical axis represents voltage in volts. The waveform WF3 in the second diagram (b) represents the waveform of the gate voltage Vg3 applied to the transistor 203, and the gate voltage Vg3 is equal to the voltage V WL3 applied to the word line 205. The memory cell 201 in the second diagram (a) is subjected to a third bias operation of the addressing circuit 202, which can cause the memory cell 201 to be programmed into a high resistance state. The third biasing operation includes applying voltage V BL2 =0 volts to bit line 204, applying voltage V WL3 to word line 205, applying voltage Vsub=0 volts to substrate B of transistor 203, and applying voltage V SL2 . = 4 volts on source line 207.
在第二圖(b)中,波形WF3的上升期間、波寬、以及下降期間分別為100奈秒、400奈秒、以及2000奈秒,當電壓VWL3 在100奈秒的上升期間從0伏特上升至3.8伏特後,電壓VWL3 在3.8伏特維持400奈秒,此時通過記憶胞201的電流I3=400微安培(如第二圖(a)所示),然後電壓VWL2 在2000奈秒的下降期間從3.8伏特下降至0伏特。在該第三偏壓操作中會使記憶材料2013中的電絕緣物質(未顯示)與其分離,而造成記憶材料2013的高電阻狀態。In the second diagram (b), the rising period, the wave width, and the falling period of the waveform WF3 are 100 nanoseconds, 400 nanoseconds, and 2000 nanoseconds, respectively, when the voltage V WL3 rises from 0 volts during the rise of 100 nanoseconds. After rising to 3.8 volts, the voltage V WL3 is maintained at 400 ns at 3.8 volts, at which time the current I3 through the memory cell 201 is 400 microamperes (as shown in the second diagram (a)), and then the voltage V WL2 is at 2000 nanoseconds. The falling period drops from 3.8 volts to 0 volts. In the third biasing operation, an electrically insulating substance (not shown) in the memory material 2013 is separated therefrom, resulting in a high resistance state of the memory material 2013.
請參閱第二圖(c),其為習知記憶胞與雙極定址電路的示意圖。在第二圖(c)中的雙極定址電路212與第二圖(a)中的雙極定址電路202的差異在於:所施加於字元線205的電壓VWL3 、所施加於位元線204的電壓VBL3 =4伏特、以及所施加於源極線207的電壓VSL3 =0伏特。Please refer to the second figure (c), which is a schematic diagram of a conventional memory cell and a bipolar addressing circuit. The difference between the bipolar addressing circuit 212 in the second diagram (c) and the bipolar addressing circuit 202 in the second diagram (a) is that the voltage V WL3 applied to the word line 205 is applied to the bit line. the voltage V BL3 204 = 4 volts, and the source line voltage applied to the SL3 = 0 V 207 volts.
請參閱第二圖(d),其為在雙極操作下的閘極電壓的波形圖。橫軸代表時間,以奈秒為單位,縱軸代表電壓,以伏特為單位。在第二圖(d)中的波形WF4代表施加於電晶體203的閘極電壓Vg4 的波形,閘極電壓Vg4 等於施加於字元線205的電壓VWL4 。在第二圖(d)中的記憶胞201受到雙極定址電路212的一第四偏壓操作,該第四偏壓操作可使記憶胞201抹除為低電阻狀態。該第四偏壓操作包含:施加電壓VBL3 =4伏特於位元線204、施加電壓VWL4 於字元線205、施加電壓Vsub=0伏特於電晶體203的基底B、以及施加電壓VSL3 =0伏特於源極線207。Please refer to the second diagram (d), which is a waveform diagram of the gate voltage under bipolar operation. The horizontal axis represents time in nanoseconds and the vertical axis represents voltage in volts. The waveform WF4 in the second diagram (d) represents the waveform of the gate voltage V g4 applied to the transistor 203, and the gate voltage V g4 is equal to the voltage V WL4 applied to the word line 205. The memory cell 201 in the second diagram (d) is subjected to a fourth bias operation of the bipolar addressing circuit 212, which erases the memory cell 201 to a low resistance state. The fourth biasing operation includes applying a voltage V BL3 = 4 volts to the bit line 204, applying a voltage V WL4 to the word line 205, applying a voltage Vsub = 0 volt to the substrate B of the transistor 203, and applying a voltage V SL3 =0 volts on source line 207.
在第二圖(d)中,波形WF4的上升期間、波寬、以及下降期間分別為100奈秒、400奈秒、以及2000奈秒,當電壓VWL4 在100奈秒的上升期間從0伏特上升至1.2伏特後,電壓VWL4 在1.2伏特維持400奈秒,此時通過記憶胞201的電流I4=350微安培(如第二圖(c)所示),然後電壓VWL4 在2000奈秒的下降期間從1.2伏特下降至0伏特。由於該第四偏壓操作與該第三偏壓操作互為電壓極性相反的操作,因此會使記憶材料2013中的電絕緣物質至少一部分(未顯示)合併至其中,而造成記憶材料2013的低電阻狀態。In the second diagram (d), the rising period, the wave width, and the falling period of the waveform WF4 are 100 nanoseconds, 400 nanoseconds, and 2000 nanoseconds, respectively, when the voltage V WL4 rises from 0 volts during the rise of 100 nanoseconds. After rising to 1.2 volts, the voltage V WL4 is maintained at 400 ns at 1.2 volts, at which time the current through the memory cell 201 is I4 = 350 microamps (as shown in Figure 2 (c)), and then the voltage V WL4 is at 2000 nanoseconds. The falling period drops from 1.2 volts to 0 volts. Since the fourth biasing operation and the third biasing operation are mutually opposite in voltage polarity, at least a portion (not shown) of the electrically insulating material in the memory material 2013 is incorporated therein, resulting in a low memory material 2013. Resistance state.
雖然在雙極操作下的記憶胞201不易受溫度的影響而使資料被抹除,然而操作於雙極模式下的由記憶胞201所形成的記憶胞陣列卻具有較大尺寸,而且在此模式下的偏壓電路也較為複雜、以及操作速度較差。因此使記憶胞陣列兼具單極操作與雙極操作下的優點為一重要的課題。Although the memory cell 201 under bipolar operation is less susceptible to temperature and the data is erased, the memory cell array formed by the memory cell 201 operating in the bipolar mode has a larger size, and in this mode The lower bias circuit is also more complicated and the operation speed is poor. Therefore, it is an important subject to make the memory cell array have both the advantages of unipolar operation and bipolar operation.
有鑑於上述單極操作下記憶體陣列的缺點以及雙極操作下記憶體陣列的缺點,一種記憶體陣列裝置被提出,該記憶體陣列裝置使用具有相同結構的記憶胞,唯一的差別在於不同的偏壓電路的設計,其用以偏壓於記憶體陣列,從製程的觀點而言不需要增加額外的成本,而且兼具小尺寸、高記憶容量、可操作於高速、不受高溫影響、高覆寫次數、以及高度可信賴的資料保存能力。In view of the above disadvantages of the memory array under monopolar operation and the disadvantages of the memory array under bipolar operation, a memory array device is proposed which uses memory cells having the same structure, the only difference being that different The bias circuit is designed to be biased to the memory array without additional cost from a process point of view, and has a small size, high memory capacity, high speed operation, high temperature resistance, High overwrites and highly reliable data retention.
依照上述構想,一種記憶體陣列裝置被提出,該記憶體陣列裝置包含一記憶體陣列、一第一電路、以及一第二電路。該記憶體陣列包含一第一分部以及一第二分部,該第一分部包括複數第一記憶胞,該第二分部包括複數第二記憶胞。該第一電路電連接於該記憶體陣列,用以使該第一分部操作於一第一模式。該第二電路電連接於該記憶體陣列,用以使該第二分部操作於一第二模式,該第一模式為一雙極操作模式,該第二模式為一單極操作模式。In accordance with the above concept, a memory array device is proposed, the memory array device including a memory array, a first circuit, and a second circuit. The memory array includes a first portion and a second portion, the first portion including a plurality of first memory cells, and the second portion includes a plurality of second memory cells. The first circuit is electrically connected to the memory array for operating the first portion in a first mode. The second circuit is electrically connected to the memory array for operating the second portion in a second mode, the first mode being a bipolar mode of operation and the second mode being a unipolar mode of operation.
依照上述構想,另一種記憶體陣列裝置被提出,該記憶體陣列裝置包含一記憶體陣列,該記憶體陣列具複數記憶胞,該複數記憶胞分別操作於一第一模式和一第二模式。According to the above concept, another memory array device is proposed. The memory array device includes a memory array having a plurality of memory cells, the plurality of memory cells operating in a first mode and a second mode, respectively.
依照上述構想,另一種記憶體陣列裝置被提出,該記憶體陣列裝置包含一記憶體陣列,該記憶體陣列包含一第一分部及一第二分部。該第一分部操作在一第一操作模式中,該第二分部操作在一第二操作模式中。In accordance with the above concept, another memory array device is proposed. The memory array device includes a memory array including a first portion and a second portion. The first subsection operates in a first mode of operation and the second subsection operates in a second mode of operation.
依照上述構想,一種記憶體陣列裝置的操作方法被提出,該記憶體陣列裝置包含一第一分部及一第二分部,該方法包含下列步驟:施加一雙極操作模式於該第一分部。施加一單極操作模式於該第二分部。In accordance with the above concept, a method of operating a memory array device is disclosed. The memory array device includes a first portion and a second portion. The method includes the steps of applying a bipolar mode of operation to the first portion. unit. A unipolar mode of operation is applied to the second portion.
依照上述構想,另一種記憶體陣列裝置的操作方法被提出,該方法包含下列步驟:以一可信賴方式,使用者可選擇將資料儲存於該第一分部或該第二分部,方法包含下列步驟:施加一雙極操作模式於該第一分部。施加一單極操作模式於該第二分部。In accordance with the above concept, another method of operating a memory array device is presented, the method comprising the steps of: in a trusted manner, a user may select to store data in the first portion or the second portion, the method comprising The following steps: applying a bipolar mode of operation to the first segment. A unipolar mode of operation is applied to the second portion.
依照上述構想,另一種記憶體陣列裝置的操作方法被提出,該方法包含下列步驟:區分一記憶體陣列為一第一種記憶胞及一第二種記憶胞。以一可信賴方式,於該第一種記憶胞儲存一資料,俾當該第二種記憶胞需要該資料時,自該第一種記憶胞提供該資料給該第二種記憶胞。According to the above concept, another method of operating a memory array device is proposed, the method comprising the steps of: distinguishing a memory array from a first type of memory cell and a second type of memory cell. In a trusted manner, a data is stored in the first type of memory cell, and when the second type of memory cell requires the data, the data is provided from the first type of memory cell to the second type of memory cell.
依照上述構想,另一種記憶體陣列裝置的操作方法被提出,該方法包含下列步驟:區分一記憶體陣列為一第一種記憶胞及一第二種記憶胞、以一可信賴方式,於該第一種記憶胞儲存一資料,俾當該第二種記憶胞流失該資料時,自該第一種記憶胞取得該資料。According to the above concept, another method of operating a memory array device is proposed, the method comprising the steps of: distinguishing a memory array into a first type of memory cell and a second type of memory cell, in a trusted manner, The first type of memory cell stores a data, and when the second type of memory cell loses the data, the data is obtained from the first type of memory cell.
為了能夠清楚地且扼要地說明本發明,在下列的實施方式中提供了較佳實施例,然而並不以此為限。In order to be able to clearly and briefly illustrate the invention, the preferred embodiments are provided in the following embodiments, but are not limited thereto.
請參閱第三圖(a),其為本案較佳實施例記憶體陣列裝置30的示意圖。該記憶體陣列裝置30包含一記憶體陣列36、一第一電路、以及一第二電路。該記憶體陣列36包含一第一分部361與一第二分部362。在第三圖(a)中,該第一電路與該第二電路分別為雙極偏壓電路32以及單極偏壓電路34。該第一電路電連接於該記憶體陣列36,用以使該記憶體陣列36操作於一第一模式。該第二電路電連接於該記憶體陣列36,用以使該記憶體陣列36操作於一第二模式。Please refer to the third figure (a), which is a schematic diagram of the memory array device 30 of the preferred embodiment of the present invention. The memory array device 30 includes a memory array 36, a first circuit, and a second circuit. The memory array 36 includes a first portion 361 and a second portion 362. In the third diagram (a), the first circuit and the second circuit are a bipolar bias circuit 32 and a unipolar bias circuit 34, respectively. The first circuit is electrically coupled to the memory array 36 for operating the memory array 36 in a first mode. The second circuit is electrically coupled to the memory array 36 for operating the memory array 36 in a second mode.
請參閱第三圖(b),其為本案第一分部361操作於該第一模式下的電路圖。在第三圖(a)中,第一分部361操作於該第一模式下的電路37包含控制邏輯31、雙極偏壓電路32、以及第一分部361。在第三圖(b)中,雙極偏壓電路32包含位元線解碼器311、字元線解碼器與驅動器312、以及源極線控制單元313。第一分部361包含複數記憶胞:記憶胞3611、記憶胞3612、記憶胞3613、記憶胞3614,電晶體320、電晶體322、電晶體324、電晶體326、位元線321、位元線323、字元線325、字元線327、以及源極線328、329。其中第一分部361的每一記憶胞是一次可程式化的或多次可程式化的。Please refer to the third figure (b), which is a circuit diagram of the first branch 361 operating in the first mode. In the third diagram (a), the circuit 37 in which the first subsection 361 operates in the first mode includes a control logic 31, a bipolar bias circuit 32, and a first subsection 361. In the third diagram (b), the bipolar bias circuit 32 includes a bit line decoder 311, a word line decoder and driver 312, and a source line control unit 313. The first subsection 361 includes a plurality of memory cells: a memory cell 3611, a memory cell 3612, a memory cell 3613, a memory cell 3614, a transistor 320, a transistor 322, a transistor 324, a transistor 326, a bit line 321, and a bit line. 323, word line 325, word line 327, and source line 328, 329. Each of the memory cells of the first subsection 361 is one-time programmable or multi-programmable.
在第三圖(b)中的雙極偏壓電路32可針對第一分部361中不同的記憶胞分別做程式化或抹除的控制,舉例來說,在一第一時段內對記憶胞3611利用該第三偏壓操作進行程式化,則源極線控制單元313解碼至源極線328並提供4伏特於源極線328、位元線解碼器311解碼至位元線321並提供0伏特於位元線321、以及字元線解碼器與驅動器312解碼至字元線325並提供閘極電壓Vg3 。在一第二時段內對記憶胞3613利用該第四偏壓操作進行抹除,則源極線控制單元313解碼至源極線328並提供0伏特於源極線328、位元線解碼器311解碼至位元線321並提供4伏特於位元線321、以及字元線解碼器與驅動器312解碼至字元線327並提供閘極電壓Vg4 ,依此類推。The bipolar bias circuit 32 in the third diagram (b) can perform programmatic or erase control for different memory cells in the first subsection 361, for example, for a first time period. The cell 3611 is programmed using the third biasing operation, and the source line control unit 313 decodes to the source line 328 and provides 4 volts to the source line 328, the bit line decoder 311 decodes to the bit line 321 and provides 0 volts on bit line 321 and word line decoder and driver 312 are decoded to word line 325 and provide gate voltage Vg3 . The memory cell 3613 is erased by the fourth bias operation during a second time period, and the source line control unit 313 decodes to the source line 328 and provides 0 volts to the source line 328 and the bit line decoder 311. Decode to bit line 321 and provide 4 volts to bit line 321, and word line decoder and driver 312 decode to word line 327 and provide gate voltage Vg4 , and so on.
值得注意的是,雙極偏壓電路32的設計是因應雙極操作模式(即第一模式)的設計,其源極線328、329必須分開接至源極線控制單元313,因此在設計上較為複雜,所佔的面積也比較大,但是這種雙極操作對於資料保存則可靠度高,不受溫度影響而造成資料的遺失。It is worth noting that the design of the bipolar bias circuit 32 is in response to the design of the bipolar mode of operation (ie, the first mode), and the source lines 328, 329 must be separately connected to the source line control unit 313, thus being designed It is more complicated and takes up a larger area. However, this bipolar operation is highly reliable for data storage and is not affected by temperature and causes data loss.
請參閱第三圖(c),其為本案第二分部362操作於該第二模式下的電路圖。在第三圖(c)中,第二分部362操作於該第二模式下的電路38包含控制邏輯31、單極偏壓電路34、以及第二分部362。在第三圖(c)中,單極偏壓電路34包含位元線解碼器311、字元線解碼器與驅動器312、以及源極線控制單元313。第二分部362包含複數記憶胞:記憶胞3621、記憶胞3622、記憶胞3623、記憶胞3624,電晶體340、電晶體342、電晶體344、電晶體346、位元線341、位元線343、字元線345、字元線347、以及源極線348。其中第二分部362的每一記憶胞是多次可程式化的。Please refer to the third figure (c), which is a circuit diagram of the second branch 362 operating in the second mode. In the third diagram (c), the circuit 38 operating in the second mode by the second subsection 362 includes control logic 31, a unipolar bias circuit 34, and a second subsection 362. In the third diagram (c), the unipolar bias circuit 34 includes a bit line decoder 311, a word line decoder and driver 312, and a source line control unit 313. The second subsection 362 includes a plurality of memory cells: a memory cell 3621, a memory cell 3622, a memory cell 3623, a memory cell 3624, a transistor 340, a transistor 342, a transistor 344, a transistor 346, a bit line 341, and a bit line. 343, word line 345, word line 347, and source line 348. Each of the memory cells of the second subsection 362 is multi-programmable.
在第三圖(c)中的單極偏壓電路34可針對第二分部362中不同的記憶胞分別做程式化或抹除的控制,舉例來說,在一第三時段內對記憶胞3621利用該第一偏壓操作進行程式化,則源極線348接地、位元線解碼器311解碼至位元線341並提供4伏特於位元線341、以及字元線解碼器與驅動器312解碼至字元線345並提供閘極電壓Vg1 。在一第四時段內利用該第二偏壓操作對記憶胞3623進行抹除,則源極線348接地、位元線解碼器311解碼至位元線341並提供4伏特於位元線341、以及字元線解碼器與驅動器312解碼至字元線347並提供閘極電壓Vg2 ,依此類推。值得注意的是,單極偏壓電路34的設計是因應單極操作模式(即第二模式)的設計,其源極線348可共同接在一起,因此在設計上較為簡單,所佔的面積也比較小,且在操作上則更為快速,製造成本亦較低。The unipolar bias circuit 34 in the third diagram (c) can perform programmatic or erase control for different memory cells in the second portion 362, for example, for a third period of time. The cell 3621 is programmed using the first biasing operation, the source line 348 is grounded, the bit line decoder 311 is decoded to the bit line 341 and provides 4 volts to the bit line 341, and the word line decoder and driver 312 decodes to word line 345 and provides a gate voltage Vg1 . The memory cell 3623 is erased by the second biasing operation during a fourth period, the source line 348 is grounded, the bit line decoder 311 is decoded to the bit line 341 and 4 volts is provided to the bit line 341, And the word line decoder and driver 312 decodes to word line 347 and provides gate voltage Vg2 , and so on. It should be noted that the design of the unipolar bias circuit 34 is designed according to the unipolar operation mode (ie, the second mode), and the source lines 348 can be connected together, so the design is relatively simple and occupies The area is also relatively small, and it is faster in operation and lower in manufacturing cost.
在本案所提第一分部361以及第二分部362中的記憶胞都具有相同的記憶胞結構,且具有相同的材料,主要的差別則在於雙極偏壓電路32與單極偏壓電路34的差異及第一分部361與第二分部362中的陣列電路(源極線)設計不同,因此就製程上的觀點來看並不會有額外的成本與工程。在設計上可設計成第一分部361佔所有記憶胞的小部分,例如2%,而第二分部362佔所有記憶胞的大部分,例如98%,這樣的設計可以較小的面積(或體積)得到較大的記憶體容量,但也可以是任意的比例關係,依使用者的需求而定。The memory cells in the first sub-section 361 and the second sub-section 362 of the present invention all have the same memory cell structure and have the same material, the main difference being the bipolar bias circuit 32 and the unipolar bias. The difference in circuit 34 and the design of the array circuit (source line) in the first sub-section 361 and the second sub-section 362 are different, so there is no additional cost and engineering from a process point of view. It can be designed such that the first subsection 361 occupies a small portion of all memory cells, for example 2%, while the second subsection 362 occupies a majority of all memory cells, for example 98%, such a design can be smaller ( Or volume) to get a larger memory capacity, but can also be any proportional relationship, depending on the needs of the user.
在應用上,例如在量產的過程中,重要的資料(例如開機碼)可先燒錄於本案所提的記憶體陣列裝置30的第一分部361中,然後將記憶體陣列裝置30焊接或打件於電路板上,然後在該記憶體陣列裝置30接通電源後的初始階段中,重要的資料從第一分部361被解壓或載入到第二分部362,以用於後續的直接執行。當重要的資料被解壓縮到該第二分部362時,所解壓縮的重要資料被驗證,依使用者需求而定。當然使用者亦可將資料寫入第二分部362,亦依照使用者的需求而定。In application, for example, in the process of mass production, important data (such as boot code) may be first burned into the first portion 361 of the memory array device 30 proposed in the present case, and then the memory array device 30 is soldered. Or writing on the circuit board, and then in the initial stage after the memory array device 30 is powered on, the important data is decompressed from the first subsection 361 or loaded into the second subsection 362 for subsequent use. Direct execution. When important data is decompressed to the second branch 362, the decompressed important data is verified, depending on the needs of the user. Of course, the user can also write the data into the second branch 362, which is also determined according to the needs of the user.
由於焊接時所產生的高溫不會影響到第一分部361中的記憶胞而造成資料遺失,故記憶體陣列裝置30具有可信賴的資料保存能力。由於開機後資料儲存於第二分部362可用於直接執行,因此記憶體陣列裝置30具有高速操作及低製造成本等優點。Since the high temperature generated during soldering does not affect the memory cells in the first subsection 361 and the data is lost, the memory array device 30 has a reliable data storage capability. Since the data stored in the second branch 362 after booting can be used for direct execution, the memory array device 30 has advantages such as high speed operation and low manufacturing cost.
上述重要的資料包括複數關鍵碼,這些關鍵碼是特定資料、複數直接可執行程式碼、具有複數自我解壓縮碼的複數壓縮程式碼、或其任意組合。The above important information includes plural keys, which are specific data, complex direct executable code, complex compressed code with complex self-decompressed code, or any combination thereof.
請參閱第四圖,其為本案記憶體陣列裝置30的操作方法的流程圖。記憶體陣列裝置30包含第一分部361及第二分部362,該方法包含下列步驟:施加一雙極操作於該第一分部361(步驟S401);及施加一單極操作於該第二分部362(步驟S402)。在焊接記憶體陣列裝置30至電路板上之前,經由施加一雙極操作於該第一分部361,使資料以一種可信賴的方式先儲存到第一分部361。然後待焊接完畢後,於第一次通電時,經由施加一單極操作於該第二分部362,使該資料從該第一分部361載入至該第二分部362。Please refer to the fourth figure, which is a flowchart of the operation method of the memory array device 30 of the present invention. The memory array device 30 includes a first sub-section 361 and a second sub-section 362, the method comprising the steps of: applying a bipolar operation to the first sub-section 361 (step S401); and applying a unipolar operation to the The binary portion 362 (step S402). Prior to soldering the memory array device 30 to the circuit board, the first segment 361 is operated by applying a bipolar to cause the data to be first stored in the first portion 361 in a reliable manner. Then, after the welding is completed, the data is loaded from the first portion 361 to the second portion 362 by applying a unipolar operation to the second portion 362 during the first power-on.
請參閱第五圖,其為本案另一實施例記憶體陣列裝置30的操作方法的流程圖,該方法包含下列步驟:區分一記憶體陣列為一第一種記憶胞及一第二種記憶胞(步驟S501);及以一可信賴方式,於該第一種記憶胞儲存一資料,俾當該第二種記憶胞需要該資料時,自該第一種記憶胞提供該資料給該第二種記憶胞(步驟S502)。Please refer to FIG. 5, which is a flowchart of a method for operating the memory array device 30 according to another embodiment of the present invention. The method includes the following steps: distinguishing a memory array into a first memory cell and a second memory cell. (Step S501); and storing, in a trustworthy manner, a data in the first type of memory cell, and when the second type of memory cell requires the data, providing the data from the first type of memory cell to the second A memory cell (step S502).
請參閱第六圖,其為本案另一實施例記憶體陣列裝置30的操作方法的流程圖,該方法包含下列步驟:區分一記憶體陣列為一第一種記憶胞及一第二種記憶胞(步驟S601);及以一可信賴方式,於該第一種記憶胞儲存一資料,俾當該第二種記憶胞流失該資料時,自該第一種記憶胞取得該資料(步驟S602)。Please refer to FIG. 6 , which is a flowchart of a method for operating the memory array device 30 according to another embodiment of the present invention. The method includes the following steps: distinguishing a memory array into a first memory cell and a second memory cell (Step S601); and storing a data in the first type of memory cell in a reliable manner, and when the second type of memory cell loses the data, acquiring the data from the first type of memory cell (step S602) .
綜上所述,本發明的說明與實施例已揭露於上,然其非用來限制本發明,凡習知此技藝者,在不脫離本發明的精神與範圍之下,當可做各種更動與修飾,其仍應屬在本發明專利的涵蓋範圍之內。In the above, the description and the embodiments of the present invention have been disclosed, and are not intended to limit the present invention, and those skilled in the art can make various changes without departing from the spirit and scope of the present invention. And modifications, which still fall within the scope of the present invention.
10,11...習知記憶胞與單極偏壓電路10,11. . . Conventional memory cell and unipolar bias circuit
101,201...記憶胞101,201. . . Memory cell
1011...第一電極1011. . . First electrode
1012...第二電極1012. . . Second electrode
1013,2013...記憶材料1013, 2013. . . Memory material
102,112...單極定址電路102,112. . . Unipolar addressing circuit
103,203...電晶體103,203. . . Transistor
104,204...位元線104,204. . . Bit line
105,205...字元線105,205. . . Word line
107,207...源極線107,207. . . Source line
20...習知記憶胞與雙極偏壓電路20. . . Conventional memory cell and bipolar bias circuit
2011...第三電極2011. . . Third electrode
2012...第四電極2012. . . Fourth electrode
202,212...雙極定址電路202,212. . . Bipolar addressing circuit
30...記憶體陣列裝置30. . . Memory array device
31...控制邏輯31. . . Control logic
32...雙極偏壓電路32. . . Bipolar bias circuit
34...單極偏壓電路34. . . Monopolar bias circuit
36...記憶體陣列36. . . Memory array
361...第一分部361. . . First division
362...第二分部362. . . Second division
37...第一分部操作於該第一模式下的電路37. . . The first branch operates on the circuit in the first mode
38...第二分部操作於該第二模式下的電路38. . . The second branch operates on the circuit in the second mode
3611,3612,3613,3614,3621,3622,3623,3624...記憶胞3611, 3612, 3613, 3614, 3621, 3622, 3623, 3624. . . Memory cell
321,323,341,343...位元線321,323,341,343. . . Bit line
325,327,345,347...字元線325,327,345,347. . . Word line
320,322,324,326,340,342,311...位元線解碼器320,322,324,326,340,342,311. . . Bit line decoder
344,346...電晶體344,346. . . Transistor
312...字元線解碼器與驅動器312. . . Word line decoder and driver
313...源極線控制單元313. . . Source line control unit
第一圖(a):習知記憶胞與單極定址電路的示意圖;Figure (a): Schematic diagram of a conventional memory cell and a unipolar addressing circuit;
第一圖(b):單極操作下的閘極電壓的波形圖;Figure (b): Waveform diagram of the gate voltage under unipolar operation;
第一圖(c):習知記憶胞與單極定址電路的示意圖;Figure (c): Schematic diagram of a conventional memory cell and a unipolar addressing circuit;
第一圖(d):單極操作下的閘極電壓的波形圖;Figure (d): Waveform diagram of the gate voltage under unipolar operation;
第二圖(a):習知記憶胞與雙極定址電路的示意圖;Figure 2 (a): Schematic diagram of a conventional memory cell and a bipolar addressing circuit;
第二圖(b):雙極操作下的閘極電壓的波形圖;Figure 2 (b): Waveform diagram of the gate voltage under bipolar operation;
第二圖(c):習知記憶胞與雙極定址電路的示意圖;Figure 2 (c): Schematic diagram of a conventional memory cell and bipolar addressing circuit;
第二圖(d):雙極操作下的閘極電壓的波形圖;Figure 2 (d): Waveform diagram of the gate voltage under bipolar operation;
第三圖(a):本案較佳實施例記憶體陣列裝置的示意圖;Figure 3 (a) is a schematic view of a memory array device of the preferred embodiment of the present invention;
第三圖(b):本案第一分部操作於該第一模式下的電路圖;The third figure (b): the circuit diagram of the first part of the case operating in the first mode;
第三圖(c):本案第二分部操作於該第二模式下的電路圖;The third figure (c): the circuit diagram of the second part of the case operating in the second mode;
第四圖:本案記憶體陣列裝置的操作方法的流程圖;Fourth figure: a flow chart of the operation method of the memory array device of the present invention;
第五圖:本案另一實施例記憶體陣列裝置的操作方法的流程圖;以及Figure 5 is a flow chart showing a method of operating a memory array device of another embodiment of the present invention;
第六圖:本案另一實施例記憶體陣列裝置的操作方法的流程圖。Figure 6 is a flow chart showing the operation method of the memory array device of another embodiment of the present invention.
30...記憶體陣列裝置30. . . Memory array device
31...控制邏輯31. . . Control logic
32...雙極偏壓電路32. . . Bipolar bias circuit
34...單極偏壓電路34. . . Monopolar bias circuit
36...記憶體陣列36. . . Memory array
361...第一分部361. . . First division
362...第二分部362. . . Second division
37...第一分部操作於該第一模式下的電路37. . . The first branch operates on the circuit in the first mode
38...第二分部操作於該第二模式下的電路38. . . The second branch operates on the circuit in the second mode
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100116945A TWI490859B (en) | 2011-05-13 | 2011-05-13 | Memory array device and method of operating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100116945A TWI490859B (en) | 2011-05-13 | 2011-05-13 | Memory array device and method of operating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201246212A TW201246212A (en) | 2012-11-16 |
TWI490859B true TWI490859B (en) | 2015-07-01 |
Family
ID=48094516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100116945A TWI490859B (en) | 2011-05-13 | 2011-05-13 | Memory array device and method of operating the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI490859B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5694367A (en) * | 1995-07-28 | 1997-12-02 | Nec Corporation | Semiconductor memory operable with low power supply voltage |
US7483296B2 (en) * | 2004-09-22 | 2009-01-27 | Ferdinando Bedeschi | Memory device with unipolar and bipolar selectors |
-
2011
- 2011-05-13 TW TW100116945A patent/TWI490859B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5694367A (en) * | 1995-07-28 | 1997-12-02 | Nec Corporation | Semiconductor memory operable with low power supply voltage |
US7483296B2 (en) * | 2004-09-22 | 2009-01-27 | Ferdinando Bedeschi | Memory device with unipolar and bipolar selectors |
Also Published As
Publication number | Publication date |
---|---|
TW201246212A (en) | 2012-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10783961B2 (en) | Memory cells, memory systems, and memory programming methods | |
US9747997B2 (en) | Non-volatile memory devices and methods of operating the same | |
US10622067B2 (en) | Memory systems and memory writing methods | |
US10090059B2 (en) | One time programmable memory and a data writing method thereof | |
TWI646538B (en) | Dual-bit 3-t high density mtprom array and method of operation thereof | |
US20170053716A1 (en) | Otp memory including test cell array and method of testing the same | |
CN111199766B (en) | memory device | |
JP5948667B2 (en) | Nonvolatile semiconductor memory device | |
KR20150116513A (en) | Nonvolatile memory device and memory system including the same | |
JP2006134398A (en) | Storage device and semiconductor device | |
TWI624933B (en) | Nonvolatile semiconductor memory | |
TWI585764B (en) | Resistive memory and data writing method for memory cell thereof | |
US20130343119A1 (en) | Memory programming to reduce thermal disturb | |
KR20110016284A (en) | Variable resistance memory and memory system including the same | |
TWI490859B (en) | Memory array device and method of operating the same | |
US10490272B2 (en) | Operating method of resistive memory element | |
CN105321563B (en) | Nonvolatile semiconductor memory | |
US8537609B2 (en) | Memory device and method of operating the same | |
CN102789805B (en) | Memory array device and method of operating the same | |
US20230153252A1 (en) | Semiconductor device and method of operating the same | |
JP2015149351A (en) | Nonvolatile semiconductor memory | |
US8248842B2 (en) | Memory cell array biasing method and a semiconductor memory device | |
JP2004039179A (en) | Nonvolatile semiconductor memory device and redundant replacing method for nonvolatile semiconductor memory device |