TWI429966B - Polarizer - Google Patents
Polarizer Download PDFInfo
- Publication number
- TWI429966B TWI429966B TW99144813A TW99144813A TWI429966B TW I429966 B TWI429966 B TW I429966B TW 99144813 A TW99144813 A TW 99144813A TW 99144813 A TW99144813 A TW 99144813A TW I429966 B TWI429966 B TW I429966B
- Authority
- TW
- Taiwan
- Prior art keywords
- polarizing plate
- polymer substrate
- nanowires
- alignment direction
- main alignment
- Prior art date
Links
- 239000002070 nanowire Substances 0.000 claims description 52
- 229920000307 polymer substrate Polymers 0.000 claims description 52
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 239000004642 Polyimide Substances 0.000 claims 2
- 229920001721 polyimide Polymers 0.000 claims 2
- 230000008033 biological extinction Effects 0.000 description 15
- 230000010287 polarization Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 3
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000005289 physical deposition Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000001393 microlithography Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Polarising Elements (AREA)
Description
本發明是有關於一種偏振片,且特別是有關於一種利用奈米金屬線產生偏振效果的偏振片。The present invention relates to a polarizing plate, and more particularly to a polarizing plate which utilizes a nanowire to produce a polarizing effect.
偏振片因為可讓通過的光線具有特定的偏振狀態而廣泛地被應用於許多光電產品中。偏振片依其作用原理可分為下列數種。第一種為利用多層膜干涉法使特定線偏振的光線穿透並反射線偏振方向與之正交的光線。第二種為線柵式偏振片,主要以週期性長條狀平行排列的金屬線篩選光線,線偏振方向與金屬線排列方向一致的光線可以通過,反之則被反射。第三種則為利用膽固醇液晶(cholesteric liquid crystal)材料製作之薄膜,當光線的圓偏振狀態與膽固醇液晶的排列為順向時則被反射,反之則為穿透。以Nitto、Philips和MRL之專利為代表。第一種和第二種偏振片的製作都需要奈米等級的製程能力,製作程序複雜且不易製作出大面積的偏振片。第三種偏振片的光學表現極佳,然其液晶材料成本高且液晶分子的排列方向不易穩定控制。Polarizers are widely used in many optoelectronic products because they allow the light to pass through to have a specific polarization state. Polarizers can be classified into the following types according to their principle of action. The first is to use a multilayer film interferometry to penetrate a particular linearly polarized light and reflect light that is orthogonal to the direction of linear polarization. The second type is a wire-grid polarizer, which mainly screens light with a linear strip of parallel strips arranged in parallel, and the light having the direction of linear polarization and the direction of alignment of the metal lines can pass, and vice versa. The third type is a film made of a cholesteric liquid crystal material, which is reflected when the circular polarization state of the light is aligned with the cholesteric liquid crystal, and vice versa. Represented by the patents of Nitto, Philips and MRL. Both the first and second polarizers are required to have a nanometer-scale process capability, and the fabrication process is complicated and it is difficult to produce a large-area polarizer. The optical performance of the third polarizing plate is excellent, but the liquid crystal material is expensive and the alignment direction of the liquid crystal molecules is not easily controlled.
1969年,美國康寧(Corning)公司首次揭露專利號為GB 1276548 A的專利,其使用摻雜鹼金屬氧化物之矽化玻璃基板,並在基板內加入銀滷化物之銀粒子。藉由加熱拉伸玻璃基板使銀粒子成橢球狀(長短軸比為2:1至5:1)而產 生非等向性之光線吸收率,以達成偏振之目的。由於金屬滷化物的粒子會吸收偏振方向與其長軸方向平行之光線,屬於吸收式偏振片,消光比約為100。In 1969, Corning Corporation of the United States first disclosed the patent number GB 1276548 A, which used a deuterated glass substrate doped with an alkali metal oxide and added silver halide silver particles to the substrate. Producing an ellipsoidal shape (length to short axis ratio of 2:1 to 5:1) by heating and stretching a glass substrate The non-isotropic light absorption rate is achieved for the purpose of polarization. Since the particles of the metal halide absorb light having a polarization direction parallel to the long axis direction thereof, it belongs to an absorption type polarizing plate, and the extinction ratio is about 100.
2009年,專利號為US 7570424的美國專利揭露一種具有雙層結構之奈米線柵偏振片,該偏振片的消光比約為4000。然而,該專利的奈米線柵是利用微影蝕刻製程形成,製程成本極高,且難以製作大尺寸的偏振片。In U.S. Patent No. 7,570,424, the disclosure of U.S. Patent No. 7,570,424 discloses a nanowire grid polarizer having a two-layer structure having an extinction ratio of about 4,000. However, the patented nanowire grid is formed by a microlithography process, which is extremely costly and difficult to fabricate large-sized polarizers.
1969年,專利號為US 3610729的美國專利揭露一種利用雙折射材料和等向材料或另一雙折射材料交替疊置的多層膜結構,利用週期性之折射率變化來反射特定波長與特定偏振狀態的光線。其中,每一層膜之厚度和折射率乘積為被反射的光線的四分之一波長。但是,多層膜的結構不僅成本高,良率也低。U.S. Patent No. 3,610,729 issued to U.S. Patent No. 3,610,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The light. Wherein the thickness and refractive index product of each film is a quarter wavelength of the reflected light. However, the structure of the multilayer film is not only costly but also low in yield.
本發明提供一種偏振片,可解決習知偏振片昂貴且尺寸不易加大的問題。The present invention provides a polarizing plate which can solve the problem that the conventional polarizing plate is expensive and the size is not easily increased.
本發明的偏振片包括一高分子基材以及多條奈米金屬線。高分子基材的分子具有一主排列方向。或者,高分子基材的表面具有大致平行主排列方向的多個微溝槽。奈米金屬線大致平行主排列方向地配置於高分子基材的表面。The polarizing plate of the present invention comprises a polymer substrate and a plurality of nanowires. The molecules of the polymer substrate have a main alignment direction. Alternatively, the surface of the polymer substrate has a plurality of microchannels substantially parallel to the main array direction. The nanowires are arranged on the surface of the polymer substrate in a direction substantially parallel to the main alignment.
在本發明之一實施例中,上述之高分子基材的材質為聚乙烯醇(polyvinyl alcohol,PVA)、聚酯(polyester,PET)或 聚醯亞胺(polyimide,PI)。In an embodiment of the invention, the polymer substrate is made of polyvinyl alcohol (PVA), polyester (PET) or Polyimine (PI).
在本發明之一實施例中,上述之高分子基材在製作過程中經拉伸而使高分子基材的分子具有主排列方向。In one embodiment of the present invention, the polymer substrate described above is stretched during the production process so that the molecules of the polymer substrate have a main alignment direction.
在本發明之一實施例中,上述之高分子基材的表面經摩擦而具有微溝槽。In an embodiment of the invention, the surface of the polymer substrate described above has micro grooves formed by friction.
在本發明之一實施例中,上述之奈米金屬線的材質為銀。In an embodiment of the invention, the material of the nanowire is silver.
在本發明之一實施例中,上述之奈米金屬線佔高分子基材的表面積的50%至100%。In an embodiment of the invention, the nanowires comprise from 50% to 100% of the surface area of the polymeric substrate.
在本發明之一實施例中,上述之奈米金屬線佔高分子基材的表面積的85%至95%。In one embodiment of the invention, the nanowires comprise from 85% to 95% of the surface area of the polymeric substrate.
在本發明之一實施例中,上述之第i個奈米金屬線與主排列方向的夾角為θi ,n為奈米金屬線的數量,,且S0.5。In an embodiment of the invention, the angle between the ith nanowire and the main alignment direction is θ i , where n is the number of nanowires. And S 0.5.
在本發明之一實施例中,上述之偏振片,具有一適用波長,各奈米金屬線的線寬小於等於適用波長。In an embodiment of the invention, the polarizing plate has a suitable wavelength, and the line width of each of the nanowires is less than or equal to a suitable wavelength.
在本發明之一實施例中,上述之偏振片,具有一適用波長,各奈米金屬線的長度大於等於適用波長的十倍。In an embodiment of the invention, the polarizing plate has a suitable wavelength, and the length of each of the nanowires is greater than or equal to ten times the applicable wavelength.
在本發明之一實施例中,上述之偏振片,更包括一透明層,配置於高分子基材上並覆蓋奈米金屬線。In an embodiment of the invention, the polarizing plate further includes a transparent layer disposed on the polymer substrate and covering the nanowire.
基於上述,本發明的偏振片可利用簡單而便宜的製程製成,且易於大型化。Based on the above, the polarizing plate of the present invention can be produced by a simple and inexpensive process, and is easy to enlarge.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
圖1是本發明一實施例的偏振片的示意圖,而圖2為圖1之偏振片的剖視圖。請參照圖1與圖2,本實施例的偏振片100包括一高分子基材110以及多條奈米金屬線120。高分子基材110的分子具有一主排列方向D10。奈米金屬線120大致平行主排列方向D10地配置於高分子基材110的表面。由於大部分的奈米金屬線120都平行主排列方向D10而排列,因此線偏振方向與主排列方向D10垂直的光線可通過偏振片100,而線偏振方向與主排列方向D10平行的光線則會被偏振片100反射。1 is a schematic view of a polarizing plate according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the polarizing plate of FIG. 1. Referring to FIG. 1 and FIG. 2 , the polarizing plate 100 of the embodiment includes a polymer substrate 110 and a plurality of nanowires 120 . The molecules of the polymer substrate 110 have a main alignment direction D10. The nanowire 120 is disposed on the surface of the polymer substrate 110 substantially in parallel with the main array direction D10. Since most of the nanowires 120 are arranged in parallel with the main alignment direction D10, light having a linear polarization direction perpendicular to the main alignment direction D10 can pass through the polarizing plate 100, and light having a linear polarization direction parallel to the main alignment direction D10 will Reflected by the polarizing plate 100.
在本實施例的偏振片100中,因為高分子基材110的分子原本就有的主排列方向D10,故奈米金屬線120自然會沿著主排列方向D10排列。藉此,本實施例的偏振片100的製造成本可以降低,且本實施例的偏振片100易於達成大型化的目的而可應用於大型化商品中。In the polarizing plate 100 of the present embodiment, since the molecules of the polymer base material 110 originally have the main array direction D10, the nanowires 120 are naturally aligned along the main array direction D10. As a result, the manufacturing cost of the polarizing plate 100 of the present embodiment can be reduced, and the polarizing plate 100 of the present embodiment can be easily applied to a large-sized product because it is easy to achieve an increase in size.
本實施例之高分子基材110的材質可以是聚乙烯醇、聚酯、聚醯亞胺或其他高分子材料。為了讓高分子基材110的分子盡量沿主排列方向D10,可在高分子基材110的製作過程拉伸高分子基材110。此外,本實施例之奈米金屬線120的材質為銀或其他金屬。奈米金屬線120是利用化學反應或物理方式沈積而形成在高分子基材110上。The material of the polymer substrate 110 of the present embodiment may be polyvinyl alcohol, polyester, polyimine or other polymer materials. In order to allow the molecules of the polymer substrate 110 to be along the main alignment direction D10 as much as possible, the polymer substrate 110 can be stretched during the production process of the polymer substrate 110. In addition, the material of the nanowire 120 of the present embodiment is silver or other metal. The nanowire 120 is formed on the polymer substrate 110 by chemical reaction or physical deposition.
偏振片的品質可用消光比來表示。消光比=T⊥ /T∥ ,其中T⊥ 是表示線偏振方向與奈米金屬線的排列方向垂直的光線的穿透率,而T∥ 是表示線偏振方向與奈米金屬線的排 列方向平行的光線的穿透率。為了獲得較佳的消光比,奈米金屬線120佔高分子基材110的表面積的50%至100%為佳,奈米金屬線120佔高分子基材110的表面積的85%至95%更佳。換言之,奈米金屬線120在高分子基材110的表面上分佈的越多,偏振片100將具有越佳的消光比。The quality of the polarizer can be expressed by the extinction ratio. The extinction ratio = T ⊥ /T ∥ , where T ⊥ is the transmittance of light indicating that the direction of linear polarization is perpendicular to the direction in which the nanowires are arranged, and T ∥ is that the direction of linear polarization is parallel to the direction of alignment of the nanowires The penetration rate of light. In order to obtain a preferable extinction ratio, the nanowire 120 preferably accounts for 50% to 100% of the surface area of the polymer substrate 110, and the nanowire 120 accounts for 85% to 95% of the surface area of the polymer substrate 110. good. In other words, the more the nanowire 120 is distributed on the surface of the polymer substrate 110, the more the polarizing plate 100 will have the better extinction ratio.
另外,奈米金屬線120是否平行主排列方向D10也會影響偏振片100的消光比。在此,提供一指標S來表示偏振片100的奈米金屬線120平行主排列方向D10的程度。假設奈米金屬線120的數量為n,而第i個奈米金屬線120與主排列方向D10的夾角為θi
,則
當S=1,表示所有奈米金屬線120是否平行主排列方向D10,而在S0.5的情況下偏振片100的消光比就可達到可用的程度。When S=1, it means that all the nanowires 120 are parallel to the main arrangement direction D10, and at S In the case of 0.5, the extinction ratio of the polarizing plate 100 can be made usable.
本實施例的奈米金屬線120在名稱上冠以「奈米」的用意是說各條奈米金屬線120的線寬為奈米等級。本實施例的偏振片100具有一適用波長,而各條奈米金屬線120的線寬小於等於適用波長,各條奈米金屬線120的長度則大於等於適用波長的十倍。The purpose of the "nano" in the name of the nanowire 120 of the present embodiment is that the line width of each of the nanowires 120 is nanometer. The polarizing plate 100 of the present embodiment has a suitable wavelength, and the line width of each of the nanowires 120 is less than or equal to the applicable wavelength, and the length of each of the nanowires 120 is greater than or equal to ten times the applicable wavelength.
圖3是本發明另一實施例的偏振片的剖視圖。請參照圖3,本實施例的偏振片200與圖2的偏振片100相似,差異在於本實施例的偏振片200更包括一透明層210。透明層210配置於高分子基材110上並覆蓋奈米金屬線120。透明層210的折射率會影響偏振片200的消光比。圖4為透明層的折射率、奈米金屬線的分佈密度與偏振片的 消光比三者間的關係圖。圖4的橫軸為奈米金屬線120的分佈密度,亦即奈米金屬線120佔高分子基材110的表面積的比值。圖4的縱軸為透明層的折射率。圖4中並以不同深淺的線條表示偏振片的消光比,且線條的深淺與偏振片的消光比的關係表示於圖4的右邊。由圖4可知,在透明層210的折射率與奈米金屬線120的分佈密度之間取得最佳化的設計後,可提升偏振片200的消光比。舉例而言,在以波長為0.55微米的綠光進行模擬時,若奈米金屬線120佔高分子基材110的表面積的比值為93%,且透明層210的折射率為1.43,可得到偏振片200的消光比為100。Figure 3 is a cross-sectional view showing a polarizing plate according to another embodiment of the present invention. Referring to FIG. 3, the polarizing plate 200 of the present embodiment is similar to the polarizing plate 100 of FIG. 2, except that the polarizing plate 200 of the present embodiment further includes a transparent layer 210. The transparent layer 210 is disposed on the polymer substrate 110 and covers the nanowire 120. The refractive index of the transparent layer 210 affects the extinction ratio of the polarizing plate 200. Figure 4 is the refractive index of the transparent layer, the distribution density of the nanowires, and the polarizer The relationship between the extinction ratio and the three. The horizontal axis of FIG. 4 is the distribution density of the nanowire 120, that is, the ratio of the nanowire 120 to the surface area of the polymer substrate 110. The vertical axis of Fig. 4 is the refractive index of the transparent layer. The extinction ratio of the polarizing plate is shown in Fig. 4 in different shades, and the relationship between the depth of the line and the extinction ratio of the polarizing plate is shown on the right side of Fig. 4. As can be seen from FIG. 4, after the design of optimizing the refractive index of the transparent layer 210 and the distribution density of the nanowire 120, the extinction ratio of the polarizing plate 200 can be improved. For example, when the simulation is performed with green light having a wavelength of 0.55 μm, if the ratio of the surface area of the nano metal wire 120 to the surface area of the polymer substrate 110 is 93%, and the refractive index of the transparent layer 210 is 1.43, a polarizing plate can be obtained. The extinction ratio of 200 is 100.
圖5是本發明另一實施例的偏振片的剖視圖。請參照圖5,本實施例的偏振片300與圖2的偏振片100相似,差異在於本實施例的偏振片300的高分子基材310的表面具有大致平行一主排列方向(類似圖1的主排列方向D10)的多個微溝槽312。本實施例的偏振片300的奈米金屬線320會形成在微溝槽312內,因此奈米金屬線320會大致平行於微溝槽312的方向,亦即主排列方向。要在高分子基材310的表面形成微溝槽312的方法有很多種,其中一種簡單的方法是摩擦高分子基材310的表面。Figure 5 is a cross-sectional view showing a polarizing plate according to another embodiment of the present invention. Referring to FIG. 5, the polarizing plate 300 of the present embodiment is similar to the polarizing plate 100 of FIG. 2, except that the surface of the polymer substrate 310 of the polarizing plate 300 of the present embodiment has a substantially parallel main alignment direction (similar to FIG. 1). A plurality of micro-grooves 312 are arranged in the main direction D10). The nanowire 320 of the polarizing plate 300 of the present embodiment is formed in the microgroove 312, so that the nanowire 320 is substantially parallel to the direction of the microgroove 312, that is, the main alignment direction. There are many methods for forming the microgrooves 312 on the surface of the polymer substrate 310, and a simple method is to rub the surface of the polymer substrate 310.
在製造前述各實施例的偏振片時,是先讓高分子基材的分子具有主排列方向,而其實施方式例如是在高分子基材的製作過程拉伸高分子基材。或者,先在高分子基材的表面形成大致平行主排列方向的多個微溝槽。接著,再以化學反應或物理沈積的方式在高分子基材的表面形成大致 平行主排列方向的奈米金屬線。形成奈米金屬線的方式例如是先將前述處理過的高分子基材在20毫升的水與2.2公克的過硫酸銨((NH4 )2 S2 O8 ,ammonium persulfate)的混合溶液中浸泡30秒,再將高分子基材從混合溶液取出後以60℃的溫度烘乾10分鐘,再將烘乾後的高分子基材在20毫升的水與0.8毫升的吡咯(pyrrole)的混合溶液中浸泡30秒,再將高分子基材從混合溶液取出後以60℃的溫度烘乾24小時,再將烘乾後的高分子基材在當量濃度為0.1N的硝酸銀(AgNO3 )中浸泡30秒,即可完成。In the production of the polarizing plate of each of the above embodiments, the molecules of the polymer substrate are first arranged in the main alignment direction, and in the embodiment, for example, the polymer substrate is stretched in the production process of the polymer substrate. Alternatively, a plurality of microchannels substantially parallel to the main array direction are formed on the surface of the polymer substrate. Next, a nanowire in a substantially parallel main alignment direction is formed on the surface of the polymer substrate by chemical reaction or physical deposition. The method of forming the nanowire is, for example, first immersing the treated polymer substrate in a mixed solution of 20 ml of water and 2.2 g of ammonium persulfate ((NH 4 ) 2 S 2 O 8 , ammonium persulfate). After 30 seconds, the polymer substrate was taken out from the mixed solution and dried at 60 ° C for 10 minutes, and then the dried polymer substrate was mixed with 20 ml of water and 0.8 ml of pyrrole. After soaking for 30 seconds, the polymer substrate was taken out from the mixed solution and dried at 60 ° C for 24 hours, and then the dried polymer substrate was immersed in silver nitrate (AgNO 3 ) having an equivalent concentration of 0.1 N. It takes 30 seconds to complete.
綜上所述,在本發明的偏振片中,利用高分子基材本身的分子排列方向或是高分子基材的表面的微溝槽,可讓形成在高分子基材的表面的奈米金屬線大致平行一主排列方向。藉此,偏振片具有非等向性之介電常數,可允許特定線偏振方向的光線穿透,並反射線偏振方向垂直於特定線偏振方向的光線。由於本發明的偏振片可採用簡單的製成形成,故可降低成本。而且,本發明的偏振片易於大型化而可增加應用領域。As described above, in the polarizing plate of the present invention, the nano-metal formed on the surface of the polymer substrate can be obtained by using the molecular arrangement direction of the polymer substrate itself or the micro-groove on the surface of the polymer substrate. The lines are substantially parallel to one main alignment direction. Thereby, the polarizing plate has an anisotropy dielectric constant, which allows light of a specific linear polarization direction to penetrate, and reflects light whose linear polarization direction is perpendicular to a specific linear polarization direction. Since the polarizing plate of the present invention can be formed by a simple process, the cost can be reduced. Moreover, the polarizing plate of the present invention is easy to increase in size and can be used in an application field.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100、200、300‧‧‧偏振片100, 200, 300‧‧‧ polarizers
110、310‧‧‧高分子基材110, 310‧‧‧ polymer substrate
120、320‧‧‧奈米金屬線120, 320‧‧‧Nan metal wire
D10‧‧‧主排列方向D10‧‧‧Main arrangement direction
210‧‧‧透明層210‧‧‧ transparent layer
312‧‧‧微溝槽312‧‧‧Microgroove
圖1是本發明一實施例的偏振片的示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view of a polarizing plate according to an embodiment of the present invention.
圖2為圖1之偏振片的剖視圖。Figure 2 is a cross-sectional view of the polarizing plate of Figure 1.
圖3是本發明另一實施例的偏振片的剖視圖。Figure 3 is a cross-sectional view showing a polarizing plate according to another embodiment of the present invention.
圖4為透明層的折射率、奈米金屬線的分佈密度與偏振片的消光比三者間的關係圖。4 is a graph showing the relationship between the refractive index of the transparent layer, the distribution density of the nanowires, and the extinction ratio of the polarizing plate.
圖5是本發明另一實施例的偏振片的剖視圖。Figure 5 is a cross-sectional view showing a polarizing plate according to another embodiment of the present invention.
100‧‧‧偏振片100‧‧‧Polarizer
110‧‧‧高分子基材110‧‧‧ polymer substrate
120‧‧‧奈米金屬線120‧‧‧Nano wire
D10‧‧‧主排列方向D10‧‧‧Main arrangement direction
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99144813A TWI429966B (en) | 2010-12-20 | 2010-12-20 | Polarizer |
CN2010106227646A CN102565909A (en) | 2010-12-20 | 2010-12-30 | Polarizing plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99144813A TWI429966B (en) | 2010-12-20 | 2010-12-20 | Polarizer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201227003A TW201227003A (en) | 2012-07-01 |
TWI429966B true TWI429966B (en) | 2014-03-11 |
Family
ID=46411759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99144813A TWI429966B (en) | 2010-12-20 | 2010-12-20 | Polarizer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102565909A (en) |
TW (1) | TWI429966B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3122842B1 (en) * | 2014-03-26 | 2018-02-07 | Merck Patent GmbH | A polarized light emissive device |
CN104765092A (en) | 2015-04-13 | 2015-07-08 | 京东方科技集团股份有限公司 | Polarizer and manufacturing method thereof and display device |
CN104849906B (en) | 2015-06-11 | 2018-01-26 | 京东方科技集团股份有限公司 | Polaroid and its manufacture method, display device |
WO2017017282A1 (en) | 2015-07-30 | 2017-02-02 | Koninklijke Philips N.V. | Laser sensor for particle size detection |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10132699A1 (en) * | 2001-07-05 | 2003-01-16 | Philips Corp Intellectual Pty | Organic electroluminescent display device with optical filter |
JP4425059B2 (en) * | 2003-06-25 | 2010-03-03 | シャープ株式会社 | Polarizing optical element and display device using the same |
JP2006058615A (en) * | 2004-08-20 | 2006-03-02 | Sumitomo Chemical Co Ltd | Polarization separation element with embedded metal wires |
KR100894939B1 (en) * | 2005-10-17 | 2009-04-27 | 아사히 가세이 가부시키가이샤 | Wire grid polarizer and manufacturing method of the same |
JP2007183524A (en) * | 2006-01-06 | 2007-07-19 | Cheil Industries Inc | Polarizing optical element and liquid crystal display device using it |
-
2010
- 2010-12-20 TW TW99144813A patent/TWI429966B/en not_active IP Right Cessation
- 2010-12-30 CN CN2010106227646A patent/CN102565909A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TW201227003A (en) | 2012-07-01 |
CN102565909A (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qi et al. | New encryption strategy of photonic crystals with bilayer inverse heterostructure guided from transparency response | |
US20120287362A1 (en) | Plasmonic In-Cell Polarizer | |
WO2017084175A1 (en) | Liquid crystal display device and method for manufacturing same | |
CN105388551B (en) | Inorganic polarizing plate and method for manufacturing same | |
CN101878436B (en) | Optical element, optical part with anti-reflective function, and master | |
TWI376555B (en) | ||
JP6285131B2 (en) | Polarizing plate and manufacturing method of polarizing plate | |
JP2008262205A (en) | Nano wire grid polarizer and liquid crystal display device adopting the same | |
TWI484252B (en) | Privacy device | |
JP2016012047A (en) | Liquid crystal display device | |
US20170219754A1 (en) | Wire-grid polarizing element, manufacturing method thereof, and display device | |
TWI429966B (en) | Polarizer | |
KR101806559B1 (en) | A wire grid polarizer, liquid crystal display including the same and method of manufacturing the wire grid polarizer | |
JP2003302532A (en) | Polarizing plate and method for manufacturing the same | |
KR20120073803A (en) | Method for manufacturing wire grid polarizer | |
CN102681078A (en) | Grating polarizer | |
TWI306971B (en) | ||
CN115508926B (en) | Viewing angle enlargement film and preparation method thereof, and display device | |
KR101211734B1 (en) | Touch Panel With Associated A Wire Grid Polarazer and Liquid Crystal Display within the same | |
KR101002594B1 (en) | Flexible substrate with polarization characteristics and flexible thin film liquid crystal display having the same | |
CN105549132B (en) | A kind of near-infrared omnidirectional absorber based on hyperbolic photonic crystal | |
CN209102943U (en) | polarizing structure and display device | |
US20070024776A1 (en) | Integrated polarizer/optical film with a wire grid structure and a manufacturing method thereof | |
TWI453509B (en) | Biaxial retardation film and fabrication thereof | |
JP2010169870A (en) | Method for manufacturing polarizing film and method for manufacturing polarizing plate using the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |