[go: up one dir, main page]

TWI447847B - Semiconductor device and fabrication method thereof - Google Patents

Semiconductor device and fabrication method thereof Download PDF

Info

Publication number
TWI447847B
TWI447847B TW097107098A TW97107098A TWI447847B TW I447847 B TWI447847 B TW I447847B TW 097107098 A TW097107098 A TW 097107098A TW 97107098 A TW97107098 A TW 97107098A TW I447847 B TWI447847 B TW I447847B
Authority
TW
Taiwan
Prior art keywords
deep trench
layer
conductor
substrate
buried layer
Prior art date
Application number
TW097107098A
Other languages
Chinese (zh)
Other versions
TW200937572A (en
Inventor
Jui Chun Chang
Ying Cheng Chen
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW097107098A priority Critical patent/TWI447847B/en
Publication of TW200937572A publication Critical patent/TW200937572A/en
Application granted granted Critical
Publication of TWI447847B publication Critical patent/TWI447847B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

半導體裝置及其製作方法Semiconductor device and method of fabricating the same

本發明係有關於一種半導體裝置及其製造方法,特別係有關於深溝渠接觸結構及其製造方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a deep trench contact structure and a method of fabricating the same.

於現今半導體技術中,為了達成單晶片系統(Single-chip system)之操作,係將控制器、記憶體、低壓操作之電路以及高壓操作之功率元件高度整合至單一晶片上,其中功率元件的研發種類包含有垂直式雙擴散金氧半電晶體(VDMOS)、絕緣閘極雙載子電晶體(IGBT)、橫向式功率電晶體(LDMOS)等幾種,其研發目的在於提高電源轉換效率來降低能源的損耗。由於在單一晶片上需同時提供高壓電晶體元件以及低壓CMOS電路元件,因此在製程上需製作用以隔絕相鄰之元件的隔離結構。In today's semiconductor technology, in order to achieve the operation of a single-chip system, the controller, the memory, the low-voltage operation circuit, and the high-voltage operation power components are highly integrated on a single wafer, in which the power components are developed. The types include vertical double-diffused MOS transistors (VDMOS), insulated gated dual-carrier transistors (IGBT), and lateral power transistors (LDMOS). The research and development aims to improve power conversion efficiency. Loss of energy. Since high voltage transistor components and low voltage CMOS circuit components are required to be provided on a single wafer, an isolation structure for isolating adjacent components is required in the process.

請參閱第1圖,其顯示習知半導體元件的剖面圖。一般可使用由介電材料所形成的深溝渠絕緣結構20隔離鄰近的元件,因此能夠個別的控制隔離之元件其電源參數。但是深溝渠絕緣結構20容易產生寄生電容。另外,位於元件主動區與基底10之間的埋氧化層30,也會產生寄生電容。當元件在一電壓環境下操作時,會由於上述寄生電容產生充電而造成耦合效應,此效應在高壓元件中尤其明顯。電容耦合效應不但使得鄰近元件的特性表現受到影響,甚至會藉由基材程度不一的影響到其他電性相連的高低壓元件。Please refer to FIG. 1, which shows a cross-sectional view of a conventional semiconductor device. The deep trench isolation structure 20 formed of a dielectric material can generally be used to isolate adjacent components, thereby enabling individual control of the power supply parameters of the isolated components. However, the deep trench isolation structure 20 is prone to parasitic capacitance. In addition, the buried oxide layer 30 between the active region of the device and the substrate 10 also generates parasitic capacitance. When the component is operated in a voltage environment, the coupling effect is caused by the charging of the parasitic capacitance described above, and this effect is particularly noticeable in the high voltage component. The capacitive coupling effect not only affects the performance of adjacent components, but also affects other electrically connected high and low voltage components by varying degrees of substrate.

隨著半導體製程的不斷進步,積體電路的尺寸愈來愈小、電路愈來愈密,同時工作時脈愈來愈快,晶片內電路內的寄生電阻效應、寄生電容效應也就愈來愈嚴重,進而使頻率無法再提升,此稱為阻容延遲、阻容遲滯(RC Delay),RC Delay不僅阻礙時脈成長,同時也會增加電路的無謂功耗。這些效應對電路的運作產生不同程度的影響,也引發對電路穩定性的疑慮,尤其在現今電路高速運行的時代,電路對這些干擾的容忍度也越來越低,更加深此問題的嚴重性。With the continuous advancement of the semiconductor process, the size of the integrated circuit is getting smaller and smaller, the circuit is getting denser and denser, and the working clock is getting faster and faster, and the parasitic resistance effect and parasitic capacitance effect in the circuit inside the chip are getting more and more. Serious, and thus the frequency can no longer be increased, this is called RC delay, RC delay, RC Delay not only hinders the clock growth, but also increases the unnecessary power consumption of the circuit. These effects have different effects on the operation of the circuit, and also cause doubts about the stability of the circuit. Especially in the era of high-speed operation of the circuit today, the tolerance of the circuit to these interferences is getting lower and lower, and the severity of the problem is deepened. .

因此有需要提供一種半導體裝置及其形成方法,以克服先前技藝之不足。It is therefore desirable to provide a semiconductor device and method of forming the same that overcomes the deficiencies of the prior art.

為達上述、其它與本發明之目的,本發明提供一種半導體裝置,包括:一基底;一埋層,形成於該基底內,其中該埋層包含一絕緣區及一導體區;以及一深溝渠接觸結構,形成該基底內,其中該深溝渠接觸結構包含一導電材料,且該導電材料與該導體區電性連接。The present invention provides a semiconductor device comprising: a substrate; a buried layer formed in the substrate, wherein the buried layer includes an insulating region and a conductor region; and a deep trench A contact structure is formed in the substrate, wherein the deep trench contact structure comprises a conductive material, and the conductive material is electrically connected to the conductor region.

本發明也提供一種半導體裝置的製造方法,包括下列步驟:提供一基底,其具有一埋層位於其中,其中該埋層包含一絕緣區及一導體區;以及於該基底內形成一深溝渠接觸結構,其中該深溝渠接觸結構包含一導電材料,且該導電材料與該導體區電性連接。The present invention also provides a method of fabricating a semiconductor device, comprising the steps of: providing a substrate having a buried layer therein, wherein the buried layer includes an insulating region and a conductor region; and forming a deep trench contact in the substrate The structure, wherein the deep trench contact structure comprises a conductive material, and the conductive material is electrically connected to the conductor region.

本發明之實施例提供一種半導體裝置及其製造方法。有關各實施例之製造方式和使用方式係如下所詳述,並伴隨圖示加以說明。其中,圖式和說明書中使用之相同的元件編號係表示相同或類似之元件。而在圖式中,為清楚和方便說明起見,有關實施例之形狀和厚度或有不符實際之情形。而以下所描述者係特別針對本發明之裝置的各項元件或其整合加以說明,然而,值得注意的是,上述元件並不特別限定於所顯示或描述者,而是可以熟習此技藝之人士所得知的各種形式,此外,當一層材料層是位於另一材料層或基底之上時,其可以是直接位於其表面上或另外插入有其他中介層。Embodiments of the present invention provide a semiconductor device and a method of fabricating the same. The manner of manufacture and the manner of use of the various embodiments are described in detail below with reference to the drawings. Wherein, the same component numbers as used in the drawings denote the same or similar components. In the drawings, the shapes and thicknesses of the embodiments may be impractical for clarity and convenience of description. While the following description is specifically directed to the various elements of the device of the present invention or the integration thereof, it is noted that the above-described elements are not particularly limited to those shown or described, but may be those skilled in the art. The various forms are known, and in addition, when a layer of material is placed over another layer or substrate of material, it may be directly on its surface or otherwise interposed with other intervening layers.

第2圖至第9圖係顯示根據本發明實施例之製作一種半導體裝置的剖面圖。請參考第2圖,提供一基底100,其上方可具有導體埋層120、絕緣埋層140,以及磊晶層160。基底100可包含矽或其它合適之半導體材料的基材。絕緣埋層140可包含如二氧化矽等的氧化物。於磊晶層160上方形成一罩幕層180後,可將上述罩幕層180進行圖案化,以露出待去除之磊晶層160的表面。導體埋層120的電阻可小於基底100的電阻。在其他實施例中,當基底100的電阻夠小時,導體埋層120可不存在(未顯示於圖中)。2 to 9 are cross-sectional views showing the fabrication of a semiconductor device in accordance with an embodiment of the present invention. Referring to FIG. 2, a substrate 100 is provided, which may have a conductor buried layer 120, an insulating buried layer 140, and an epitaxial layer 160 thereon. Substrate 100 can comprise a substrate of tantalum or other suitable semiconductor material. The insulating buried layer 140 may contain an oxide such as cerium oxide or the like. After forming a mask layer 180 over the epitaxial layer 160, the mask layer 180 can be patterned to expose the surface of the epitaxial layer 160 to be removed. The electrical resistance of the buried conductor layer 120 can be less than the electrical resistance of the substrate 100. In other embodiments, when the resistance of the substrate 100 is small enough, the conductor buried layer 120 may not be present (not shown).

請參考第3圖,在形成圖案化之罩幕層180於磊晶層160的上方後,可進行一蝕刻製程將罩幕層180所暴露之磊晶層160去除,以形成一第一深溝渠200,其中所形成之第一深溝渠200暴露絕緣埋層140的上表面。在其他實施例中,可進行蝕刻製程將罩幕層180所暴露的磊晶層160,及位於磊晶層160下方之部份的絕緣埋層140去除,以形成第一深溝渠200,其中所形成的第一深溝渠200暴露絕緣埋層140之上表面下方的部份(未顯示於圖中)。接著將罩幕層180移除。Referring to FIG. 3, after the patterned mask layer 180 is formed over the epitaxial layer 160, an etching process may be performed to remove the epitaxial layer 160 exposed by the mask layer 180 to form a first deep trench. 200, wherein the first deep trench 200 formed exposes an upper surface of the insulating buried layer 140. In other embodiments, the etching process may be performed to remove the epitaxial layer 160 exposed by the mask layer 180 and the insulating buried layer 140 located under the epitaxial layer 160 to form the first deep trench 200. The formed first deep trench 200 exposes a portion below the upper surface of the insulating buried layer 140 (not shown). The mask layer 180 is then removed.

請參考第4圖,在第一深溝渠200形成後,可在第一深溝渠200之側壁及底表面上形成襯墊層210。襯墊層210亦可延伸至磊晶層160之上表面上。襯墊層210可包含例如四乙氧基矽烷(tetraethoxy silane,TEOS)的氧化物。接著可進行一蝕刻製程,以將第一深溝渠200所暴露之位於絕緣埋層140上方的襯墊層210去除,並可在襯墊層210去除後,繼續將第一深溝渠200所暴露之絕緣埋層140去除,以於第一深溝渠200之下方形成第二深溝渠220,如第5圖所示,並保留位於第一深溝渠200之側壁上的襯墊層210。請參考第5圖,所形成第二深溝渠220可暴露導體埋層120的上表面。在另一實施例中,所進行的蝕刻製程可在絕緣埋層140去除後,更將第一深溝渠200所暴露之部份的導體埋層120去除,而所形成的第二深溝渠220暴露導體埋層120之上表面下方的部份(未顯示於圖中)。在其他實施例中,當導體埋層120不存在時,所形成的第二深溝渠220可暴露位於絕緣埋層140下方之基底100的表面或表面下方的部份。Referring to FIG. 4, after the first deep trench 200 is formed, a liner layer 210 may be formed on the sidewalls and the bottom surface of the first deep trench 200. The liner layer 210 may also extend onto the upper surface of the epitaxial layer 160. The backing layer 210 may comprise an oxide such as tetraethoxy silane (TEOS). Then, an etching process may be performed to remove the liner layer 210 exposed above the insulating buried layer 140 by the first deep trench 200, and the first deep trench 200 may be exposed after the liner layer 210 is removed. The insulating buried layer 140 is removed to form a second deep trench 220 below the first deep trench 200, as shown in FIG. 5, and retaining the liner layer 210 on the sidewall of the first deep trench 200. Referring to FIG. 5, the second deep trench 220 formed may expose the upper surface of the conductor buried layer 120. In another embodiment, the etching process performed may remove the portion of the buried conductor layer 120 exposed by the first deep trench 200 after the insulating buried layer 140 is removed, and the formed second deep trench 220 is exposed. The portion below the upper surface of the conductor buried layer 120 (not shown). In other embodiments, when the buried conductor layer 120 is absent, the formed second deep trench 220 may expose a portion below the surface or surface of the substrate 100 under the insulating buried layer 140.

請參考第6圖,接著可進行一摻雜製程,以在第二深溝渠220所暴露之導體埋層120內形成一摻雜區230。在摻雜製程後,可再進行一退火製程,使摻雜區230往橫向及縱向的方向擴散,例如,往橫向擴散至絕緣埋層140下方的導體埋層120內,並往縱向擴散至導體埋層120之更深的區域內,如第6圖所示。摻雜區230可具有與導體埋層120相同的導電型。於一實施例中,摻雜區230及導體埋層120皆為N型導電型。摻雜區230之摻雜濃度一般可大於導體埋層120之摻雜濃度。摻雜區230的形成可提供較佳的摻雜均勻度(uniformity),以形成較佳之界面的電阻/電容,以及較穩定之(歐姆接觸的)導電構件。在其他實施例中,當基底100的電阻夠小時,導體埋層120可不存在,因此摻雜區230可形成於第二深溝渠220所暴露之基底100中(未顯示於圖中)。在另一實施例中,可不形成摻雜區230(未顯示於圖中)。Referring to FIG. 6, a doping process can be performed to form a doped region 230 in the buried conductor layer 120 exposed by the second deep trench 220. After the doping process, an annealing process may be further performed to diffuse the doping region 230 in the lateral and longitudinal directions, for example, laterally diffused into the buried layer 120 of the conductor below the insulating buried layer 140, and diffused longitudinally to the conductor. In the deeper area of the buried layer 120, as shown in Fig. 6. The doped region 230 may have the same conductivity type as the conductor buried layer 120. In one embodiment, the doped region 230 and the buried conductor layer 120 are all N-type conductive. The doping concentration of the doping region 230 may generally be greater than the doping concentration of the buried layer 120 of the conductor. The formation of doped regions 230 provides better doping uniformity to form a better interface resistance/capacitance, as well as a more stable (ohmic contact) conductive member. In other embodiments, when the resistance of the substrate 100 is small enough, the buried conductor layer 120 may be absent, and thus the doped region 230 may be formed in the substrate 100 exposed by the second deep trench 220 (not shown). In another embodiment, doped regions 230 may not be formed (not shown).

請參考第7圖,在摻雜區230形成後,接著可形成一導電材料240以填充第一深溝渠200及第二深溝渠220,且導電材料240可延伸至襯墊層210的表面上。導電材料240可包含例如摻雜之多晶矽的導電物質。於一較佳實施例中,導電材料240是在具有摻雜雜質之氣體的環境下,以同步(in-situ)化學氣相沉積法所形成的摻雜之多晶矽。導電材料240、摻雜區230及導體埋層120可為相同的導電型。於一實施例中,導電材料240、摻雜區230及導體埋層120皆為N型導電型。於一較佳實施例中,導電材料240為以N型雜質摻雜之多晶矽。於其他實施例中,導電材料240可包含例如鎢或鋁等的金屬。Referring to FIG. 7 , after the doping region 230 is formed, a conductive material 240 may be formed to fill the first deep trench 200 and the second deep trench 220 , and the conductive material 240 may extend onto the surface of the liner layer 210 . Conductive material 240 can comprise a conductive material such as doped polysilicon. In a preferred embodiment, the conductive material 240 is a doped polysilicon formed by in-situ chemical vapor deposition in an atmosphere of a gas doped with impurities. The conductive material 240, the doped region 230, and the conductor buried layer 120 may be of the same conductivity type. In one embodiment, the conductive material 240, the doped region 230, and the buried conductor layer 120 are all N-type conductive. In a preferred embodiment, the conductive material 240 is a polysilicon doped with an N-type impurity. In other embodiments, the electrically conductive material 240 can comprise a metal such as tungsten or aluminum.

由於一般包含氧化物之襯墊層210與磊晶層160彼此之間的晶格差異度大,因此在其接合界面處容易產生應力,尤其在後續製造步驟中所進行的高溫製程,更可能增大晶格的差異性而造成結構上的缺陷。選擇摻雜之多晶矽作為導電材料240能夠緩衝上述材料之間的應力問題,進而提升元件的穩定性及其功效。Since the liner layer 210 and the epitaxial layer 160 generally containing oxides have a large lattice difference with each other, stress is easily generated at the joint interface thereof, especially in the high-temperature process performed in the subsequent manufacturing steps, and is more likely to increase. The difference in the large lattice causes structural defects. Selecting the doped polysilicon as the conductive material 240 can buffer the stress problem between the above materials, thereby improving the stability and efficiency of the device.

請參考第8圖,接著可進行一回蝕刻(etching back)製程,以將形成於襯墊層210上方的導電材料240予以移除並形成深溝渠接觸結構260。Referring to FIG. 8, an etching back process can then be performed to remove the conductive material 240 formed over the liner layer 210 and form a deep trench contact structure 260.

由於深溝渠接觸結構260中,包含摻雜之多晶矽的導電材料240可以在具有摻雜雜質之氣體的環境下,以同步化學氣相沉積方式形成,而不需進行額外的摻雜製程,以避免進行摻雜製程可能產生之污染問題,或雜質擴散造成之元件效能降低的問題,因此深溝渠接觸結構260能夠被設計在較靠近主要元件的位置。且由於深溝渠接觸結構260之側壁具有例如氧化物之具有絕緣作用的襯墊層210,因此深溝渠接觸結構260亦可作為隔絕元件的隔離結構,於一實施例中,可以深溝渠接觸結構260定義元件之主動區域。另一實施例中,可以深溝渠接觸結構260及絕緣埋層140定義元件之主動區域。Due to the deep trench contact structure 260, the conductive material 240 containing the doped polysilicon can be formed by synchronous chemical vapor deposition in an environment with a gas doped with impurities, without an additional doping process to avoid The contamination problem that may result from the doping process, or the problem of reduced component performance due to impurity diffusion, can be designed such that the deep trench contact structure 260 can be designed closer to the main component. Since the sidewall of the deep trench contact structure 260 has a spacer layer 210 such as an insulating oxide, the deep trench contact structure 260 can also serve as an isolation structure for the isolation component. In one embodiment, the deep trench contact structure 260 can be used. Define the active area of the component. In another embodiment, the deep trench contact structure 260 and the insulating buried layer 140 may define active regions of the components.

請參考第9圖,在形成深溝渠接觸結構260後,可在深溝渠接觸結構260及襯墊層210上方繼續形成層間介電層300,穿過層間介電層300且與深溝渠接觸結構260電性連接之接觸插塞320,例如鎢插塞,於一實施例中,接觸插塞320之側壁及底部可具有例如鈦或氮化鈦的阻障層310,並形成位於接觸插塞320上方的金屬層330。導體埋層120、摻雜區230及深溝渠接觸結構260能夠藉由接觸插塞320及金屬層330與外部電性連接。Referring to FIG. 9, after the deep trench contact structure 260 is formed, the interlayer dielectric layer 300 may be further formed over the deep trench contact structure 260 and the liner layer 210, passing through the interlayer dielectric layer 300 and contacting the deep trench contact structure 260. Electrically connected contact plugs 320, such as tungsten plugs. In one embodiment, the sidewalls and bottom of the contact plugs 320 may have a barrier layer 310 such as titanium or titanium nitride and are formed over the contact plugs 320. Metal layer 330. The conductor buried layer 120, the doped region 230 and the deep trench contact structure 260 can be electrically connected to the outside through the contact plug 320 and the metal layer 330.

由於深溝渠接觸結構260中的導電材料240,其與導體埋層120(或基底100)及摻雜區230可藉由接觸插塞320及金屬層330與外部電性連接,因此當由於操作元件而於絕緣埋層140及襯墊層210內形成的寄生電荷時,可將與導電材料240、導體埋層120(或基底100)及摻雜區230電性連接的外部電源接地,使寄生電荷能夠藉由分別與絕緣埋層140與襯墊層210鄰接之導體埋層120(或基底100)與導電材料240傳導至外部,以避免由於寄生電容所產生的雜訊問題。導體埋層120(或基底100)之電壓亦可經由深溝渠接觸結構250由外部予以控制。Due to the conductive material 240 in the deep trench contact structure 260, the conductive buried layer 120 (or the substrate 100) and the doped region 230 can be electrically connected to the outside through the contact plug 320 and the metal layer 330. When the parasitic charge formed in the insulating buried layer 140 and the liner layer 210 is formed, an external power source electrically connected to the conductive material 240, the conductor buried layer 120 (or the substrate 100), and the doping region 230 may be grounded to make a parasitic charge. The conductor buried layer 120 (or the substrate 100) adjacent to the insulating buried layer 140 and the pad layer 210, respectively, and the conductive material 240 can be conducted to the outside to avoid noise problems due to parasitic capacitance. The voltage of the conductor buried layer 120 (or the substrate 100) can also be externally controlled via the deep trench contact structure 250.

本發明之實施例所揭露之半導體裝置及其形成的方法中,係利於具有絕緣埋層及導體埋層於其中之基底內,形成深溝渠接觸結構,其中深溝渠接觸結構包含導電材料及位於導電材料之側壁上的襯墊層。In the semiconductor device and the method for forming the same disclosed in the embodiments of the present invention, a deep trench contact structure is formed in the substrate having the insulating buried layer and the buried layer of the conductor therein, wherein the deep trench contact structure comprises a conductive material and is located at the conductive a liner layer on the sidewall of the material.

深溝渠接觸結構的導電材料可以是在具有摻雜雜質之氣體環境下,以同步氣相沉積方式形成,而不需進行額外的摻雜製程,以避免可能產生之污染或元件效能降低的問題,因此深溝渠接觸結構能夠被設計在較靠近主要元件的位置。深溝渠接觸結構之襯墊層為具有絕緣特性的氧化層,因此深溝渠接觸結構能用作隔離元件的隔離結構,更可用以定義元件之主動區域,而能夠減少單一元件所需要之主動區域的面積。根據上述理由,根據本發明之實施例所形成的深溝渠接觸結構,其能夠大幅提昇單一晶圓內所能配置的元件數且提高元件密度。當選擇摻雜之多晶矽作為深溝渠接觸結構內的導電材料時,其能夠緩衝包含氧化物之襯墊層與磊晶層之間由於晶格差異所造成的應力,以提升元件的穩定度及其功效。The conductive material of the deep trench contact structure may be formed by synchronous vapor deposition in a gas atmosphere with doping impurities, without performing an additional doping process to avoid possible contamination or degradation of component performance. Therefore, the deep trench contact structure can be designed to be located closer to the main component. The liner layer of the deep trench contact structure is an oxide layer having insulating properties, so that the deep trench contact structure can be used as an isolation structure of the isolation element, and can be used to define the active region of the component, and can reduce the active region required for a single component. area. For the above reasons, the deep trench contact structure formed according to the embodiment of the present invention can greatly increase the number of components that can be disposed in a single wafer and increase the density of components. When the doped polysilicon is selected as the conductive material in the deep trench contact structure, it can buffer the stress caused by the lattice difference between the liner layer and the epitaxial layer containing the oxide, thereby improving the stability of the element and efficacy.

深溝渠接觸結構中的導電材料,其與導體埋層(或基底)及摻雜區可藉由接觸插塞及金屬層與外部電性連接。因此,由於操作元件而於絕緣埋層或襯墊層中所形成的寄生電荷,其可經由導電材料、導體埋層(或基底)及摻雜區傳導至外部,以避免由於寄生電容所產生的雜訊問題。導體埋層(或基底)之電壓亦可經由深溝渠接觸結構由外部予以控制。摻雜區的形成可提供較佳的摻雜均勻度(uniformity),並在導體埋層(或基底)及深溝渠接觸結構的導電材料之間,提供較佳之界面的電阻/電容,以及較穩定之(歐姆接觸的)導電構件。The conductive material in the deep trench contact structure, and the buried layer (or substrate) of the conductor and the doped region can be electrically connected to the outside through the contact plug and the metal layer. Therefore, the parasitic charge formed in the insulating buried layer or the liner layer due to the operating element can be conducted to the outside via the conductive material, the buried layer (or substrate) of the conductor, and the doped region to avoid generation due to parasitic capacitance. Noise problem. The voltage of the buried layer (or substrate) of the conductor can also be externally controlled via the deep trench contact structure. The formation of the doped regions provides better doping uniformity and provides a better interface resistance/capacitance between the conductor buried layer (or substrate) and the conductive material of the deep trench contact structure, and is more stable. A conductive member (ohmically contacted).

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

10...基底10. . . Base

20...深溝渠絕緣結構20. . . Deep trench insulation structure

30...埋氧化層30. . . Buried oxide layer

100...基底100. . . Base

120...導體埋層120. . . Conductor buried layer

140...絕緣埋層140. . . Insulating buried layer

160...磊晶層160. . . Epitaxial layer

180...罩幕層180. . . Mask layer

200...第一深溝渠200. . . First deep trench

210...襯墊層210. . . Liner layer

220...第二深溝渠220. . . Second deep trench

230...摻雜區230. . . Doped region

260...深溝渠接觸結構260. . . Deep trench contact structure

300...層間介電層300. . . Interlayer dielectric layer

310...阻障層310. . . Barrier layer

320...接觸插塞320. . . Contact plug

330...金屬層330. . . Metal layer

第1圖顯示習知半導體元件的剖面圖。Figure 1 shows a cross-sectional view of a conventional semiconductor device.

第2圖至第9圖顯示根據本發明實施例之形成深溝渠接觸結構的剖面圖。2 through 9 show cross-sectional views of forming a deep trench contact structure in accordance with an embodiment of the present invention.

100...基底100. . . Base

120...導體埋層120. . . Conductor buried layer

140...絕緣埋層140. . . Insulating buried layer

160...磊晶層160. . . Epitaxial layer

210...襯墊層210. . . Liner layer

230...摻雜區230. . . Doped region

260...深溝渠接觸結構260. . . Deep trench contact structure

300...層間介電層300. . . Interlayer dielectric layer

310...阻障層310. . . Barrier layer

320...接觸插塞320. . . Contact plug

330...金屬層330. . . Metal layer

Claims (12)

一種半導體裝置,包括:一基底;一絕緣埋層,形成於該基底內;以及一導體埋層,形成於該基底內,且位於該絕緣埋層下,其中該導體埋層之電阻小於該基底之電阻;一深溝渠接觸結構,形成於該基底內,其中該深溝渠接觸結構包含一導電材料及一襯墊層,填入一深溝渠中,其中該襯墊層形成於該深溝渠中鄰接該絕緣埋層以外之側壁上,該襯墊層不鄰接該導體埋層,使該導體埋層填滿該深溝渠之底部表面的所有部份,且該導電材料與該導體埋層直接接觸。 A semiconductor device comprising: a substrate; an insulating buried layer formed in the substrate; and a buried conductor layer formed in the substrate and under the insulating buried layer, wherein the conductor buried layer has a lower electrical resistance than the substrate a deep trench contact structure formed in the substrate, wherein the deep trench contact structure comprises a conductive material and a liner layer filled in a deep trench, wherein the liner layer is formed adjacent to the deep trench The sidewall of the insulating layer is not adjacent to the buried layer of the conductor, so that the conductor is buried to fill all portions of the bottom surface of the deep trench, and the conductive material is in direct contact with the buried layer of the conductor. 如申請專利範圍第1項所述之半導體裝置,其中該襯墊層包含氧化物。 The semiconductor device of claim 1, wherein the liner layer comprises an oxide. 如申請專利範圍第1項所述之半導體裝置,其中該導電材料包含摻雜之多晶矽。 The semiconductor device of claim 1, wherein the conductive material comprises doped polysilicon. 如申請專利範圍第1項所述之半導體裝置,更包括一摻雜區,形成於該深溝渠接觸結構及該基底之間。 The semiconductor device of claim 1, further comprising a doped region formed between the deep trench contact structure and the substrate. 如申請專利範圍第1項所述之半導體裝置,更包括一摻雜區,形成於該深溝渠接觸結構及該導體埋層之間。 The semiconductor device of claim 1, further comprising a doped region formed between the deep trench contact structure and the buried layer of the conductor. 如申請專利範圍第5項所述之半導體裝置,其中該摻雜區形成於該導電材料及該導體埋層之間。 The semiconductor device of claim 5, wherein the doped region is formed between the conductive material and the buried layer of the conductor. 一種半導體裝置的製造方法,包括下列步驟: 提供一基底,其具有一導體埋層和一絕緣埋層位於其中,其中該導體埋層位於該絕緣埋層下,其中該導體埋層之電阻小於該基底之電阻;形成一磊晶層於該絕緣埋層上;圖案化該磊晶層,於該磊晶層中形成一第一深溝渠;形成一襯墊層,於該磊晶層上,且填入該第一深溝渠;進行一蝕刻製程,移除該第一深溝渠底部之襯墊層,且移除該第一深溝渠暴露之部分絕緣埋層以形成一第二深溝渠;及形成一導電材料填入該第一深溝渠和該第二深溝渠中,以製作該深溝渠接觸結構,其中該襯墊層未形成於該第二深溝渠中,使該導電材料填滿該第二深溝渠之底部表面的所有部份。 A method of fabricating a semiconductor device, comprising the steps of: Providing a substrate having a buried conductor layer and an insulating buried layer therein, wherein the buried layer of the conductor is located under the insulating buried layer, wherein a resistance of the buried layer of the conductor is less than a resistance of the substrate; forming an epitaxial layer thereon On the insulating buried layer; patterning the epitaxial layer to form a first deep trench in the epitaxial layer; forming a liner layer on the epitaxial layer and filling the first deep trench; performing an etching a process of removing a liner layer at the bottom of the first deep trench and removing a portion of the buried buried layer exposed by the first deep trench to form a second deep trench; and forming a conductive material to fill the first deep trench and In the second deep trench, the deep trench contact structure is formed, wherein the liner layer is not formed in the second deep trench, so that the conductive material fills all portions of the bottom surface of the second deep trench. 如申請專利範圍第7項所述之半導體裝置的製造方法,更包括於該深溝渠接觸結構及該基底之間形成一摻雜區。 The method of fabricating a semiconductor device according to claim 7, further comprising forming a doped region between the deep trench contact structure and the substrate. 如申請專利範圍第8項所述之半導體裝置的製造方法,更包括於該深溝渠接觸結構及該導體埋層之間形成該摻雜區。 The method of fabricating a semiconductor device according to claim 8, further comprising forming the doped region between the deep trench contact structure and the buried layer of the conductor. 如申請專利範圍第7項所述之半導體裝置的製造方法,其中該第二深溝渠暴露該導體埋層。 The method of fabricating a semiconductor device according to claim 7, wherein the second deep trench exposes the buried layer of the conductor. 如申請專利範圍第7項所述之半導體裝置的製造方法,其中該第二深溝渠暴露該基底,並於該第二深 溝渠所暴露之該基底內形成該摻雜區。 The method of fabricating a semiconductor device according to claim 7, wherein the second deep trench exposes the substrate, and the second deep The doped region is formed in the substrate exposed by the trench. 如申請專利範圍第10項所述之半導體裝置的製造方法,更包括於該第二深溝渠所暴露之該導體埋層內形成該摻雜區。 The method for fabricating a semiconductor device according to claim 10, further comprising forming the doped region in the buried layer of the conductor exposed by the second deep trench.
TW097107098A 2008-02-29 2008-02-29 Semiconductor device and fabrication method thereof TWI447847B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097107098A TWI447847B (en) 2008-02-29 2008-02-29 Semiconductor device and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097107098A TWI447847B (en) 2008-02-29 2008-02-29 Semiconductor device and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW200937572A TW200937572A (en) 2009-09-01
TWI447847B true TWI447847B (en) 2014-08-01

Family

ID=44867089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097107098A TWI447847B (en) 2008-02-29 2008-02-29 Semiconductor device and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI447847B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492244B1 (en) * 2001-11-21 2002-12-10 International Business Machines Corporation Method and semiconductor structure for implementing buried dual rail power distribution and integrated decoupling capacitance for silicon on insulator (SOI) devices
US7262109B2 (en) * 2005-08-03 2007-08-28 Texas Instruments Incorporated Integrated circuit having a transistor level top side wafer contact and a method of manufacture therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492244B1 (en) * 2001-11-21 2002-12-10 International Business Machines Corporation Method and semiconductor structure for implementing buried dual rail power distribution and integrated decoupling capacitance for silicon on insulator (SOI) devices
US7262109B2 (en) * 2005-08-03 2007-08-28 Texas Instruments Incorporated Integrated circuit having a transistor level top side wafer contact and a method of manufacture therefor

Also Published As

Publication number Publication date
TW200937572A (en) 2009-09-01

Similar Documents

Publication Publication Date Title
CN113611705B (en) Semiconductor memory element and preparation method thereof
TWI484567B (en) Semiconductor structure and manufacturing method thereof
CN101536166B (en) Methods of forming field effect transistors, pluralities of field effect transistors, and dram circuitry comprising a plurality of individual memory cells
CN102315162B (en) Semiconductor device with side-junction and method for fabricating the same
TWI455287B (en) Terminal structure of power semiconductor component and manufacturing method thereof
CN100536141C (en) Semiconductor device having a fin channel transistor and preparation method thereof
TWI498997B (en) Semiconductor device and method of fabricating the same
CN100570892C (en) Semiconductor device and manufacturing method thereof
TW202141736A (en) Semiconductor memory device with air gaps for reducing capacitive coupling and method for preparing the same
CN102789987B (en) Method for manufacturing super junction power transistor with low miller capacitance
US9443943B2 (en) Semiconductor device and fabrication method thereof
TWI527096B (en) MOS transistor and method of forming same
KR20090110170A (en) Semiconductor element and manufacturing method thereof
CN1797762A (en) Semiconductor structure of semiconductor wafer and method for forming the same
TW202207464A (en) Semiconductor device with graphene-based element and method for fabricating the same
KR100919576B1 (en) Semicoductor device and method of fabricating the same
CN102214691A (en) Groove metal oxide semiconductor field effect transistor and manufacturing method thereof
CN103715211A (en) Implant isolated devices and method for forming the same
TWI446521B (en) Withstand voltage termination structure of power components
US20100276810A1 (en) Semiconductor device and fabrication method thereof
TWI414070B (en) Semiconductor power component
CN101916783B (en) Transverse and longitudinal diffusion type field effect transistor of depressed channel and manufacturing method thereof
CN101630680B (en) Semiconductor device and manufacturing method thereof
CN101533826B (en) Semiconductor device and manufacturing method thereof
CN104425344B (en) Semiconductor structure and forming method thereof