TWI425757B - Power converter and related method - Google Patents
Power converter and related method Download PDFInfo
- Publication number
- TWI425757B TWI425757B TW098105243A TW98105243A TWI425757B TW I425757 B TWI425757 B TW I425757B TW 098105243 A TW098105243 A TW 098105243A TW 98105243 A TW98105243 A TW 98105243A TW I425757 B TWI425757 B TW I425757B
- Authority
- TW
- Taiwan
- Prior art keywords
- winding
- switching element
- voltage
- power converter
- limit value
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 9
- 238000004804 winding Methods 0.000 claims description 58
- 238000001514 detection method Methods 0.000 claims description 12
- 239000003990 capacitor Substances 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 11
- 230000001960 triggered effect Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Description
本發明係關於一種電源轉換器,尤指一種以一輔助繞組之輸出以調整過電流保護機制的電源轉換器及相關的方法。The present invention relates to a power converter, and more particularly to a power converter and associated method for adjusting the overcurrent protection mechanism with an output of an auxiliary winding.
請參照第1圖,第1圖是習知用來接收一交流線電壓VAC 以提供輸出電壓Vout 予負載元件101的返馳式AC/DC電源轉換器100的電路示意圖,其藉由交流半波電壓所取得的訊號來修正過電流保護準位,因而使交流線電壓較高時能夠提早觸發過電流保護機制。如圖所示,電源轉換器100包含橋式整流器105、變壓器110、整流二極體Dout 與Daux 、開關元件115、控制電路120、偵測電路125以及補償電阻Rcomp 。控制電路120係控制開關元件115的工作週期,以控制輸出電壓Vout 的大小,並藉由偵測電路125來獲知流經開關元件115與變壓器110中的電流是否超過一個電流限制值Ilimit (即發生過電流)。若發生過電流,則控制電路125會關閉開關元件115,以避免造成開關元件115或變壓器110內之電感毀損。Please refer to FIG. 1. FIG. 1 is a schematic circuit diagram of a flyback AC/DC power converter 100 for receiving an AC line voltage V AC to provide an output voltage V out to the load element 101. The signal obtained by the half-wave voltage corrects the overcurrent protection level, so that the overcurrent protection mechanism can be triggered early when the AC line voltage is high. As shown, the power converter 100 includes a bridge rectifier 105, a transformer 110, rectifier diodes D out and D aux , a switching element 115, a control circuit 120, a detection circuit 125, and a compensation resistor R comp . System control circuit 120 controls the duty cycle of the switching element 115 to control the magnitude of the output voltage V out, and by the detection circuit 125 to know whether the current flowing through the switching element 115 of the transformer 110 exceeds one current limit value I limit ( That is, an overcurrent occurs). If an overcurrent occurs, the control circuit 125 turns off the switching element 115 to avoid causing damage to the inductance in the switching element 115 or the transformer 110.
在電壓源Vin 電壓容許範圍內,於過電流發生時,電源轉換器100應該設計成輸出電壓源Vout 的輸出功率為一個定值。當電壓源Vin 電壓為高電壓(high line)時,譬如說264伏特,過電流發生時,電源轉換器100可能操作於非連續導通模式(discontinuous conduction mode),其在一開關週期中所轉換的能量可以推導為Pt --265 =1/2×LP ×Ilimit-265V 2 ,其中,LP 為變壓器110的主繞組的電感值,Ilimit-265V 為電壓源Vin 電壓時的電流限制值。然而,當電壓源Vin 電壓為低電壓(low line)時,譬如說90伏特,過電流發生時,電源轉換器100可能操作於連續導通模式(continuous conduction mode),其在一開關週期中所轉換的能量可以推導為Pt-90 =1/2×LP ×(Ilimit-90V 2 -IO-90V 2 ),其中,Ilimit-90V 為電壓源Vin 電壓時的電流限制值,IO-90V 為變壓器110的主繞組的電流初始值。由此可以發現,如果要使Pt-265 =Pt-90 ,Ilimit-90V 就必需設計的大於Ilimit-265V 。而補償電阻Rcomp 就是用來使電流限制值Ilimit 隨著電壓源Vin 電壓增大而降低。Voltage source the voltage V in the allowable range, in the event of an overcurrent, the power converter 100 should be designed to output the output power source voltage V out is a fixed value. When Voltage source V in voltage to a high voltage (high line), instance 264 Volts, when the overcurrent occurs, the power converter 100 may operate in a discontinuous conduction mode (discontinuous conduction mode), which is converted in a switching cycle The energy can be derived as P t - -265 = 1/2 × L P × I limit - 265V 2 , where L P is the inductance value of the main winding of the transformer 110, and I limit - 265V is the voltage source V in voltage Current limit value. However, when the voltage source V in voltage is a low voltage (low line), instance 90 volts, when an overcurrent occurs, the power converter 100 may operate in continuous conduction mode (continuous conduction mode), which is in a switching cycle The converted energy can be derived as P t-90 = 1/2 × L P × (I limit - 90V 2 - I O - 90V 2 ), where I limit - 90V is the current limit value of the voltage source V in voltage, I O-90V is the initial value of the current of the main winding of the transformer 110. It can be found that if P t-265 = P t-90 , I limit-90V must be designed to be larger than I limit-265V . The compensation resistor R comp is used to reduce the current limit value I limit as the voltage source V in voltage increases.
補償電阻Rcomp 係被使用來依據橋式整流器105後的電壓以提升比較器1250之正向輸入端的電壓準位,藉此修正過電流保護的電流限制值Ilimit 。由電路推導可知,電壓源Vin 電壓較大(high line)時,補償電阻Rcomp 提供比較器1250之正向輸入端一定的較高的電壓準位Vlift ,所以流經開關元件115的電流就只需要一較少的量,便可以使比較器1250之正向輸入端的電壓準位達到電壓準位Vth ,觸發過電流保護。所以,偵測電路125的電流限制值Ilimit 會隨著電壓源Vin 電壓升高而降低。The compensation resistor Rcomp is used to boost the voltage level of the forward input of the comparator 1250 in accordance with the voltage after the bridge rectifier 105, thereby correcting the current limit value Ilimit of the overcurrent protection. It can be seen from the circuit that when the voltage source V in is high line, the compensation resistor R comp provides a certain high voltage level V lift at the forward input end of the comparator 1250, so the current flowing through the switching element 115 Only a small amount is needed, so that the voltage level of the positive input terminal of the comparator 1250 reaches the voltage level Vth , and the overcurrent protection is triggered. Therefore, the current limit value I limit detection circuit 125 will V in voltage as the voltage source rises.
然而,補償電阻Rcomp 的設計卻造成電源轉換器100節能能力減弱的缺點(簡述於下):However, the design of the compensation resistor R comp has the disadvantage of reducing the energy saving capability of the power converter 100 (described below):
1.補償電阻Rcomp 提供了一個由電壓源Vin 到接地線的一固定的漏電路徑,固定地消耗無用的電能。1. Compensation is provided a resistance R comp by the voltage source V in to a fixed ground line leakage paths, wasteful power consumption is fixedly.
2.在高壓(high line)輕載或無載(light load or no load)時,電源轉換器100可能無法進入省電模式。省電模式需要與輸出電壓源Vout 輸出電壓反向之一補償信號VCOM 低於一定程度VCOM-BURST 下才會觸發。有一種輸出電壓控制模式稱為電流模式,以輸出電壓源Vout 的輸出電壓來限制流經開關元件115的電流峰值。實務上,是把比較器1250之正向輸入端的電壓準位,拿來跟補償信號VCOM 比較,比較結果控制開關元件115。在第1圖的電路中,不論輕載或重載,補償電阻Rcomp 固定地提供比較器1250之正向輸入端一定的電壓準位Vlift 。如果,補償信號VCOM 低於一對應之電壓準位Vlift ,開關元件115將會持續關閉,電源轉換器100不會轉換能量,輸出電壓源Vout 的輸出電壓不會再升高,而補償信號VCOM 不會被降低。所以,電壓準位Vlift 對應了補償信號VCOM 的最低點VCOM-MIN 。於高壓(high line)時,電壓準位Vlift 比較高,補償信號最低點VCOM-MIN 也比較高;萬一此補償信號最低點VCOM-MIN 高過了省電模式觸發的VCOM-BURST ,那便意味著省電模式根本就不會被觸發。2. Power converter 100 may not be able to enter power save mode during high line light load or no load. The power saving mode needs to be triggered by the output voltage source V out output voltage reverse one of the compensation signals V COM below a certain level V COM-BURST . There is a voltage control mode called a current output mode to output the output voltage V out of the voltage source to limit the current flowing through the switching element 115 of the peak. In practice, the voltage level at the positive input terminal of the comparator 1250 is compared with the compensation signal V COM , and the comparison result controls the switching element 115. In the circuit of Figure 1, the compensation resistor Rcomp fixedly provides a certain voltage level Vlift at the forward input of the comparator 1250, regardless of light load or heavy load. If the compensation signal V COM is lower than a corresponding voltage level V lift , the switching element 115 will continue to be turned off, the power converter 100 will not convert energy, and the output voltage of the output voltage source V out will not rise again, and the compensation The signal V COM will not be lowered. Therefore, the voltage level V lift corresponds to the lowest point V COM-MIN of the compensation signal V COM . At high voltage, the voltage level V lift is relatively high, and the lowest point of the compensation signal V COM-MIN is also relatively high; in case the compensation signal lowest point V COM-MIN is higher than the V COM- triggered by the power saving mode. BURST , that means the power saving mode will not be triggered at all.
依據本發明的一實施例,其係揭露一種電源轉換器(power converter)。該電源轉換器包含有一變壓器、一開關元件、一控制電路、一過電流偵測電路與一補償訊號產生電路,其中該變壓器具有一主繞組(primary winding)與至少一輔助繞組(auxiliary winding),該控制電路係耦接於該開關元件之一控制端,並用來控制該開關元件之開或關,以控制流經該主繞組之一主電流(primary current),而該過電流偵測電路係用以比較該主電流與一電流限制值,當該主電流高於該電流限制值時,該過電流偵測電路係使該控制電路關閉該開關元件,以及該補償訊號產生電路係耦接於該輔助繞組與該過電流偵測電路之間,並於該開關元件開啟時,以該輔助繞組之一輸出,提供一調整值,來調整該電流限制值;其中,當該開關元件開啟時,該調整值會隨時間而變動。According to an embodiment of the invention, a power converter is disclosed. The power converter includes a transformer, a switching component, a control circuit, an overcurrent detecting circuit and a compensation signal generating circuit, wherein the transformer has a primary winding and at least one auxiliary winding. The control circuit is coupled to a control end of the switching element and configured to control the switching element to be turned on or off to control a primary current flowing through the main winding, and the overcurrent detecting circuit is And comparing the main current and a current limit value, when the main current is higher than the current limit value, the over current detecting circuit causes the control circuit to turn off the switching element, and the compensation signal generating circuit is coupled to the Between the auxiliary winding and the overcurrent detecting circuit, and when the switching element is turned on, outputting one of the auxiliary windings to provide an adjustment value to adjust the current limit value; wherein, when the switching element is turned on, This adjustment value will change over time.
依據本發明的實施例,其另揭露一種使用於一電源轉換器的方法,其中該電源轉換器至少包含一開關元件以及具有一主繞組與至少一輔助繞組的一變壓器,而該方法包含有下列步驟:控制該開關元件之開或關,以控制流經該主繞組的一主電流;比較該主電流與一電流限制值,當該主電流高於該電流限制值時,關閉該開關元件;以及當該開關元件開啟時,以該輔助繞組之一輸出,提供隨時間而變動之一調整值,來調整該電流限制值。According to an embodiment of the present invention, there is further disclosed a method for a power converter, wherein the power converter includes at least one switching element and a transformer having a main winding and at least one auxiliary winding, and the method includes the following Step: controlling the switching element to be turned on or off to control a main current flowing through the main winding; comparing the main current with a current limit value, when the main current is higher than the current limit value, turning off the switching element; And when the switching element is turned on, one of the auxiliary windings is output, and one of the adjustment values is changed with time to adjust the current limit value.
請參照第2圖,第2圖是本發明第一實施例之返馳式電源轉換器200的電路示意圖。電源轉換器200係接收一交流線電壓VAC 以提供一輸出電壓Vout 至負載元件201,並包含有橋式整流器205、變壓器210、整流二極體Dout 與Daux 、電容Cout 與Caux 、開關元件215、控制電路220、過電流偵測電路225以及補償訊號產生電路230。變壓器210包含有一主繞組(primary winding)W1 、一次級繞組(secondary winding)W2 、繞組W3 與W4 。繞組W3 與W4 串接而成一輔助繞組(auxiliary winding)。繞組W3 的一輸出端係用以提供操作電源Vcc 予控制電路220。繞組W4 的輸出端係連接至補償訊號產生電路230。開關元件125係以一電晶體實作之,用以控制流經主繞組W1 之主電流。Referring to FIG. 2, FIG. 2 is a circuit diagram of the flyback power converter 200 according to the first embodiment of the present invention. The power converter 200 receives an AC line voltage V AC to provide an output voltage V out to the load element 201, and includes a bridge rectifier 205, a transformer 210, rectifying diodes D out and D aux , and capacitors C out and C The aux , the switching element 215, the control circuit 220, the overcurrent detecting circuit 225, and the compensation signal generating circuit 230. The transformer 210 includes a primary winding W 1 , a secondary winding W 2 , and windings W 3 and W 4 . The windings W 3 and W 4 are connected in series to form an auxiliary winding. Winding W 3 of an output line for providing operating power to the control circuit 220 V cc. The output of winding W 4 is coupled to compensation signal generating circuit 230. The switching element 125 to a transistor-based implementation of, for controlling the flow through the main winding W 1 of the main current.
控制電路220在本實施例中係一脈波寬度調變控制電路(pulse width modulation(PWM)control circuit),其係依據輸出電壓Vout 輸出一控制訊號Vc 來控制開關元件215的開或關(on/off)以控制開關元件215的工作週期(duty cycle),進而達到控制輸出電壓Vout 的大小及流經主繞組W1 與開關元件215的主電流多寡之目的。偵測是否發生過電流則由過電流偵測電路225來實現。過電流偵測電路225係比較該主電流與一電流限制值Ilimit ,當該主電流高於電流限制值Ilimit 時,過電流偵測電路225係通知控制電路220以關閉開關元件215。詳細來說,過電流偵測電路225包含有電阻Rs 與Rs ’及比較器2250,由於開關元件215與電阻Rs (亦稱為偵測電阻)之連接節點N1 上的電壓準位可約略代表流過開關元件215的電流多寡(亦即上述主電流的多寡)。因此,比較器2250的操作原理即是取連接節點N1 上的電壓準位與一臨界電壓Vth 進行比較,若連接節點N1 上的電壓準位高於臨界電壓Vth ,則表示發生過電流,比較器2250會輸出訊號通知控制電路220,而控制電路220即依據比較器2250的輸出結果來關閉開關元件215。假定補償訊號產生電路230沒有提供任何的調整值時,補償訊號產生電路230是開路(open circuit),這個電流限制值Ilimit 就大概會是個常數,約等於臨界電壓Vth 除以電阻Rs 的電阻值。In this embodiment, the control circuit 220 is a pulse width modulation (PWM) control circuit, which outputs a control signal V c according to the output voltage V out to control the switching element 215 to be turned on or off. (on / off) to control the duty cycle of the switching element 215 (duty cycle), thus achieving the object W 1 and the amount of current of the main switching element 215 controls the magnitude of output voltage V out and flowing through the main winding. It is detected by the overcurrent detecting circuit 225 to detect whether an overcurrent has occurred. The overcurrent detection circuit 225 compares the main current with a current limit value Ilimit . When the main current is higher than the current limit value Ilimit , the overcurrent detection circuit 225 notifies the control circuit 220 to turn off the switching element 215. In detail, the overcurrent detecting circuit 225 includes resistors R s and R s ' and a comparator 2250. The voltage level on the connection node N 1 between the switching element 215 and the resistor R s (also referred to as a detecting resistor) It can roughly represent the amount of current flowing through the switching element 215 (i.e., the amount of the above main current). Therefore, the operating principle of the comparator 2250 is to compare the voltage level on the connection node N 1 with a threshold voltage V th . If the voltage level on the connection node N 1 is higher than the threshold voltage V th , it means that the occurrence has occurred. The current, the comparator 2250 outputs a signal notification control circuit 220, and the control circuit 220 turns off the switching element 215 according to the output of the comparator 2250. Assuming that the compensation signal generating circuit 230 does not provide any adjustment value, the compensation signal generating circuit 230 is an open circuit. The current limit value I limit is approximately constant, which is approximately equal to the threshold voltage V th divided by the resistance R s . resistance.
補償訊號產生電路230係用以提供一調整值來調整或補償比較器2250之正向輸出端的電壓準位,等效上調整了電流限制值Ilimit 。譬如說,當補償訊號產生電路230把比較器2250之正向輸出端的電壓準位拉高時,流經主繞組W1 與電阻Rs 的電流就可以在比較小於條件下,使比較器2250之正向輸出端的電壓到達臨界電壓Vth ,觸發過電流保護。所以用來偵測過電流的電流限制值Ilimit 就等於是被降低了。The compensation signal generating circuit 230 is configured to provide an adjustment value to adjust or compensate the voltage level of the forward output terminal of the comparator 2250, and equivalently adjust the current limit value I limit . For example, when the compensation signal generating circuit 230 pulls the voltage level of the forward output terminal of the comparator 2250 high, the current flowing through the main winding W 1 and the resistor R s can be compared under the condition that the comparator 2250 is The voltage at the forward output reaches the threshold voltage Vth , triggering overcurrent protection. Therefore, the current limit value I limit used to detect the overcurrent is equal to being reduced.
在操作上,補償訊號產生電路230係於開關元件215開啟時,以繞組W4 的輸出來提供調整值以調整電流限制值Ilimit 。輔助繞組中的繞組W3 於開關元件215關閉時提供操作電源Vcc 予控制電路220。在本實施例中,補償訊號產生電路230包含有整流二極體D1 、電阻R1 與R2 、齊納二極體Dz 及電容C1 。電阻R1 與電容C1 可以視為一低通濾波器。請參照第3圖,其所繪示為第2圖所示之控制訊號Vc 的波形、變壓器210內之繞組W4 上的電壓波形V4 、整流二極體D1 所輸出的電壓波形V4 ’、以及電容C1 上的跨壓VC1 。如第3圖所示,電壓波形V4 具有週期性的變化,其在時間T1 、T3 時的變化係因開關元件215的不導通所產生,而在時間T2 、T4 時的變化則因開關元件215之電晶體的導通,感應主繞組W1 的跨壓所產生。整流二極體D1 會濾除低於其本身之臨界電壓VD1 的訊號成分。電壓波形V4 ’的電壓值高於齊納二極體Dz 的反向崩潰電壓時,低通濾波器開始工作,跨壓VC1 開始隨時間變化上升,如圖所示。跨壓VC1 會透過電阻R2 ,影響比較器2250之正向輸出端的電壓,等同改變了過電流偵測電路225用來比較的電流限制值Ilimit 。In operation, the compensation signal generating circuit 230 provides an adjustment value to adjust the current limit value I limit with the output of the winding W 4 when the switching element 215 is turned on. Winding the auxiliary winding W 3 provides operating power to the V cc when the switching element 215 to control circuit 220 off. In the present embodiment, the compensation signal generating circuit 230 includes a rectifying diode D 1 , resistors R 1 and R 2 , a Zener diode D z , and a capacitor C 1 . Resistor R 1 and capacitor C 1 can be considered as a low pass filter. Referring to FIG 3, which is depicted in FIG. 2 as shown in the waveform of the control signal V C, the voltage waveform V across winding W 4 of the transformer 2104, the rectifying diode D 1 output voltage waveform V 4 ', and the voltage across the capacitor C 1 V C1 . As shown in Fig. 3, the voltage waveform V 4 has a periodic change, and the change at time T 1 , T 3 is due to the non-conduction of the switching element 215, and changes at times T 2 and T 4 . due to the transistor switching element 215 is turned on, the voltage across the inductor main winding W 1 is generated. The rectifying diode D 1 filters out signal components below its own threshold voltage V D1 . When the voltage value of the voltage waveform V 4 ' is higher than the reverse breakdown voltage of the Zener diode D z , the low-pass filter starts to operate, and the voltage across the V C1 begins to rise with time as shown. The voltage across the voltage V C1 will affect the voltage at the forward output of the comparator 2250 through the resistor R 2 , which is equivalent to changing the current limit value I limit used by the overcurrent detection circuit 225 for comparison.
補償訊號產生電路230於電源轉換器200處於輕載或是無載時,可以設計的幾乎不會產生調整值以調整或補償比較器2250之正向輸出端的電壓。輕載或無載時,工作週期(duty cycle)會比較很小,也就是開關元件215的導通時間會變得相當短。請參閱第3圖,當時間T2 、T4 很短的時候,波形V4 ’無法有效地對電容C1 進行充電,其充電後的跨壓VC1 將會相當小而可被視為零。換言之,電阻R1 與電容C1 所形成的低通濾波器濾除了工作週期很小時所產生的影響,等效上即係為不提供調整值來修正比較器2250之正向輸出端的電壓,不會調整了過電流偵測電路225用來比較的電流限制值Ilimit 。另一方面,當電源轉換器200處於重載(heavy load)時,工作週期變大,波形V4 ’的訊號寬度(亦即時間T2 、T4 )亦變得較長,而在充電後電容C1 上的跨壓VC1 將會變得較大而不可忽視,所以便可以明顯地調整過電流偵測電路225用來比較的電流限制值Ilimit 。The compensation signal generating circuit 230 can be designed to generate almost no adjustment value to adjust or compensate the voltage of the forward output terminal of the comparator 2250 when the power converter 200 is under light load or no load. At light load or no load, the duty cycle will be relatively small, that is, the on-time of the switching element 215 will become relatively short. Referring to Fig. 3, when time T 2 and T 4 are short, waveform V 4 ' cannot effectively charge capacitor C 1 , and its charged crossover voltage V C1 will be relatively small and can be regarded as zero. . In other words, the low-pass filter formed by the resistor R 1 and the capacitor C 1 filters out the influence of the small duty cycle, and equivalently does not provide an adjustment value to correct the voltage at the forward output of the comparator 2250. The current limit value I limit used by the overcurrent detection circuit 225 for comparison is adjusted. On the other hand, when the power converter 200 is in a heavy load, the duty cycle becomes large, and the signal width of the waveform V 4 ' (ie, the times T 2 , T 4 ) also becomes longer, and after charging The voltage across the capacitor C 1 , V C1 , will become large and cannot be ignored, so that the current limit value I limit used by the overcurrent detection circuit 225 for comparison can be significantly adjusted.
此外,補償訊號產生電路230於電源轉換器200處於交流線電壓VAC 為低壓(low line)時,可以設計的幾乎不會產生調整值調整或補償比較器2250之正向輸出端的電壓;但在交流線電壓VAC 為高壓(high line)時,則會。第3圖中的電壓波形V4 之電壓值A1 是感應Vin 之電壓而產生,而經過整流的Vin 之電壓則是隨著交流線電壓VAC 呈現正相關。由第3圖以及第2圖可知,電壓值A1 必須要高到足以克服二極體D1的臨界電壓以及齊納二極體Dz 的反向崩潰電壓後,才會對電容C1 進行充電,才可能影響過電流偵測電路225用來比較的電流限制值Ilimit 。簡言之,繞組W4 的輸出電壓V4 必須高於一電壓預設值後,才會對提供過電流偵測電路225調整值。忽略二極體D1的臨界電壓時,此電壓預設值大致上由齊納二極體的反向崩潰電壓來決定。所以,交流線電壓VAC 的電壓需要高到一定程度,才可能影響到過電流偵測電路225。譬如說,選擇適當的齊納二極體,便可以使補償訊號產生電路230,於電源轉換器200處於交流線電壓VAC 低於180伏特時,不會產生調整值調整或補償比較器2250之正向輸出端的電壓;但在交流線電壓VAC 高於180伏特時,才可能調整或補償比較器2250之正向輸出端的電壓。In addition, when the power converter 200 is in the low line of the AC line voltage V AC , the compensation signal generating circuit 230 can be designed to generate almost no adjustment value adjustment or compensate the voltage of the forward output terminal of the comparator 2250; When the AC line voltage V AC is high line, it will be. A third voltage waveform of the voltage value V of the A 1 4 V in the induction voltage is generated, and after the rectified voltage V in is the AC line voltage V AC with a positive correlation. It can be seen from FIG. 3 and FIG. 2 that the voltage value A 1 must be high enough to overcome the threshold voltage of the diode D1 and the reverse breakdown voltage of the Zener diode D z to charge the capacitor C 1 . It is possible to influence the current limit value I limit used by the overcurrent detecting circuit 225 for comparison. In short, the output current V 4 of the winding W 4 must be higher than a predetermined voltage value to adjust the value of the overcurrent detecting circuit 225. When the threshold voltage of the diode D1 is ignored, the voltage preset value is roughly determined by the reverse breakdown voltage of the Zener diode. Therefore, the voltage of the AC line voltage V AC needs to be high to a certain extent, which may affect the overcurrent detecting circuit 225. For example, if the appropriate Zener diode is selected, the compensation signal generating circuit 230 can be used. When the power converter 200 is at an AC line voltage V AC lower than 180 volts, the adjustment value adjustment or compensation comparator 2250 is not generated. The voltage at the forward output; however, it is only possible to adjust or compensate for the voltage at the forward output of comparator 2250 when the AC line voltage V AC is above 180 volts.
在一實施例中,適當的選擇第2圖中的元件值,便可以使得補償訊號產生電路230於高壓重載時,才對過電流偵測電路225產生影響,調整或補償比較器2250之正向輸出端的電壓。而於低壓或是輕載時,本來就沒有所謂傳遞信號延遲的問題,或是沒有過電流的問題,補償訊號產生電路230不對電流偵測電路225產生影響。In an embodiment, by appropriately selecting the component values in FIG. 2, the compensation signal generating circuit 230 can affect the overcurrent detecting circuit 225 when the high voltage is reloaded, and adjust or compensate the positive of the comparator 2250. The voltage to the output. At low voltage or light load, there is no problem of transmitting signal delay, or there is no problem of overcurrent, and the compensation signal generating circuit 230 does not affect the current detecting circuit 225.
第2圖中的實施例沒有第1圖中的固定漏電路徑,所以只要開關元件215關閉,第2圖就幾乎沒有任何的功率消耗,非常的節能。第2圖中的實施例也消除了第1圖中,高壓(high line)輕載或無載(light load or no load)時,無法進入省電模式的問題,因為第2圖中的實施例可以設定為在輕載或無載(light load or no load)時,不對電流偵測電路225產生影響。The embodiment in Fig. 2 does not have the fixed leakage path in Fig. 1, so that as long as the switching element 215 is turned off, the second picture has almost no power consumption and is very energy-saving. The embodiment in Fig. 2 also eliminates the problem that the power saving mode cannot be entered when the high line light load or no load is used in Fig. 1, because the embodiment in Fig. 2 It can be set to have no effect on the current detecting circuit 225 when light load or no load is applied.
在一實施例中,補償訊號產生電路230亦可改成以第4A圖所示的電路形式來實現之。甚至,在一實施例中,第4A圖所示之補償訊號產生電路230中的齊納二極體Dz 亦可改為設置於整流二極體D1 與電阻R1 之間;凡此種在保有補償訊號產生電路230提供該調整值的操作下針對電路元件之位置所進行的設計變化,皆應屬本發明的範疇。In an embodiment, the compensation signal generating circuit 230 can also be implemented in the form of a circuit as shown in FIG. 4A. In an embodiment, the Zener diode D z in the compensation signal generating circuit 230 shown in FIG. 4A can also be disposed between the rectifying diode D 1 and the resistor R 1 ; The design changes made to the position of the circuit elements under the operation of the compensation signal generation circuit 230 to provide the adjustment value are all within the scope of the present invention.
齊納二極體Dz 並未被限制需與電阻R1 、電容C1 所形成的低通濾波器共同運作,因此,在其他實施例中,補償訊號產生電路230可利用第4B圖或第4C圖的電路形式來加以實作之,此仍具有提供調整值以調整電流限制值Ilimit 的功能,並保有節能效果。The Zener diode D z is not limited to operate in conjunction with the low pass filter formed by the resistor R 1 and the capacitor C 1 . Therefore, in other embodiments, the compensation signal generating circuit 230 can utilize the 4th or the The circuit form of the 4C diagram is implemented, and this still has the function of providing an adjustment value to adjust the current limit value I limit , and retains the energy saving effect.
變壓器亦可具有不同的設計。請參照第5圖,第5圖是本發明第二實施例之返馳式電源轉換器500的電路示意圖。與電源轉換器200之變壓器210不同的是,電源轉換器500所包含的變壓器510僅具有一繞組W5 來作為輔助繞組,且整流二極體Daux 的接法亦有所不同(如第5圖所示),輔助繞組W5 在開關元件215開啟時係用以提供其輸出予補償訊號產生電路230以提供該調整值,而當開關元件215關閉時係用以提供操作電源訊號Vcc 予控制電路220。當然,第5圖所示之補償訊號產生電路230的電路設計亦可利用第4A~4B圖所示之電路形式實施之,此亦符合本發明的精神。Transformers can also have different designs. Referring to FIG. 5, FIG. 5 is a circuit diagram of a flyback power converter 500 according to a second embodiment of the present invention. Different from the transformer 210 of the power converter 200, the transformer 510 included in the power converter 500 has only one winding W 5 as an auxiliary winding, and the connection of the rectifying diode D aux is also different (such as the fifth As shown, the auxiliary winding W 5 is used to provide its output to the compensation signal generating circuit 230 to provide the adjustment value when the switching element 215 is turned on, and to provide the operating power signal V cc when the switching element 215 is turned off. Control circuit 220. Of course, the circuit design of the compensation signal generating circuit 230 shown in FIG. 5 can also be implemented by using the circuit form shown in FIGS. 4A-4B, which is also in accordance with the spirit of the present invention.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
100、200、500...返馳式電源轉換器100, 200, 500. . . Flyback power converter
101、201...負載元件101, 201. . . Load element
105、205...橋式整流器105, 205. . . Bridge rectifier
110、210、510...變壓器110, 210, 510. . . transformer
115、215...開關元件115, 215. . . Switching element
120、220...控制電路120, 220. . . Control circuit
125...偵測電路125. . . Detection circuit
225...過電流偵測電路225. . . Overcurrent detection circuit
230...補償訊號產生電路230. . . Compensation signal generation circuit
1250、2250...比較器1250, 2250. . . Comparators
第1圖為習知返馳式電源轉換器的電路示意圖。Figure 1 is a circuit diagram of a conventional flyback power converter.
第2圖為本發明第一實施例之返馳式電源轉換器的電路示意圖。2 is a circuit diagram of a flyback power converter according to a first embodiment of the present invention.
第3圖為第2圖所示之控制訊號Vc 的波形、變壓器內第二繞組W4 上的輸出電壓波形V4 、整流二極體D1 之輸出電壓波形V4 ’以及電容C1 上之跨壓VC1 的示意圖。A waveform control signal V c shown in the third graph of FIG. 2, the second winding of the transformer on the output voltage waveform W 4 V 4, a rectifying diode D 1 of the output voltage waveform V 4 'and a capacitor C 1 Schematic diagram of the cross-pressure V C1 .
第4A圖為第2圖所示之補償訊號產生電路之另一實施變化的電路示意圖。Fig. 4A is a circuit diagram showing another variation of the implementation of the compensation signal generating circuit shown in Fig. 2.
第4B圖為第2圖所示之補償訊號產生電路之一第三實施變化的電路示意圖。Fig. 4B is a circuit diagram showing a third implementation variation of the compensation signal generating circuit shown in Fig. 2.
第4C圖為第2圖所示之補償訊號產生電路之一第四實施變化的電路示意圖。Fig. 4C is a circuit diagram showing a fourth implementation variation of the compensation signal generating circuit shown in Fig. 2.
第5圖為本發明第二實施例之返馳式電源轉換器的電路示意圖。Fig. 5 is a circuit diagram showing a flyback power converter according to a second embodiment of the present invention.
200...返馳式電源轉換器200. . . Flyback power converter
201...負載元件201. . . Load element
205...橋式整流器205. . . Bridge rectifier
210...變壓器210. . . transformer
215...開關元件215. . . Switching element
220...控制電路220. . . Control circuit
225...過電流偵測電路225. . . Overcurrent detection circuit
230...補償訊號產生電路230. . . Compensation signal generation circuit
2250...比較器2250. . . Comparators
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098105243A TWI425757B (en) | 2009-02-19 | 2009-02-19 | Power converter and related method |
US12/704,540 US8208236B2 (en) | 2009-02-19 | 2010-02-12 | Power converter and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098105243A TWI425757B (en) | 2009-02-19 | 2009-02-19 | Power converter and related method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201032454A TW201032454A (en) | 2010-09-01 |
TWI425757B true TWI425757B (en) | 2014-02-01 |
Family
ID=42559713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098105243A TWI425757B (en) | 2009-02-19 | 2009-02-19 | Power converter and related method |
Country Status (2)
Country | Link |
---|---|
US (1) | US8208236B2 (en) |
TW (1) | TWI425757B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9356525B2 (en) * | 2012-08-31 | 2016-05-31 | Canon Kabushiki Kaisha | Power supply device and image forming apparatus |
JP6029388B2 (en) * | 2012-08-31 | 2016-11-24 | キヤノン株式会社 | Power supply device and image forming apparatus |
JP6406798B2 (en) * | 2013-03-08 | 2018-10-17 | キヤノン株式会社 | Power supply device and image forming apparatus |
US9600012B2 (en) * | 2013-07-26 | 2017-03-21 | Siemens Aktiengesellschaft | Internal power supply of a device |
TWI513165B (en) * | 2014-05-07 | 2015-12-11 | Universal Scient Ind Shanghai | Flyback converter with over current protection and control circuit thereof |
KR20160032457A (en) * | 2014-09-16 | 2016-03-24 | 현대모비스 주식회사 | Method and device for sensing output current of dc-dc converter |
KR102380354B1 (en) * | 2017-09-29 | 2022-03-31 | 현대자동차주식회사 | Electronic device and vehicle having the same |
TWI677153B (en) | 2018-11-21 | 2019-11-11 | 群光電能科技股份有限公司 | Switching circuit |
CN115136433A (en) * | 2020-02-19 | 2022-09-30 | 航天喷气发动机洛克达因股份有限公司 | Breakdown current detection and protection circuit |
CN111884512A (en) * | 2020-03-18 | 2020-11-03 | 深圳市航嘉驰源电气股份有限公司 | Switching power supply, power adapter and charger |
US11081965B1 (en) * | 2020-03-30 | 2021-08-03 | Dialog Semiconductor Inc | Universal input voltage detection system for a flyback converter |
EP4456097A1 (en) * | 2023-04-27 | 2024-10-30 | Hitachi Energy Ltd | A transformer arrangement |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5917716A (en) * | 1997-02-21 | 1999-06-29 | Samsung Electronics Co., Ltd. | Switching mode power supplier having function of protecting circuit from abnormal voltage |
US6631064B2 (en) * | 2001-02-06 | 2003-10-07 | Semiconductor Components Industries Llc | Apparatus and method for providing overcurrent protection for switch-mode power supplies |
US6813170B2 (en) * | 2002-08-19 | 2004-11-02 | Semtech Corporation | Multiple output power supply having soft start protection for load over-current or short circuit conditions |
US20060209481A1 (en) * | 2005-02-28 | 2006-09-21 | Jung-Won Kim | Switching mode power supply and method for performing protection operation thereof |
USRE41908E1 (en) * | 1997-06-04 | 2010-11-02 | Semiconductor Components Industries, Llc | Power conversion integrated circuit and method for programming |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4686617A (en) * | 1986-06-06 | 1987-08-11 | Rca Corporation | Current limited constant frequency dc converter |
JP3610964B2 (en) * | 2002-05-13 | 2005-01-19 | 松下電器産業株式会社 | Switching power supply |
-
2009
- 2009-02-19 TW TW098105243A patent/TWI425757B/en not_active IP Right Cessation
-
2010
- 2010-02-12 US US12/704,540 patent/US8208236B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5917716A (en) * | 1997-02-21 | 1999-06-29 | Samsung Electronics Co., Ltd. | Switching mode power supplier having function of protecting circuit from abnormal voltage |
USRE41908E1 (en) * | 1997-06-04 | 2010-11-02 | Semiconductor Components Industries, Llc | Power conversion integrated circuit and method for programming |
US6631064B2 (en) * | 2001-02-06 | 2003-10-07 | Semiconductor Components Industries Llc | Apparatus and method for providing overcurrent protection for switch-mode power supplies |
US6813170B2 (en) * | 2002-08-19 | 2004-11-02 | Semtech Corporation | Multiple output power supply having soft start protection for load over-current or short circuit conditions |
US20060209481A1 (en) * | 2005-02-28 | 2006-09-21 | Jung-Won Kim | Switching mode power supply and method for performing protection operation thereof |
Non-Patent Citations (1)
Title |
---|
U * |
Also Published As
Publication number | Publication date |
---|---|
US8208236B2 (en) | 2012-06-26 |
US20100208394A1 (en) | 2010-08-19 |
TW201032454A (en) | 2010-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI425757B (en) | Power converter and related method | |
US10355605B1 (en) | Adjustable frequency curve for flyback converter at green mode | |
US10790756B2 (en) | Variable blanking frequency for resonant converters | |
JP5509182B2 (en) | Method and apparatus for limiting output power in a switching power supply | |
US8559203B2 (en) | Power source apparatus with harmonic suppression | |
JP5056395B2 (en) | Switching power supply | |
US8194419B2 (en) | Switching mode power supply for reducing standby power | |
US7609533B2 (en) | Light-load efficiency improving method and apparatus for a flyback converter | |
US8159846B2 (en) | Switching control circuit, semiconductor device and switching power source apparatus | |
KR101677728B1 (en) | Power factor correction circuit and driving method thereof | |
US8891259B2 (en) | Control circuit and method for audible noise suppression in a power converter | |
JP6075008B2 (en) | Switching power supply | |
US10069403B1 (en) | Power supply with low power standby mode having fixed burst-on time and adaptive LLC burst frequency adjustment | |
JP2017017767A (en) | High efficiency power factor correction circuit and switching power supply | |
CN103312200A (en) | Power converter, current limiting unit, control circuit and related control method | |
KR101812703B1 (en) | Over voltage repetition prevention circuit, method thereof, and power factor compensation circuit using the same | |
TWI443946B (en) | Over power protection (opp) compensation circuit and flyback power supply | |
JP2004260977A (en) | Ac-to-dc converter | |
JP4104609B2 (en) | Method for controlling the current and voltage of a switch mode power supply unit | |
EP3459168B1 (en) | An led driver and a method for driving an led load | |
CN101854124A (en) | Power converter and method for using same | |
JP5424031B2 (en) | Power factor correction circuit | |
KR20080086798A (en) | Method and apparatus for high voltage power supply circuit | |
JP5203444B2 (en) | Switching power supply | |
US5668704A (en) | Self-exciting flyback converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |