TWI450025B - A device that can simultaneous capture multi-view 3D images - Google Patents
A device that can simultaneous capture multi-view 3D images Download PDFInfo
- Publication number
- TWI450025B TWI450025B TW098113124A TW98113124A TWI450025B TW I450025 B TWI450025 B TW I450025B TW 098113124 A TW098113124 A TW 098113124A TW 98113124 A TW98113124 A TW 98113124A TW I450025 B TWI450025 B TW I450025B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- view
- camera
- program
- shooting
- Prior art date
Links
Landscapes
- Stereoscopic And Panoramic Photography (AREA)
- Studio Devices (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Description
本發明為一種可同步拍攝多視景3D影像之裝置,係利用習知之拍攝裝置上,增加同步拍攝多視景3D影像所需軟、硬體之功能,即可透過使用多數台之拍攝裝置,以達簡單、快速且完美拍攝任意多視景3D影像之功效。The invention is a device capable of synchronously capturing multi-view 3D images, and the utility model can increase the functions of soft and hardware required for synchronously capturing multi-view 3D images by using a conventional shooting device, and can use a plurality of shooting devices. The ability to capture any multi-view 3D image in a simple, fast and perfect way.
習知多視景3D影像之呈現,是透過視差光柵(Parallax Barrier)、或光柵(Lenticular)之方式,將多視景影像分離,於適當之位置,讓觀看者的左、右眼,可各自觀看到不同視景之影像,最後透過人腦立體視覺之合成,以達到立體視覺之效果(詳見中華民國專利申請案號:097135421)。如圖1所示,係為習知多視景3D影像獲取之方式。一般係利用多數台(如五台)特殊之攝影裝置1,以取得多視景之影像Vi ,其中i=1,2,3,4,5,i為視景編號數(View Number)。對於一般使用者而言,這類特殊拍攝裝置不易取得而且價格偏高,因此,至今仍不普及。最近市場上出現雙鏡頭之數位相機(如富士通產品FinePix Real 3D System),但僅止於拍攝雙視景,無法滿足多視景拍攝之需求。另外,對於市場上早已普及之數位相機、攝影機及行動電話,亦缺乏拍攝多視景3D影像之功效。於中華民國專利案號:I243595之專利中,雖已提及同步拍攝之概念,但亦僅止於兩台之應用,且未對同步拍攝之技術做深入討論,是以,亦無法滿足多視景拍攝之需求。The conventional multi-view 3D image is displayed by means of Parallax Barrier or Lenticular, and the multi-view image is separated at appropriate positions so that the viewer's left and right eyes can be viewed separately. To the different visual images, and finally through the synthesis of human brain stereo vision to achieve the effect of stereoscopic vision (see the Republic of China patent application number: 097135421). As shown in FIG. 1 , it is a conventional multi-view 3D image acquisition method. Generally, a plurality of (for example, five) special photographic devices 1 are used to obtain a multi-view image V i , where i=1, 2, 3, 4, 5, i is a view number. For the average user, such special shooting devices are not easy to obtain and the price is high, so it is still not popular. Recently, a dual-lens digital camera (such as Fujitsu's FinePix Real 3D System) has appeared on the market, but it is only necessary to shoot dual-views, which cannot meet the needs of multi-view shooting. In addition, digital cameras, cameras and mobile phones, which have long been popular in the market, lack the ability to capture multi-view 3D images. In the patent of the Republic of China Patent No.: I243595, although the concept of simultaneous shooting has been mentioned, it is only limited to the application of two, and the technology of simultaneous shooting has not been discussed in depth, so that it cannot satisfy the multi-view. The need for shooting.
針對習知技術之不足,本發明為一種可同步拍攝多視景3D影像之裝置,主要係針對一般之數位相機、攝影機及行動電話等拍攝裝置,提出一有效拍攝多視景3D影像之方法,亦即可將多數台之數位相機、攝影機及行動電話,透過有線或無線等方式之連結,以傳遞必要之同步訊號與影像資料,達到同步拍攝多視景3D影像之功效。In view of the deficiencies of the prior art, the present invention is a device capable of simultaneously capturing multi-view 3D images, and mainly provides a method for effectively capturing multi-view 3D images for a general digital camera, a camera, and a mobile phone. It is also possible to connect most of the digital cameras, cameras and mobile phones through wired or wireless means to transmit the necessary synchronization signals and image data to achieve simultaneous shooting of multi-view 3D images.
如圖2所示,係一般習知拍攝裝置系統結構之示意圖。該習知之拍攝裝置系統5,主要係由一拍攝裝置(主機)10、與一無線遙控器21所構成。該拍攝裝置10,主要係由一光學透鏡模組(Optical Lens Module)11、一影像感應器(Image Sensor)12、快門(E & M Shutter)13、通用序列匯流排(USB)介面14、無線傳輸模組(Wireless Module,如blue tooth、wifi等標準無線傳輸方式)15、紅外線傳輸模組(IR Module)16、快門按鍵鈕17、操作功能按鍵鈕18、顯示螢幕19、記憶體(如HDD、記憶卡等)24、及微處理器20等元件所構成。該微處理器20主要係執行自動曝光(Auto Exposure)、自動白平衡(Auto White Balance)、閃光燈設定(Flash Setting)、色彩重現(Color Reproduction)、雜訊去除(Noise Reduction)、邊緣強化(Edge Enhancement)、影像尺寸設定(Image Size Setting)、數位縮放(Digital Zoom)、影像傳輸(Image Transfer)等功能。該無線搖控器21,係由操作 功能按鍵鈕22、與一無線發射模組(如紅外線(IR)、射頻(RF)發射模組)23元件所構成。該各元件間之光學、電氣與機械之動作關係,係為習知之技藝,此處不再贅述。本發明為一種可同步拍攝多視景3D影像之方法,即對上述習知拍攝之裝置,提出一種可同步拍攝多視景3D影像之方法。本方法主要係利用習知之技藝,於習知之拍攝裝置上,增加同步拍攝多視景3D影像所必需軟、硬體之功能,即可透過使用多數台之拍攝裝置,以達簡單、快速拍攝任意多視景3D影像之功效。以下以無線同步、及有線同步之方式,說明本發明之實施方法。As shown in FIG. 2, it is a schematic diagram of a conventional conventional camera system structure. The conventional camera system 5 is mainly composed of a camera (host) 10 and a wireless remote controller 21. The imaging device 10 is mainly composed of an optical lens module 11, an image sensor 12, a shutter (E & M Shutter) 13, a universal serial bus (USB) interface 14, and a wireless device. Transmission module (Wireless Module, such as blue tooth, wifi and other standard wireless transmission methods) 15, infrared transmission module (IR Module) 16, shutter button 17, operating function button 18, display screen 19, memory (such as HDD , memory card, etc. 24, and microprocessor 20 and other components. The microprocessor 20 mainly performs Auto Exposure, Auto White Balance, Flash Setting, Color Reproduction, Noise Reduction, and Edge Enhancement ( Edge Enhancement), Image Size Setting, Digital Zoom, and Image Transfer. The wireless remote controller 21 is operated by The function button 22 is composed of a wireless transmitting module (such as an infrared (IR), radio frequency (RF) transmitting module) 23 component. The optical, electrical, and mechanical action relationships between the various components are conventional techniques and will not be described here. The invention provides a method for simultaneously capturing multi-view 3D images, that is, a method for simultaneously capturing multi-view 3D images is proposed for the above-mentioned conventional shooting device. The method mainly utilizes the skill of the prior art to increase the functions of soft and hardware necessary for synchronously capturing multi-view 3D images on a conventional shooting device, and can use any of the shooting devices to achieve simple and fast shooting. The effect of multi-view 3D images. The implementation method of the present invention will be described below in the form of wireless synchronization and wired synchronization.
如圖3所示,係本發明對以無線同步拍攝多視景3D影像所需增加軟硬體功能之示意圖。在硬體功能方面,係於習知拍攝裝置之主機10上,増設一組3D操作功能按鍵鈕18’、及一觸控面板19’;於無線遙控器上21,亦增設一組同樣之3D操作功能按鍵鈕18’。當然,該組3D操作功能按鍵鈕18’之功能,亦可完全由該觸控面板19’以完全取代,即在該顯示螢幕19上,顯示如該組3D操作功能按鍵鈕18’同樣之圖形(未示於圖上),即可直接碰觸該數字圖形,達到同樣之功效。在軟體功能方面,係於微處理器20元件內,增設一組3D處理軟體程序20’。As shown in FIG. 3, the present invention is a schematic diagram of adding soft and hardware functions for capturing multi-view 3D images in wireless synchronization. In terms of hardware functions, a set of 3D operation function button 18' and a touch panel 19' are disposed on the host 10 of the conventional camera device; and a set of the same 3D is added to the wireless remote controller 21 Operate the function button 18'. Of course, the function of the set of 3D operation function button 18' can also be completely replaced by the touch panel 19', that is, on the display screen 19, the same figure as the set of 3D operation function button 18' is displayed. (Not shown in the figure), you can directly touch the digital graphic to achieve the same effect. In terms of software functions, a set of 3D processing software programs 20' are added to the components of the microprocessor 20.
如圖4所示,係3D操作功能按鍵鈕之示意圖。該一組3D操作功能按鍵鈕18’、21’,主要係由3D功能按鍵鈕50、2D功能按鍵鈕51、單位按鍵鈕52、數字按鍵鈕53、 最大容許視差線移動按鍵鈕54、影像縮放按鍵鈕55等所構成。各按鍵鈕之用途,於下文適當處說明。As shown in FIG. 4, it is a schematic diagram of a 3D operation function button. The set of 3D operation function button buttons 18', 21' are mainly composed of a 3D function button 50, a 2D function button 51, a unit button 52, a number button 53, The maximum allowable parallax movement button 54 and the image zoom button 55 are configured. The purpose of each button is explained below where appropriate.
如圖5所示,係本發明可無線同步拍攝多視景3D影像系統架構之示意圖。對於使用多數台同型之拍攝裝置(如五台)201、202、203、204、205,以拍攝多視景3D影像(如五視景3D影像),首先必須由使用者選擇一台(如按下如圖四所示之3D功能按鍵鈕50),以當作主拍攝裝置(Master Shooting Device)201,而其他之拍攝裝置,則自動被定義為從拍攝裝置(Slave Shooting Device)202、203、204、205。是以,多視景3D影像之拍攝,係透過該主拍攝裝置201、與該從拍攝裝置202、203、204、205間適當之互動,即可達到多數台同步拍攝之目的。該互動之機制,主要係透過無線傳輸之方式210,係由該主拍攝裝置201對該從拍攝裝置202、203、204、205發射出一命令訊號M;而該從拍攝裝置202、203、204、205,則根據所接收之命令訊號M,發射一適當之回覆訊號R。該命令訊號M、與回覆訊號R,係由裝置於該主拍攝裝置201、與該從拍攝裝置202、203、204、205微處理器20內之該3D處理程序20’所產生。As shown in FIG. 5, the present invention is a schematic diagram of a wireless simultaneous shooting multi-view 3D image system architecture. For the use of most of the same type of camera (such as five) 201, 202, 203, 204, 205, in order to shoot multi-view 3D images (such as five-view 3D images), you must first select one by the user (such as The 3D function button 50) shown in FIG. 4 is taken as the master shooting device 201, and the other camera devices are automatically defined as the slave shooting devices 202, 203, 204, 205. Therefore, the multi-view 3D image is captured by the main camera 201 and the corresponding interaction between the slave cameras 202, 203, 204, and 205, so that most of the simultaneous shooting can be achieved. The mechanism of the interaction is mainly through the wireless transmission mode 210, by which the master camera device 201 transmits a command signal M to the slave camera devices 202, 203, 204, 205; and the slave camera devices 202, 203, 204 And 205, transmitting an appropriate reply signal R according to the received command signal M. The command signal M and the reply signal R are generated by the 3D processing program 20' of the main camera 201 and the slave camera 202, 203, 204, 205.
如圖6所示,係本發明3D處理軟體程序之示意圖。該3D處理程序20’,主要係由一3D主模式程序100、與一3D從模式程序100’所構成。As shown in FIG. 6, it is a schematic diagram of the 3D processing software program of the present invention. The 3D processing program 20' is mainly composed of a 3D main mode program 100 and a 3D slave mode program 100'.
該3D主模式程序100,主要係由一3D連結程序110、一最佳3D視差調整程序120、一同步攝影程序140、一多視景影像合成程序150、及一結束程序160所構成。其中,該最佳3D視差調整程序120,係由一3D參數設定程序 121、與一視差調整程序130所構成。The 3D main mode program 100 is mainly composed of a 3D connection program 110, an optimal 3D parallax adjustment program 120, a synchronous photography program 140, a multi-view image synthesis program 150, and an end program 160. Wherein, the optimal 3D parallax adjustment program 120 is a 3D parameter setting program 121. It is composed of a parallax adjustment program 130.
另外,該3D從模式程序100’,則係由一3D連結對應程序110’、一視差調整對應程序130’、一同步攝影對應程序140’、一多視景影像合成對應程序150’、及一結束對應程序160’所構成。In addition, the 3D slave mode program 100' is composed of a 3D link correspondence program 110', a parallax adjustment corresponding program 130', a synchronous photography corresponding program 140', a multi-view image synthesis corresponding program 150', and a The composition of the corresponding program 160' is completed.
以下說明該3D主模式程序100、與該一3D從模式程序100’間互動之關係。The relationship between the 3D main mode program 100 and the interaction with the 3D slave mode program 100' will be described below.
該主拍攝裝置201之3D功能按鍵鈕50被按下時,即啟動該3D處理程序20’,並令其進入3D主模式程序100,以進行3D之操作。該3D主模式程序100首先執行該3D連結程序110,以確認及取得該從拍攝裝置202、203、204、205之數目與裝置編號。該3D連結程序110,係由該主拍攝裝置201(令其裝置編號為i=1),發射一連結命令訊號M(C)。該從拍攝裝置202、203、204、205,於接收到該連結命令訊號M(C)後,即啟動3D處理程序20’、並進入3D從模式程序100’,同時執行該3D連結對應程序110’。該3D連結對應程序110’,主要係發射一回覆訊號R(i),其中,i=2,3,4,5,係為從裝置編號,係代表該從拍攝裝置202、203、204、205各自之編號。該主拍攝裝置201,則可根據該從裝置編號i,以確認該從拍攝裝置202、203、204、205之數目與拍攝位置,亦即可確認該從拍攝裝置202、203、204、205所拍攝影像之視景編號數(View Number)。該主、從裝置編號i,係由使用者預設於該主、從拍攝裝置內,並根據裝置編號i大小,依次設定拍攝位置。When the 3D function button 50 of the main photographing device 201 is pressed, the 3D processing program 20' is started and brought into the 3D main mode program 100 to perform the 3D operation. The 3D main mode program 100 first executes the 3D linking program 110 to confirm and obtain the number of the slave photographing devices 202, 203, 204, 205 and the device number. The 3D connection program 110 transmits a connection command signal M(C) by the main imaging device 201 (the device number is i=1). After receiving the connection command signal M(C), the slave imaging devices 202, 203, 204, and 205 start the 3D processing program 20' and enter the 3D slave mode program 100', and simultaneously execute the 3D link matching program 110. '. The 3D link corresponding program 110' mainly transmits a reply signal R(i), wherein i=2, 3, 4, 5 is a slave device number, and represents the slave camera devices 202, 203, 204, 205. The respective number. The main imaging device 201 can confirm the number of the imaging devices 202, 203, 204, and 205 and the imaging position based on the slave device number i, and can confirm the slave imaging devices 202, 203, 204, and 205. The number of views of the image taken (View Number). The master and slave device number i are preset by the user in the master and slave imaging devices, and the shooting positions are sequentially set according to the device number i.
於連結程序110執行完畢後,該主3D模式100,即進 入該最佳3D視差調整程序120之執行。如圖1所示,當拍攝多視景3D影像時,必須將各拍攝裝置,設置於適當之位置、且具有適當之立體基距(Stereo Base)與匯聚角度(Convergence Angle),方能取得自然且舒適之3D影像。對於多視景3D影像之拍攝,如何提供一簡單且正確拍攝之方法,以取得各視景間之最佳視差,即成為多視景攝影之重要課題。After the execution of the linking program 110 is completed, the main 3D mode 100 is advanced. The execution of the optimal 3D parallax adjustment program 120 is entered. As shown in Fig. 1, when shooting multi-view 3D images, it is necessary to set each camera in an appropriate position and have an appropriate Stereo Base and Convergence Angle to achieve natural And comfortable 3D imagery. For the shooting of multi-view 3D images, how to provide a simple and correct method to obtain the best parallax between the various scenes becomes an important topic for multi-view photography.
如中華民國專利申請案號:I243595專利中所陳述,利用一“可容許最大拍攝視差”之方法,以拍攝最佳之3D影像。該“可容許最大拍攝視差”之計算,係根據被拍物之大小與遠近、拍攝器材與最終3D影像觀賞之環境,以計算決定該“可容許最大拍攝視差”。該拍攝器材,係指拍攝裝置上之螢幕尺寸;該最終3D影像觀賞環境,係指兩眼間距、觀賞距離、呈現3D影像所使用螢幕之尺寸、及可容許最大觀賞虛擬深度,其計算公式如下: 可容許最大拍攝視差=Le * Dvmax /(Dvmax +De )* Sc /Sm (1)As described in the Republic of China Patent Application No.: I243595 patent, a "allowable maximum shooting parallax" method is utilized to capture the best 3D image. The calculation of the "maximum shooting parallax" is calculated based on the size and distance of the object, the environment in which the shooting equipment and the final 3D image are viewed, and the "permissible maximum shooting parallax" is determined. The shooting device refers to the screen size on the shooting device; the final 3D image viewing environment refers to the distance between the eyes, the viewing distance, the size of the screen used to display the 3D image, and the maximum allowable viewing virtual depth. The calculation formula is as follows : Maximum allowable shooting parallax = L e * D vmax / (D vmax + D e ) * S c / S m (1)
其中,Le :兩眼間距Where L e : the distance between the two eyes
Dvmax :可容許最大虛擬深度D vmax : maximum virtual depth allowed
De :觀賞距離D e : viewing distance
Sc :數位相機螢幕尺寸S c : digital camera screen size
Sm :觀賞螢幕尺寸。S m : Watch the screen size.
詳細內容與公式之推導,請參閱該I243595之專利。此處,將上述之Le 、Dvmax 、De 、Sc 、Sm 定義為3D參數。 本發明亦採用該專利之計算公式,以計算設定“可容許最大拍攝視差”。另外,為了提高操作之方便性,該最佳3D視差調整程序120,係提供一3D參數設定程序121、與一視差調整程序130,讓使用者根據“可容許最大拍攝視差”,可簡單且正確調整出各視景間最佳之3D視差。For details on the formula and formula, please refer to the patent of I243595. Here, the above L e , D vmax , D e , S c , and S m are defined as 3D parameters. The present invention also adopts the calculation formula of the patent to calculate the setting "allowable maximum shooting parallax". In addition, in order to improve the convenience of operation, the optimal 3D parallax adjustment program 120 provides a 3D parameter setting program 121 and a parallax adjustment program 130, which allows the user to be simple and correct according to the "allowable maximum shooting parallax". Adjust the best 3D parallax between the scenes.
如圖7所示,該3D參數設定程序121,主要係提供一簡易之視差設定操作介面225,讓使用者可簡單地輸入各3D參數。該視差設定操作介面225,主要係在該主拍攝裝置201之顯示螢幕19上,顯示有兩眼間距230、觀賞距離240、觀賞螢幕尺寸250、可容許最大虛擬深度260、視景編號數270、及可容許最大拍攝視差280等3D參數設定之界面。As shown in FIG. 7, the 3D parameter setting program 121 mainly provides a simple parallax setting operation interface 225, so that the user can simply input each 3D parameter. The parallax setting operation interface 225 is mainly displayed on the display screen 19 of the main imaging device 201, and displays the two-eye spacing 230, the viewing distance 240, the viewing screen size 250, the allowable maximum virtual depth 260, and the viewing number 270. And an interface that allows for the maximum shooting of the 3D parameter setting such as the parallax 280.
如圖8所示,當使用者選擇兩眼間距設定之界面230時,則提供另一兩眼間距輸入之次介面231。該次介面231上則顯示有各種兩眼間距之預設數值232,使用者可透過移動功能按鍵鈕18、22,以選定輸入適當之兩眼間距,或者透過觸控面板19’,直接碰觸選擇該兩眼間距之預設數值232,達到兩眼間距輸入設定之目的。另外,該次介面231上,亦提供一空白欄233,使用者可透過3D操作功能按鍵鈕18’、21’上之數字按鍵鈕53(如圖4所示),直接輸入適當之兩眼間距。當然,亦可直接於該螢幕19上,顯示如該數字按鍵鈕53之數字圖形(未示於圖上),透過該觸控面板19’,直接碰觸該數字圖形,亦可達到兩眼間距輸入設定之目的。As shown in FIG. 8, when the user selects the interface 230 for the two-eye distance setting, the second interface 231 of the other two-eye distance input is provided. The preset interface 231 displays a preset value 232 of various distances between the two eyes. The user can select the appropriate two-eye spacing by moving the function button 18, 22 or directly touch the touch panel 19'. The preset value 232 of the distance between the two eyes is selected to achieve the purpose of setting the distance between the two eyes. In addition, a blank field 233 is also provided on the interface 231. The user can directly input the appropriate two-eye spacing through the digital button 53 (shown in FIG. 4) on the 3D operation function button 18', 21'. . Of course, the digital graphic of the digital button 53 (not shown) can be directly displayed on the screen 19, and the digital graphic can be directly touched through the touch panel 19' to achieve the distance between the two eyes. Enter the purpose of the setting.
如圖9所示,當使用者選擇觀賞距離設定之界面240 時,則提供另一觀賞距離輸入之次介面241。該次介面241上則顯示有各種觀賞距離之預設數值242,使用者可透過移動功能按鍵鈕18、22,以選定輸入適當之觀賞距離,或者透過觸控面板19’,直接碰觸選擇該觀賞距離之預設數值242,達到觀賞距離輸入設定之目的。另外,該次介面241上,亦提供一空白欄243,使用者可透過3D操作功能按鍵鈕18’、21’上之數字按鍵鈕53(如圖4所示),直接輸入適當之觀賞距離。當然,亦可直接於該螢幕19上,顯示如該數字按鍵鈕53之數字圖形(未示於圖上),透過該觸控面板19’,直接碰觸該數字圖形,亦可達到觀賞距離輸入設定之目的。As shown in FIG. 9, when the user selects the viewing distance setting interface 240 At the time, another secondary interface 241 for viewing distance input is provided. The preset value 242 of the viewing distance is displayed on the interface 241. The user can select the appropriate viewing distance by moving the function button 18, 22, or directly touch the touch panel 19'. The preset value 242 of the viewing distance is used for the purpose of setting the viewing distance input. In addition, a blank field 243 is also provided on the interface 241, and the user can directly input an appropriate viewing distance through the digital button 53 (shown in FIG. 4) on the 3D operation function button buttons 18', 21'. Of course, the digital graphic of the digital button 53 (not shown) can be directly displayed on the screen 19, and the digital graphic can be directly touched through the touch panel 19', and the viewing distance can also be input. The purpose of the setting.
如圖10所示,當使用者選擇觀賞螢幕尺寸設定之界面250時,則提供另一觀賞螢幕尺寸輸入之次介面251。該次介面251上則顯示有各種觀賞螢幕尺寸之預設數值252,使用者可透過移動功能按鍵鈕18、22,以選定輸入適當之觀賞螢幕尺寸,或者透過觸控面板19’,直接碰觸選擇該觀賞螢幕尺寸之預設數值252,達到觀賞螢幕尺寸輸入設定之目的。另外,該次介面251上,亦提供一空白欄253,使用者可透過3D操作功能按鍵鈕18’、21’上之數字按鍵鈕53(如圖4所示),直接輸入適當之觀賞螢幕尺寸。當然,亦可直接於該螢幕19上,顯示如該數字按鍵鈕53之數字圖形(未示於圖上),透過該觸控面板19’,直接碰觸該數字圖形,亦可達到觀賞螢幕尺寸輸入設定之目的。As shown in FIG. 10, when the user selects the interface 250 for viewing the screen size setting, another interface 251 for viewing the screen size input is provided. The preset interface 251 displays a preset value 252 of various viewing screen sizes. The user can select the appropriate viewing screen size by moving the function button 18, 22 or directly touch the touch panel 19'. Select the preset value 252 of the viewing screen size to achieve the purpose of viewing the screen size input setting. In addition, a blank field 253 is also provided on the interface 251, and the user can directly input the appropriate viewing screen size through the digital button 53 (shown in FIG. 4) on the 3D operation function button 18', 21'. . Of course, the digital graphic of the digital button 53 (not shown) can be directly displayed on the screen 19, and the digital graphic can be directly touched through the touch panel 19', and the viewing screen size can also be achieved. Enter the purpose of the setting.
如圖11所示,當使用者選擇可容許最大虛擬深度設定之界面260時,則提供另一可容許最大虛擬深度輸入之次 介面261。該次介面261上則顯示有各種可容許最大虛擬深度之預設數值262,使用者可透過移動功能按鍵鈕18、22,以選定輸入適當之可容許最大虛擬深度,或者透過觸控面板19’,直接碰觸選擇該可容許最大虛擬深度之預設數值262,達到可容許最大虛擬深度輸入設定之目的。另外,該次介面261上,亦提供一空白欄263,使用者可透過3D操作功能按鍵鈕18’、21’上之數字按鍵鈕53(如圖4所示),直接輸入適當之可容許最大虛擬深度。當然,亦可直接於該螢幕19上,顯示如該數字按鍵鈕53之數字圖形(未示於圖上),透過該觸控面板19’,直接碰觸該數字圖形,亦可達到可容許最大虛擬深度輸入設定之目的。As shown in FIG. 11, when the user selects the interface 260 that can tolerate the maximum virtual depth setting, then another allowable maximum virtual depth input is provided. Interface 261. The preset interface 261 displays various preset values 262 for allowing the maximum virtual depth. The user can select the appropriate allowable maximum virtual depth by moving the function button 18, 22 or through the touch panel 19'. The direct touch selects the preset value 262 of the allowable maximum virtual depth to achieve the maximum allowable virtual depth input setting. In addition, a blank field 263 is also provided on the interface 261. The user can directly input the appropriate maximum allowable value through the digital button 53 (shown in FIG. 4) on the 3D operation function button 18', 21'. Virtual depth. Of course, the digital graphic of the digital button 53 (not shown) can be directly displayed on the screen 19, and the digital graphic can be directly touched through the touch panel 19', and the maximum allowable maximum can be achieved. The purpose of the virtual depth input setting.
如圖12所示,當使用者選擇視景編號數設定之界面270時,則提供另一視景編號數輸入之次介面271。該次介面271上則顯示有各視景編號數之預設數字272,使用者可透過移動功能按鍵鈕18、22,以選定輸入適當之視景編號數,或者透過觸控面板19’,直接碰觸選擇該視景編號數272(如選擇第i台),達到視景編號數輸入設定之目的。該各視景編號數之預設數字272,係於執行該3D連結程序110時,所取得該從拍攝裝置202、203、204、205之從裝置編號。As shown in FIG. 12, when the user selects the interface 270 of the view number setting, the sub-interface 271 for inputting another view number is provided. The preset number 272 of each view number is displayed on the interface 271. The user can select the appropriate view number by using the function button 18, 22, or directly through the touch panel 19'. Touch to select the number of view numbers 272 (if the i-th station is selected), and achieve the purpose of setting the number of view numbers. The preset number 272 of each of the view number numbers is the slave device number of the slave imaging devices 202, 203, 204, and 205 when the 3D connection program 110 is executed.
如圖13所示,當使用者選擇可容許最大拍攝視差設定之界面280時,則提供另一可容許最大拍攝視差設定之次介面281。該次介面281上則顯示有計算調整282、讀取283、儲存284等操作介面。使用者可透過移動功能按鍵鈕18、22,以選定輸入適當之操作介面282、283、284,或 者透過觸控面板19’,直接碰觸選擇該操作介面282、283、284。當選擇該讀取操作介面283時,是對該微處理器20記憶體中,讀取之前所儲存之3D參數;當選擇該儲存操作介面284時,則將目前所設定之3D參數,儲存於該微處理器20記憶體中。當選擇該計算操作介面282時,則進入該視差調整程序130。As shown in FIG. 13, when the user selects the interface 280 that can accommodate the maximum shooting parallax setting, another secondary interface 281 that can accommodate the maximum shooting parallax setting is provided. The interface 281 displays operation interfaces such as calculation adjustment 282, reading 283, and storage 284. The user can select the appropriate operation interface 282, 283, 284 by moving the function button 18, 22, or The operation interface 282, 283, 284 is directly touched through the touch panel 19'. When the read operation interface 283 is selected, the 3D parameter stored in the memory of the microprocessor 20 is read; when the storage operation interface 284 is selected, the currently set 3D parameter is stored in the The microprocessor 20 is in memory. When the computing operation interface 282 is selected, the parallax adjustment program 130 is entered.
如圖14所示,該視差調整程序130,主要係由一可容許最大視差值計算程序285、一視景影像讀取程序286及一視差調整操作介面290所構成。As shown in FIG. 14, the parallax adjustment program 130 is mainly composed of an allowable maximum disparity value calculation program 285, a visual image reading program 286, and a parallax adjustment operation interface 290.
該可容許最大視差值計算程序285,係根據使用者所設定之3D參數、並利用公式(1)以計算、及顯示一可容許最大視差值。該視景影像讀取程序286,如圖六所示,係由該主拍攝裝置201,係根據使用者所輸入之該視景編號數(i),以發射一個別從裝置影像取得之命令訊號M(Ii)。當該從拍攝裝置i(處於3D從模式100’狀態),於收到該命令訊號M(Ii)後,即回傳一影像回覆訊號R(Ii),該影像回覆訊號R(Ii),即包含有該裝置編號i及影像。另外,為方便使用者操作,該視景影像讀取程序286,亦顯示該視景編號(i)。The allowable maximum disparity value calculation program 285 calculates and displays an allowable maximum disparity value according to the 3D parameter set by the user and using the formula (1). The visual image reading program 286, as shown in FIG. 6, is a main imaging device 201 that transmits a command signal obtained from the device image according to the number of view numbers (i) input by the user. M (Ii). When the slave camera i (in the 3D slave mode 100' state), after receiving the command signal M(Ii), an image reply signal R(Ii) is returned, and the image echoes the signal R(Ii), that is, This device number i and image are included. In addition, the visual image reading program 286 also displays the view number (i) for the convenience of the user.
如圖15所示,該視差調整操作介面290,係由一視景合成影像291、一可移動視差較準線294、一可移動光軸準直線297所構成。As shown in FIG. 15, the parallax adjustment operation interface 290 is composed of a view synthesis image 291, a movable parallax comparison line 294, and a movable optical axis alignment line 297.
該視景合成影像291,係由該視景1影像292、與視景i影像293所構成;或由該視景1影像292、與所有視景i影像293所構成,並以透明及重疊之方式,顯示於該介面 290上。The visual composite image 291 is composed of the visual 1 image 292 and the visual i image 293; or the visual 1 image 292 and all the visual i images 293 are transparent and overlapped. Mode, displayed in the interface 290.
該可移動視差校準線294,係根據該可容許最大視差值,以兩條垂直線295、296之方式,顯示於該介面290上。該兩條垂直線295、296間之距離,即為該可容許最大視差值。該可移動視差校準線294,係用以輔助設置該主拍攝裝置201與從拍攝裝置i間,最佳之立體基距(Stereo Base)與匯聚角度(Convergence Angle)之設定。一般,利用多數台拍攝裝置以拍攝多視景3D影像時,最佳的設置是讓所有拍攝裝置皆具有相同之立體基距與匯聚角度,如此拍攝取得之多視景3D影像間,才能具有相等視差之效果。是以,利用該可移動視差校準線294,可輔助使用者,調整該主拍攝裝置201、與該從拍攝裝置i間之立體基距與匯聚角度,以正確設定該視景1影像292、與該視景i影像293間之視差。另外,該可移動視差校準線294之移動,係可透該3D操作功能按鍵鈕18’、21’上之最大容許視差線移動按鍵鈕54(如圖4所示),以同時改變該兩條垂直線295、296之水平位置,或者透過觸控面板19’,直接同時移動該兩條垂直線295、296之水平位置。透過此位移之動作,可確認該視景1影像292、與該視景i影像293,所有對應點間之視差,皆不超過該可容許最大視差值。如此,於觀賞時,才能提供觀賞者最舒適之3D影像。The movable parallax calibration line 294 is displayed on the interface 290 in the form of two vertical lines 295, 296 according to the allowable maximum disparity value. The distance between the two vertical lines 295, 296 is the allowable maximum disparity value. The movable parallax calibration line 294 is used to assist in setting the optimal stereo base and Convergence Angle between the main camera 201 and the slave camera i. In general, when using a multi-camera shooting device to capture multi-view 3D images, the best setting is to have all the cameras have the same stereo base and convergence angle, so that the multi-view 3D images obtained by the shooting can be equal. The effect of parallax. Therefore, the movable parallax calibration line 294 can be used to assist the user in adjusting the stereo base distance and the convergence angle between the main imaging device 201 and the slave imaging device i to correctly set the visual 1 image 292 and The parallax between the visual image 293. In addition, the movement of the movable parallax calibration line 294 can be moved through the maximum allowable parallax line movement button 54 (shown in FIG. 4) on the 3D operation function button 18', 21' to simultaneously change the two The horizontal position of the vertical lines 295, 296, or the horizontal position of the two vertical lines 295, 296 are directly moved through the touch panel 19'. Through the action of the displacement, it can be confirmed that the visual 1 image 292 and the visual i image 293, and the parallax between all corresponding points, do not exceed the allowable maximum disparity value. In this way, the most comfortable 3D image of the viewer can be provided when viewing.
該可移動光軸準直線297,係由一對直交之水平線298與垂直線299所構成,係用以輔助該主拍攝裝置201與從拍攝裝置i間相對幾何關係之對準。亦即利用該可移動光軸校準直線297,可將該各拍攝裝置之光軸設置於同一水 平面上、並聚焦至同一點。該可移動光軸校準直線297之移動,係可透過移動功能按鍵鈕18、22,以改變該水平線298與垂直線299直交之位置,或者透過觸控面板19’,直接移動該水平線298與垂直線299直交之位置。另外,3D操作功能按鍵鈕18’、21’上之影像縮放按鍵鈕55(如圖4所示),係可以該水平線298與垂直線299直交位置為中心,同時對該視景合成影像291做縮小、或放大之處理。當然,對於該可移動視差校準線294、及該可移動光軸校準直線297,亦須做同倍率之縮放處理。The movable optical axis alignment line 297 is formed by a pair of orthogonal horizontal lines 298 and vertical lines 299 for assisting the alignment of the main imaging device 201 with respect to the relative geometric relationship from the imaging device i. That is, by using the movable optical axis calibration line 297, the optical axes of the respective imaging devices can be set in the same water. On the plane, and focus to the same point. The movement of the movable optical axis calibration line 297 can be changed by moving the function button 18, 22 to change the position where the horizontal line 298 is orthogonal to the vertical line 299, or directly move the horizontal line 298 and the vertical through the touch panel 19'. Line 299 is in direct position. In addition, the image zoom button 55 (shown in FIG. 4) on the 3D operation function button 18', 21' is centered on the horizontal line 298 and the vertical line 299, and the view synthesis image 291 is Reduce, or enlarge the process. Of course, for the movable parallax calibration line 294 and the movable optical axis calibration line 297, scaling processing of the same magnification is also required.
如圖6所示,透過上述視差調整之操作後,使用者即可按下拍攝裝置之快門按鈕鍵17、或無線遙控器上之快門按鈕鍵,以拍攝多視景3D影像。是以,於該主拍攝裝置201上所執行的3D主模式程序100,即進入同步攝影程序140;而所有之從拍攝裝置202、203、204、205上所執行的3D從模式程序100’,則進入同步攝影對應程序140’。對於多視景影像之拍攝,如前述,除了需對各視景影像間之視差,做最佳化之調整外;對於動態之被拍物,則須確保各拍攝裝置快門之同步;另外,亦須讓各拍攝裝置具有相同之攝影條件,方能取得具相同亮度與顏色之影像,以確保多視景3D影像之品質。是以,該主拍攝裝置201於同步攝影程序140,主要係對所有之從拍攝裝置202、203、204、205,發射一同步命令訊號M(S)。該同步命令訊號M(S),主要係包括有一攝影條件訊號M(SC )、一快門同步訊號M(SS )、及一影像編號訊號M(SN )。該攝影條件訊號,則可由影像尺寸、曝光設定值、白平衡設定值、焦距、數 位縮放、閃光燈設定等參數所構成。是以,從拍攝裝置202、203、204、205,於皆收到該同步命令訊號M(S)後,即根據攝影條件訊號以設定自身之攝影條件、並根據快門同步訊號,於適當之時間,啟動快門13(如圖3所示),以達同步攝影之目的。另外,該影像編號訊號,係用以紀錄該影像拍攝之次序,以方便多視景影像之後續處理。As shown in FIG. 6, after the above-described parallax adjustment operation, the user can press the shutter button 17 of the photographing device or the shutter button button on the wireless remote controller to take a multi-view 3D image. Therefore, the 3D main mode program 100 executed on the main photographing device 201, that is, enters the synchronous photographing program 140; and all of the 3D slave mode programs 100' executed from the photographing devices 202, 203, 204, 205, Then, the synchronous photography corresponding program 140' is entered. For the shooting of multi-view images, as mentioned above, in addition to the optimization of the parallax between the visual images, it is necessary to ensure the synchronization of the shutters of each camera for dynamic subjects; It is necessary to have the same shooting conditions for each camera to obtain images with the same brightness and color to ensure the quality of multi-view 3D images. Therefore, the main photographing device 201, in the synchronous photographing program 140, mainly transmits a synchronizing command signal M(S) to all of the photographing devices 202, 203, 204, and 205. The synchronization command signal M(S) mainly includes a shooting condition signal M(S C ), a shutter synchronization signal M(S S ), and an image number signal M(S N ). The shooting condition signal can be composed of parameters such as image size, exposure setting value, white balance setting value, focal length, digital zoom, and flash setting. Therefore, after the synchronization command signal M(S) is received from the photographing devices 202, 203, 204, and 205, the photographing condition signal is set according to the photographing condition signal, and according to the shutter synchronization signal, at an appropriate time. , the shutter 13 (shown in Figure 3) is activated for the purpose of synchronous photography. In addition, the image numbering signal is used to record the order of the image capturing to facilitate subsequent processing of the multi-view image.
於上述同步拍攝之操作之後,如圖16所示,使用者可選擇多視景影像預覽之界面300。是以,如圖6所示,於該主拍攝裝置201上所執行的3D主模式程序100,即進入多視景影像合成程序150;而所有之從拍攝裝置202、203、204、205上所執行的3D從模式程序100’,則進入多視景影像合成對應程序150’。After the above synchronous shooting operation, as shown in FIG. 16, the user can select the multi-view image preview interface 300. Therefore, as shown in FIG. 6, the 3D main mode program 100 executed on the main photographing device 201 enters the multi-view image synthesizing program 150; and all of the slave photographing devices 202, 203, 204, and 205 The executed 3D slave mode program 100' enters the multi-view image composition corresponding program 150'.
該多視景影像合成程序150,主要係由一多視景影像取得程序、及一影像合成顯示程序所構成。該多視景影像取得程序,如圖6所示,係由該主拍攝裝置201,對所有從拍攝裝置202、203、204、205,以發射一所有從裝置影像取得之命令訊號M(Iall )。當該所有從拍攝裝置202、203、204、205,於收到該命令訊號M(Iall )後,即個自回傳一影像回覆訊號R(Ii ),該影像回覆訊號R(Ii ),即包含有該裝置編號i及影像。於取得所有從拍攝裝置202、203、204、205所拍攝之視景影像後,該影像合成程序,即以次畫素交替排列之方式(請參考中華民國專利申請案號:097135421),將所有視景影像,合成使之成為一多視景3D影像,並將該多視景3D影像,顯示於該介面290上。The multi-view image synthesis program 150 is mainly composed of a multi-view image acquisition program and an image synthesis display program. The multi-view image acquisition program, as shown in FIG. 6, is used by the main camera 201 to transmit a command signal M (I all) obtained by all the slave devices to all the slave devices 202, 203, 204, and 205. ). After all this, the command signal is received at M (I all) from the imaging means 202,203,204,205, i.e. a self-backhaul reply to a video signal R (I i), the image reply signal R (I i ), that is, the device number i and the image are included. After all the view images captured by the photographing devices 202, 203, 204, and 205 are obtained, the image synthesizing program is alternately arranged in a sub-pixel (refer to the Republic of China Patent Application No.: 097135421), The visor image is synthesized to make a multi-view 3D image, and the multi-view 3D image is displayed on the interface 290.
於上述同步拍攝之操作之後,如圖17所示,使用者可 選擇結束之界面301。是以,如圖6所示,於該主拍攝裝置201上所執行的3D主模式程序100,即進入結束程序160;而所有之從拍攝裝置202、203、204、205上所執行的3D從模式程序100’,則進入結束對應程序160’。該結束程序160,如圖6所示,係由該主拍攝裝置201,對所有從拍攝裝置202、203、204、205,以發射一結束之命令訊號M(Eall )。當該從拍攝裝置202、203、204、205,於收到該命令訊號M(Eall )後,即個自回傳一結束確認回覆訊號R(Ei )後,自動切回一般2D之模式。當該主拍攝裝置201,於接收所有之結束確認回覆訊號R(Ei )後,亦自動切回一般2D之模式,結束3D之模式。After the above synchronous shooting operation, as shown in FIG. 17, the user can select the ending interface 301. Therefore, as shown in FIG. 6, the 3D main mode program 100 executed on the main photographing device 201, that is, enters the end program 160; and all the 3D slaves executed from the photographing devices 202, 203, 204, 205 The mode program 100' enters the end corresponding program 160'. The end program 160, as shown in FIG. 6, is used by the main photographing device 201 to transmit an end command signal M(E all ) to all of the slave photographing devices 202, 203, 204, and 205. After receiving the command signal M(E all ), the slave photographing devices 202, 203, 204, and 205 automatically return to the normal 2D mode after returning from the end to confirm the reply signal R(E i ). . When the main imaging device 201 receives all of the confirmation reply signals R(E i ), it also automatically switches back to the normal 2D mode to end the 3D mode.
如圖18所示,係本發明對有線同步拍攝多視景3D影像所需增加軟硬體功能之示意圖。本實施例二所需增加3D硬體功能與圖3所示之實施例一之內容大致相同,唯一之不同處,係多增設一USB介面14’,並令原有之USB介面14為裝置通用序列匯流排(Device USB);而該多增設之USB介面14’Host。是以,該多台攝影裝置之連接,如圖19所示,係可以串接之方式,由主拍攝裝置401之主通用序列匯流排(Host USB)與從拍攝裝置402之Device USB連接,而從拍攝裝置402之Host USB則連接至下一台從拍攝裝置之Device USB,如此依次類推。另外,亦可如圖20所示,係可以並接之方式,透過一USB分享器(Hub)410,由主拍攝裝置401之Host USB與所有從拍攝裝置402、 403、404、405之Device USB連接。As shown in FIG. 18, it is a schematic diagram of the present invention for adding a soft and hardware function to a multi-view 3D image by wired synchronization. The function of adding the 3D hardware in the second embodiment is substantially the same as that in the first embodiment shown in FIG. 3. The only difference is that a USB interface 14' is added, and the original USB interface 14 is used as a device. The serial bus (Device USB); and the additional USB interface 14'Host. Therefore, as shown in FIG. 19, the connection of the plurality of imaging devices can be connected in series, and the main universal serial bus (Host USB) of the main imaging device 401 is connected to the Device USB of the imaging device 402. The Host USB from the camera 402 is connected to the Device USB of the next slave device, and so on. In addition, as shown in FIG. 20, it can be connected in a manner, through a USB sharer (Hub) 410, by the Host USB of the main camera 401 and all the slave imaging devices 402, Device USB connection of 403, 404, 405.
此外,本實施例二所需增加3D軟體功能與圖3所示之實施例一之內容大致相同,唯一之不同處,對以串接之方式之本實施例二,係針對裝置於該微處理器20內之該3D從模式程序100’,需增設一訊號傳遞之功能,亦即將前端傳來之命令訊號M,需做一裝置編號之確認,若為對後端從裝置作用之命令,則需往後端傳遞;而後端傳來之回覆訊號R,則往前端傳遞。當然,以串接之方式之本實施例二,經傳遞之快門同步訊號M(SS ),對各從拍攝裝置402、403、404、405而言,會產生些許之延遲。但因目前USB傳輸頻寬高,這延遲只有微秒(ms)之程度,對於運動速度不快的被拍物,尚不至於破壞各多視景影像間位置對應之一致性。In addition, the function of adding the 3D software in the second embodiment is substantially the same as the content of the first embodiment shown in FIG. 3. The only difference is that the second embodiment in the manner of serial connection is for the device. The 3D slave mode program 100' in the device 20 needs to add a signal transmission function, that is, the command signal M transmitted from the front end needs to be confirmed by a device number, and if it is a command for the back end slave device, It needs to be passed to the back end; the reply signal R sent from the back end is passed to the front end. Of course, in the second embodiment in series, the transmitted shutter synchronization signal M(S S ) has a slight delay for each of the slave cameras 402, 403, 404, and 405. However, due to the high bandwidth of the USB transmission, the delay is only microseconds (ms). For the object that is not moving fast, the consistency of the position between the multiple visual images is not destroyed.
另一方面,目前一般之拍攝裝置,其所使用影像感應器之解析度,已高至數百萬畫素、甚至上千萬畫素。對此,本發明實施例一所採用之無線同步拍攝之方式,如對前述視差調整、與多視景影像合成操作下,需做視景影像傳輸之處理時,將受制於無線頻寬之限制,而顯得無效率。相較於無線同步之方式,由於高USB傳輸頻寬,可高速傳遞各從拍攝裝置之影像至主拍攝裝置,方便如前述視差調整、與多視景影像合成之操作。是以,無線與有線合用之方式,可更提高多視景拍攝之效率。On the other hand, the resolution of the image sensor used in the current general shooting device has been as high as several million pixels or even tens of millions of pixels. In this regard, the wireless synchronous shooting method used in the first embodiment of the present invention, if the processing of the visual image transmission is performed under the aforementioned parallax adjustment and multi-view image synthesis operation, is subject to the limitation of the wireless bandwidth. And appear inefficient. Compared with the wireless synchronization mode, due to the high USB transmission bandwidth, the image of each slave camera can be transmitted to the main camera at high speed, which facilitates the operation of the above-described parallax adjustment and multi-view image synthesis. Therefore, the combination of wireless and wired can improve the efficiency of multi-view shooting.
1‧‧‧習知多數台(如五台)特殊之攝影裝置1‧‧‧Study most of the (such as five) special photographic devices
5‧‧‧習知之拍攝裝置系統5‧‧‧Study camera system
10‧‧‧習知拍攝裝置(主機)10‧‧‧Learning camera (host)
11‧‧‧光學透鏡模組11‧‧‧Optical lens module
12‧‧‧影像感應器12‧‧‧Image sensor
13‧‧‧快門13‧‧ ‧Shutter
14、14’‧‧‧USB介面14, 14'‧‧‧USB interface
15‧‧‧無線傳輸模組15‧‧‧Wireless Transmission Module
16‧‧‧紅外線傳輸模組16‧‧‧Infrared transmission module
17‧‧‧快門按鍵鈕17‧‧‧Shutter button
18‧‧‧習知操作功能按鍵鈕18‧‧‧Learning function button
18’‧‧‧一組3D操作功能按鍵鈕18'‧‧‧A set of 3D operating function button
19‧‧‧顯示螢幕19‧‧‧ Display screen
19’‧‧‧觸控面板19'‧‧‧ touch panel
20‧‧‧微處理器20‧‧‧Microprocessor
20’‧‧‧一組3D處理軟體程序20’‧‧‧A set of 3D processing software programs
21‧‧‧無線遙控器21‧‧‧Wireless remote control
21’‧‧‧一組3D操作功能按鍵鈕21'‧‧‧A set of 3D operation function button
22‧‧‧習知操作功能按鍵鈕22‧‧‧Learning function button
23‧‧‧無線發射模組23‧‧‧Wireless Transmitter Module
24‧‧‧記憶體24‧‧‧ memory
50‧‧‧3D功能按鍵鈕50‧‧‧3D function button
51‧‧‧2D功能按鍵鈕51‧‧‧2D function button
52‧‧‧單位按鍵鈕52‧‧‧unit button
53‧‧‧數字按鍵鈕53‧‧‧Digital button
54‧‧‧最大容許視差線移動按鍵鈕54‧‧‧Maximum allowable parallax line button
55‧‧‧影像縮放按鍵鈕55‧‧‧Image zoom button
100‧‧‧3D主模式程序100‧‧‧3D main mode program
100’‧‧‧3D從模式程序100’‧‧‧3D slave mode program
110‧‧‧一3D連結程序110‧‧‧3D link procedure
110’‧‧‧一3D連結對應程序110’‧‧‧3D Link Correspondence Procedure
120‧‧‧一最佳3D視差調整程序120‧‧‧ an optimal 3D parallax adjustment procedure
121‧‧‧一3D參數設定程序121‧‧‧A 3D parameter setting procedure
130‧‧‧一視差調整程序130‧‧‧ a parallax adjustment procedure
130’‧‧‧一視差調整對應程序130’‧‧‧ a parallax adjustment procedure
140‧‧‧一同步攝影程序140‧‧‧A synchronous photography program
140’‧‧‧一同步攝影對應程序140'‧‧‧A synchronous photography counterpart
150‧‧‧一多視景影像合成程序150‧‧‧Multiple visual image synthesis program
150’‧‧‧一多視景影像合成對應程序150'‧‧‧Multi-view image synthesis program
160‧‧‧一結束程序160‧‧‧End procedure
160’‧‧‧一結束對應程序160’‧‧‧ End of the corresponding procedure
200‧‧‧多數台同型之拍攝裝置200‧‧‧ Most of the same type of camera
201‧‧‧主拍攝裝置201‧‧‧Main camera
202、203、204、205‧‧‧從拍攝裝置202, 203, 204, 205‧‧‧ from the camera
210‧‧‧無線傳輸之方式210‧‧‧ Ways of wireless transmission
225‧‧‧簡易之視差設定操作介面225‧‧‧Simple parallax setting operation interface
230‧‧‧兩眼間距參數設定之界面230‧‧‧ Interface for setting the distance between two eyes
231‧‧‧兩眼間距輸入之次介面231‧‧‧Second interface for two-eye spacing input
232‧‧‧各種兩眼間距之預設數值232‧‧‧Preset values for various distances between the two eyes
233‧‧‧空白欄233‧‧‧ blank column
240‧‧‧觀賞距離參數設定之界面240‧‧‧ viewing distance parameter setting interface
241‧‧‧觀賞距離輸入之次介面241‧‧‧ viewing distance input interface
242‧‧‧各種觀賞距離之預設數值242‧‧‧Preset values for various viewing distances
243‧‧‧空白欄243‧‧‧ blank column
250‧‧‧觀賞螢幕尺寸參數設定之界面250‧‧‧View screen for setting screen size parameters
251‧‧‧觀賞螢幕尺寸輸入之次介面251‧‧‧View screen size input interface
252‧‧‧觀賞螢幕尺寸之預設數值252‧‧‧Preview the preset value of the screen size
253‧‧‧空白欄253‧‧‧ blank column
260‧‧‧可容許最大虛擬深度參數設定之界面260‧‧‧ Interface that allows maximum virtual depth parameter setting
261‧‧‧可容許最大虛擬深度輸入之次介面261‧‧‧Internable interface for maximum virtual depth input
262‧‧‧各種可容許最大虛擬深度之預設數值262‧‧‧Preset values for the maximum allowable virtual depth
263‧‧‧空白欄263‧‧‧ blank column
270‧‧‧視景編號數參數設定之界面270‧‧‧ Vision number parameter setting interface
271‧‧‧視景編號數輸入之次介面271‧‧‧View interface number input interface
272‧‧‧各視景編號數之預設數字272‧‧‧ Preset numbers for each number of views
280‧‧‧可容許最大拍攝視差參數設定之界面280‧‧‧Interface that allows maximum shooting parallax parameter setting
281‧‧‧可容許最大拍攝視差設定之次介面281‧‧‧Internable interface for maximum shooting parallax setting
282‧‧‧計算調整之操作介面282‧‧‧ Calculation and adjustment of the operation interface
283‧‧‧讀取可容許最大拍攝視差值之操作介面283‧‧‧Read the operation interface that allows the maximum shooting disparity value
284‧‧‧儲存可容許最大拍攝視差值之操作介面284‧‧‧Storage operation interface for allowing maximum shooting disparity
285‧‧‧可容許最大視差值計算程序285‧‧‧ Maximum allowable disparity calculation procedure
286‧‧‧視景影像讀取程序286‧‧·Vision image reading program
290‧‧‧視差調整操作介面290‧‧‧ Parallax adjustment operation interface
291‧‧‧視景合成影像291‧‧ Vision composite image
292‧‧‧視景1影像292‧‧‧Sight 1 image
293‧‧‧各視景i影像293‧‧‧ Vision i images
294‧‧‧可移動視差校準線294‧‧‧ movable parallax calibration line
295、296‧‧‧垂直線295, 296‧‧ vertical lines
297‧‧‧可移動光軸校準直線297‧‧‧Removable optical axis calibration straight line
298‧‧‧水平線298‧‧‧ horizontal line
299‧‧‧垂直線299‧‧‧ vertical line
300‧‧‧多視景影像預覽之界面300‧‧‧Multi-view image preview interface
400‧‧‧多數台之拍攝裝置400‧‧‧ Most of the cameras
401‧‧‧主拍攝裝置401‧‧‧Main camera
402、403、404、405‧‧‧從拍攝裝置402, 403, 404, 405‧‧‧ from the camera
410‧‧‧USB分享器(Hub)410‧‧‧USB Sharer (Hub)
Vi ‧‧‧多視景之影像V i ‧‧‧Multi-view image
i‧‧‧裝置編號、視景編號i‧‧‧Device number, view number
M‧‧‧命令訊號M‧‧‧ Command Signal
R‧‧‧回覆訊號R‧‧‧ reply signal
M(C)‧‧‧一連結命令訊號M(C)‧‧‧A link command signal
M(Ii)‧‧‧個別從裝置影像取得之命令訊號M (Ii) ‧ ‧ individual command signals obtained from device images
R(i)‧‧‧一回覆訊號R(i)‧‧‧ replies
M(S)‧‧‧同步命令訊號M(S)‧‧‧ Synchronous command signal
M(SC )‧‧‧攝影條件訊號M(S C )‧‧‧Photographic conditions signal
M(SS )‧‧‧快門同步訊號M(S S )‧‧‧Shutter sync signal
M(SN )‧‧‧影像編號訊號M(S N )‧‧‧ image number signal
M(Iall )‧‧‧所有從裝置影像取得之命令訊號M(I all )‧‧‧All command signals obtained from the device image
M(Eall )‧‧‧結束之命令訊號M (E all ) ‧ ‧ end of the command signal
R(Ei )‧‧‧結束確認回覆訊號R(E i )‧‧‧ End confirmation reply signal
Stereo Base‧‧‧立體基距Stereo Base‧‧‧ Stereo Base
Convergence Angle‧‧‧匯聚角度Convergence Angle‧‧‧ Convergence angle
Le ‧‧‧兩眼間距L e ‧‧‧ spacing between eyes
Dvmax ‧‧‧可容許最大虛擬深度D vmax ‧‧‧ allows maximum virtual depth
De ‧‧‧觀賞距離D e ‧‧‧ viewing distance
Sc ‧‧‧數位相機螢幕尺寸S c ‧‧‧ digital camera screen size
Sm ‧‧‧觀賞螢幕尺寸S m ‧‧‧view screen size
圖1所示,係為習知多視景3D影像獲取方式之示意圖。FIG. 1 is a schematic diagram of a conventional multi-view 3D image acquisition method.
圖2所示,係一般習知拍攝裝置系統結構之示意圖。2 is a schematic view showing the structure of a conventional conventional camera system.
圖3所示,係本發明實施例一,對以無線同步拍攝多視景3D影像所需增加軟硬體功能之示意圖FIG. 3 is a schematic diagram showing the function of adding soft and hardware functions for capturing multi-view 3D images by wireless synchronization according to the first embodiment of the present invention.
圖4所示,係3D操作功能按鍵鈕之示意圖。Figure 4 is a schematic diagram of a 3D operation function button.
圖5所示,係本發明可無線同步拍攝多視景3D影像系統架構之示意圖。FIG. 5 is a schematic diagram of the architecture of the multi-view 3D image system capable of wirelessly simulating the present invention.
圖6所示,係本發明3D處理軟體程序之示意圖。Figure 6 is a schematic diagram of a 3D processing software program of the present invention.
圖7所示,係一簡易視差設定操作介面之示意圖。Figure 7 is a schematic diagram of a simple parallax setting operation interface.
圖8所示,係一兩眼間距輸入次介面之示意圖。Figure 8 is a schematic diagram showing the input of the secondary interface by a distance between two eyes.
圖9所示,係一觀賞距離輸入次介面之示意圖。As shown in FIG. 9, it is a schematic diagram of a viewing distance input sub-interface.
圖10所示,係一觀賞螢幕尺寸輸入次介面之示意圖。As shown in FIG. 10, it is a schematic diagram of an input screen size input sub-interface.
圖11所示,係一可容許最大虛擬深度輸入次介面之示意圖。As shown in FIG. 11, it is a schematic diagram of a maximum virtual depth input sub-interface.
圖12所示,係一視景編號數輸入次介面之示意圖。As shown in FIG. 12, it is a schematic diagram of inputting a secondary interface into a view number.
圖13所示,係一可容許最大拍攝視差設定次介面之示意圖。As shown in FIG. 13, it is a schematic diagram of a sub-interface that can accommodate the maximum shooting parallax setting.
圖14所示,係視差調整程序構成之示意圖。Fig. 14 is a schematic diagram showing the configuration of a parallax adjustment program.
圖15所示,係視差調整操作介面之示意圖。Figure 15 is a schematic diagram of a parallax adjustment operation interface.
圖16所示,係多視景影像預覽界面之示意圖。FIG. 16 is a schematic diagram of a multi-view image preview interface.
圖17所示,係結束界面之示意圖。Figure 17 is a schematic diagram of the end interface.
圖18所示,係本發明實施例二,對以有線同步拍攝多視景3D影像所需增加軟硬體功能之示意圖。FIG. 18 is a schematic diagram showing the addition of hardware and software functions required for capturing multi-view 3D images by wire synchronization according to the second embodiment of the present invention.
圖19所示,係可以串接方式連接之本發明實施例二之示意 圖。Figure 19 is a schematic diagram of Embodiment 2 of the present invention which can be connected in series Figure.
圖20所示,係可以並接方式連接之本發明實施例二之示意圖。FIG. 20 is a schematic diagram of Embodiment 2 of the present invention which can be connected in parallel.
10‧‧‧習知拍攝裝置(主機)10‧‧‧Learning camera (host)
11‧‧‧光學透鏡模組11‧‧‧Optical lens module
12‧‧‧影像感應器12‧‧‧Image sensor
13‧‧‧快門13‧‧ ‧Shutter
14、14’‧‧‧USB介面14, 14'‧‧‧USB interface
15‧‧‧無線傳輸模組15‧‧‧Wireless Transmission Module
16‧‧‧紅外線傳輸模組16‧‧‧Infrared transmission module
17‧‧‧快門按鍵鈕17‧‧‧Shutter button
18‧‧‧習知操作功能按鍵鈕18‧‧‧Learning function button
18’‧‧‧一組3D操作功能按鍵鈕18'‧‧‧A set of 3D operating function button
19‧‧‧顯示螢幕19‧‧‧ Display screen
19’‧‧‧觸控面板19'‧‧‧ touch panel
20‧‧‧微處理器20‧‧‧Microprocessor
20’‧‧‧一組3D處理軟體程序20’‧‧‧A set of 3D processing software programs
21‧‧‧無線遙控器21‧‧‧Wireless remote control
21’‧‧‧一組3D操作功能按鍵鈕21'‧‧‧A set of 3D operation function button
22‧‧‧習知操作功能按鍵鈕22‧‧‧Learning function button
23‧‧‧無線發射模組23‧‧‧Wireless Transmitter Module
24‧‧‧記憶體24‧‧‧ memory
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098113124A TWI450025B (en) | 2009-04-21 | 2009-04-21 | A device that can simultaneous capture multi-view 3D images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098113124A TWI450025B (en) | 2009-04-21 | 2009-04-21 | A device that can simultaneous capture multi-view 3D images |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201039048A TW201039048A (en) | 2010-11-01 |
TWI450025B true TWI450025B (en) | 2014-08-21 |
Family
ID=44995289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098113124A TWI450025B (en) | 2009-04-21 | 2009-04-21 | A device that can simultaneous capture multi-view 3D images |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI450025B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8755785B2 (en) | 2011-03-31 | 2014-06-17 | Intel Corporation | Collaborative image control |
EP3432150B1 (en) | 2010-12-13 | 2021-01-20 | Nokia Technologies Oy | Method and apparatus for 3d capture synchronisation |
TWI540470B (en) | 2012-07-13 | 2016-07-01 | 原相科技股份有限公司 | Interactive image system and remote controller adapted thereto |
TWI513275B (en) * | 2012-07-17 | 2015-12-11 | Univ Nat Chiao Tung | Photography device |
CN103576894B (en) * | 2012-07-25 | 2017-03-01 | 原相科技股份有限公司 | Interactive image system and remote controller applicable to the interactive image system |
TWI589149B (en) * | 2014-04-29 | 2017-06-21 | 鈺立微電子股份有限公司 | Portable three-dimensional scanner and method of generating a three-dimensional scan result corresponding to an object |
CN105025193B (en) | 2014-04-29 | 2020-02-07 | 钰立微电子股份有限公司 | Portable stereo scanner and method for generating stereo scanning result of corresponding object |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200302664A (en) * | 2002-01-16 | 2003-08-01 | Hewlett Packard Co | System for near-simultaneous capture of multiple camera images |
TW200530834A (en) * | 2004-03-11 | 2005-09-16 | Lite On It Corp | Control device for transceiving data |
TWI243595B (en) * | 2002-07-19 | 2005-11-11 | Artificial Parallax Electronic | Digital camera for recording three dimension images |
TW200839734A (en) * | 2007-03-28 | 2008-10-01 | Seiko Epson Corp | Video compositing device and video output device |
TW200912888A (en) * | 2007-05-16 | 2009-03-16 | Seereal Technologies Sa | Holographic display |
-
2009
- 2009-04-21 TW TW098113124A patent/TWI450025B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200302664A (en) * | 2002-01-16 | 2003-08-01 | Hewlett Packard Co | System for near-simultaneous capture of multiple camera images |
TWI243595B (en) * | 2002-07-19 | 2005-11-11 | Artificial Parallax Electronic | Digital camera for recording three dimension images |
TW200530834A (en) * | 2004-03-11 | 2005-09-16 | Lite On It Corp | Control device for transceiving data |
TW200839734A (en) * | 2007-03-28 | 2008-10-01 | Seiko Epson Corp | Video compositing device and video output device |
TW200912888A (en) * | 2007-05-16 | 2009-03-16 | Seereal Technologies Sa | Holographic display |
Also Published As
Publication number | Publication date |
---|---|
TW201039048A (en) | 2010-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101636747B (en) | Two dimensional/three dimensional digital information acquisition and display device | |
JP5014979B2 (en) | 3D information acquisition and display system for personal electronic devices | |
JP5683025B2 (en) | Stereoscopic image capturing apparatus and stereoscopic image capturing method | |
TWI450025B (en) | A device that can simultaneous capture multi-view 3D images | |
US9414041B2 (en) | Method for changing play mode, method for changing display mode, and display apparatus and 3D image providing system using the same | |
JP5814692B2 (en) | Imaging apparatus, control method therefor, and program | |
JP2011064894A (en) | Stereoscopic image display apparatus | |
JP2014501086A (en) | Stereo image acquisition system and method | |
CN101808250A (en) | Dual vision-based three-dimensional image synthesizing method and system | |
CN105306921A (en) | Three-dimensional photo shooting method based on mobile terminal and mobile terminal | |
US11849100B2 (en) | Information processing apparatus, control method, and non-transitory computer readable medium | |
WO2021110035A1 (en) | Eye positioning apparatus and method, and 3d display device, method and terminal | |
US9479761B2 (en) | Document camera, method for controlling document camera, program, and display processing system | |
WO2014082276A1 (en) | Method and system for capturing a 3d image using single camera | |
CN202172467U (en) | Display with eye-positioned raster follower | |
JP2003348621A (en) | Means for setting two-viewpoint camera | |
JP2016032227A (en) | Image display system, three-dimensional image pointing device, and image display device | |
CN104469340B (en) | A kind of common photocentre imaging system of three-dimensional video-frequency and its imaging method | |
JP4208351B2 (en) | Imaging apparatus, convergence distance determination method, and storage medium | |
CN104041026B (en) | Image take-off equipment, method and program and recording medium thereof | |
CN113891063B (en) | Holographic display method and device | |
JP2010267192A (en) | Touch control device for three-dimensional imaging | |
JP2001016619A (en) | Image pickup device, its convergence distance decision method, storage medium and optical device | |
JP2011135252A (en) | Stereoscopic video photographing camera adjustment assisting device | |
JP5367747B2 (en) | Imaging apparatus, imaging method, and imaging system |