TWI454037B - Multi-phase non-inverting buck boost voltage converter and operating and controlling methods thereof - Google Patents
Multi-phase non-inverting buck boost voltage converter and operating and controlling methods thereof Download PDFInfo
- Publication number
- TWI454037B TWI454037B TW100125420A TW100125420A TWI454037B TW I454037 B TWI454037 B TW I454037B TW 100125420 A TW100125420 A TW 100125420A TW 100125420 A TW100125420 A TW 100125420A TW I454037 B TWI454037 B TW I454037B
- Authority
- TW
- Taiwan
- Prior art keywords
- buck
- signal
- boost
- mode
- voltage
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 23
- 238000001514 detection method Methods 0.000 claims description 37
- 230000004044 response Effects 0.000 claims description 35
- 238000012544 monitoring process Methods 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 15
- 230000007704 transition Effects 0.000 description 15
- 239000003990 capacitor Substances 0.000 description 10
- 238000013461 design Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000001052 transient effect Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/50—Arrangements for eliminating or reducing asymmetry in polyphase networks
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Description
此申請案係主張2011年6月14日申請的名稱為多位準非反相BB電壓轉換器的美國專利申請案號13/160,162(代理人檔案號INTS-30,622)的益處,該美國專利申請案是2010年8月2日申請的名稱為非反相升降壓電壓轉換器的美國專利申請案號12/848,579(代理人檔案號INTS-29,982)的一部分接續案。This application claims the benefit of U.S. Patent Application Serial No. 13/160,162 (Attorney Docket No. INTS-30,622) filed on Jun. 14, 2011, which is incorporated herein by reference. This is a continuation of U.S. Patent Application Serial No. 12/848,579 (Attorney Docket No. INTS-29, 982) filed on Aug. 2, 2010.
本發明係關於升降壓電壓轉換器,並且更具體而言係有關於一種用於控制非反相升降壓轉換器以提供在降壓及升壓操作模式間之平順的轉換的系統及方法。This invention relates to buck-boost voltage converters and, more particularly, to a system and method for controlling a non-inverting buck-boost converter to provide smooth transitions between buck and boost modes of operation.
非反相升降壓轉換器係能夠根據操作模式來達成一高於或低於其輸入電壓的輸出電壓。由於以電池供電的裝置變得越來越普及,這些類型的轉換器正變得更有吸引力,因為它們可以利用電池的放電週期。當一電池輸入電壓高於其輸出電壓時,一升降壓轉換器係工作在降壓操作模式中。在降壓操作模式中,該轉換器係減小輸入電壓至一必要的位準以供在其輸出處的使用。當一電池輸入電壓低於輸出電壓時,該升降壓轉換器係工作在升壓操作模式中,其中輸入電壓係增高到一在其輸出處所需的位準。在純降壓及純升壓操作模式內之控制係藉由各種相關的功率開關的導通及關閉來加以達成。當輸出電壓接近輸入電壓時,在降壓及升壓操作模式間之轉換係提供各種的控制挑戰。兩項來自在降壓及升壓操作模式間的此種轉換期間控制該升降壓轉換器的挑戰係包含其係為一動態響應的線暫態的產生以及輸出漣波的產生,其中產生的輸入電壓係接近該輸出電壓,此係為一穩態效能的問題。The non-inverting buck-boost converter is capable of achieving an output voltage above or below its input voltage depending on the mode of operation. As battery-powered devices become more popular, these types of converters are becoming more attractive because they can take advantage of the battery's discharge cycle. When a battery input voltage is higher than its output voltage, a buck-boost converter operates in a buck mode of operation. In the buck mode of operation, the converter reduces the input voltage to a necessary level for use at its output. When a battery input voltage is lower than the output voltage, the buck-boost converter operates in a boost mode of operation in which the input voltage is increased to a desired level at its output. Control in the pure buck and pure boost modes of operation is achieved by the turn-on and turn-off of various associated power switches. When the output voltage is close to the input voltage, the transition between the buck and boost modes of operation provides various control challenges. Two challenges from controlling the buck-boost converter during such transitions between buck and boost modes of operation include the generation of a line transient that is a dynamic response and the generation of output chopping, where the resulting input The voltage system is close to the output voltage, which is a problem of steady state performance.
如同在此所揭露及敘述的,在本發明的一觀點中,本發明係包括一種非反相升降壓轉換器。該升降壓轉換器係包含用於響應於一輸入電壓以產生一調節後的輸出電壓的升降壓電壓調節電路。一電流感測器係監測該升降壓調節電路的一輸入電流。升降壓模式控制電路係響應於該監測到的輸入電流以控制該升降壓電壓調節電路在一降壓操作模式中利用深電流模式控制,並且在一升壓操作模式中利用有效的電流模式控制。As disclosed and described herein, in one aspect of the invention, the invention includes a non-inverting buck-boost converter. The buck-boost converter includes a buck-boost voltage regulating circuit for generating an adjusted output voltage in response to an input voltage. A current sensor monitors an input current of the buck-boost regulating circuit. The buck-boost mode control circuit is responsive to the monitored input current to control the buck-boost voltage regulation circuit utilizing deep current mode control in a buck mode of operation and utilizing active current mode control in a boost mode of operation.
現在參照到圖式,其中相同的元件符號在此被用以指明全文中相似的元件,一種非反相升降壓電壓轉換器的各種視圖及實施例係被描繪及敘述,並且其它可行的實施例係被描述。該些圖並不一定按照比例繪製,並且在某些實例中,該圖式僅為了說明之目的已經在一些地方被誇大及/或簡化。具有此項技術的通常知識者將會體認到根據以下可行的實施例的例子之許多可能的應用及變化。Referring now to the drawings, wherein like reference numerals are used to refer to the like elements throughout the disclosure, various views and embodiments of a non-inverted buck-boost voltage converter are depicted and described, and other possible embodiments The system is described. The figures are not necessarily to scale, and in some instances, the drawings have been exaggerated and/or simplified in some places. Those of ordinary skill in the art will recognize many possible applications and variations of the examples in accordance with the following possible embodiments.
非反相升降壓轉換器係能夠達成一高於或低於其輸入電壓的正輸出電壓。由於以電池供電的裝置變得越來越普及,此種拓撲正變得更有吸引力,因為其可以利用電池的放電週期。當一電池輸入電壓高於其輸出電壓時,一升降壓轉換器係工作在降壓操作模式中。在降壓操作模式中,該轉換器係減小輸入電壓至必要的位準以供在其輸出處的使用。當該電池輸入電壓低於輸出電壓時,該升降壓轉換器係工作在升壓操作模式中,其中輸入電壓係增高到一在輸出處所需的位準。藉由讓某些功率開關被導通或關閉以實施在一純降壓操作模式或是一純升壓操作模式中的控制是相當容易的。該挑戰仍然存在於當輸出電壓接近輸入電壓時的降壓及升壓操作模式間之轉換。在降壓及升壓操作模式間的此種轉換期間有兩項控制該升降壓轉換器的挑戰。一項挑戰係牽涉到線暫態,其係為一動態響應。另一項挑戰係為輸出漣波,其中產生的輸入電壓係接近該輸出電壓,此係為一穩態效能的問題。A non-inverting buck-boost converter is capable of achieving a positive output voltage above or below its input voltage. As battery-powered devices become more popular, such topologies are becoming more attractive because they can take advantage of the battery's discharge cycle. When a battery input voltage is higher than its output voltage, a buck-boost converter operates in a buck mode of operation. In the buck mode of operation, the converter reduces the input voltage to the necessary level for use at its output. When the battery input voltage is lower than the output voltage, the buck-boost converter operates in a boost mode of operation in which the input voltage is increased to a desired level at the output. It is quite easy to implement control in a pure buck mode of operation or a pure boost mode of operation by having certain power switches turned "on" or "off". This challenge still exists between the buck and boost modes of operation when the output voltage is close to the input voltage. There are two challenges in controlling this buck-boost converter during this transition between the buck and boost modes of operation. One challenge involves a line transient, which is a dynamic response. Another challenge is the output chopping, where the resulting input voltage is close to the output voltage, which is a problem with steady state performance.
以下所敘的實施係包括一種控制非反相升降壓轉換器的設計並且提供一種達成在模式間之平順的轉換及線暫態之方法,同時在輸出電壓接近輸入電壓時仍然維持最小的漣波電壓。在該設計中只有一個整合的電流感測器被利用到,而不是多個感測器,以降低複雜度並且簡化整體的設計。該控制器係利用逐週期的偵測以在降壓操作模式中使用一峰值電流模式控制,並且在升壓操作模式中使用一谷值電流控制模式。此方法係在該轉換器內提供平順的轉換及線暫態。在輸出電壓接近輸入電壓的狀況中,該升降壓轉換器係藉由監測最大的工作週期,自動地從該降壓操作模式切換至該升壓操作模式、或是從該升壓操作模式切換至該降壓操作模式。此係簡化該升降壓轉換器的控制並且降低該輸出電壓漣波。降壓模式的操作及升壓模式的操作都使用相同的整合的電流感測器,此係降低該系統的複雜度並且增加整體的可靠度。The implementations described below include a design that controls the non-inverting buck-boost converter and provides a means of achieving smooth transitions and line transients between modes while still maintaining minimal chopping when the output voltage is close to the input voltage. Voltage. Only one integrated current sensor is utilized in this design, rather than multiple sensors, to reduce complexity and simplify the overall design. The controller utilizes cycle-by-cycle detection to use a peak current mode control in the buck mode of operation and a valley current control mode in the boost mode of operation. This method provides smooth transitions and line transients within the converter. In the condition that the output voltage is close to the input voltage, the buck-boost converter automatically switches from the step-down operation mode to the step-up operation mode or from the step-up operation mode by monitoring the maximum duty cycle. This step-down mode of operation. This simplifies the control of the buck-boost converter and reduces the output voltage ripple. Both the buck mode operation and the boost mode operation use the same integrated current sensor, which reduces the complexity of the system and increases overall reliability.
非反相升降壓轉換器係能夠達成高於或低於其輸入電壓的正輸出電壓。許多應用較喜歡非反相升降壓轉換器,例如,渴望利用電池的放電週期的以電池供電的裝置。以電池供電的電子設備及汽車因為發生負載突降或冷車啟動的情況而遭受到較差的電池電壓。在這些情況下,非反相升降壓轉換器是一理想的候選者。若負載功率是高的,為了低成本及散熱而需要多相升降壓轉換器。A non-inverting buck-boost converter is capable of achieving a positive output voltage above or below its input voltage. Many applications prefer non-inverting buck-boost converters, for example, battery-powered devices that are eager to utilize the discharge cycle of the battery. Battery-powered electronic devices and automobiles suffer from poor battery voltage due to load dumps or cold start. In these cases, the non-inverting buck-boost converter is an ideal candidate. If the load power is high, a multi-phase buck-boost converter is required for low cost and heat dissipation.
現在參照圖式,並且更特別參照圖1,其描繪有一種升降壓轉換器的概要圖。該升降壓轉換器係包含一施加輸入電壓VIN 的輸入電壓節點102。一高側的降壓電晶體104係包括一使得其源極/汲極路徑連接到節點102及節點106之間的P通道電晶體。一低側的降壓電晶體108係包括一使得其汲極/源極路徑連接到節點106及接地之間的N通道電晶體。一電感器110係連接到節點106及節點112之間。一高側的P通道升壓電晶體114係使得其源極/汲極路徑連接到該輸出電壓節點VOUT 116及節點112之間。一低側的升壓電晶體118係包括一使得其源極/汲極路徑連接到節點112及接地之間的N通道電晶體。如同熟習此項技術者非常瞭解的,該些高側的降壓及升壓電晶體亦可藉由N通道電晶體來加以實施。再者,所有的開關電晶體都可藉由雙載子電晶體或是任何其它適當的受控開關裝置來加以實施。該輸出電容120係連接到該輸出電壓節點116及接地之間。該輸出負載電阻122係和該電容120在節點116及接地之間並聯連接。該高側的降壓電晶體104、低側的降壓電晶體108、高側的升壓電晶體114以及低側的升壓電晶體118的每一個都使得其閘極連接至升降壓控制電路124。該升降壓控制電路124係利用內部的控制邏輯,經由複數個輸出來產生閘極控制信號,該內部的控制邏輯係負責至少從節點116施加的輸出電壓VOUT 。在該降壓操作模式中的工作週期係定義為D=ton(104) /T,其中ton 係開關電晶體104的導通時間,並且T是該轉換器的切換期間。T是切換頻率fsw的倒數(T=1/fsw)。在升壓動作期間,該工作週期係被定義為D=ton(118) /T,亦即同步的高側的升壓電晶體114的導通時間除以該切換期間。Referring now to the drawings, and more particularly to FIG. 1, an overview of a buck-boost converter is depicted. The buck-boost converter includes an input voltage node 102 that applies an input voltage V IN . A high side buck transistor 104 includes a P-channel transistor such that its source/drain path is connected between node 102 and node 106. A low side buck transistor 108 includes an N-channel transistor such that its drain/source path is connected between node 106 and ground. An inductor 110 is coupled between node 106 and node 112. A high side P-channel boost transistor 114 is connected such that its source/drain path is connected between the output voltage node V OUT 116 and node 112. A low side boost transistor 118 includes an N-channel transistor such that its source/drain path is connected between node 112 and ground. As is well known to those skilled in the art, these high side buck and boost transistors can also be implemented by N-channel transistors. Furthermore, all of the switching transistors can be implemented by a dual carrier transistor or any other suitable controlled switching device. The output capacitor 120 is connected between the output voltage node 116 and ground. The output load resistor 122 is connected in parallel with the capacitor 120 between the node 116 and ground. Each of the high side buck transistor 104, the low side buck transistor 108, the high side boost transistor 114, and the low side boost transistor 118 causes its gate to be connected to the buck-boost control circuit 124. The buck-boost control circuit 124 utilizes internal control logic to generate a gate control signal via a plurality of outputs that are responsible for at least the output voltage VOUT applied from the node 116. The duty cycle in this buck mode of operation is defined as D = t on (104) / T, where t on is the on-time of the switching transistor 104 and T is the switching period of the converter. T is the reciprocal of the switching frequency fsw (T=1/fsw). During the boosting action, the duty cycle is defined as D = t on (118) /T, that is, the on-time of the synchronous high-side boost transistor 114 divided by the switching period.
現在參照圖2,其描繪有根據本揭露內容操作的一種非反相升降壓轉換器的功能方塊圖。該升降壓轉換器電路202係在輸入節點204接收輸入電壓VIN 並且在節點206提供輸出電壓VOUT 。在該升降壓轉換器202內之開關電晶體係根據由驅動邏輯208提供的驅動控制信號來加以驅動。該驅動邏輯208係響應於由PWM控制邏輯210提供的PWM控制信號以產生驅動控制信號至該些開關電晶體。該誤差放大器及PWM控制邏輯210係響應於在節點206監測到的輸出電壓並且亦響應於由電流斜率控制補償邏輯212提供的電流控制電壓VSUM以產生該些PWM控制信號。該電流斜率控制補償邏輯係響應於該升降壓轉換器202內由一電流感測器214提供之一監測到的電流以及模式控制邏輯216,以產生該VSUM電壓至該誤差放大器及PWM控制邏輯210。該電流感測器214係量測在該升降壓轉換器202的輸入節點204所提供的輸入電流。該模式控制邏輯216係藉由監測由該PWM控制邏輯210提供的PWM信號來判斷該升降壓轉換器202是操作在該降壓操作模式或升壓操作模式中。該模式控制邏輯216係另外提供模式控制信號至該驅動邏輯208以控制在該升降壓轉換器202內之開關電晶體的操作。Referring now to Figure 2, depicted is a functional block diagram of a non-inverting buck-boost converter operating in accordance with the present disclosure. The buck-boost converter circuit 202 receives the input voltage V IN at the input node 204 and the output voltage V OUT at the node 206. The switching cell system within the buck-boost converter 202 is driven in accordance with a drive control signal provided by the drive logic 208. The drive logic 208 is responsive to the PWM control signals provided by the PWM control logic 210 to generate drive control signals to the switch transistors. The error amplifier and PWM control logic 210 is responsive to the output voltage monitored at node 206 and also to the current control voltage VSUM provided by current slope control compensation logic 212 to generate the PWM control signals. The current slope control compensation logic is responsive to the current monitored by one of the current sensers 214 in the buck-boost converter 202 and the mode control logic 216 to generate the VSUM voltage to the error amplifier and PWM control logic 210. . The current sensor 214 measures the input current provided at the input node 204 of the buck-boost converter 202. The mode control logic 216 determines that the buck-boost converter 202 is operating in the buck mode or boost mode by monitoring the PWM signal provided by the PWM control logic 210. The mode control logic 216 additionally provides mode control signals to the drive logic 208 to control operation of the switching transistors within the buck-boost converter 202.
現在參照圖3,其描繪有本揭露內容的非反相升降壓轉換器的方塊圖。該升降壓轉換器302係包含一施加輸入電壓VIN 的輸入電壓節點304。一電流感測器306係感測通過節點304的輸入電壓電流並且提供一感測到的輸入電流ISNS 。一高側的降壓電晶體308係連接到該電流感測器306及節點310之間。該高側的降壓電晶體308係包括一P通道電晶體。該高側的降壓電晶體308係連接以接收該驅動信號HD_BUCK。一低側的降壓電晶體312係包括一使得其汲極/源極路徑連接到節點310及接地節點314之間的N通道電晶體。該低側的降壓電晶體312係連接以接收該驅動控制信號LD_BUCK。一電感器316係連接到節點310及節點318之間。Referring now to Figure 3, a block diagram of a non-inverting buck-boost converter incorporating the present disclosure is depicted. The buck-boost converter 302 includes an input voltage node 304 that applies an input voltage V IN . A current sensor 306 senses the input voltage current through node 304 and provides a sensed input current I SNS . A high side buck transistor 308 is coupled between the current sensor 306 and the node 310. The high side buck transistor 308 includes a P-channel transistor. The high side buck transistor 308 is coupled to receive the drive signal HD_BUCK. A low side buck transistor 312 includes an N-channel transistor such that its drain/source path is connected between node 310 and ground node 314. The low side buck transistor 312 is coupled to receive the drive control signal LD_BUCK. An inductor 316 is coupled between node 310 and node 318.
一高側的升壓電晶體320係包括一使得其源極/汲極路徑連接到該輸出電壓節點VOUT 322及節點318之間的P通道電晶體。該低側的升壓電晶體321係包括一使得其汲極/源極路徑連接到節點318及節點314之間的N通道電晶體。電晶體324的閘極係連接以接收該驅動控制信號LD_BOOST。高側的升壓電晶體320的閘極係連接以接收該驅動控制信號HD_BOOST。一輸出電容器326係連接至輸出電壓節點322且在該輸出電壓節點322及接地節點314之間。此外,一負載328係和該輸出電容326在輸出電壓節點322及接地節點314之間並聯連接。A high side boost transistor 320 includes a P-channel transistor having its source/drain path connected between the output voltage node V OUT 322 and node 318. The low side boost transistor 321 includes an N-channel transistor such that its drain/source path is connected between node 318 and node 314. The gate of transistor 324 is coupled to receive the drive control signal LD_BOOST. The gate of the high side boost transistor 320 is connected to receive the drive control signal HD_BOOST. An output capacitor 326 is coupled to the output voltage node 322 and between the output voltage node 322 and the ground node 314. In addition, a load 328 and the output capacitor 326 are connected in parallel between the output voltage node 322 and the ground node 314.
該高側的降壓電晶體308、低側的降壓電晶體312、高側的升壓電晶體320以及低側的升壓電晶體324的每一個的驅動控制信號係分別由該降壓模式電流邏輯及驅動器330以及升壓模式控制邏輯及驅動器332提供。該降壓模式控制邏輯及驅動器330係響應於一由SR閂鎖334提供的PWM信號(PWM_BUCK)以及一由該模式控制邏輯336提供的模式控制信號,以產生該HD_BUCK信號至該高側的降壓電晶體308以及產生該LD_BUCK信號至該低側的降壓電晶體312。該升壓模式控制邏輯及驅動器332係響應於一來自SR閂鎖338的PWM控制信號(PWM_BOOST)以及一來自該模式控制邏輯336的模式控制信號,以產生該HD_BOOST驅動信號至電晶體320以及產生該LD_BOOST驅動信號至電晶體324。該電晶體308及312是升降壓轉換器302在該降壓操作模式中的功率開關。在該降壓操作模式中,電晶體320總是被導通,並且電晶體324總是被關閉。同樣地,在該升壓操作模式中,該降壓模式控制邏輯及驅動器330以及該升壓模式控制邏輯及驅動器332係控制該升壓電晶體320及324以構成功率FET開關。在該升壓操作模式中,該電晶體308總是被導通,而該電晶體312是關閉的。The driving control signals of each of the high side step-down transistor 308, the low side step-down transistor 312, the high side boosting transistor 320, and the low side boosting transistor 324 are respectively driven by the step-down mode. Current logic and driver 330 and boost mode control logic and driver 332 are provided. The buck mode control logic and driver 330 is responsive to a PWM signal (PWM_BUCK) provided by the SR latch 334 and a mode control signal provided by the mode control logic 336 to generate the HD_BUCK signal to the high side. The piezoelectric crystal 308 and the step-down transistor 312 that generates the LD_BUCK signal to the low side. The boost mode control logic and driver 332 is responsive to a PWM control signal (PWM_BOOST) from the SR latch 338 and a mode control signal from the mode control logic 336 to generate the HD_BOOST drive signal to the transistor 320 and to generate The LD_BOOST drives the signal to transistor 324. The transistors 308 and 312 are power switches of the buck-boost converter 302 in the step-down mode of operation. In this step-down mode of operation, transistor 320 is always turned on and transistor 324 is always turned off. Similarly, in the boost mode of operation, the buck mode control logic and driver 330 and the boost mode control logic and driver 332 control the boost transistors 320 and 324 to form a power FET switch. In this boost mode of operation, the transistor 308 is always turned on and the transistor 312 is turned off.
該SR閂鎖334係響應於一在該SR閂鎖334的S輸入提供的時脈信號以及一施加至該SR閂鎖334的R輸入的邏輯信號以產生該降壓PWM信號至該降壓模式控制邏輯及驅動器330。該PWM信號PWM_BOOST係響應於一提供至該SR閂鎖338的R輸入的時脈輸入以及一提供至SR閂鎖338的S輸入的邏輯輸入而由SR閂鎖338的Q輸出來提供。The SR latch 334 is responsive to a clock signal provided at the S input of the SR latch 334 and a logic signal applied to the R input of the SR latch 334 to generate the buck PWM signal to the buck mode. Control logic and driver 330. The PWM signal PWM_BOOST is provided by the Q output of the SR latch 338 in response to a clock input to the R input of the SR latch 338 and a logic input to the S input of the SR latch 338.
該模式控制邏輯336係提供該MODE信號給該降壓模式控制邏輯及驅動器330以及升壓模式控制邏輯及驅動器332的每一個。該模式控制邏輯336係分別響應於由SR閂鎖334及338的輸出提供的PWM_BUCK以及PWM_BOOST信號而產生該輸出控制信號MODE給該降壓模式控制邏輯及驅動器330以及升壓模式控制邏輯及驅動器332的每一個。該最大工作週期偵測電路340係響應於輸出電壓VOUT 接近輸入電壓VIN 以判斷何時一最大的工作週期狀況存在於該降壓及升壓操作模式之間。當一最大的工作週期狀況偵測到時,該最大工作週期偵測電路340係產生一邏輯“高的”值給MAX_D信號,該MAX_D信號被提供至模式選擇邏輯342。The mode control logic 336 provides the MODE signal to each of the buck mode control logic and driver 330 and boost mode control logic and driver 332. The mode control logic 336 generates the output control signal MODE to the buck mode control logic and driver 330 and the boost mode control logic and driver 332 in response to the PWM_BUCK and PWM_BOOST signals provided by the outputs of the SR latches 334 and 338, respectively. Every one. The maximum duty cycle detection circuit 340 is responsive to the output voltage V OUT proximate to the input voltage V IN to determine when a maximum duty cycle condition exists between the buck and boost modes of operation. When a maximum duty cycle condition is detected, the maximum duty cycle detection circuit 340 generates a logic "high" value to the MAX_D signal, which is provided to mode selection logic 342.
該模式選擇邏輯342係決定該升降壓轉換器302是否需要切換到該降壓操作模式或是該升壓操作模式,並且產生一模式控制信號MODE以指出此改變。為了平順地從降壓動作切換到升壓動作或是從升壓動作切換到降壓動作,該最大的工作週期的判斷係藉由該最大工作週期偵測電路340而被引入該控制設計中。任何時候偵測到一最大的工作週期狀況時,該MAX_D信號係變為一邏輯“高的”位準。此通常發生在輸入電壓VIN 接近輸出電壓VOUT 或是在負載暫態出現於輸出中的時候。該模式選擇邏輯342係決定該升降壓轉換器302的操作模式是降壓或升壓。一種簡單的控制方法係被實施成使得每當偵測到一MAX_D邏輯“高的”信號時,該操作模式係被切換。較複雜的控制方法可藉由利用多個MAX_D信號來加以應用。在該升降壓轉換器中有兩個操作模式,並且也只有兩個操作模式,不是降壓就是升壓。該模式選擇邏輯的輸出“MODE”信號係作用像是一多工器控制信號,以根據該轉換器是在降壓或升壓操作模式中來選擇操作電路(例如,電流感測)並且切換驅動器控制邏輯。因此,該MODE控制信號係依據該操作模式來選擇該降壓模式控制邏輯驅動器330或是該升壓模式控制邏輯及驅動器332,並且亦選擇由多工器344的輸出所提供的電流感測補償信號。The mode selection logic 342 determines whether the buck-boost converter 302 needs to switch to the buck mode of operation or the boost mode of operation and generates a mode control signal MODE to indicate the change. In order to smoothly switch from the buck action to the boost action or from the boost action to the buck action, the determination of the maximum duty cycle is introduced into the control design by the maximum duty cycle detection circuit 340. The MAX_D signal becomes a logical "high" level whenever a maximum duty cycle condition is detected. This typically occurs when the input voltage V IN is close to the output voltage V OUT or when a load transient occurs in the output. The mode selection logic 342 determines that the mode of operation of the buck-boost converter 302 is buck or boost. A simple control method is implemented such that each time a MAX_D logic "high" signal is detected, the mode of operation is switched. More complex control methods can be applied by utilizing multiple MAX_D signals. There are two modes of operation in the buck-boost converter, and there are only two modes of operation, either buck or boost. The output "MODE" signal of the mode selection logic acts like a multiplexer control signal to select an operational circuit (eg, current sensing) and switch drivers depending on whether the converter is in a buck or boost mode of operation Control logic. Therefore, the MODE control signal selects the buck mode control logic driver 330 or the boost mode control logic and driver 332 according to the operation mode, and also selects the current sensing compensation provided by the output of the multiplexer 344. signal.
該多工器344係連接以接收VSUM_BUCK信號或VSUM_BOOST信號。該VSUM_BUCK信號係包括來自電流感測器306之感測到的電流、一降壓模式偏移(offset)信號以及一降壓斜率補償信號的加總,其係在加法器電路346加總在一起。該VSUM_BOOST信號係在一加法器電路348藉由將來自電流感測器306的ISNS輸入電流的量測、一升壓模式偏移信號以及一升壓斜率補償信號加總在一起來加以產生。來自該電流感測器306之感測到的電流ISNS係和該降壓模式偏移或升壓模式偏移加總,以確保誤差放大器352是以一適當的DC偏壓來操作。該降壓或升壓補償斜率係被加到該感測到的電流以避免在大的工作週期的操作中之次諧波的振盪。該VSUM_BUCK及VSUM_BOOST補償信號的每一個係被提供至該多工器344的一輸入。根據該升降壓轉換器302是操作在該降壓操作模式或升壓操作模式,不是VSUM_BUCK(降壓模式)就是VSUM_BOOST(升壓模式)會響應於在多工器344的MODE信號而被選出,並且該所選的信號係被提供作為該輸出電流補償信號VSUM 。The multiplexer 344 is connected to receive a VSUM_BUCK signal or a VSUM_BOOST signal. The VSUM_BUCK signal includes a sum of sensed current from current sensor 306, a buck mode offset signal, and a buck slope compensation signal, which are summed together in adder circuit 346. . The VSUM_BOOST signal is generated by an adder circuit 348 by summing the measurement of the ISNS input current from the current sensor 306, a boost mode offset signal, and a boost slope compensation signal. The sensed current ISNS from the current sensor 306 and the buck mode offset or boost mode offset are summed to ensure that the error amplifier 352 is operating with a suitable DC bias. The buck or boost compensation slope is added to the sensed current to avoid oscillation of the subharmonic during operation during a large duty cycle. Each of the VSUM_BUCK and VSUM_BOOST compensation signals is provided to an input of the multiplexer 344. According to the buck-boost converter 302 operating in the buck mode or the boost mode, either VSUM_BUCK (buck mode) or VSUM_BOOST (boost mode) is selected in response to the MODE signal at the multiplexer 344, And the selected signal is provided as the output current compensation signal V SUM .
該VSUM 信號係從該多工器344被提供至一PWM比較器350的反相的輸入。該PWM比較器350的非反相的輸入係連接以從一誤差放大器352接收該電壓誤差信號VCOMP 。該誤差放大器352的輸出係透過一電容器354與一電阻器356的串聯來連接至接地。該誤差放大器352的反相的輸入係透過由一連接在節點322及節點360間之電阻器358以及一連接到節點360及接地間之電阻器所構成的一電阻分壓器來監測在節點322的輸出電壓VOUT 。誤差放大器352的反相的輸入係連接至節點360。該誤差放大器352係比較一施加在其非反相的輸入之參考電壓VREF 與來自該升降壓轉換器302的輸出回授電壓以產生誤差信號VCOMP 。該VCOMP 信號係被用來判斷在升降壓轉換器操作在降壓操作模式時的一峰值電流模式以及在升降壓轉換器操作在升壓操作模式時的一谷值電流模式中通過電感器316的電感器電流。降壓操作與升壓操作係共用相同的電壓誤差信號。來自多工器344的輸出的VSUM 與該電壓誤差信號VCOMP 的比較係決定功率電晶體308、312、320及324的導通/關閉狀態。The V SUM signal is supplied from the multiplexer 344 to an inverted input of a PWM comparator 350. The non-inverting input of the PWM comparator 350 is coupled to receive the voltage error signal V COMP from an error amplifier 352. The output of the error amplifier 352 is coupled to ground through a series connection of a capacitor 354 and a resistor 356. The inverting input of the error amplifier 352 is monitored at node 322 by a resistor divider formed by a resistor 358 connected between node 322 and node 360 and a resistor connected to node 360 and ground. The output voltage is V OUT . The inverted input of error amplifier 352 is coupled to node 360. The error amplifier 352 compares a reference voltage V REF applied to its non-inverted input with an output feedback voltage from the buck-boost converter 302 to generate an error signal V COMP . The V COMP signal is used to determine a peak current mode when the buck-boost converter operates in the buck mode of operation and through the inductor 316 in a valley current mode when the buck-boost converter operates in the boost mode of operation. Inductor current. The buck operation shares the same voltage error signal as the boost operation. The comparison of V SUM from the output of multiplexer 344 to the voltage error signal V COMP determines the on/off states of power transistors 308, 312, 320, and 324.
該PWM比較器350的輸出(VCOMPOUT )係被提供作為一反相器362的一輸入以及AND閘364的一第一輸入。來自反相器362之反相的輸出係被提供至OR閘366的一第一輸入。OR閘366的另一輸入係連接以接收來自該最大工作週期偵測電路340的輸出的MAX_D信號。該OR閘366的輸出係提供邏輯信號至閂鎖334的R輸入以致能該降壓PWM信號的產生。AND閘364的另一輸入係連接至一反相器368的輸出。反相器368的輸入係連接以從該最大工作週期保護電路340接收該MAX_D信號。AND閘364的輸出係連接至另一反相器370。該反相器370的輸出係提供一邏輯信號至SR閂鎖338的S輸入以提供該升壓PWM信號。The output of the PWM comparator 350 (V COMPOUT ) is provided as an input to an inverter 362 and a first input to the AND gate 364. The output from the inverting of inverter 362 is provided to a first input of OR gate 366. Another input of OR gate 366 is coupled to receive the MAX_D signal from the output of the maximum duty cycle detection circuit 340. The output of the OR gate 366 provides a logic signal to the R input of the latch 334 to enable the generation of the buck PWM signal. The other input of AND gate 364 is coupled to the output of an inverter 368. The input of inverter 368 is coupled to receive the MAX_D signal from the maximum duty cycle protection circuit 340. The output of the AND gate 364 is coupled to another inverter 370. The output of the inverter 370 provides a logic signal to the S input of the SR latch 338 to provide the boost PWM signal.
現在參照圖4,其描繪有一描述圖3的升降壓轉換器的操作之流程圖。當該轉換器的操作在步驟402起始時,該轉換器最初在步驟404操作於降壓操作模式中並且工作在該峰值電流控制的操作模式中。查詢步驟406係監測最大的工作週期,並且若目前未偵測到最大的工作週期時,則控制傳回到步驟404。當偵測到最大的工作週期時,該轉換器係在步驟408進入升壓操作模式並且利用谷值電流控制模式來操作。查詢步驟410係監測最大的工作週期,並且若未偵測到最大的工作週期時,控制係傳回到步驟408。當偵測到最大的工作週期時,該轉換器係在步驟404轉回到操作於降壓操作模式中。Referring now to Figure 4, a flow chart depicting the operation of the buck-boost converter of Figure 3 is depicted. When the operation of the converter begins at step 402, the converter initially operates in a step-down mode of operation at step 404 and operates in the operating mode of the peak current control. The query step 406 monitors the maximum duty cycle, and if the maximum duty cycle is not currently detected, then control passes back to step 404. When the maximum duty cycle is detected, the converter enters the boost mode of operation at step 408 and operates with the valley current control mode. The query step 410 monitors the maximum duty cycle, and if the maximum duty cycle is not detected, the control passes back to step 408. When the maximum duty cycle is detected, the converter transitions back to operating in the buck mode of operation at step 404.
現在參照圖5,其描繪有當該升降壓轉換器302從降壓操作模式轉換至升壓操作模式時的各種與該升降壓轉換器相關連的波形。電晶體308及312係構成降壓操作模式中的主要功率開關。電晶體320在該降壓操作模式中總是導通,並且電晶體324在降壓操作模式中總是關閉。隨著輸入電壓VIN 502下降,切換的工作週期係因為D~Vout/Vin而增加。當輸入電壓VIN 502下降至某一值,該工作週期係到達一最大的臨界值(最大的工作週期)時,該最大工作週期偵測電路340(其在一實施例中係包括一數位比較器)係響應於此狀況並且將該信號MAX_D設定為一邏輯“高的”位準。同時,該高側的電晶體308係被關閉,並且該電晶體312係被導通。該模式選擇邏輯342知道下一個週期,並且當該時脈信號出現在該SR閂鎖334的輸入時,該升降壓轉換器302將會轉換成為升壓模式。該控制信號MODE係在該時脈脈衝到達時被設定到一邏輯“高的”位準(升壓),並且該升降壓轉換器現在被組態設定在升壓操作中。然而,在此狀況中,輸入電壓VIN 502仍然是比輸出電壓VOUT 504高一點,因而該升壓操作模式可能正在泵送過多的能量到負載中並且進一步增高輸出電壓VOUT 。因此,該升降壓轉換器302係在升壓週期之後回到降壓操作模式,並且維持在降壓操作模式中超過一週期,直到輸出電壓VOUT 504下降到輸入電壓VIN 以下為止。隨著VIN 502進一步下降,將會有更多升壓週期。以此種方式,從降壓操作模式至升壓操作模式之平順的轉換係被提供。圖5亦描繪該多工器344的輸出VSUM 506、誤差放大器VCOMP 508的輸出以及電感器電流510。Referring now to Figure 5, there are depicted various waveforms associated with the buck-boost converter when the buck-boost converter 302 transitions from a buck mode of operation to a boost mode of operation. Transistors 308 and 312 form the primary power switch in the buck mode of operation. The transistor 320 is always on during this buck mode of operation, and the transistor 324 is always off during the buck mode of operation. As the input voltage V IN 502 falls, the duty cycle of the switching increases due to D~Vout/Vin. When the input voltage V IN 502 drops to a value that reaches a maximum threshold (maximum duty cycle), the maximum duty cycle detection circuit 340 (which in one embodiment includes a digital comparison) In response to this condition, the signal MAX_D is set to a logic "high" level. At the same time, the high side transistor 308 is turned off and the transistor 312 is turned on. The mode select logic 342 is aware of the next cycle, and when the clock signal is present at the input of the SR latch 334, the buck-boost converter 302 will transition to the boost mode. The control signal MODE is set to a logic "high" level (boost) when the clock pulse arrives, and the buck-boost converter is now configured to be set in the boosting operation. However, in this case, the input voltage V IN 502 is still a little higher than the output voltage V OUT 504, and thus the boost mode of operation may be pumping excess energy into the load and further increasing the output voltage V OUT . Thus, the buck-boost converter 302 returns to the buck mode of operation after the boost cycle and remains in the buck mode of operation for more than one cycle until the output voltage V OUT 504 falls below the input voltage V IN . As V IN 502 falls further, there will be more boost cycles. In this way, a smooth transition from the buck mode of operation to the boost mode of operation is provided. FIG. 5 also depicts the output V SUM 506 of the multiplexer 344, the output of the error amplifier V COMP 508, and the inductor current 510.
現在參照圖6,其描繪有該升降壓轉換器302從升壓操作模式至降壓操作模式的轉換。當輸入電壓VIN 602遠低於輸出電壓VOUT 604時,該升降壓轉換器係運行在一純升壓操作模式中。電晶體320及324係構成在升壓操作模式中之主要的功率開關,而電晶體308總是導通,並且電晶體312總是關閉。隨著輸入電壓VIN 602增高,切換的工作週期係增加,因為該升降壓轉換器302是在谷值控制操作模式中。當輸入電壓VIN 602增高到某一位準是工作週期到達一最大的臨界值位準(最大的工作週期)時,該包括一數位比較器的最大工作週期偵測電路340係響應於此狀況並且將該信號MAX_D設定為一邏輯“高的”位準。同時,該高側的電晶體320係被關閉,並且低側的電晶體324係被導通。該模式選擇邏輯342知道下一個週期,當一時脈信號出現時,該轉換器將會轉換成為降壓模式。當該時脈信號到達時,該信號“MODE”係被設定為一邏輯“低的”位準(降壓模式),並且該整個升降壓轉換器係被組態設定在降壓操作模式中。然而,在此狀況中,輸入電壓VIN 602仍然是低於輸出電壓VOUT 604。因此,該降壓操作模式可能正在拉走過多至負載的能量,並且輸出電壓VOUT 604係減小。因此,該升降壓轉換器302係在降壓週期之後回到升壓操作模式,並且維持在升壓操作模式中超過一週期,直到輸出電壓604增高為止。隨著輸入電壓VIN 602進一步增高,可能有更多的降壓週期。以此種方式,從升壓至降壓之平順的轉換係被提供。Referring now to Figure 6, a depiction of the buck-boost converter 302 transitions from a boost mode of operation to a step-down mode of operation. When the input voltage V IN 602 is much lower than the output voltage V OUT 604, the buck-boost converter operates in a pure boost mode of operation. The transistors 320 and 324 form the primary power switch in the boost mode of operation, while the transistor 308 is always on and the transistor 312 is always off. As the input voltage V IN 602 increases, the duty cycle of the switching increases because the buck-boost converter 302 is in the valley control mode of operation. The maximum duty cycle detection circuit 340 including a digital comparator responds to the situation when the input voltage V IN 602 is increased to a certain level when the duty cycle reaches a maximum threshold level (maximum duty cycle). And the signal MAX_D is set to a logic "high" level. At the same time, the high side transistor 320 is turned off and the low side transistor 324 is turned on. The mode select logic 342 knows the next cycle and when a clock signal occurs, the converter will transition to the buck mode. When the clock signal arrives, the signal "MODE" is set to a logic "low" level (buck mode) and the entire buck-boost converter is configured to be set in the buck mode of operation. However, in this case, the input voltage V IN 602 is still lower than the output voltage V OUT 604. Therefore, the buck mode of operation may be pulling too much energy to the load, and the output voltage V OUT 604 is reduced. Thus, the buck-boost converter 302 returns to the boost mode of operation after the buck cycle and remains in the boost mode of operation for more than one cycle until the output voltage 604 is increased. As the input voltage V IN 602 increases further, there may be more buck cycles. In this way, a smooth transition from boost to buck is provided.
圖6的繪圖進一步描繪多工器344的輸出VSUM 606、誤差電壓輸出VCOMP 608以及電感器電流610。The plot of FIG. 6 further depicts the output V SUM 606 of the multiplexer 344, the error voltage output V COMP 608, and the inductor current 610.
當輸出電壓VOUT 接近輸入電壓VIN 時,該升降壓轉換器302係從降壓切換至升壓,以及從升壓切換至降壓模式。沒有只是降壓模式及升壓模式之獨立的升降壓模式。該控制方法係藉由在降壓操作模式中利用峰值電流控制模式以及在升壓操作模式中利用谷值電流控制模式來確保平順的轉換。此方法之一主要的優點是該誤差信號VCOMP 在模式轉換期間並沒有任何突然的變化。由於VCOMP 信號是輸出電壓VOUT 的一直接的函數,若該誤差信號VCOMP 是穩定的,則該輸出電壓VOUT 是穩定的。如先前所述,該多工器的輸出VSUM 是該輸入電流ISNS、降壓或升壓模式偏移以及一斜率補償信號的總和。在該降壓及升壓操作模式中不同的偏移值係根據在一全週期中之最大的斜率補償來加以選出。通常該些不同的偏移值是該最大的斜率補償電壓的兩倍。例如,若該斜率補償是1V/us並且該切換頻率是1MHz,則該不同的偏移值是1V/us*1us*2,此係2V。因此,若在降壓模式中的偏移是Vos,則用於升壓模式的偏移是Vos+2V。一種以此方式操作的系統係提供在輕負載以及重負載狀況中都是優異的線暫態。當輸出電壓接近輸入電壓時,電壓漣波亦是小的。控制方法是簡單的,此只需要單一整合的電流感測器以及逐週期的偵測。When the output voltage V OUT is close to the input voltage V IN , the buck-boost converter 302 switches from buck to boost and from boost to buck mode. There is no separate buck-boost mode for the buck mode and boost mode. The control method ensures smooth transition by utilizing the peak current control mode in the buck mode of operation and the valley current control mode in the boost mode of operation. One of the main advantages of this method is that the error signal V COMP does not have any sudden changes during mode switching. Since the V COMP signal is a direct function of the output voltage V OUT , if the error signal V COMP is stable, the output voltage V OUT is stable. As previously described, the output V SUM of the multiplexer is the sum of the input current ISNS, the buck or boost mode offset, and a slope compensation signal. The different offset values in the buck and boost modes of operation are selected based on the largest slope compensation in a full cycle. Usually the different offset values are twice the maximum slope compensation voltage. For example, if the slope compensation is 1V/us and the switching frequency is 1MHz, the different offset value is 1V/us*1us*2, which is 2V. Therefore, if the offset in the buck mode is Vos, the offset for the boost mode is Vos+2V. A system that operates in this manner provides excellent line transients in both light and heavy load conditions. When the output voltage is close to the input voltage, the voltage ripple is also small. The control method is simple, which requires only a single integrated current sensor and cycle-by-cycle detection.
現在參照圖7,其描繪有該多相非反相升降壓轉換器的一方塊圖。該誤差放大器702係提供一回授分壓器以及迴路補償給該多相非反相升降壓轉換器。該誤差放大器702係產生一補償信號VCOMP ,該補償信號VCOMP 係被提供至和該多相非反相升降壓轉換器的每個相位相關連的調變器及驅動器電路704的每一個。該調變器及驅動器電路704係響應於來自誤差放大器702的VCOMP 信號以及一來自相關的電流感測器708的電流信號ISNS 以產生驅動信號至一相關的升降壓轉換器706。該電流感測器708係監測相關的升降壓轉換器706的一輸入電流,以便產生ISNS 電壓信號至相關的調變器及驅動器704。該升降壓轉換器706係產生被誤差放大器702監測的輸出電壓VOUT ,以便產生該補償電壓VCOMP 。Referring now to Figure 7, a block diagram of the multiphase non-inverting buck-boost converter is depicted. The error amplifier 702 provides a feedback divider and loop compensation to the multiphase non-inverting buck-boost converter. The error amplifier system 702 generates a compensation signal V COMP, the compensation signal V COMP-based and is provided to each phase of the multiphase non-inverting buck-boost converter connected to each of the associated modulator 704 and driver circuitry. The modulator and driver circuit 704 is responsive to a V COMP signal from the error amplifier 702 and a current signal I SNS from the associated current sensor 708 to generate a drive signal to an associated buck-boost converter 706. The current sensor 708 monitors an input current of the associated buck-boost converter 706 to generate an I SNS voltage signal to the associated modulator and driver 704. The buck-boost converter 706 generates an output voltage V OUT that is monitored by the error amplifier 702 to generate the compensation voltage V COMP .
現在參照圖8,其描繪有該調變器及驅動器電路704的一方塊圖,該調變器及驅動器電路704係和該多相非反相升降壓轉換器的每個相位相關連。該PWM邏輯802係產生該些PWM控制信號至驅動邏輯804及模式控制邏輯806。該驅動邏輯804係響應於由PWM邏輯802提供的PWM控制信號來產生驅動信號至相關的升降壓轉換器的開關電晶體。該模式控制邏輯806係藉由監測來自該PWM邏輯802的PWM信號來判斷該升降壓轉換器是操作在降壓操作模式或是升壓操作模式中。該模式控制邏輯806係另外提供模式控制信號至該驅動邏輯804以控制升降壓轉換器內之開關電晶體的動作。該電流斜率補償電路808係響應於來自該升降壓轉換器且由該電流感測器708(圖7)提供之一監測到的電流ISNS 以產生一VSUM 電壓至該PWM邏輯802。Referring now to Figure 8, a block diagram of the modulator and driver circuit 704 is depicted, the modulator and driver circuit 704 being associated with each phase of the multi-phase non-inverting buck-boost converter. The PWM logic 802 generates the PWM control signals to the drive logic 804 and the mode control logic 806. The drive logic 804 is responsive to the PWM control signal provided by the PWM logic 802 to generate a drive signal to the switching transistor of the associated buck-boost converter. The mode control logic 806 determines whether the buck-boost converter is operating in a buck mode or a boost mode by monitoring a PWM signal from the PWM logic 802. The mode control logic 806 additionally provides mode control signals to the drive logic 804 to control the operation of the switching transistors within the buck-boost converter. The current slope compensation circuit 808 is responsive to current I SNS from the buck-boost converter and provided by one of the current sensors 708 (FIG. 7) to generate a V SUM voltage to the PWM logic 802.
現在參照圖9,其係提供有該多相非反相升降壓轉換器之一更詳細的方塊圖,該多相非反相升降壓轉換器係提供在該升降壓轉換器的不同相位間之本質電流分擔。如先前所述,該誤差放大器部分702係監測在節點902的來自該升降壓轉換器706的多個相位之結合的輸出的輸出電壓。該誤差放大器電路702係包含由一連接到節點902及節點906間之電阻器904以及一連接到節點906及接地間之電阻器908所構成的一分壓器。一回授電壓VFB 係在節點906藉由一誤差放大器910的一反相的輸入來加以監測。誤差放大器910的非反相的輸入係接收一用於和該回授電壓VFB 比較的參考電壓VREF 。該誤差放大器910的輸出係連接至節點912以提供一VCOMP 輸入到和該多相非反相升降壓轉換器的每個相位相關連的調變器及驅動器704的每一個。串聯連接的比較器914及電阻器916係連接到節點912及接地之間。該比較器914係連接到節點912及節點918之間,並且該電阻器916係連接到節點918及接地之間。該誤差放大器910係包括一互導放大器,該互導放大器係產生一饋送到調變器及驅動器電路704的每一個的補償信號VCOMP 。該系統只需要單一誤差放大器910。然而,多個誤差放大器910可以並聯方式設置,並且該誤差放大器的總增益將包括該些誤差放大器的每一個的總和。Referring now to Figure 9, there is provided a more detailed block diagram of one of the multiphase non-inverting buck-boost converters provided between the different phases of the buck-boost converter Essential current sharing. As previously described, the error amplifier portion 702 monitors the output voltage of the output of the combination of the plurality of phases from the buck-boost converter 706 at node 902. The error amplifier circuit 702 includes a voltage divider formed by a resistor 904 connected between the node 902 and the node 906 and a resistor 908 connected to the node 906 and the ground. A feedback voltage V FB is monitored at node 906 by an inverted input of an error amplifier 910. The non-inverting input of error amplifier 910 receives a reference voltage V REF for comparison with the feedback voltage V FB . The output of the error amplifier 910 is coupled to node 912 to provide a V COMP input to each of the modulators and drivers 704 associated with each phase of the multi-phase non-inverting buck-boost converter. A comparator 914 and a resistor 916 connected in series are connected between the node 912 and ground. The comparator 914 is coupled between node 912 and node 918, and the resistor 916 is coupled between node 918 and ground. The error amplifier 910 includes a transconductance amplifier that produces a compensation signal V COMP that is fed to each of the modulator and driver circuit 704. This system requires only a single error amplifier 910. However, multiple error amplifiers 910 can be placed in parallel and the total gain of the error amplifier will include the sum of each of the error amplifiers.
圖9中所繪的系統的第二部分係包括調變器及驅動器704。這些調變器及驅動器704係分別連接以接收來自該誤差放大器910的補償信號VCOMP 以及一電流感測信號ISNSN ,該電流感測信號ISNSN 係相關於在該升降壓轉換器的輸入電壓節點與該多相轉換器的特定相位相關連之感測到的輸入電流。該轉換器的每個相位都需要一個別的調變器,因為用於每個相位的時脈信號是不同的,以便產生交錯的電感器電流以及比單一相位轉換器小的輸出及輸入漣波。一個N相位的轉換器理想上在相鄰的相位間會具有360/n的相移。每個相位亦具有獨立的電流感測,從ISNS1 到ISNSn 。此架構係提供一種本質電流平衡的機構。不論在降壓操作模式中的峰值電流模式或是在升壓操作模式中的谷值電流模式控制,該感測電流電壓ISNSn 係和補償信號VCOMP 做比較。由於VCOMP 是一在每個調變器間之共同的信號,因此該信號係平衡每個相位的電流。此係為該多相轉換器中之一大益處,其係降低設計的複雜度,同時達成優異的效能。每個相位都具有其本身的最大工作週期偵測電路及模式選擇電路。當VIN 接近VOUT 時,某些相位可能運作在降壓模式中,而其它則運作在升壓模式中,此係產生較小的輸出漣波。用於每個相位的調變器及驅動器電路704係產生該HD_BUCKn、LD_BUCKn、HD_BOOSTn及LD_BOOSTn給和其相關的相位之升降壓轉換器相關連的開關電晶體的每一個。The second portion of the system depicted in FIG. 9 includes a modulator and driver 704. The modulator and a driver 704 lines were connected to receive from the error amplifier compensation signal V COMP 910 and a current sense signal I SNSN, the current sense signal I SNSN lines associated with the down converter input voltage The sensed input current associated with a particular phase of the multiphase converter. Each phase of the converter requires a different modulator because the clock signals for each phase are different to produce interleaved inductor currents and smaller output and input ripple than a single phase converter. . An N-phase converter would ideally have a phase shift of 360/n between adjacent phases. Each phase also has independent current sensing from I SNS1 to I SNSn . This architecture provides a mechanism for intrinsic current balancing. The sense current voltage I SNSn is compared with the compensation signal V COMP regardless of the peak current mode in the buck mode of operation or the valley current mode control in the boost mode of operation. Since V COMP is a common signal between each modulator, this signal balances the current of each phase. This is one of the great benefits of this multiphase converter, which reduces the complexity of the design while achieving excellent performance. Each phase has its own maximum duty cycle detection circuit and mode selection circuit. When V IN is close to V OUT , some phases may operate in buck mode while others operate in boost mode, which produces smaller output chopping. The modulator and driver circuit 704 for each phase produces each of the HD_BUCKn, LD_BUCKn, HD_BOOSTn, and LD_BOOSTn switch transistors associated with their associated phase buck-boost converters.
這些驅動器的輸出係被提供至該升降壓轉換器706之相關的功率開關電晶體。每個升降壓轉換器706係包含一提供待調節的輸入電壓的輸入電壓節點915。一電流感測器917係感測通過節點915的輸入電壓電流並且提供一感測到的輸入電流電壓ISNSn 。一高側的降壓電晶體919係連接到該電流感測器917及節點920之間。該高側的降壓電晶體919係包括一P通道電晶體。該高側的降壓電晶體919係連接以接收該驅動信號HD_BUCKn。一低側的降壓電晶體922係包括一使得其汲極/源極路徑連接到節點920及接地節點924間之N通道電晶體。該低側的降壓電晶體922係連接以接收該驅動控制信號LD_BUCKn。一電感器926係連接到節點920及節點928之間。The output of these drivers is provided to the associated power switching transistor of the buck-boost converter 706. Each buck-boost converter 706 includes an input voltage node 915 that provides an input voltage to be regulated. A current sensor 917 senses the input voltage current through node 915 and provides a sensed input current voltage I SNSn . A high side buck transistor 919 is coupled between the current sensor 917 and node 920. The high side buck transistor 919 includes a P-channel transistor. The high side buck transistor 919 is connected to receive the drive signal HD_BUCKn. A low side buck transistor 922 includes an N-channel transistor that connects its drain/source path to node 920 and ground node 924. The low side buck transistor 922 is coupled to receive the drive control signal LD_BUCKn. An inductor 926 is coupled between node 920 and node 928.
一高側的升壓電晶體930係包括一使得其源極/汲極路徑連接到該輸出電壓節點VOUT 932及節點928間之P通道電晶體。該低側的升壓電晶體934係包括一使得其汲極/源極路徑連接到節點928及接地節點924間之N通道電晶體。電晶體934的閘極係連接以接收該驅動控制信號HD_BOOSTn。在與該多相升降壓轉換器的每個相位相關連的升降壓轉換器的每一個內的高側及低側的降壓及升壓開關電晶體以及電流感測器是相同的。每個升降壓轉換器係使得其輸出連接至節點932。此外,由一電阻器935所構成的一負載係連接到節點932及接地之間。一電容器936係和電阻器935並聯連接,而連接到節點932及接地之間。A high side boost transistor 930 includes a P-channel transistor having its source/drain path connected between the output voltage node V OUT 932 and node 928. The low side boost transistor 934 includes an N-channel transistor having its drain/source path connected between node 928 and ground node 924. The gate of the transistor 934 is connected to receive the drive control signal HD_BOOSTn. The high side and low side buck and boost switch transistors and current sensors in each of the buck-boost converters associated with each phase of the multiphase buck-boost converter are identical. Each buck-boost converter has its output connected to node 932. In addition, a load system formed by a resistor 935 is connected between the node 932 and the ground. A capacitor 936 is connected in parallel with resistor 935 and is connected between node 932 and ground.
傳送到該高側的降壓電晶體918、低側的降壓電晶體922、高側的升壓電晶體930及低側的升壓電晶體934的每一個的驅動控制信號係由該調變器及驅動器電路704所提供。現在參照圖10,其更特別描繪有用於產生這些閘極驅動開關信號的調變器及驅動器電路704之一概要的方塊圖。該降壓模式控制邏輯及驅動器1002係響應於一由SR閂鎖1004提供的PWM信號(PWM_BUCK)以及由該最大的工作週期偵測及模式選擇邏輯1006提供的模式控制信號,以產生該HD_BUCKn信號至該高側的降壓電晶體918並且產生該LD_BUCKn信號至該低側的降壓電晶體922。The drive control signal transmitted to each of the high side step-down transistor 918, the low side step-down transistor 922, the high side booster transistor 930, and the low side booster transistor 934 is modulated by the modulation And driver circuit 704 provides. Referring now to Figure 10, a block diagram of an overview of a modulator and driver circuit 704 for generating these gate drive switch signals is more particularly depicted. The buck mode control logic and driver 1002 is responsive to a PWM signal (PWM_BUCK) provided by the SR latch 1004 and a mode control signal provided by the maximum duty cycle detection and mode selection logic 1006 to generate the HD_BUCKn signal. The buck transistor 918 to the high side and generates the LD_BUCKn signal to the low side buck transistor 922.
該升壓模式控制邏輯及驅動器1008係響應於一來自SR閂鎖1010的PWM控制信號(PWM_BOOST)以及一來自該最大的工作週期偵測及模式選擇邏輯1006的模式控制信號,以產生該HD_BOOSTn驅動信號至電晶體930,並且產生該LD_BOOSTn驅動信號至電晶體934。該電晶體918及922是該升降壓轉換器在降壓操作模式中的功率開關。在降壓操作模式中,電晶體930總是被導通,並且電晶體934總是被關閉。同樣地,在升壓操作模式中,該降壓模式控制邏輯及驅動器1002以及該升壓模式控制邏輯及驅動器係控制構成功率FET開關的升壓電晶體320及324。在升壓操作模式中,該電晶體918總是被導通,而電晶體922總是被關閉。該SR閂鎖1004係響應於一在該SR閂鎖1004的S輸入提供的時脈信號以及一施加至該SR閂鎖1004的R輸入的邏輯信號,以產生該PWM_BUCK信號至該降壓模式控制邏輯及驅動器1002。該PWM信號PWM_BOOST係響應於一在SR閂鎖1010的R輸入接收的時脈輸入以及一提供至SR閂鎖1010的S輸入的邏輯輸入,而由SR閂鎖1010的Q輸出來加以提供。The boost mode control logic and driver 1008 is responsive to a PWM control signal (PWM_BOOST) from the SR latch 1010 and a mode control signal from the maximum duty cycle detection and mode selection logic 1006 to generate the HD_BOOSTn driver. The signal is applied to transistor 930 and the LD_BOOSTn drive signal is generated to transistor 934. The transistors 918 and 922 are power switches of the buck-boost converter in a step-down mode of operation. In the buck mode of operation, transistor 930 is always turned on and transistor 934 is always turned off. Similarly, in the boost mode of operation, the buck mode control logic and driver 1002 and the boost mode control logic and driver control the boost transistors 320 and 324 that make up the power FET switch. In the boost mode of operation, the transistor 918 is always turned on and the transistor 922 is always turned off. The SR latch 1004 is responsive to a clock signal provided at the S input of the SR latch 1004 and a logic signal applied to the R input of the SR latch 1004 to generate the PWM_BUCK signal to the buck mode control. Logic and driver 1002. The PWM signal PWM_BOOST is provided by the Q output of the SR latch 1010 in response to a clock input received at the R input of the SR latch 1010 and a logic input provided to the S input of the SR latch 1010.
該最大的工作週期偵測及模式選擇邏輯1006係提供該模式信號至該降壓模式控制邏輯及驅動器1002以及升壓模式控制邏輯及驅動器1008的每一個。該最大的工作週期偵測及模式選擇邏輯1006係分別響應於由SR閂鎖1004及1010的輸出提供的PWM_BUCK及PWM_BOOST信號,以產生該輸出控制信號MODE至該降壓模式控制邏輯及驅動器1002以及升壓模式控制邏輯及驅動器1008的每一個。該最大的工作週期偵測及模式選擇邏輯1006係響應於輸出電壓VOUT 接近輸入電壓VIN 以判斷一最大的工作週期狀況存在於該降壓及升壓操作模式間的何時。當偵測到該最大的工作週期狀況時,該最大的工作週期偵測及模式選擇邏輯1006係產生一邏輯“高的”值給該MAX_D信號。The maximum duty cycle detection and mode selection logic 1006 provides the mode signal to each of the buck mode control logic and driver 1002 and boost mode control logic and driver 1008. The maximum duty cycle detection and mode selection logic 1006 is responsive to the PWM_BUCK and PWM_BOOST signals provided by the outputs of the SR latches 1004 and 1010, respectively, to generate the output control signal MODE to the buck mode control logic and driver 1002 and The boost mode controls the logic and each of the drivers 1008. The maximum duty cycle detection and mode selection logic 1006 is responsive to the output voltage V OUT approaching the input voltage V IN to determine when a maximum duty cycle condition exists between the buck and boost modes of operation. When the maximum duty cycle condition is detected, the maximum duty cycle detection and mode selection logic 1006 generates a logic "high" value for the MAX_D signal.
該最大的工作週期偵測及模式選擇邏輯1006係決定該升降壓轉換器是否需要切換至該降壓操作模式或升壓操作模式並且產生一模式控制信號MODE以指出此項改變。為了平順地從降壓操作切換至升壓操作或是從升壓操作切換至降壓操作,該最大的工作週期的判斷係藉由該最大的工作週期偵測及模式選擇邏輯1006而被引入該控制設計中。任何時候偵測到一最大的工作週期狀況時,該MAX_D信號係變為一邏輯“高”。此通常發生在輸入電壓VIN 接近輸出電壓VOUT 或是在負載暫態出現於輸出中的時候。該最大的工作週期偵測及模式選擇邏輯1006係決定該升降壓轉換器的操作模式是降壓或升壓。一種簡單的控制方法係被實施成使得每當偵測到一MAX_D邏輯“高的”信號時,該操作模式係被切換。較複雜的控制方法可藉由利用多個MAX_D信號來加以應用。在該升降壓轉換器中有兩個操作模式,並且也只有兩個操作模式,不是降壓就是升壓。The maximum duty cycle detection and mode selection logic 1006 determines whether the buck-boost converter needs to switch to the buck mode or boost mode and generates a mode control signal MODE to indicate the change. In order to smoothly switch from the buck operation to the boost operation or the buck operation to the buck operation, the determination of the maximum duty cycle is introduced by the maximum duty cycle detection and mode selection logic 1006. Control design. The MAX_D signal becomes a logic "high" whenever a maximum duty cycle condition is detected. This typically occurs when the input voltage V IN is close to the output voltage V OUT or when a load transient occurs in the output. The maximum duty cycle detection and mode selection logic 1006 determines whether the buck-boost converter mode of operation is buck or boost. A simple control method is implemented such that each time a MAX_D logic "high" signal is detected, the mode of operation is switched. More complex control methods can be applied by utilizing multiple MAX_D signals. There are two modes of operation in the buck-boost converter, and there are only two modes of operation, either buck or boost.
該最大的工作週期偵測及模式選擇邏輯1006的模式輸出“MODE”信號係作用像是一多工器控制信號,以根據該轉換器是在降壓或升壓操作模式中來選擇操作電路(例如,電流感測)並且切換驅動器控制邏輯。因此,該模式控制信號係依據該操作模式來選擇該降壓模式控制邏輯驅動器1002或是該升壓模式控制邏輯及驅動器1008,並且亦選擇由多工器1012的輸出所提供的電流感測補償信號。The mode output "MODE" signal of the maximum duty cycle detection and mode selection logic 1006 acts like a multiplexer control signal to select an operational circuit depending on whether the converter is in a buck or boost mode of operation ( For example, current sensing) and switching driver control logic. Therefore, the mode control signal selects the buck mode control logic driver 1002 or the boost mode control logic and driver 1008 according to the operation mode, and also selects the current sensing compensation provided by the output of the multiplexer 1012. signal.
該多工器1012係連接以輸出VSUM _BUCK信號或VSUM _BOOST信號。該VSUM _BUCK信號係包括來自電流感測器916之感測到的電流、該降壓模式偏移信號以及一降壓斜率補償信號的加總,其係在加法器電路1014加總在一起。該VSUM _BOOST信號係在加法器1016藉由將來自電流感測器916的ISNS 輸入電流的量測、一升壓模式偏移信號以及一升壓斜率補償信號加總在一起來加以產生。來自該電流感測器916之感測到的電流電壓ISNS 係和該降壓模式偏移或升壓模式偏移加總,以確保誤差放大器910是以一適當的DC偏壓來操作。該降壓或升壓補償斜率係被加到該感測到的電流以避免在大的工作週期的操作中之次諧波的振盪。該VSUM _BUCK及VSUM _BOOST補償信號的每一個係被提供至該多工器1012的輸入。根據該升降壓轉換器是操作在一降壓操作模式或是一升壓操作模式中,不是該VSUM _BUCK(降壓模式)就是該VSUM _BOOST(升壓模式)響應於多工器1012的模式信號而被選出,並且該所選的信號係被提供作為該輸出電流補償信號VSUM 。The multiplexer 1012 is connected to output a V SUM _BUCK signal or a V SUM _BOOST signal. The V SUM _BUCK signal includes a sum of the sensed current from current sensor 916, the buck mode offset signal, and a buck slope compensation signal, which are summed together in adder circuit 1014. The V SUM _BOOST signal is generated by adder 1016 by summing the I SNS input current measurement from current sensor 916, a boost mode offset signal, and a boost slope compensation signal. The sensed current voltage I SNS from the current sensor 916 is summed with the buck mode offset or boost mode offset to ensure that the error amplifier 910 is operating with a suitable DC bias. The buck or boost compensation slope is added to the sensed current to avoid oscillation of the subharmonic during operation during a large duty cycle. Each of the V SUM _BUCK and V SUM _BOOST compensation signals is provided to the input of the multiplexer 1012. According to the buck-boost converter operating in a buck mode of operation or a boost mode of operation, not the V SUM _BUCK (buck mode) is the V SUM _BOOST (boost mode) responsive to the multiplexer 1012 The mode signal is selected and the selected signal is provided as the output current compensation signal V SUM .
該VSUM 信號係被提供至PWM比較器1015的反相的輸入。該PWM比較器1015的非反相的輸入係連接以從一誤差放大器910接收該電壓誤差信號VCOMP 。該VCOMP 信號係如同先前相關在該多相操作模式中的單一相位操作模式所述地來加以利用。該PWM比較器1015的輸出係被提供作為一反相器1017的一輸入。來自反相器1017之反相的輸出係被提供至OR閘1018的一第一輸入以及AND閘1020的一第一輸入。OR閘1018的另一輸入係連接以從該最大的工作週期偵測及模式選擇邏輯1006的輸出接收該MAX_D信號。該AND閘1020的另一輸入係連接以從一反相器1022接收一反相的MAX_D信號。該OR閘1018的輸出係提供該邏輯信號至該SR閂鎖1004的R輸入以致能該降壓PWM信號的產生。AND閘1020的輸出係被提供至一反相器1024。反相器1024的輸出係提供至SR閂鎖1010的S輸入以助於該升壓PWM信號的產生。該最大的工作週期偵測及模式選擇邏輯1006係響應於來自SR閂鎖1004的輸出的PWM_BUCK信號、來自該SR閂鎖1010的PWM_BOOST信號以及一時脈輸入信號以產生該MAX_D控制信號以及模式控制信號。The V SUM signal is provided to the inverted input of the PWM comparator 1015. The non-inverting input of the PWM comparator 1015 is coupled to receive the voltage error signal V COMP from an error amplifier 910. The V COMP signal is utilized as previously described in a single phase mode of operation in the multi-phase mode of operation. The output of the PWM comparator 1015 is provided as an input to an inverter 1017. The inverted output from inverter 1017 is provided to a first input of OR gate 1018 and a first input of AND gate 1020. Another input of OR gate 1018 is coupled to receive the MAX_D signal from the output of the maximum duty cycle detection and mode selection logic 1006. The other input of the AND gate 1020 is coupled to receive an inverted MAX_D signal from an inverter 1022. The output of the OR gate 1018 provides the logic signal to the R input of the SR latch 1004 to enable the generation of the buck PWM signal. The output of the AND gate 1020 is provided to an inverter 1024. The output of inverter 1024 is provided to the S input of SR latch 1010 to facilitate the generation of the boost PWM signal. The maximum duty cycle detection and mode selection logic 1006 is responsive to a PWM_BUCK signal from the output of the SR latch 1004, a PWM_BOOST signal from the SR latch 1010, and a clock input signal to generate the MAX_D control signal and a mode control signal. .
現在參照圖11,其描繪有該最大的工作週期偵測及模式選擇邏輯1006的一種實施方式。該MAX_D信號係被提供至一SR閂鎖1102的一S輸入。一時脈輸入CLK係被提供至該SR閂鎖1102的R輸入。該SR閂鎖1102的Q輸出係被提供至一對AND閘1104及1106的一輸入。該AND閘1104係在其輸入接收該PWM_BUCK信號、來自反相器1108之一反相的模式信號輸入以及SR閂鎖1102的輸出。類似地,該AND閘1106係在其輸入接收SR閂鎖1102的輸出、該模式信號以及來自反相器1110之該PWM_BOOST信號的一反相的版本。AND閘1104的輸出係被提供至SR閂鎖1112的S輸入。該SR閂鎖的R輸入係接收AND閘1106的輸出。SR閂鎖1112的Q輸出係提供一MODE_PRE信號,該MODE_PRE信號係被提供至延遲閂鎖1114的一D輸入。該延遲閂鎖1114的時脈輸入係連接以接收該CLK信號,並且延遲閂鎖1114的Q輸出係提供該MODE信號。Referring now to Figure 11, an embodiment of the maximum duty cycle detection and mode selection logic 1006 is depicted. The MAX_D signal is provided to an S input of an SR latch 1102. A clock input CLK is provided to the R input of the SR latch 1102. The Q output of the SR latch 1102 is provided to an input of a pair of AND gates 1104 and 1106. The AND gate 1104 is a mode signal input that receives the PWM_BUCK signal at its input, is inverted from one of the inverters 1108, and an output of the SR latch 1102. Similarly, the AND gate 1106 is at its input receiving the output of the SR latch 1102, the mode signal, and an inverted version of the PWM_BOOST signal from the inverter 1110. The output of the AND gate 1104 is provided to the S input of the SR latch 1112. The R input of the SR latch receives the output of the AND gate 1106. The Q output of the SR latch 1112 provides a MODE_PRE signal that is provided to a D input of the delay latch 1114. The clock input of the delay latch 1114 is coupled to receive the CLK signal, and the Q output of the delay latch 1114 provides the MODE signal.
圖11的電路的基本操作係如下。當VIN 接近VOUT 時,該工作週期係接近100%。為了維持每個週期的切換,一最大的工作週期信號(MAX_D)係被預設。任何時候該些PWM信號(PWM_BUCK以及PWM_BOOST)到達該MAX_D值時,一信號MODE_PRE係依據目前的操作模式(降壓或升壓)來加以設定或重置。然而,該MODE_PRE最初並未施加至該調變器,而是只有在收到下一個時脈信號脈衝後才變成有效的,該時脈的上升邊緣係設定該模式信號並且調整該調變器的操作模式。每個調變器都具有其本身之獨立的決策電路。The basic operation of the circuit of Figure 11 is as follows. When V IN is close to V OUT , the duty cycle is close to 100%. In order to maintain the switching of each cycle, a maximum duty cycle signal (MAX_D) is preset. Whenever the PWM signals (PWM_BUCK and PWM_BOOST) reach the MAX_D value, a signal MODE_PRE is set or reset according to the current operating mode (buck or boost). However, the MODE_PRE is not initially applied to the modulator, but becomes active only after the next clock signal pulse is received. The rising edge of the clock sets the mode signal and adjusts the modulator. Operating mode. Each modulator has its own independent decision circuit.
現在參照圖12,其描繪有一運作在其中VIN 大於VOUT 的降壓模式穩態中的雙相非反相升降壓轉換器。這些波形係描繪升降壓模式運作在一VIN 大於VOUT 的降壓模式。該電感器電流係被交錯,以達成電流分擔及小的輸出漣波。每個相位的電流係被平衡。Referring now to Figure 12, there is depicted a two phase non-inverting buck-boost converter operating in a buck mode steady state where V IN is greater than V OUT . These waveforms depict buck-boost mode operating in a buck mode with V IN greater than V OUT . The inductor currents are interleaved to achieve current sharing and small output ripple. The current of each phase is balanced.
現在參照圖13,其描繪有一在其中VIN 更接近VOUT 的降壓操作模式中的雙相非反相升降壓轉換器。該電感器電流係以一種比純降壓及純升壓模式更複雜的方式來加以交錯。在此操作區域中,該轉換器係在一降壓及升壓模式間來回地工作,以便調節該輸出電壓。以此種方式,一相位可運作在降壓模式中,而另一相位係操作在升壓模式中。以此種方式,輸出漣波係被減低。Referring now to Figure 13, there is depicted a two phase non-inverting buck-boost converter in a buck mode of operation in which V IN is closer to V OUT . The inductor current is interleaved in a more complex way than pure buck and pure boost modes. In this operating region, the converter operates back and forth between a buck and boost mode to regulate the output voltage. In this way, one phase can operate in the buck mode while the other phase operates in the boost mode. In this way, the output chopping system is reduced.
現在參照圖14,其描繪有一運作在其中VIN 小於VOUT 的降壓模式中的雙相非反相升降壓轉換器。該電感器電流係被交錯,以達成電流分擔及小的輸出漣波。每個相位的電流係被平衡。Referring now to Figure 14, a two-phase non-inverting buck-boost converter operating in a buck mode in which V IN is less than V OUT is depicted. The inductor currents are interleaved to achieve current sharing and small output ripple. The current of each phase is balanced.
因此,藉由並聯設置多個升降壓功率級,更大的功率係被達成。該設計係達成電流平衡而無須增加達成該電流平衡結果所需的額外電路。具有小的輸出漣波之模式間平順的線轉換亦被提供。Therefore, by providing a plurality of buck-boost power levels in parallel, a larger power system is achieved. This design achieves current balancing without the need to add additional circuitry needed to achieve this current balance result. Smooth line transitions between modes with small output chopping are also provided.
熟習此項技術者在有此揭露內容的助益下將會體認到此非反相升降壓電壓轉換器係提供當在降壓及升壓操作模式間轉換時之改良的動作。應瞭解的是,該圖式以及在此的詳細說明係欲以一種說明的方式而不是限制的方式來看待,並且並不欲限制到該些揭露的特定形式及例子。相反地,內含的是對該項技術中具有通常技能者為明顯的任何進一步的修改、改變、重新排列、替代、選擇、設計選項及實施例,而不脫離由以下的申請專利範圍所界定的本發明的精神及範疇。因此,其係欲以下的申請專利範圍被解釋成包含所有此種進一步的修改、改變、重新排列、替代、選擇、設計選項及實施例。Those skilled in the art, with the benefit of this disclosure, will recognize that the non-inverting buck-boost voltage converter provides improved operation when switching between buck and boost modes of operation. It is to be understood that the appended claims Rather, any further modifications, changes, rearrangements, substitutions, alternatives, designs, and embodiments are apparent to those skilled in the art without departing from the scope of the following claims. The spirit and scope of the invention. Accordingly, the appended claims are intended to cover all such modifications, modifications,
102...輸入電壓節點102. . . Input voltage node
104...降壓電晶體104. . . Step-down transistor
106...節點106. . . node
108...降壓電晶體108. . . Step-down transistor
110...電感器110. . . Inductor
112...節點112. . . node
114...升壓電晶體114. . . Boost transistor
116...節點116. . . node
118...升壓電晶體118. . . Boost transistor
120...輸出電容120. . . Output capacitor
122...輸出負載電阻122. . . Output load resistance
124...升降壓控制電路124. . . Buck-boost control circuit
202...升降壓轉換器電路202. . . Buck-boost converter circuit
204...輸入節點204. . . Input node
206...輸出節點206. . . Output node
208...驅動邏輯208. . . Drive logic
210...PWM控制邏輯210. . . PWM control logic
212...控制補償邏輯212. . . Control compensation logic
214...電流感測器214. . . Current sensor
216...模式控制邏輯216. . . Mode control logic
302...升降壓轉換器302. . . Buck-boost converter
304...輸入電壓節點304. . . Input voltage node
306...電流感測器306. . . Current sensor
308...高側的降壓電晶體308. . . High-side step-down transistor
310...節點310. . . node
312...低側的降壓電晶體312. . . Low-side step-down transistor
314...接地節點314. . . Ground node
316...電感器316. . . Inductor
318...節點318. . . node
320...高側的升壓電晶體320. . . High side boost transistor
321...低側的升壓電晶體321. . . Low side booster transistor
322...輸出電壓節點322. . . Output voltage node
324...低側的升壓電晶體324. . . Low side booster transistor
326...輸出電容器326. . . Output capacitor
328...負載328. . . load
330...降壓模式電流邏輯及驅動器330. . . Buck mode current logic and driver
332...升壓模式控制邏輯及驅動器332. . . Boost mode control logic and driver
334...SR閂鎖334. . . SR latch
336...模式控制邏輯336. . . Mode control logic
338...SR閂鎖338. . . SR latch
340...最大工作週期偵測電路340. . . Maximum duty cycle detection circuit
342...模式選擇邏輯342. . . Mode selection logic
344...多工器344. . . Multiplexer
346...加法器電路346. . . Adder circuit
348...加法器電路348. . . Adder circuit
350...PWM比較器350. . . PWM comparator
352...誤差放大器352. . . Error amplifier
354...電容器354. . . Capacitor
356...電阻器356. . . Resistor
358...電阻器358. . . Resistor
360...節點360. . . node
362...反相器362. . . inverter
364...AND閘364. . . AND gate
366...OR閘366. . . OR gate
368...反相器368. . . inverter
370...反相器370. . . inverter
402...步驟402. . . step
404...步驟404. . . step
406...查詢步驟406. . . Query step
408...步驟408. . . step
410...查詢步驟410. . . Query step
502...VIN 502. . . V IN
504...VOUT 504. . . V OUT
506...VSUM 506. . . V SUM
508...VCOMP 508. . . V COMP
510...電感器電流510. . . Inductor current
602...VIN 602. . . V IN
604...VOUT 604. . . V OUT
606...VSUM 606. . . V SUM
610...電感器電流610. . . Inductor current
702...誤差放大器702. . . Error amplifier
704...驅動器電路704. . . Driver circuit
706...升降壓轉換器706. . . Buck-boost converter
708...電流感測器708. . . Current sensor
802...PWM邏輯802. . . PWM logic
804...驅動邏輯804. . . Drive logic
806...模式控制邏輯806. . . Mode control logic
808...補償電路808. . . Compensation circuit
902...節點902. . . node
904...電阻器904. . . Resistor
906...節點906. . . node
908...電阻器908. . . Resistor
906...節點906. . . node
910...誤差放大器910. . . Error amplifier
912...節點912. . . node
914...比較器914. . . Comparators
915...輸入電壓節點915. . . Input voltage node
917...電流感測器917. . . Current sensor
918...節點918. . . node
919...高側的降壓電晶體919. . . High-side step-down transistor
920...節點920. . . node
922...低側的降壓電晶體922. . . Low-side step-down transistor
924...接地節點924. . . Ground node
926...電感器926. . . Inductor
928...節點928. . . node
930...高側的升壓電晶體930. . . High side boost transistor
932...VOUT 932. . . V OUT
934...低側的升壓電晶體934. . . Low side booster transistor
935...電阻器935. . . Resistor
936...電容器936. . . Capacitor
1002...控制邏輯及驅動器1002. . . Control logic and driver
1004...SR閂鎖1004. . . SR latch
1006...模式選擇邏輯1006. . . Mode selection logic
1008...驅動器1008. . . driver
1010...SR閂鎖1010. . . SR latch
1012...多工器1012. . . Multiplexer
1014...加法器電路1014. . . Adder circuit
1015...PWM比較器1015. . . PWM comparator
1016...加法器1016. . . Adder
1017...反相器1017. . . inverter
1018...OR閘1018. . . OR gate
1020...AND閘1020. . . AND gate
1022...反相器1022. . . inverter
1024...反相器1024. . . inverter
1102...SR閂鎖1102. . . SR latch
1104...AND閘1104. . . AND gate
1106...AND閘1106. . . AND gate
1108...反相器1108. . . inverter
1110...反相器1110. . . inverter
1112...SR閂鎖1112. . . SR latch
1114...延遲閂鎖1114. . . Delayed latch
為了更完整的理解,現在係參考到以上結合所附的圖式所做的說明,其中:For a more complete understanding, reference is now made to the above description in conjunction with the accompanying drawings, in which:
圖1是一種升降壓轉換器的概要圖;Figure 1 is a schematic view of a step-up and step-down converter;
圖2係描繪本揭露內容的非反相升降壓轉換器的功能方塊圖;2 is a functional block diagram depicting a non-inverting buck-boost converter of the present disclosure;
圖3係提供本揭露內容的非反相升降壓轉換器之更詳細的方塊圖;3 is a more detailed block diagram of a non-inverting buck-boost converter providing the present disclosure;
圖4是描繪圖3的非反相升降壓轉換器的操作的流程圖;4 is a flow chart depicting the operation of the non-inverting buck-boost converter of FIG. 3;
圖5a-5c係描繪當從降壓操作模式轉換至升壓操作模式時,該升降壓轉換器操作的波形;5a-5c depict waveforms of the buck-boost converter operation when transitioning from a buck mode of operation to a boost mode of operation;
圖6a-6c係描繪當從升壓操作模式轉換至降壓操作模式時,該升降壓轉換器操作的波形;6a-6c depict waveforms of the buck-boost converter operation when transitioning from a boost mode of operation to a step-down mode of operation;
圖7是一種多相非反相升降壓轉換器的功能方塊圖;Figure 7 is a functional block diagram of a multi-phase non-inverting buck-boost converter;
圖8是該多相升降壓轉換器的調變器及驅動器電路的方塊圖;Figure 8 is a block diagram of a modulator and driver circuit of the multiphase buck-boost converter;
圖9是該具有本質電流分擔的多相非反相升降壓轉換器之更詳細的方塊圖;Figure 9 is a more detailed block diagram of the multiphase non-inverting buck-boost converter with intrinsic current sharing;
圖10是該調變器及驅動器電路之概要的方塊圖;Figure 10 is a block diagram showing an outline of the modulator and the driver circuit;
圖11是該最大的工作週期偵測及模式選擇電路之概要圖;Figure 11 is a schematic diagram of the maximum duty cycle detection and mode selection circuit;
圖12係描繪一運作在一降壓模式穩態中的雙相非反相升降壓轉換器的操作;Figure 12 is a diagram showing the operation of a two-phase non-inverting buck-boost converter operating in a buck mode steady state;
圖13係描繪一運作在一降壓模式穩態中的雙相非反相升降壓轉換器;以及Figure 13 is a diagram showing a two-phase non-inverting buck-boost converter operating in a buck mode steady state;
圖14係描繪一運作在一升壓模式穩態中的雙相非反相升降壓轉換器。Figure 14 depicts a two-phase non-inverting buck-boost converter operating in a boost mode steady state.
202...升降壓轉換器電路202. . . Buck-boost converter circuit
204...輸入節點204. . . Input node
206...輸出節點206. . . Output node
208...驅動邏輯208. . . Drive logic
210...PWM控制邏輯210. . . PWM control logic
212...控制補償邏輯212. . . Control compensation logic
214...電流感測器214. . . Current sensor
216...模式控制邏輯216. . . Mode control logic
Claims (23)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/848,579 US8305055B2 (en) | 2010-01-29 | 2010-08-02 | Non-inverting buck boost voltage converter |
US13/160,162 US8896279B2 (en) | 2010-01-29 | 2011-06-14 | Multi-phase non-inverting buck boost voltage converter |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201223110A TW201223110A (en) | 2012-06-01 |
TWI454037B true TWI454037B (en) | 2014-09-21 |
Family
ID=45546041
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103123291A TWI511436B (en) | 2010-08-02 | 2011-07-19 | Multi-phase non-inverting buck boost voltage converter and operating and controlling methods thereof |
TW100125420A TWI454037B (en) | 2010-08-02 | 2011-07-19 | Multi-phase non-inverting buck boost voltage converter and operating and controlling methods thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103123291A TWI511436B (en) | 2010-08-02 | 2011-07-19 | Multi-phase non-inverting buck boost voltage converter and operating and controlling methods thereof |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101379047B1 (en) |
CN (1) | CN102347689B (en) |
TW (2) | TWI511436B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI580165B (en) * | 2015-08-25 | 2017-04-21 | Huawei Tech Co Ltd | Voltage conversion circuit, voltage conversion method and polyphase parallel power supply system |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9477278B2 (en) | 2011-10-01 | 2016-10-25 | Intel Corporation | Voltage regulator |
US20140077776A1 (en) * | 2012-09-17 | 2014-03-20 | Intel Corporation | Voltage regulator |
US9271241B2 (en) | 2013-11-19 | 2016-02-23 | Intel IP Corporation | Access point and methods for distinguishing HEW physical layer packets with backwards compatibility |
CN104122436A (en) * | 2014-05-21 | 2014-10-29 | 帝奥微电子有限公司 | Anti-interference narrow-pulse over-voltage detection circuit |
US9007096B1 (en) * | 2014-07-07 | 2015-04-14 | Xilinx, Inc. | High-speed analog comparator |
CN104242662B (en) * | 2014-08-18 | 2016-09-21 | 广州金升阳科技有限公司 | The control method of four pipe Buck-Boost circuit and system |
CN104600983B (en) * | 2014-12-24 | 2017-07-18 | 成都芯源系统有限公司 | Step-up and step-down switch power converter, control circuit and mode switching control unit |
US9793800B1 (en) * | 2016-04-15 | 2017-10-17 | Linear Technology Corporation | Multiphase switching power supply with robust current sensing and shared amplifier |
TWI609571B (en) * | 2016-11-28 | 2017-12-21 | 立積電子股份有限公司 | Boost circuit for use in power amplifier |
CN106685191B (en) * | 2017-03-24 | 2019-03-05 | 阳光电源股份有限公司 | A kind of multi-mode control method and device |
KR20190067993A (en) | 2017-12-08 | 2019-06-18 | 주식회사 한중엔시에스 | Power apparatus |
IT201800003339A1 (en) * | 2018-03-07 | 2019-09-07 | St Microelectronics Srl | DRIVING CIRCUIT OF A HALF-BRIDGE, RELATIVE INTEGRATED CIRCUIT AND SYSTEM |
US10734902B2 (en) * | 2018-09-13 | 2020-08-04 | Microchip Technology Incorporated | Control of four-switch, single inductor, non-inverting buck-boost converters |
US11183935B2 (en) * | 2019-03-14 | 2021-11-23 | Microchip Technology Incorporated | Current control for buck-boost converters using conditional offsets |
US20200321872A1 (en) * | 2019-04-03 | 2020-10-08 | Alpha And Omega Semiconductor (Cayman) Limited | Phase multipliers in power converters |
CN112467976B (en) * | 2019-09-09 | 2022-02-15 | 圣邦微电子(北京)股份有限公司 | Switch converter and control circuit and control method thereof |
TWI756891B (en) * | 2020-10-29 | 2022-03-01 | 和碩聯合科技股份有限公司 | Buck-boost converter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6788033B2 (en) * | 2002-08-08 | 2004-09-07 | Vlt, Inc. | Buck-boost DC-DC switching power conversion |
US20090045786A1 (en) * | 2007-08-14 | 2009-02-19 | Freescale Semiconductor, Inc. | Mode transitioning in a dc/dc converter using a constant duty cycle difference |
US20090179619A1 (en) * | 2007-12-12 | 2009-07-16 | Intersil Americas Inc. | Voltage regulator system and method for efficiency optimization using duty cycle measurements |
US20100019745A1 (en) * | 2008-07-22 | 2010-01-28 | Texas Instruments Incorporated | Multiple switch node power converter control scheme that avoids switching sub-harmonics |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4974141A (en) | 1988-05-18 | 1990-11-27 | Viteq Corporation | AC to DC power converter with input current waveform control for buck-boost regualtion of output |
TW538586B (en) * | 2002-05-27 | 2003-06-21 | Richtek Technology Corp | Two-step ripple-free multi-phase converter and the converting method thereof |
US7288924B2 (en) | 2004-07-16 | 2007-10-30 | Cellex Power Products, Inc. | Digital input current control for switch mode power supplies |
GB2449914B (en) * | 2007-06-07 | 2012-01-18 | Wolfson Microelectronics Plc | Improved buck-boost converter |
US8085011B1 (en) * | 2007-08-24 | 2011-12-27 | Intersil Americas Inc. | Boost regulator using synthetic ripple regulation |
US7952900B2 (en) * | 2008-04-16 | 2011-05-31 | Analog Devices, Inc. | H-bridge buck-boost converter |
-
2011
- 2011-07-19 TW TW103123291A patent/TWI511436B/en active
- 2011-07-19 TW TW100125420A patent/TWI454037B/en active
- 2011-07-28 CN CN201110287432.1A patent/CN102347689B/en active Active
- 2011-08-02 KR KR1020110076799A patent/KR101379047B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6788033B2 (en) * | 2002-08-08 | 2004-09-07 | Vlt, Inc. | Buck-boost DC-DC switching power conversion |
US20090045786A1 (en) * | 2007-08-14 | 2009-02-19 | Freescale Semiconductor, Inc. | Mode transitioning in a dc/dc converter using a constant duty cycle difference |
US20090179619A1 (en) * | 2007-12-12 | 2009-07-16 | Intersil Americas Inc. | Voltage regulator system and method for efficiency optimization using duty cycle measurements |
US20100019745A1 (en) * | 2008-07-22 | 2010-01-28 | Texas Instruments Incorporated | Multiple switch node power converter control scheme that avoids switching sub-harmonics |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI580165B (en) * | 2015-08-25 | 2017-04-21 | Huawei Tech Co Ltd | Voltage conversion circuit, voltage conversion method and polyphase parallel power supply system |
US10164536B2 (en) | 2015-08-25 | 2018-12-25 | Huawei Technologies Co., Ltd. | Voltage conversion circuit and method, and multiphase parallel power system |
Also Published As
Publication number | Publication date |
---|---|
CN102347689B (en) | 2015-08-12 |
TW201440409A (en) | 2014-10-16 |
CN102347689A (en) | 2012-02-08 |
KR20120012767A (en) | 2012-02-10 |
TWI511436B (en) | 2015-12-01 |
TW201223110A (en) | 2012-06-01 |
KR101379047B1 (en) | 2014-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI454037B (en) | Multi-phase non-inverting buck boost voltage converter and operating and controlling methods thereof | |
US8896279B2 (en) | Multi-phase non-inverting buck boost voltage converter | |
TWI463777B (en) | Non-inverting buck boost voltage converter and method for controlling the same | |
US11303212B2 (en) | Peak-buck peak-boost current-mode control for switched step-up step-down regulators | |
US7755342B2 (en) | Multi-mode switching control circuit and method for improving light load efficiency in switching power supplies | |
US8000117B2 (en) | Buck boost function based on a capacitor bootstrap input buck converter | |
US8330439B2 (en) | System and method for PFM/PWM mode transition within a multi-phase buck converter | |
US7944191B2 (en) | Switching regulator with automatic multi mode conversion | |
US7518346B2 (en) | Buck-boost DC/DC converter with overlap control using ramp shift signal | |
US8878501B2 (en) | Multi-phase power block for a switching regulator for use with a single-phase PWM controller | |
US10594218B1 (en) | Hysteresis timing scheme for mode transition in a buck boost converter | |
US10547240B2 (en) | Power converter having low power operating mode | |
US10637357B1 (en) | Ramp offset compensation circuit in a buck boost converter | |
TWM580821U (en) | Current doubling DC-DC converter | |
US8829872B1 (en) | Systems and methods for dropping and/or adding phases in multiphase regulators | |
JPH10225105A (en) | Dc-dc converter | |
GB2449914A (en) | Control of constant frequency, current mode, buck-boost converters | |
EP3002860A1 (en) | Peak-buck peak-boost current-mode control for switched step-up step-down regulators | |
US10181794B1 (en) | Two-stage multi-phase switch-mode power converter with inter-stage phase shedding control | |
US12218592B2 (en) | Control circuit for DC/DC converter | |
EP1994633B1 (en) | Buck-boost dc/dc converter | |
TWI482403B (en) | Dc-dc converter operating in pulse width modulation mode or pulse-skipping mode and switching method thereof | |
US10797580B1 (en) | Detection circuit, switching regulator having the same and control method |