TWI354433B - Switching regulators and slope compensation method - Google Patents
Switching regulators and slope compensation method Download PDFInfo
- Publication number
- TWI354433B TWI354433B TW096122495A TW96122495A TWI354433B TW I354433 B TWI354433 B TW I354433B TW 096122495 A TW096122495 A TW 096122495A TW 96122495 A TW96122495 A TW 96122495A TW I354433 B TWI354433 B TW I354433B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- slope
- current
- unit
- current signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 14
- 238000001514 detection method Methods 0.000 claims description 58
- 230000000630 rising effect Effects 0.000 claims description 49
- 238000000605 extraction Methods 0.000 claims description 10
- 230000002194 synthesizing effect Effects 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000001965 increasing effect Effects 0.000 claims description 4
- 230000003362 replicative effect Effects 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 206010011469 Crying Diseases 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 12
- 101100464779 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CNA1 gene Proteins 0.000 description 8
- 230000004044 response Effects 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 101100098479 Caenorhabditis elegans glp-4 gene Proteins 0.000 description 2
- 101100464782 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CMP2 gene Proteins 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 101001018147 Homo sapiens Mitogen-activated protein kinase kinase kinase 4 Proteins 0.000 description 1
- 102100033060 Mitogen-activated protein kinase kinase kinase 4 Human genes 0.000 description 1
- 241000237536 Mytilus edulis Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 235000020638 mussel Nutrition 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Description
1354433 - 九、發明說明: 【發明所屬之技術領域】 . 本發明有關於直流電壓轉換,特別有關一種具有斜 _ 率補償之切換式電壓調整器與其斜率補償方法。 【先前技術】 ' 電池壽命係為可攜式電子系統中非常重要的考量因 素,尤其對消費性電子產品(例如行動電話、數位相機、 • 可攜式電腦與其它手持式的裝置)而言更是一個不爭的事 實。這些產品之設計人員都必須面對產品尺寸(與電池尺 寸)不斷地變小的需求,同時提升電池的壽命來匹配或超 越競爭者的產品。 為了使電池壽命變長,它必須要許多不同電子元件 之效能達到最佳化,在這些電子元件中最重要的就是電 壓調整器。在可攜式電子系統中,電壓調整器係用來執 行一些電源處理工作,例如升壓、降壓與變壓。 ® 第1圖係為一種電壓控制型切換式電壓調整器,用 以將直流高電壓轉換成一直流低電壓。電壓控制型的優 - 點在於易於分析,並具有可以提供很好的抗雜訊能力 (noise immunity)之一個大三角波形(ramp wave)。然而, 對暫態響應而言,由於在線路或負載中的任何改變,都 必須先被回授電阻分壓器偵測到之後,接著才會藉由錯 誤放大器與脈波寬度調變(PWM)產生器來反應,因此反 應速度將會變慢。再者,由於輸出LC網路會具有複雜的 O758-A32295TWF;MTKI-06-182;dennis 5 極點對(complex-pole pair)並且回路增益會隨著輸入電壓 產生變動,因此回路補償之設計更是十分複雜。 【發明内容】 _本發明係提供一種切換式電壓調整器,包括一電 感,耦接至一負載;一脈波寬度調變(PWM)單元,包括 ,出級’脈波寬度調變單元係產生—脈波寬度調變驅 動信號’用以控制輸出、級,使得電感傳送—電感電流作 號至負載;以及-斜率補償單元,用以根據電感電流^ 號,^出具有一補償斜率之一斜率補償信號至脈波寬度 调變單7G,其中補償斜率係與電感電流信號之一下降斜 率成比例。 本發明亦提供一種切換式電壓調整器之斜率補償方 法,包括偵測由一脈波寬度調變單元流往一負載的一電 感電流彳§號之一上升斜率;偵測脈波寬度調變單元所產 生之一脈波寬度調變驅動信號的一工作週期;根據脈波 寬度调變驅動信號之工作週期與電感電流信號之上升斜 率,產生具有一補償斜率之一斜率補償信號,其中補償 斜率係與電流電流信號之一下降斜率成比例;以及根據 斜率補償信號,控制脈波寬度調變單元。 本發明亦提供一種切換式電壓調整器,包括一電 感,耦接至一負載;一斜率補償單元,耦接至電感,用 以根據一脈波寬度調變驅動信號之一工作週期與流經電 感之一電感電流信號的一上升斜率,取得電感電流信號 0758-A32295TWF;MTKI-06-182;dennis 6 13544331354433 - IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to DC voltage conversion, and more particularly to a switching voltage regulator having oblique _ rate compensation and a slope compensation method thereof. [Prior Art] 'Battery life is a very important consideration in portable electronic systems, especially for consumer electronics such as mobile phones, digital cameras, portable computers and other handheld devices. It is an indisputable fact. Designers of these products must face the ever-increasing demand for product size (and battery size) while increasing battery life to match or exceed competitors' products. In order to make battery life longer, it must optimize the performance of many different electronic components. The most important of these electronic components is the voltage regulator. In portable electronic systems, voltage regulators are used to perform some power processing tasks such as boost, buck, and transformer. ® Figure 1 is a voltage-controlled switching voltage regulator that converts a high DC voltage into a DC low voltage. The advantage of the voltage-controlled type is that it is easy to analyze and has a large triangular wave that provides good noise immunity. However, for transient response, any changes in the line or load must be detected by the feedback resistor divider before it is modulated by the error amplifier and pulse width (PWM). The generator reacts, so the reaction speed will be slower. Furthermore, since the output LC network will have a complex O758-A32295TWF; MTKI-06-182; dennis 5 complex-pole pair and the loop gain will vary with the input voltage, the loop compensation design is Very complicated. SUMMARY OF THE INVENTION The present invention provides a switching voltage regulator comprising an inductor coupled to a load; a pulse width modulation (PWM) unit, including: a stepped pulse width modulation unit - pulse width modulation drive signal 'to control the output, the stage, so that the inductor is transmitted - the inductor current is assigned to the load; and - the slope compensation unit is used to determine the slope of one of the compensation slopes according to the inductor current ^ The compensation signal is applied to the pulse width modulation single 7G, wherein the compensation slope is proportional to the falling slope of one of the inductor current signals. The invention also provides a slope compensation method for a switching voltage regulator, comprising: detecting a rising slope of an inductor current 彳 § of a pulse width modulation unit flowing to a load; detecting a pulse width modulation unit Generating a pulse width modulation driving signal for a duty cycle; adjusting a duty cycle of the driving signal and a rising slope of the inductor current signal according to the pulse width to generate a slope compensation signal having a compensation slope, wherein the compensation slope is The slope is proportional to a falling slope of the current and current signals; and the pulse width modulation unit is controlled according to the slope compensation signal. The present invention also provides a switching voltage regulator comprising an inductor coupled to a load; a slope compensation unit coupled to the inductor for modulating a duty cycle of the drive signal and flowing through the inductor according to a pulse width One rising slope of the inductor current signal, obtaining the inductor current signal 0758-A32295TWF; MTKI-06-182; dennis 6 1354433
,一下降斜率,並產生具有一補償斜率之一斜率補償信 旒,其中補償斜率係與電感電流信號之下降斜率成比 例’一電流偵測單元,用以偵測電感電流信號,產生與 ,感電流信號成比例之一電流偵測信號至上述斜率補償 早兀;一脈波寬度調變單元,包括一比較器,耦接電流 偵測^號、斜率補償信號與—回授信號,以及至少一輪 出電曰曰^,用以輸出脈波寬度調變驅動信號至電感;以 及一回授単it ’㈣於比較器與電感之間,用以根據切 換式電壓调整器之—輸出電壓’產生回授信號。 為了讓本發明之上述和其他目的、特徵、和優點能 更明顯易懂,下寺社主迦_ . 下文特舉一較佳實施例,並配合所附圖示, 作詳細說明如下: 【實施方式】 —第圖係顯示一電流控制型切換式電壓調整器之一 。如::示’除了回授電壓之外,連續的電感電 二:授給控制回路,而且電感電流信號IL 誤i二二—角波信號。在比較電感電流信號1L與錯 生,以便控制一 _驅動信號會被產 加鞾定声,细^ 輸出 開啟與關閉。再者,為了增 “哭之=補償信號會與電感電流信號江中,或由 錯各放大為之輸出信號中減去。 田 授,因因=:輸出資料相關之電感電流信號會被回 又 ° a應的速度會比輸入電壓的暫態變化來得 〇758-Α32295ΤΨΡ;ΜΤΚΙ.〇6-182;de] 7 1354433 *快。再者,由於錯誤放大器之輪出信號係為電感電流信 號的指標’故在電流控制型電壓調整器中,電流分路係 可視為電壓控制型電流源’所以電感極點將會被消除。 因此’回路的補償會較電壓控制型切換式電壓調整器來 的容易。此外’由於比較級的輪入信號為電流信號,因 此電流控制型切換式電塵調整器會隱含有一個脈衝接著 一脈衝(pulse by pulse)的電流限制。 第3圖係為一電流控制型切換式電壓調整器於穩態 > 時之一控制回路波形(control loop wave)。如圖所示,於 直線上的準位Ve係為錯誤放大器(error amplifier; EA) 之輸出信號’而實線三角波係為反饋的電感電流信號 IL。當PWM輸出級開啟(導通)時,跨在電感l〇上之電 壓是正的’而且電流電流信號IL會增加。當電感電流信 號IL等於錯誤放大器(EA)之輸出信號時,比較器會改變 其輸出端上之極性,使得PWM輪出級關閉,跨在電感 > L0上的電壓會變成負的,所以電感電流信號il會減少, 直到PWM輸出級的下一個開啟信號signal)再度出 現。 假如電感電流信號IL上有小小的擾動(perturbation) 產生(例如第3圖中所示之電流變量10),虛線三角波將會 變成電感電流信號IL之行進的波形(proceeding waveform)。如第3圖中所示,PWM工作週期(D)會小於 0.5,因此擾動將會漸漸地消去,並再度恢復到穩態。然 而,若穩態時之工作週期(D)大於〇.5(如第4圖中所示) 0758-A32295TWF;MTKI-06-182;dennis 8 1354433 恰,於第一個週期中產生的擾動,將會一週期接著一。 期(cycle-by-cyde)地被放大,因此回路(1,將 = (emerge)。為了克服這點’可將電感電流信號江 率補償波相加。 '、斜 第5圖係為錯誤放大器中之輸出信號中所取 率補償信號sc的波形。如圖所示,ml與⑽係為 電感電流信號IL的上升斜率與下降斜率。明顯地使 期(:)大於〇.5的穩態中,擾動仍然會在幾個週 』後靖失。因此’目前要做的就是測量出要加 的斜率補償的程度。首先,根據錯誤放Α|§之輸出 與第6圖中所示之電感電流信號iavgi〜iav⑺之^ = =誤放大器之輸出只能定義出電感電流 L唬的峰值而非平均值。當錯誤放大器之 時’電感電流信號的平均值亦可由工作週期(例^穩^時 的輸出電壓與輸入電麗間之關係)來定義。因此,一^ ^^fr^S0lnetransie^ 就會產生回應以便達到另一個新的穩態。 第7圖係顯示一個具有補償咎圭 ,、负硐彳貝斜羊m之斜率補償波 形’其中m為電感電流信號之下降斜率⑽的μ。於是 I週期内(〇〜D,擾動就會被消除,並且錯誤 is期:關"V"號會表示電感電流信號之平均值與工作 =關。由於錯誤放大器之輸出信號不需要改變,所 以工,回路會呈現出想要的線性暫態響應⑴…麵化价 response)。第8圖係顯示一個具有補償斜率功之斜率補 0758-A32295TWF;MTKI-〇6-I82;dennis 1354433 4貝波形’其中m相等於電感電流信號之下降斜率m2。如 ,所不’若擾動發生於電感電流信號之上升緣時,它將 在一個工作週期内就會被消除,並同時具有报 雜訊能力。 机a falling slope and generating a slope compensation signal having a compensation slope, wherein the compensation slope is proportional to the falling slope of the inductor current signal. A current detecting unit for detecting the inductor current signal, generating a sense of The current signal is proportional to the current detection signal to the slope compensation early; a pulse width modulation unit includes a comparator coupled to the current detection ^, the slope compensation signal and the feedback signal, and at least one round The output voltage is used to output a pulse width modulation drive signal to the inductor; and a feedback 単it '(4) is between the comparator and the inductor for generating back according to the output voltage of the switching voltage regulator Grant a signal. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the following description of the preferred embodiments of the 】 — The figure shows one of the current controlled switching voltage regulators. Such as:: shows 'In addition to the feedback voltage, the continuous inductor power two: is given to the control loop, and the inductor current signal IL is wrong two-two-angle signal. When comparing the inductor current signal 1L with the error, in order to control a _ drive signal will be produced by the humming sound, and the fine ^ output will be turned on and off. In addition, in order to increase the "cry = compensation signal will be combined with the inductor current signal in the river, or by the error amplification of the output signal. Tian, because of =: output data related to the inductor current signal will be returned ° The speed of a should be 758-Α32295ΤΨΡ than the transient change of the input voltage; ΜΤΚΙ.〇6-182;de] 7 1354433 *fast. Moreover, the signal of the error amplifier is the indicator of the inductor current signal. Therefore, in the current-controlled voltage regulator, the current shunt can be regarded as a voltage-controlled current source, so the inductor pole will be eliminated. Therefore, the compensation of the loop is easier than that of the voltage-controlled switching voltage regulator. In addition, since the comparator-level turn-in signal is a current signal, the current-controlled switching type dust regulator will implicitly contain a pulse followed by a pulse current limit. Figure 3 is a current control type. The switching voltage regulator controls the control loop wave at one of the steady state > as shown in the figure, the level Ve on the line is the input of the error amplifier (EA). The outgoing signal 'and the solid-line triangular wave is the feedback inductor current signal IL. When the PWM output stage is turned on (on), the voltage across the inductor l〇 is positive' and the current-current signal IL increases. When the inductor current signal IL When equal to the output signal of the error amplifier (EA), the comparator will change the polarity at its output, so that the PWM wheel is turned off, and the voltage across the inductor > L0 will become negative, so the inductor current signal il will decrease. Until the next turn-on signal of the PWM output stage occurs again. If there is a small perturbation on the inductor current signal IL (for example, the current variable 10 shown in Figure 3), the dotted triangle wave will become the inductor. The path of the current signal IL (proceeding waveform). As shown in Figure 3, the PWM duty cycle (D) will be less than 0.5, so the disturbance will gradually disappear and return to steady state again. However, if steady state The duty cycle (D) is greater than 〇.5 (as shown in Figure 4) 0758-A32295TWF; MTKI-06-182; dennis 8 1354433 Just the disturbance generated in the first cycle will be cycled Cycle (by-cyde) is amplified, so the loop (1, will = (emerge). In order to overcome this point, the inductor current signal can be added to the compensation rate wave. ', oblique 5 The waveform of the compensation signal sc is taken as the rate of the output signal in the error amplifier. As shown, ml and (10) are the rising slope and falling slope of the inductor current signal IL. Obviously, the period (:) is greater than 〇.5. In steady state, the disturbance will still be lost after a few weeks. So what is currently done is to measure the degree of slope compensation to be added. First, according to the error Α | § output and the inductor current signal iavgi~iav (7) shown in Figure 6 = = = the output of the erroneous amplifier can only define the peak value of the inductor current L 而非 instead of the average value. When the error amplifier is used, the average value of the inductor current signal can also be defined by the duty cycle (the relationship between the output voltage and the input voltage). Therefore, a ^^^fr^S0lnetransie^ will generate a response to reach another new steady state. Fig. 7 shows a slope with a compensating waveform of the negative mussel slanting m, where m is the decreasing slope (10) of the inductor current signal. Then in the I cycle (〇~D, the disturbance will be eliminated, and the error is period: off "V" will indicate the average value of the inductor current signal and the operation = off. Since the output signal of the error amplifier does not need to be changed, Work, the loop will show the desired linear transient response (1) ... face price response. Figure 8 shows a slope with compensation slope function 0758-A32295TWF; MTKI-〇6-I82; dennis 1354433 4 Bayer waveform' where m is equal to the falling slope m2 of the inductor current signal. For example, if the disturbance occurs at the rising edge of the inductor current signal, it will be eliminated within one working cycle and at the same time have the ability to report noise. machine
“,、:而,之前所述的斜率補償技術都是使用電感電流 ^號IL之下降斜率m2的資訊’然而它卻是很難由實體 二路去偵測到的,尤其是在高度整合的切換式電壓調整 杰中。不過電感電流信號IL之上升斜率ml與下降斜率 m2之間係存在—相對關係。因此,某些實 由 測電感電流信號之上升斜率,間接地推導出其= 率,並藉以產生一斜率補償信號。 假叹第1圖或第2圖中所示之降壓調整器(⑽ converter)會具有一穩態pwM工作週期(d),於是輸入電 壓Vm與輸出電壓v〇ut間之關係即可表示成寄' 者’假設電感電流信號几之上升斜率與下降斜率分別為 ml與m2 ’則其比率關係即可表示成尝=&。換 如果取得了電感電流信號IL之工作週期D I上二率 m卜就可以分離出於斜率補償技射真正需要㈣ 降斜率)m2。第9圖中之表一係列出了 d 了不同工作週期D值 下之0的值。 第10圖係為電流控制型切換式電壓調整器 實施例。切換式電壓調整器1〇〇係#“,,: However, the slope compensation technique described above uses the information of the falling slope m2 of the inductor current ^IL. However, it is difficult to detect by the physical two-way, especially in highly integrated The switching voltage is adjusted. However, there is a relative relationship between the rising slope ml of the inductor current signal IL and the falling slope m2. Therefore, the rising slope of some measured inductor current signals indirectly derives its = rate. And to generate a slope compensation signal. Suppose the buck regulator (10) converter shown in Figure 1 or Figure 2 will have a steady-state pwM duty cycle (d), so the input voltage Vm and the output voltage v〇 The relationship between ut can be expressed as the sender's assumption that the rising slope and the falling slope of the inductor current signal are respectively ml and m2 ', then the ratio relationship can be expressed as taste = & if the inductor current signal IL is obtained The second rate m of the duty cycle DI can be separated from the slope compensation technique (4) the falling slope) m2. The table in Fig. 9 shows a series of values of 0 under different duty cycle D values. 10 is the current System type switching voltage regulator embodiment. 1〇〇 switching voltage regulator system #
^ . 1 T稭由電感電流信號IL 之上升斜率ml與工作週期D,得出其下降斜率m2,並 0758-A32295TWF;MTKI-〇6-182;dennis 1354433 • 用以進行斜率補償。如圖所示,切換式電壓調整器100 包括一脈波寬度調變(PWM)單元10、一電流偵測單元 . 20、一斜率補償單元30、一回授單元40、一電感L0以 及一電容C0。 PWM單元10係耦接於電感L0與回授單元40之 間,並包括一 PWM比較器12、一 SR栓鎖14、一 PWM ' 驅動器16以及一輸出級(包括PMOS電晶體P0與一 NMOS電晶體NO)。PWM單元10用以產生一 PWM驅動 • 信號SPWMD來控制其輸出級,使得電感L0會傳送一電 感電流信號IL至電容C0與負載RD。PWM比較器12用 以根據一電流偵測信號ID、一斜率補償信號SSC以及來 自回授單元40之一回授信號Ve”,產生一控制信號CS。 SR栓鎖14包括一設定端(S)用以耦接一時脈信號、一重 置端(R)用以接收來自PWM比較器12之控制信號CS, 以及一輸出端(0)用以輸出一 PWM驅動信號SPWMD至 PWM驅動器16。SR栓鎖14係根據控制信號CS以及時 • 脈信號,以及產生PWM驅動信號SPWMD至PWM驅動 " 器16,以便開啟或關閉輸出級(P0與N0)。舉例而言,回 - 授信號Ve”係可為一電壓信號,而電流彳貞測信號ID與斜 率補償信號SSC係為電流信號。再者,電流偵測信號ID 與斜率補償信號SSC係可由一電阻(未圖示)相組合(相加) 並轉換成一電壓信號,以便與回授信號Ve”進行比較。或 者是說,可於錯誤放大器41與相位補償單元42間耦接 一電壓-電流轉換器,用以將輸出信號Ve轉換成一電流 0758-A32295TWF;MTKI-06-182;dennis 11 1354433 • 信號,以便和電流偵測信號ID與斜率補償信號SSC之組 合值進行比較。 • 於某些實施例中,PWM驅動信號SPWMD之工作週 . 期係由控制信號CS所決定。舉例而言,當SR栓鎖14 之設定端(R)上所接收到的時脈信號變成高電位時,SR栓 鎖14之PWM驅動信號SPWMD亦會跟著變成高電位, ' 使得PMOS電晶體P0與NMOS電晶體NO會分別被導通 與截止,並且電感電流信號IL會因此增加。若電流債測 • 信號ID與斜率補償信號SSC之組合值所產生的電壓信號 高於回授信號Ve”,比較器12會產生一低邏輯輸出,用 以重置SR栓鎖14。因此,SR栓鎖14之PWM驅動信號 SPWMD亦會變成低電位,使得電感電流信號IL會減小 直到SR栓鎖14之PWM驅動信號SPWMD再度變成高 電位。 電流偵測單元20係用以偵測電感電流信號IL,並 輸出與電感電流信號IL成比例(正比)之一電流偵測電流 • ID至PWM單元10以及斜率補償單元30。舉例而言,電 ‘ 流偵測單元20係可為一電流複製電路。 - 斜率補償單元30用以根據電感電流信號IL,輸出 具有一補償斜率之斜率補償信號SSC至PWM單元10, 其中補償斜率係與電流感流信號IL之下降斜率成比例 (正比)。舉例而言,斜率補償單元30可產生一斜率補償 信號SSC其補償斜率為電感電流信號IL之下降斜率的二 分之一、或等於電感電流信號IL之下降斜率,但不限定 0758-A32295TWF;MTK1-06-182;dennis 12 1354433 • 於此。 回授單元40用以根據切換式電壓調整器100之一輸 . 出電壓Vout,產生一回授信號Ve”,使得PWM單元10 , 根據斜率補償信號SSC、電流偵測信號ID與回授信號 Ve”,產生PWM驅動信號SPWMD。回授單元40包括電 阻R1〜R2、一錯誤放大器(error amplifier)41以及一可選 • 擇性設置的相位補償單元42。電阻R1〜R2用以根據切換 式電壓調整器100之輸出電壓Vout產生一分壓V12,輸 • 出至錯誤放大器41。錯誤放大器41會根據分壓V12與 一參考電壓Vref間之電壓差,產生輸出信號Ve。可選擇 性設置的相位補償單元42係耦接於錯誤放大器41與 PWM比較器12之間,用以對輸出信號Ve進行相位補 償,並產生一回授信號Ve”至PWM比較器12。 由於斜率補償單元30可根據PWM驅動信號 SPWMD之工作週期D與電感電流信號IL之上升斜率, 產生一斜率補償信號SSC具有一補償斜率與電感電流信 • 號IL之下降斜率成比例(正比),所以擾動將會在幾個週 期内被消除,並且可以得到第7圖與第8圖中所示之抗 - 雜訊能力。 第11圖係顯示電流偵測單元與斜率補償單元之一 實施例。如圖所示,電流彳貞測單元20會彳貞測電感電流信 號IL,並輸出與電感電流信號IL成比例之一電流彳貞測信 號ID。電流偵測單元20係包括PM0S電晶體P1〜P4以 及運算放大器OP1與0P2,其中PM0S電晶體P0〜P4之 0758-A32295TWF;MTKI-06-182;dennis 13 1354433 * 閘極係共同地耦接至PWM驅動器16。舉例而言,PMOS 電晶體P1〜P2以及運算放大器0P1係可形成一電流複製 . 電路,而PMOS電晶體P3〜P4與運算放大器0P2係形成 另一電流複製電路。 由於PMOS電晶體P1~P4之尺寸係為PMOS電晶體 P0之Μ倍,所以複製出的電流係Μ倍於電感電流信號 ' IL,並用以作為電流偵測信號ID。於此實施例中,Μ<<:1。 再者,因為電流偵測信號ID係由電感電流信號IL所複 _ 製出來的,所以電流彳貞測信號ID會具有一上升斜率和電 感電流信號IL之上升斜率成比例。於此實施例中,通過 PMOS電晶體P3之電流偵測信號ID會被輸出至斜率補 償單元30,而通過PMOS電晶體P1之電流偵測信號ID 會被輸出係PWM比較器12。 第12圖係表示斜率補償單元之一實施例。如圖所 示,斜率補償單元30A係包括一斜率取出單元31A用以 根據來自電流偵測單元20之電流偵測信號ID,取出電感 ® 電流信號IL之上升斜率,以及一合成單元32A用以偵測 • PWM驅動信號SPWMD之工作週期D,並根據電感電流 - 信號IL之上升斜率與PWM驅動信號SPWMD之工作週 期D,得出電感電流信號IL之下降斜率,且藉以產出斜 率補償信號SSC。 斜率取出單元31A包括一電阻R3用以將電流偵測 信號ID轉換成一對應電壓VD,以及一微分電路用以微 分對應電壓VD。由於來自電流偵測單元20之電流偵測 0758-A32295TWF;MTKI-06-182;dennis 14 1354433 * 信號ID與電感電流信號IL具有相同的上升斜率,所以 根據電流偵測信號ID所產生的對應電壓VD亦具有一樣 的上升斜率。因此,對應電壓 VD係可表示成 ίΌ = /Ρχ/?3 = ΜχΛχΛ3,其中μ係為電晶體P0與P1之尺寸比。 微分電路301包括一運算放大器0Ρ3、NMOS電晶 體Ν1、電容C1以及一重置開關元件SR1,用以微分對 應電壓VD,用以產生一對應電流信號II。對應電流信號^ . 1 T straw is obtained by the rising slope of the inductor current signal IL and the duty cycle D, and the falling slope m2 is obtained, and 0758-A32295TWF; MTKI-〇6-182; dennis 1354433 • is used for slope compensation. As shown, the switching voltage regulator 100 includes a pulse width modulation (PWM) unit 10, a current detecting unit, a slope compensation unit 30, a feedback unit 40, an inductor L0, and a capacitor. C0. The PWM unit 10 is coupled between the inductor L0 and the feedback unit 40, and includes a PWM comparator 12, an SR latch 14, a PWM 'driver 16 and an output stage (including a PMOS transistor P0 and an NMOS). Crystal NO). The PWM unit 10 is used to generate a PWM drive • signal SPWMD to control its output stage such that the inductor L0 transmits an inductive current signal IL to the capacitor C0 and the load RD. The PWM comparator 12 is configured to generate a control signal CS according to a current detection signal ID, a slope compensation signal SSC, and a feedback signal Ve" from the feedback unit 40. The SR latch 14 includes a set terminal (S) For coupling a clock signal, a reset terminal (R) for receiving the control signal CS from the PWM comparator 12, and an output terminal (0) for outputting a PWM driving signal SPWMD to the PWM driver 16. The SR pin The lock 14 is based on the control signal CS and the pulse signal, and generates a PWM drive signal SPWMD to the PWM drive "er 16 to turn the output stage (P0 and N0) on or off. For example, the feedback signal Ve" It can be a voltage signal, and the current detection signal ID and the slope compensation signal SSC are current signals. Furthermore, the current detection signal ID and the slope compensation signal SSC can be combined (added) by a resistor (not shown) and converted into a voltage signal for comparison with the feedback signal Ve". The error amplifier 41 and the phase compensation unit 42 are coupled to a voltage-current converter for converting the output signal Ve into a current of 0758-A32295TWF; MTKI-06-182; dennis 11 1354433 • signal for summing the current detection signal ID Compare with the combined value of the slope compensation signal SSC. • In some embodiments, the duty cycle of the PWM drive signal SPWMD is determined by the control signal CS. For example, when the SR pin 14 is set (R) When the received clock signal becomes high, the PWM drive signal SPWMD of the SR latch 14 will also become high, 'so that the PMOS transistor P0 and the NMOS transistor NO are turned on and off, respectively, and the inductor The current signal IL is thus increased. If the voltage signal generated by the combination of the current signal measurement signal ID and the slope compensation signal SSC is higher than the feedback signal Ve", the comparator 12 generates a low logic output. SR latch 14 to reset. Therefore, the PWM drive signal SPWMD of the SR latch 14 also becomes low, so that the inductor current signal IL is decreased until the PWM drive signal SPWMD of the SR latch 14 becomes high again. The current detecting unit 20 is configured to detect the inductor current signal IL and output a current detecting current proportional to the inductor current signal IL (in proportion) to the PWM unit 10 and the slope compensating unit 30. For example, the electrical stream detection unit 20 can be a current replica circuit. The slope compensation unit 30 is configured to output a slope compensation signal SSC having a compensation slope to the PWM unit 10 according to the inductor current signal IL, wherein the compensation slope is proportional to the falling slope of the current sense signal IL (proportional). For example, the slope compensation unit 30 can generate a slope compensation signal SSC whose compensation slope is one-half of the falling slope of the inductor current signal IL or equal to the falling slope of the inductor current signal IL, but does not limit 0758-A32295TWF; MTK1 -06-182;dennis 12 1354433 • Here. The feedback unit 40 is configured to generate a feedback signal Ve′ according to one of the switching voltage regulators 100, so that the PWM unit 10, according to the slope compensation signal SSC, the current detection signal ID and the feedback signal Ve ", generate PWM drive signal SPWMD. The feedback unit 40 includes resistors R1 R R2, an error amplifier 41, and an optional phase compensation unit 42. The resistors R1 to R2 are used to generate a divided voltage V12 according to the output voltage Vout of the switching regulator 100, which is output to the error amplifier 41. The error amplifier 41 generates an output signal Ve based on the voltage difference between the divided voltage V12 and a reference voltage Vref. The selectively set phase compensation unit 42 is coupled between the error amplifier 41 and the PWM comparator 12 for phase compensation of the output signal Ve and generates a feedback signal Ve" to the PWM comparator 12. The compensation unit 30 can generate a slope compensation signal SSC according to the rising slope of the duty cycle D of the PWM driving signal SPWMD and the inductor current signal IL. The compensation slope is proportional to the falling slope of the inductor current signal IL (proportional), so the disturbance is disturbed. It will be eliminated in a few cycles, and the anti-noise capability shown in Figures 7 and 8 can be obtained. Figure 11 shows an embodiment of the current detecting unit and the slope compensation unit. As shown, the current sensing unit 20 measures the inductor current signal IL and outputs a current sense signal ID that is proportional to the inductor current signal IL. The current detecting unit 20 includes the PMOS transistors P1 to P4 and The operational amplifiers OP1 and OP2, wherein the MOS transistors P0 to P4 are 0758-A32295TWF; MTKI-06-182; dennis 13 1354433 * the gates are commonly coupled to the PWM driver 16. For example, the PMOS transistor P1 to P2 and the operational amplifier OP1 can form a current replica circuit, and the PMOS transistors P3 to P4 and the operational amplifier OP2 form another current replica circuit. Since the size of the PMOS transistors P1 to P4 is the PMOS transistor P0 Since it is doubled, the copied current is twice as large as the inductor current signal 'IL' and used as the current detection signal ID. In this embodiment, Μ<<:1. Furthermore, because the current detection signal ID It is multiplexed by the inductor current signal IL, so the current sense signal ID will have a rising slope proportional to the rising slope of the inductor current signal IL. In this embodiment, the current is detected by the PMOS transistor P3. The measured signal ID is output to the slope compensation unit 30, and the current detection signal ID through the PMOS transistor P1 is output to the PWM comparator 12. Fig. 12 shows an embodiment of the slope compensation unit. The slope compensation unit 30A includes a slope extraction unit 31A for taking out the rising slope of the inductance® current signal IL according to the current detection signal ID from the current detecting unit 20, and a synthesizing unit 32A for detecting Measured • The duty cycle D of the PWM drive signal SPWMD, and according to the rising slope of the inductor current-signal IL and the duty cycle D of the PWM drive signal SPWMD, the falling slope of the inductor current signal IL is obtained, and the slope compensation signal SSC is generated. The slope extraction unit 31A includes a resistor R3 for converting the current detection signal ID into a corresponding voltage VD, and a differential circuit for differentiating the corresponding voltage VD. The current detection from the current detecting unit 20 is 0758-A32295TWF; MTKI- 06-182;dennis 14 1354433 * The signal ID has the same rising slope as the inductor current signal IL, so the corresponding voltage VD generated according to the current detection signal ID also has the same rising slope. Therefore, the corresponding voltage VD can be expressed as ίΌ = /Ρχ/?3 = ΜχΛχΛ3, where μ is the size ratio of the transistors P0 to P1. The differential circuit 301 includes an operational amplifier Ρ3, an NMOS transistor 电容1, a capacitor C1, and a reset switching element SR1 for differentiating the corresponding voltage VD for generating a corresponding current signal II. Corresponding current signal
Il = C^^ = ClMxR3xdlD=CUMxR3xml ^ II係可表示成 dt dt ,其中mlIl = C^^ = ClMxR3xdlD=CUMxR3xml ^ The II system can be expressed as dt dt , where ml
I 係代表電感電流信號IL之上升斜率。換言之,對應電流 信號11會具有電感電流信號IL之上升斜率。 合成單元32A包括一工作週期偵測單元302、電流 鏡303與304、一積分單元305以及一電壓-電流轉換器 306。工作週期偵測單元302用以根據切換式電壓調整器 100之輸入電壓Vin與輸出電壓Vout間之關係,偵測出 PWM驅動信號SPWMD之工作週期(D),並藉以輸出一 f 組對應之控制信號S1〜SN。換言之,來自工作週期偵測 單元302之控制信號S1〜SN包含了 PWM驅動信號 SPWMD之工作週期的資訊。 電流鏡303用以根據控制信號S1〜SN,放大具有電 感電流信號IL之上升斜率的電流信號II,並產生K倍於 電流信號11之一電流信號12。 積分單元305包括一電容C2以及一重置開關元件 SR2,用以積分電流信號12,以便產生一對應電壓V2。 換 言之, 電壓 V2 可 表示成 0758-A32295TWF;MTKI-06-182;dennis 15 1354433 K 乂石乂MXR3油t 。電壓-電流轉換器306包 括一運算放大器OP4、一 NMOS電晶體N2以及一電阻 R4,用以將電壓V2轉換成一電流信號13。電流信號13The I system represents the rising slope of the inductor current signal IL. In other words, the corresponding current signal 11 will have a rising slope of the inductor current signal IL. The synthesizing unit 32A includes a duty cycle detecting unit 302, current mirrors 303 and 304, an integrating unit 305, and a voltage-current converter 306. The duty cycle detecting unit 302 is configured to detect the duty cycle (D) of the PWM driving signal SPWMD according to the relationship between the input voltage Vin of the switching voltage regulator 100 and the output voltage Vout, and thereby output a f group corresponding control Signals S1 to SN. In other words, the control signals S1 SN from the duty cycle detecting unit 302 contain information on the duty cycle of the PWM drive signal SPWMD. The current mirror 303 is for amplifying the current signal II having the rising slope of the inductive current signal IL according to the control signals S1 to SN, and generating a current signal 12 of K times the current signal 11. The integrating unit 305 includes a capacitor C2 and a reset switching element SR2 for integrating the current signal 12 to generate a corresponding voltage V2. In other words, the voltage V2 can be expressed as 0758-A32295TWF; MTKI-06-182; dennis 15 1354433 K 乂石乂MXR3 oil t. The voltage-to-current converter 306 includes an operational amplifier OP4, an NMOS transistor N2, and a resistor R4 for converting the voltage V2 into a current signal 13. Current signal 13
/3 = - 可表示成 。於此實施例中,電 容C1會與電容C2相等,並且電阻R2會與電阻R3相等, 因此K可表示成2 1-乃。 故 電 流 信 號 13 可 重寫成/3 = - can be expressed as . In this embodiment, capacitor C1 will be equal to capacitor C2, and resistor R2 will be equal to resistor R3, so K can be expressed as 2 1-n. Therefore, the current signal 13 can be rewritten into
。於某些實施例中,K亦可為 1-乃。換言之,K係為PWM驅動信號SPWMD之工作週 期(D)的函數。 電流鏡304包括PMOS電晶體P7與P8,用以複製 電流信號13,以便產生一對應之電流信號14,作為斜率 補償信號SSC。由於電流信號13具有與電感電流信號IL 之下降斜率m2成比例之補償斜率,因此斜率補償信號 SSC亦會具有相同的補償斜率。 第13圖係為工作週期偵測單元之一實施例。如圖所 示,工作週期偵測單元302 包括由N+1個電阻 RS1-RSN+1所組成之一電阻串,以及N個比較器 CMP1〜CMPN。舉例而言,當輸出電壓Vout高於分壓 VRS1時,比較器CMP1會輸出控制信號S1,當輸出電 壓Vout高於分壓VRS2時,比較器CMP1與CMP2會輸 出控制信號S1與S2,當輸出電壓Vout高於分壓VRS3 時,比較器CMP1〜CMP3會輸出控制信號S1〜S3,依此 0758-A32295TWF;MTKI-06-182;dennis 16 1354433 • 類推。換言之,工作週期偵測單元302會根據切換式電 壓調整器100之輸入電壓Vin與輸出電壓v〇ut間之比 例產生對應之控制k號S 1~SN至電流鏡303。因此, • 控制信號S1〜SN會含有穩態中PW1V[驅動信號SPWMD 之工作週期(D)的資訊。 第14圖係為電流鏡303之一實施例。電流鏡303 包括N+1個PMOS電晶體ΡΑ0〜PAN,以及N個開關元 件SW1〜SWN。於此實施例中,電流鏡303之放大比例κ 鲁係為$作週期⑼之函數。舉例而言,當工作週期為〇. 5 時’ ι-d為1,因此開關元件SW1會根據控制信號si而 導通,使^旱電流信號12等於電流信號η。當工作週期為 0.6時’ 1-〇為υ,因此開關元件swi〜SW2會根據控制 信號S1與S2而導通,使得電流信號12會1.5倍於電流 信號II。 當工作週期為〇.7時,1-£>為2.3,因此開關元件 • SW1〜SW3會根據控制信號si〜S3而導通,使得電流信號 • 12會2.3倍於電流信號II。當工作週期為〇.8時,j^為 ' 4’因此開關元件SW1〜SW4會根據控制信號si〜S4而導 通,使得電:^信號12會4倍於電流信號η。當工作週期 為0_9時,U為9 ’因此開關元件SW1〜SW5會根據护: 制信號S1〜S5而導通’使得電流信號12會9倍於電流产 號II。換言之,電流鏡303根據來自工作週期偵測單元 302之控制信號S1〜SN將電流信號II放大倍,作為 0758-A32295TWF;MTKI-06-182;dennis 17 1354433 - 電流信號12。 第15圖係為斜率補償單元之另一實施例。如圖所 • 示,斜率補償單元30B包括一斜率取出單元31B,用以 _ 根據來自電流偵測單元20之電流偵測信號ID,得出電感 電流信號IL之上升斜率ml,以及一合成單元32B,用以 根據具有電感電流信號IL之上升斜率ml的電流偵測信 ' 號ID,產生一斜率補償信號SSC。 於此實施例中,斜率取出單元31B係可為一減法電 • 路用以於一初始週期時對電流偵測信號ID進行取樣,作 為一初始電流信號IDI,並且於初始週期後藉由從電流偵 測信號ID中減去初始電流信號IDI,以便產生具有一電 感電流信號IL之上升斜率ml的一電流信號IX。斜率取 出單元31B(減法電路)包括PMOS電晶體P9~P10、NMOS 電晶體N3與N4、電阻R5〜R7、一運算放大器OP5、一 電容C3以及開關元件SWA與SWB,其中PMOS電晶體 P9與P10係構成一電流鏡,並且電阻R5〜R7為相同的電 ®阻。. In certain embodiments, K can also be 1-. In other words, K is a function of the duty cycle (D) of the PWM drive signal SPWMD. Current mirror 304 includes PMOS transistors P7 and P8 for replicating current signal 13 to produce a corresponding current signal 14 as a slope compensation signal SSC. Since the current signal 13 has a compensation slope that is proportional to the falling slope m2 of the inductor current signal IL, the slope compensation signal SSC will also have the same compensation slope. Figure 13 is an embodiment of a duty cycle detection unit. As shown, the duty cycle detecting unit 302 includes a resistor string composed of N+1 resistors RS1-RSN+1, and N comparators CMP1 CMPNHN. For example, when the output voltage Vout is higher than the divided voltage VRS1, the comparator CMP1 outputs a control signal S1. When the output voltage Vout is higher than the divided voltage VRS2, the comparators CMP1 and CMP2 output control signals S1 and S2 when the output is output. When the voltage Vout is higher than the divided voltage VRS3, the comparators CMP1 to CMP3 output control signals S1 to S3, according to which 0758-A32295TWF; MTKI-06-182; dennis 16 1354433 • Analogy. In other words, the duty cycle detecting unit 302 generates a corresponding control k number S 1 SN to the current mirror 303 according to the ratio between the input voltage Vin of the switching regulator 100 and the output voltage v 〇ut. Therefore, • The control signals S1 to SN contain information on the PW1V in the steady state [the duty cycle (D) of the drive signal SPWMD. Figure 14 is an embodiment of current mirror 303. The current mirror 303 includes N+1 PMOS transistors ΡΑ0 to PAN, and N switching elements SW1 to SWN. In this embodiment, the amplification ratio κ of the current mirror 303 is a function of the period (9). For example, when the duty cycle is 〇. 5, ι-d is 1, so the switching element SW1 is turned on according to the control signal si, so that the dry current signal 12 is equal to the current signal η. When the duty cycle is 0.6, '1-〇 is υ, so the switching elements swi~SW2 are turned on according to the control signals S1 and S2, so that the current signal 12 is 1.5 times the current signal II. When the duty cycle is 〇.7, 1-£> is 2.3, so the switching elements • SW1 to SW3 are turned on according to the control signals si to S3, so that the current signal • 12 will be 2.3 times the current signal II. When the duty cycle is 〇.8, j^ is '4', so the switching elements SW1 to SW4 are turned on according to the control signals si to S4, so that the electric signal 12 is four times the current signal η. When the duty cycle is 0_9, U is 9 ', so the switching elements SW1 to SW5 are turned on according to the guard signals S1 to S5 so that the current signal 12 is 9 times the current source II. In other words, the current mirror 303 amplifies the current signal II according to the control signals S1 to SN from the duty cycle detecting unit 302 as 0758-A32295TWF; MTKI-06-182; dennis 17 1354433 - current signal 12. Figure 15 is another embodiment of a slope compensation unit. As shown in the figure, the slope compensation unit 30B includes a slope extraction unit 31B for obtaining a rising slope ml of the inductor current signal IL according to the current detection signal ID from the current detecting unit 20, and a synthesizing unit 32B. For generating a slope compensation signal SSC according to the current detection signal ID having the rising slope ml of the inductor current signal IL. In this embodiment, the slope extraction unit 31B can be a subtractive circuit for sampling the current detection signal ID during an initial period as an initial current signal IDI, and by the current after the initial period. The initial current signal IDI is subtracted from the detection signal ID to generate a current signal IX having a rising slope ml of an inductor current signal IL. The slope extraction unit 31B (subtraction circuit) includes PMOS transistors P9 to P10, NMOS transistors N3 and N4, resistors R5 to R7, an operational amplifier OP5, a capacitor C3, and switching elements SWA and SWB, wherein the PMOS transistors P9 and P10 The system constitutes a current mirror, and the resistors R5 to R7 are the same electric resistance.
• 第16圖係顯示電流偵測信號ID、初始電流信號IDI 與電流信號IX間之關係。如第15圖與第16圖中所示, 於初始周期Π中,開關元件SWA與SWB會導通,NMOS 電晶體N3與N4的源極端係耦接在一起,並且運算放大 器OP5之輸出端係耦接至耦接至NMOS電晶體N3與N4 之閘極。因此,NMOS電晶體N3會有一電流债測信號ID 會流經,且NMOS電晶體N4亦會有另一電流偵測信號 0758-A32295TWF;MTKI-06-182;dennis 18 1354433 • ID經,故電流信號IX為零。再者,電容C3用以儲存運 算放大器0P5所輸出之電壓,以便取樣到流經NMOS電 - 晶體N4之電流偵測信號ID。• Figure 16 shows the relationship between the current detection signal ID, the initial current signal IDI and the current signal IX. As shown in Fig. 15 and Fig. 16, in the initial period ,, the switching elements SWA and SWB are turned on, the source terminals of the NMOS transistors N3 and N4 are coupled together, and the output terminal of the operational amplifier OP5 is coupled. Connected to a gate coupled to NMOS transistors N3 and N4. Therefore, the NMOS transistor N3 will have a current debt signal ID flowing through it, and the NMOS transistor N4 will have another current detection signal 0758-A32295TWF; MTKI-06-182; dennis 18 1354433 • ID, so the current Signal IX is zero. Furthermore, the capacitor C3 is used to store the voltage output from the operational amplifier OP5 to sample the current detection signal ID flowing through the NMOS transistor N4.
. 於時間tl時,開關元件SWA與SWB皆截止,NMOS 電晶體N3仍然由運算放大器0P5所控制,但NMOS電 晶體N4係改由儲存在電容C3中之電壓V4所控制。所 ' 以在初始週期PI之後,流經NMOS電晶體N3之電流偵 測信號ID仍然會隨著電感電流信號IL增加,但是在時 • 間tl被取樣到之電流偵測信號ID(流經NMOS電晶體N4) 會被電容C3所維持住,作為一初始電流信號IDI。由於 流經NMOS電晶體N3之電流偵測信號ID會隨著電感電 流信號IL而增加,而流經NMOS電晶體N4之初始電流 信號IDI係被維持在一固定值,因此電流信號IX係可視 為 IX = ID-IDI 〇 舉例而言,電流偵測信號ID可假設成仍=化+ «1〃, 其中Ιο係為一固定值,而ml係代表電感電流信號IL之 * 上升斜率。當斜率取出單元31B取樣電流偵測信號ID之 ' 一初始值,然後由目前之電流偵測信號ID中取出初始值 後,固定電流1〇會被移除,而剩下具有上升斜率ml的 部分。換言之,電流信號IX可表示成。 於此實施例中,合成單元32B只包括工作週期偵測 單元302以及電流鏡303。工作週期偵測單元302用以根 據切換式電壓調整器100之輸入電壓Vin與輸出電壓 Vout間之關係,偵測出PWM驅動信號SPWMD之工作 0758-A32295TWF;MTKI-06-l 82;dennis 19 ,期,並藉以輸出一組對應之控制信號S1〜SN。工作週 2測單元302以及電流鏡3〇3之動作與結構係與第η 相似,於此不再累述。電流鏡3〇3用以根據 工制嬈S1〜SN,放大具有電感電流信號IL之上升斜率 ⑽的電流㈣DC,並產生K倍於電流錢以之一電流 信號,作為斜率補償信號ssc,其中κ係可為&。換言 之,斜率補償信號SSC可表示成: ssc=kix ,=-^^xmlxt = m2xt 所以,斜率補償信號ssc所具有之補償斜率會等同 於電感電流信號之下降斜率m2,或為下降斜率W的二 =之-。因為斜率補償單元3Q可以產生具有—補償斜率 (荨同於電感電流信號之下降斜率m2,或為下降斜率m2 的二分之一)的斜率補償信號ssc來進行 擾動將會在幾個週期内消除,並同時具有第7圖、第8 圖所不之抗雜訊能力。 、^發明亦提供一種切換式電壓調整器之斜率補償方 法。第17圖係為本發明斜率補償方法之一流程圖。 於步驟S710中,偵測電感電流信號化,以便產生 與電感電流信號IL成比例之—電流偵測信號m。舉例而 言,可藉由複製電感電流信號IL,並產生河倍於電感電 流信號亿之一複製電流,作為電流備測信號m。於某歧 實施例中,M<<1。 於步驟S703中’偵測電感電流信號几之上升斜率。 舉例而言’如帛12圖中所示’可藉由將電流積測信號m 〇758-A32295TWF;MTKI-06-I82;dennis 20 1354433At time t1, both switching elements SWA and SWB are turned off, and NMOS transistor N3 is still controlled by operational amplifier OP5, but NMOS transistor N4 is controlled by voltage V4 stored in capacitor C3. After the initial period PI, the current detection signal ID flowing through the NMOS transistor N3 will still increase with the inductor current signal IL, but the current detection signal ID (flowed through the NMOS) is sampled at time t1. The transistor N4) is held by capacitor C3 as an initial current signal IDI. Since the current detection signal ID flowing through the NMOS transistor N3 increases with the inductor current signal IL, and the initial current signal IDI flowing through the NMOS transistor N4 is maintained at a fixed value, the current signal IX can be regarded as IX = ID-IDI For example, the current detection signal ID can be assumed to be still ==+1〃, where Ιο is a fixed value, and ml is the rising slope of the inductor current signal IL. When the slope extracting unit 31B samples the initial value of the current detecting signal ID and then takes the initial value from the current current detecting signal ID, the fixed current 1〇 is removed, and the portion having the rising slope ml is left. . In other words, the current signal IX can be expressed as. In this embodiment, the synthesizing unit 32B includes only the duty cycle detecting unit 302 and the current mirror 303. The duty cycle detecting unit 302 is configured to detect the operation of the PWM driving signal SPWMD 0758-A32295TWF according to the relationship between the input voltage Vin of the switching voltage regulator 100 and the output voltage Vout; MTKI-06-l 82; dennis 19 And, by which a corresponding set of control signals S1 to SN are output. The action and structure of the working cycle 2 measuring unit 302 and the current mirror 3〇3 are similar to those of the nth, and will not be described here. The current mirror 3〇3 is used to amplify the current (four) DC having the rising slope (10) of the inductor current signal IL according to the working system 1S1 SN, and generate a current signal of K times the current money as the slope compensation signal ssc, where κ Can be &. In other words, the slope compensation signal SSC can be expressed as: ssc=kix ,=-^^xmlxt = m2xt Therefore, the slope of the slope compensation signal ssc has a compensation slope equal to the falling slope m2 of the inductor current signal, or two of the falling slope W = -. Since the slope compensation unit 3Q can generate the slope compensation signal ssc having a compensation slope (the same as the falling slope m2 of the inductor current signal or one-half of the falling slope m2), the disturbance will be eliminated in several cycles. At the same time, it has the anti-noise ability of Figure 7 and Figure 8. The invention also provides a slope compensation method for a switching voltage regulator. Figure 17 is a flow chart of the slope compensation method of the present invention. In step S710, the inductor current is signaled to generate a current detection signal m that is proportional to the inductor current signal IL. For example, by replicating the inductor current signal IL and generating a replica current that is one hundred times longer than the inductor current signal, it acts as a current ready signal m. In a certain embodiment, M<<1. In step S703, 'the rising slope of the inductor current signal is detected. For example, 'as shown in Fig. 12' can be obtained by integrating current measurement signals m 〇 758-A32295TWF; MTKI-06-I82; dennis 20 1354433
- 轉換成電壓VI,然後微分電壓VI,以便產生具有電感 電流信號IL之上升斜率ml的電流信號II。電流信號II . ji = ci— = ClMxR3xdI- =ClxMxR3xm\ , 可表示成 dt dt ,其中ml係代 • 表電感電流信號IL之上升斜率。換言之,電流信號II . 具有電感電流信號IL之上升斜率ml。 或者是說,可藉由於一初始週期中對電流偵測信號 ID進行取樣,作為一初始電流信號IDI,再於初始週期 $ 之後從電流偵測信號ID中減去初始電流信號IDI,以便 產生具有電感電流信號IL之上升斜率m 1的一電流信號 IX。舉例而言,如第16圖所示,電流偵測信號ID係可 為/Z) = /〇 + wixi,其中1〇係為一固定電流,而ml係為電感 電流信號II之上升斜率ml。當第15圖中之斜率取出單 元31B係對電流偵測信號ID進行取樣出初始值,並從電 流偵測信號ID之目前電流值中取出初始值IDI,固定電 流1〇將被移除而可得到具有上升斜率ml之剩餘部分。 φ 換言之,電流信號IX可表示成。 於步驟S705中,偵測PWM單元所產生之PWM驅 動信號SPWMD之工作週期(D)。舉例而言,可根據切換 ' 式電壓調整器100之輸入電壓Vin與輸出電壓Vout間之 比例關係測得PWM驅動信號SPWMD之工作週期。如第 13圖中所示,工作週期偵測單元302係可根據切換式電 壓調整器100之輸入電壓Vin與輸出電壓Vout,偵測 PWM驅動信號SPWMD之工作週期,並藉以產生一組對 應之控制信號S1〜SN。舉例而言,當輸出電壓Vout高於 0758-Α32295ΤΨΕ;ΜΤΚΙ-06-182;άεηηί3 21 1354433 分壓VRS1時,比較器CMP1會輸出控制信號SI,當輸 出電壓Vout高於分壓VRS2時,比較器CMP1與CMP2 會輸出控制信號S1與S2,當輸出電壓Vout高於分壓 VRS3時,比較器CMP1〜CMP3會輸出控制信號S1〜S3, 依此類推。換言之,工作週期偵測單元302會根據切換 式電壓調整器100於穩態時之輸入電壓Vin與輸出電壓 Vout間之比例(工作週期),產生對應之控制信號S1〜SN 至電流鏡303。- Converted to voltage VI and then differentiated voltage VI to produce a current signal II with a rising slope ml of the inductive current signal IL. The current signal II. ji = ci_ = ClMxR3xdI- = ClxMxR3xm\ can be expressed as dt dt , where ml is the rise slope of the table inductor current signal IL. In other words, the current signal II has a rising slope ml of the inductor current signal IL. In other words, the initial current signal IDI can be subtracted from the current detection signal ID after the initial period $ by sampling the current detection signal ID in an initial period as an initial current signal IDI, so as to generate A current signal IX of the rising slope m 1 of the inductor current signal IL. For example, as shown in Fig. 16, the current detection signal ID can be /Z) = /〇 + wixi, where 1〇 is a fixed current, and ml is the rising slope ml of the inductor current signal II. When the slope extraction unit 31B in FIG. 15 samples the current detection signal ID and extracts the initial value IDI from the current current value of the current detection signal ID, the fixed current 1〇 is removed. The remainder with the rising slope ml is obtained. φ In other words, the current signal IX can be expressed as. In step S705, the duty cycle (D) of the PWM driving signal SPWMD generated by the PWM unit is detected. For example, the duty cycle of the PWM drive signal SPWMD can be measured according to the proportional relationship between the input voltage Vin of the switching voltage regulator 100 and the output voltage Vout. As shown in FIG. 13, the duty cycle detecting unit 302 can detect the duty cycle of the PWM driving signal SPWMD according to the input voltage Vin and the output voltage Vout of the switching voltage regulator 100, thereby generating a corresponding control. Signals S1 to SN. For example, when the output voltage Vout is higher than 0758-Α32295ΤΨΕ; ΜΤΚΙ-06-182; άεηηί3 21 1354433 divided VRS1, the comparator CMP1 outputs a control signal SI, when the output voltage Vout is higher than the divided voltage VRS2, the comparator CMP1 and CMP2 output control signals S1 and S2. When the output voltage Vout is higher than the divided voltage VRS3, the comparators CMP1 to CMP3 output control signals S1 to S3, and so on. In other words, the duty cycle detecting unit 302 generates corresponding control signals S1 to SN to the current mirror 303 according to the ratio (duty cycle) between the input voltage Vin and the output voltage Vout at the steady state of the switching voltage regulator 100.
於步驟S707中,根據電感電流信號IL以及PWM 驅動信號SPWMD之工作週期,產生一斜率補償信號 SSC,其具有與電感電流信號IL之下降斜率m2成比例 之補償斜率。 如第12圖中所示,電流鏡303會根據控制信號 S1〜SN,放大具有電感電流信號IL之上升斜率ml的電 流信號S1,並且輸出K倍於電流信號II之電流信號12。 積分單元305對電流信號12進行積分,以產生一對應電 壓 V3。 換言之,電壓 V2 可表示成 電壓-電流轉換器306用 以將對應電壓V2轉換成一對應之電流信號13,而電流信 I3 = — = — = Kx — x — xMxmlxi 號13可表示成 似糾 C2 R4 。於此實施例 中,電容C1與C2係為相同之電容,而電阻R3與R4亦In step S707, based on the duty cycle of the inductor current signal IL and the PWM drive signal SPWMD, a slope compensation signal SSC having a compensation slope proportional to the falling slope m2 of the inductor current signal IL is generated. As shown in Fig. 12, the current mirror 303 amplifies the current signal S1 having the rising slope ml of the inductor current signal IL according to the control signals S1 to SN, and outputs a current signal 12 of K times the current signal II. The integrating unit 305 integrates the current signal 12 to generate a corresponding voltage V3. In other words, the voltage V2 can be expressed as a voltage-current converter 306 for converting the corresponding voltage V2 into a corresponding current signal 13, and the current signal I3 = - = - = Kx - x - xMxmlxi number 13 can be expressed as a similar C2 R4 . In this embodiment, capacitors C1 and C2 are the same capacitor, and resistors R3 and R4 are also
1 D 是相同之電阻,且K為表示成。因此,電流信號13 /3 = Μ X — X —^― xmlxt = Μ χ — χ m2 x t · ,1 D is the same resistance, and K is expressed as. Therefore, the current signal 13 /3 = Μ X — X —^― xmlxt = Μ χ — χ m2 x t · ,
重寫成 1 2 U 2 。於某些實施例中,K 0758-A32295TWF;MTKI-06-182;dennis 22 1 2 V2 =——\KxI\xdt = Kx — xMxR3xml: C2J C2 1354433Rewritten to 1 2 U 2 . In certain embodiments, K 0758-A32295TWF; MTKI-06-182; dennis 22 1 2 V2 =——\KxI\xdt = Kx — xMxR3xml: C2J C2 1354433
DD
亦可表示成θ。換言之,K係為PWM驅動信號SPWMD 之工作週期的函數。電流鏡3 04會複製電流信號13產生 一對應電流作為斜率補償信號SSC。由於電流信號13具 有與電感電流信號IL之下降斜率m2成比例之補償斜 率,所以斜率補償信號SSC亦會具有相同的補償斜率。 或者是說,如第15圖所示,電流鏡303會根據控制 信號S1〜SN,對具有電感電流信號IL之上升斜率ml的It can also be expressed as θ. In other words, K is a function of the duty cycle of the PWM drive signal SPWMD. The current mirror 304 copies the current signal 13 to produce a corresponding current as the slope compensation signal SSC. Since the current signal 13 has a compensation slope proportional to the falling slope m2 of the inductor current signal IL, the slope compensation signal SSC will also have the same compensation slope. Or, as shown in Fig. 15, the current mirror 303 will have a rising slope of the inductor current signal IL according to the control signals S1 to SN.
電流信號IX進行放大,並產生K倍於電流信號IX之電The current signal IX is amplified and generates K times the current signal IX
D 流信號,作為斜率補償信號SSC,其中K可為1-D。換言 之,斜率補償信號 SSC 可以表示成 SSC = KIX =-xmlxt ~ m2xt ^ 1-乃 。所以斜率補償信號SSC會具有與 電感電流信號IL之下降斜率m2相同之補償斜率。於某The D stream signal, as the slope compensation signal SSC, where K can be 1-D. In other words, the slope compensation signal SSC can be expressed as SSC = KIX = -xmlxt ~ m2xt ^ 1- is . Therefore, the slope compensation signal SSC will have the same compensation slope as the falling slope m2 of the inductor current signal IL. Yumou
1 D 些實施例中,K可設計成,所以斜率補償信號SSC 會具有二分之一於電感電流信號IL之下降斜率m2的補 償斜率。 於步驟S709中,藉由切換式電壓調整器100之輸出 電壓Vout產生一回授信號Ve”。如第10圖所示,於回授 單元20中之電阻R1與R2會根據切換式電壓調整器100 之輸出壓Vout,產生一分壓V12輸出至錯誤放大器41。 錯誤放大器41會根據分壓V12與一參考電壓Vref間之 電壓差,產生輸出信號Ve。可選擇性設置之相位補償單 元42會對輸出信號Ve進行相位補償,然後產生回授信 號Ve”輸出至PWM比較器12。 0758-A32295TWF;MTKI-06-182;dennis 23 1354433 - 於步驟S711中,根據斜率補償信號SSC、電流偵測 信號ID與回授信號Ve”,對PWM單元10進行控制。舉 - 例而言,如第10圖中所示,回授信號Ve”係可為一電壓 . 信號,而電流偵測信號ID與斜率補償信號SSC係可為電 流信號。再者,電流偵測信號ID與斜率補償信號SSC會 被組合,並藉由一電阻(未圖示)轉換成一電廢信號,用以 • 與回授信號Ve”進行比較。於另一實施例中,亦可藉由設 置一電壓-電流轉換器錯於誤放大器41與相位補償單元 • 42之間,將輸出信號Ve轉換成一電流信號,用以與電 流偵測信號ID與斜率補償信號SSC之組合值進行比較。 PWM單元10中之PWM比較器12會接收斜率補償 信號SSC、電流偵測信號ID與回授信號Ve”,產生PWM 驅動信號SPWMD。於某些實施例中,PWM驅動信號 SWPMD之工作週期係由控制信號CS所決定。舉例而 言,當SR栓鎖14之設定端(S)所接收到的時脈信號變成 高電位時,SR栓鎖14之PWM驅動信號SPWMD會變成 * 高電位,使得PMOS電晶體P0與NMOS電晶體N0分別 為導通與截止,並且電感電流信號IL會因此增加。假如 電流偵測信號ID與斜率補償信號S S C之組合所產生的電 壓信號高於回授信號Ve,PWM比較器12會產生一低邏 輯輸出,用以重置SR栓鎖14。因此,SR栓鎖13之PWM 驅動信號SPWMD會變成低電位,使得PMOS電晶體P0 與NMOS電晶體N0分別為截止與導通,並且電感電流 信號IL會因此變小,直到SR栓鎖14之PWM驅動信號 0758-A32295TWF;MTKI-06-182;dennis 24 ^54433 SPWMD再度變成高電位β 由於本實施例中根據PWM驅動信號spWMD之工 作週期與電感電流信號IL之上升斜率ml,產生一斜率 補償信號ssc具有與電感電流信號IL之下降斜率m2成 比例之補償斜率,用以進行斜率補償,所以擾動將會在 幾個週期内消除,並同時具有第7圖、第8圖所示之抗 雜訊能力。 雖然本發明已以較佳實施例揭露如上,然其並非用 以限定本發明,任何熟知技藝者,在不脫離本發明之精 神和範圍内,當可作些許更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖係為一種電壓控制型切換式電壓調整器。 第2圖係顯示一電流控制型切換式電壓調整器之一 實施例。 第3圖係為一電流控制型切換式電壓調整器於穩態 時之一控制回路波形。 〜 士第4圖係為一電流控制型切換式電壓調整器於穩態 時之另一控制回路波形。 “ 第5圖係為錯誤放大器中之輸出信號中所取出之斜 率補償信號的波形。 ’ 第6圖中係顯示電感電流信號IAvG1〜IAvg3之平 均值之間的關係。 25 〇758-A32295TWF;MTKI-06-182;dennis 第7圖係顯示一個罝 形 形 、有補彳員斜率之一斜率補償波 第8圖係顯示一個呈 ”有補 員斜率之另一斜率補1 D In some embodiments, K can be designed such that the slope compensation signal SSC will have a compensation slope of one-half of the falling slope m2 of the inductor current signal IL. In step S709, a feedback signal Ve" is generated by the output voltage Vout of the switching voltage regulator 100. As shown in FIG. 10, the resistors R1 and R2 in the feedback unit 20 are based on the switching voltage regulator. The output voltage Vout of 100 generates a divided voltage V12 output to the error amplifier 41. The error amplifier 41 generates an output signal Ve according to the voltage difference between the divided voltage V12 and a reference voltage Vref. The selectively configurable phase compensation unit 42 The output signal Ve is phase-compensated, and then the feedback signal Ve" is generated and output to the PWM comparator 12. 0758-A32295TWF; MTKI-06-182; dennis 23 1354433 - In step S711, the PWM unit 10 is controlled according to the slope compensation signal SSC, the current detection signal ID, and the feedback signal Ve". For example, As shown in FIG. 10, the feedback signal Ve" can be a voltage signal, and the current detection signal ID and the slope compensation signal SSC can be current signals. Furthermore, the current detection signal ID and the slope compensation signal SSC are combined and converted into an electrical waste signal by a resistor (not shown) for comparison with the feedback signal Ve". In another embodiment The output signal Ve can also be converted into a current signal by using a voltage-current converter between the error amplifier 41 and the phase compensation unit 42 for use with the current detection signal ID and the slope compensation signal SSC. The combined value is compared. The PWM comparator 12 in the PWM unit 10 receives the slope compensation signal SSC, the current detection signal ID, and the feedback signal Ve" to generate a PWM drive signal SPWMD. In some embodiments, the duty cycle of the PWM drive signal SWPMD is determined by the control signal CS. For example, when the clock signal received by the set terminal (S) of the SR latch 14 becomes high, the PWM drive signal SPWMD of the SR latch 14 becomes *high potential, so that the PMOS transistor P0 and the NMOS are electrically The crystal N0 is turned on and off, respectively, and the inductor current signal IL is thus increased. If the voltage signal generated by the combination of the current detection signal ID and the slope compensation signal S S C is higher than the feedback signal Ve, the PWM comparator 12 generates a low logic output for resetting the SR latch 14 . Therefore, the PWM drive signal SPWMD of the SR latch 13 becomes low, so that the PMOS transistor P0 and the NMOS transistor N0 are respectively turned off and on, and the inductor current signal IL is thus reduced until the PWM drive of the SR latch 14 is driven. Signal 0758-A32295TWF; MTKI-06-182; dennis 24 ^54433 SPWMD becomes high potential again β. In this embodiment, a slope compensation signal ssc is generated according to the duty cycle of the duty cycle of the PWM drive signal spWMD and the inductor current signal IL. It has a compensation slope proportional to the falling slope m2 of the inductor current signal IL, which is used for slope compensation, so the disturbance will be eliminated in several cycles, and at the same time has the anti-noise capability shown in Fig. 7 and Fig. 8. . While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope is subject to the definition of the scope of the patent application attached. [Simple description of the diagram] Figure 1 is a voltage-controlled switching voltage regulator. Figure 2 shows an embodiment of a current controlled switching voltage regulator. Figure 3 is a control loop waveform of a current-controlled switching voltage regulator at steady state. ~ Figure 4 is another control loop waveform of a current-controlled switching voltage regulator at steady state. “Figure 5 is the waveform of the slope compensation signal taken out from the output signal in the error amplifier.” Figure 6 shows the relationship between the average values of the inductor current signals IAvG1 to IAvg3. 25 〇758-A32295TWF; MTKI -06-182;dennis Figure 7 shows a slope shape with one of the slopes of the complement slope. The 8th graph shows a slope with the complement slope.
D 第9圖中係為不同七D Figure 9 is different seven
π个丨』工作週期D值盥1-D 第10圖係為電流栌制刑+仏 ]表 實施例 电瓜拴制型切換式電壓調整器之另一 ζΐί 〇 y ^ 實施例 第11圖係顯示電流偵測單元與斜率補 償單元之 第12圖係表示斜率補償單元之—實施例。 第13圖係為工作週期偵測單元之一實施例。 第14圖係為電流鏡3〇3之一實施例。 第15圖係為斜率補償單元之另一實施例。 第16圖係顯示電流偵測信號、初始電流信號與電流 信號間之關係。 第17圖係為本發明斜率補償方法之—流程圖。 【主要元件符號說明】 10 :脈波寬度調變(PWM)單元; 12 : PWM比較器; 16 : PWM驅動器; 30 :斜率補償單元; 32A :合成單元; 41 :錯誤放大器; 14 : SR栓鎖; 2〇 ·'電流偵測單元; 31A、31B:斜率取出單元; 40 :回授單元; 42 :相位補償單元; 0758-A32295TWF;MTKI-06-182;dennis 26 1354433 100 :切換式電壓調整器; 301 :微分電路; 302 :工作週期偵測單元; 303、304 :電流鏡; 305 :積分單元; 306 :電壓-電流轉換器;IL :電感電流信號; L0 :電感; 10 :電流變量; SC、SSC :斜率補償信號; m:補償斜率; ml:上升斜率; m2 :下降斜率; D、D1〜D3 :工作週期; IAVG1〜IAVG3 :電感電流信號之平均值;π 丨 工作 工作 工作 工作 工作 D D D D D 10 第 第 第 第 第 第 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Fig. 12 showing the current detecting unit and the slope compensating unit shows an embodiment of the slope compensating unit. Figure 13 is an embodiment of a duty cycle detection unit. Figure 14 is an embodiment of a current mirror 3〇3. Figure 15 is another embodiment of a slope compensation unit. Figure 16 shows the relationship between the current detection signal, the initial current signal and the current signal. Figure 17 is a flow chart of the slope compensation method of the present invention. [Main component symbol description] 10: Pulse width modulation (PWM) unit; 12: PWM comparator; 16: PWM driver; 30: slope compensation unit; 32A: synthesis unit; 41: error amplifier; 14: SR latch 2〇·'current detection unit; 31A, 31B: slope extraction unit; 40: feedback unit; 42: phase compensation unit; 0758-A32295TWF; MTKI-06-182; dennis 26 1354433 100: switching voltage regulator 301: differential circuit; 302: duty cycle detection unit; 303, 304: current mirror; 305: integration unit; 306: voltage-current converter; IL: inductor current signal; L0: inductance; 10: current variable; SC , SSC : slope compensation signal; m: compensation slope; ml: rising slope; m2: falling slope; D, D1 ~ D3: duty cycle; IAVG1 ~ IAVG3: average value of the inductor current signal;
Vin:輸入電壓; Vout:輸出電壓; C0〜C3 :電容; ID :電流偵測信號; P0-P10、N0-N4、ΡΑ0〜PAN :電晶體;Vin: input voltage; Vout: output voltage; C0~C3: capacitance; ID: current detection signal; P0-P10, N0-N4, ΡΑ0~PAN: transistor;
Ve” :回授信號; Ve :輸出信號; CS、S1〜SN :控制信號;Vref :參考電壓; VD :對應電壓; Π〜14 :電流信號; V2〜V4 :電壓; CMP1〜CMPN :比較器; IDI ··初始電流信號; OP1〜OP5 :運算放大器; SRI、SR2 :重置開關元件; RD :負載; SPWMD : PWM驅動信號; R1 〜R7、RS1〜RSN+1 :電阻; VI、V12、VRS1 〜VRSN :分壓; SW1-SWN、SWA 與 SWB :開關元件。 0758-A32295TWF;MTKI-06-182;dennis 27Ve": feedback signal; Ve: output signal; CS, S1~SN: control signal; Vref: reference voltage; VD: corresponding voltage; Π~14: current signal; V2~V4: voltage; CMP1~CMPN: comparator IDI ··Initial current signal; OP1~OP5: Operational amplifier; SRI, SR2: Reset switching element; RD: Load; SPWMD: PWM drive signal; R1~R7, RS1~RSN+1: resistance; VI, V12, VRS1 ~ VRSN: voltage division; SW1-SWN, SWA and SWB: switching elements 0758-A32295TWF; MTKI-06-182; dennis 27
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80561206P | 2006-06-23 | 2006-06-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200803130A TW200803130A (en) | 2008-01-01 |
TWI354433B true TWI354433B (en) | 2011-12-11 |
Family
ID=38992046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096122495A TWI354433B (en) | 2006-06-23 | 2007-06-22 | Switching regulators and slope compensation method |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN101093958B (en) |
DE (1) | DE102007028568B4 (en) |
TW (1) | TWI354433B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI509957B (en) * | 2013-07-22 | 2015-11-21 | Upi Semiconductor Corp | Phase adjustment circuit of power converter, power converter and control method thereof |
TWI513152B (en) * | 2013-09-17 | 2015-12-11 | Upi Semiconductor Corp | Time signal generator and time signal generating method |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101471602B (en) * | 2007-12-29 | 2012-11-07 | 比亚迪股份有限公司 | Bidirectional DC power supply circuit |
CN101656419B (en) * | 2008-08-21 | 2013-05-01 | 立锜科技股份有限公司 | Current balancing device and method for multi-phase power converter controlled by fixed operating time |
CN101677209B (en) * | 2008-09-19 | 2012-03-28 | 原景科技股份有限公司 | DC/DC converter and its current sensing circuit |
ITMI20082356A1 (en) * | 2008-12-30 | 2010-06-30 | St Microelectronics Srl | CONTROL OF A RESONATING SWITCHING SYSTEM WITH WORKING CURRENT MONITORING IN A OBSERVATION WINDOW |
US8138734B2 (en) * | 2009-04-06 | 2012-03-20 | Monolithic Power Systems, Inc. | Accurate current limit for peak current mode DC-DC converter |
CN101860189B (en) * | 2009-04-13 | 2013-05-08 | 台达能源技术(上海)有限公司 | Bridgeless power factor correcting circuit for critical continuous current mode and method thereof |
EP2299577B1 (en) * | 2009-09-18 | 2012-08-01 | DET International Holding Limited | Digital slope compensation for current mode control |
CN102195469B (en) * | 2010-03-18 | 2013-11-06 | 美芯晟科技(北京)有限公司 | Line voltage compensation circuit based on peak detection current mode switch circuit |
CN101795070B (en) * | 2010-04-02 | 2012-09-05 | 日银Imp微电子有限公司 | System for linearly adjusting slope compensation voltage slope |
CN102236358A (en) * | 2010-04-23 | 2011-11-09 | 鸿富锦精密工业(深圳)有限公司 | Pulse width modulation compensation circuit |
CN102035384B (en) * | 2010-12-13 | 2014-12-24 | 成都芯源系统有限公司 | Switching converter circuit and power conversion method |
US8872501B2 (en) * | 2011-03-18 | 2014-10-28 | Monolithic Power Systems, Inc. | Voltage converters with reduced output frequency variations and associated methods |
CN102323841B (en) * | 2011-05-06 | 2013-10-23 | 矽力杰半导体技术(杭州)有限公司 | Current hysteresis control circuit, current hysteresis control method and direct current-direct current converter applying both of same |
JP5902401B2 (en) | 2011-05-31 | 2016-04-13 | サイプレス セミコンダクター コーポレーション | Power supply device, control circuit, electronic device, and power supply control method |
CN102223067B (en) * | 2011-06-09 | 2014-02-19 | 许瑞清 | Device and method for driving constant-current source load |
CN102324846B (en) * | 2011-09-09 | 2014-09-17 | 电子科技大学 | Numerical control sectional slope compensation circuit for switching power supply for current mode control |
US8698475B2 (en) * | 2011-10-20 | 2014-04-15 | Monolithic Power Systems, Inc. | Switching-mode power supply with ripple mode control and associated methods |
US20130099763A1 (en) * | 2011-10-20 | 2013-04-25 | Qualcomm Atheros, Inc. | Systems and methods for suppressing undesirable limit cycles in switching regulators |
US8686702B2 (en) * | 2012-02-15 | 2014-04-01 | Linear Technology Corporation | Negative slope compensation for current mode switching power supply |
US9024610B2 (en) | 2012-05-01 | 2015-05-05 | Intersil Americas LLC | System and method of balanced slope compensation for switch mode regulators |
EP2775599B1 (en) * | 2013-03-04 | 2018-09-05 | Nxp B.V. | Boost converter |
CN104113193B (en) * | 2013-04-17 | 2017-10-03 | 台达电子工业股份有限公司 | Power conversion device |
CN103227566B (en) * | 2013-04-22 | 2015-08-26 | 华为技术有限公司 | A kind of DC-DC converter |
CN103280973B (en) * | 2013-06-27 | 2015-07-29 | 电子科技大学 | A kind of Switching Power Supply of Controlled in Current Mode and Based |
CN104333219B (en) * | 2013-07-22 | 2017-06-30 | 力智电子股份有限公司 | Phase adjustment circuit of power converter, power converter and control method thereof |
CN104539157A (en) * | 2014-12-12 | 2015-04-22 | 杭州凯尔达电焊机有限公司 | Slope compensation control method and circuit for inverted welding power source with peak current control mode |
TWI617123B (en) * | 2016-12-21 | 2018-03-01 | 茂達電子股份有限公司 | Current mode voltage converter having fast transient response |
US9899921B1 (en) * | 2017-02-01 | 2018-02-20 | Linear Technology Corporation | Adaptive slope compensation for current mode switching power supply |
US10784763B2 (en) | 2017-03-07 | 2020-09-22 | Mediatek Inc. | Dynamic slew rate control |
US10063146B1 (en) * | 2017-03-31 | 2018-08-28 | Alpha And Omega Semiconductor (Cayman) Ltd. | Full-time inductor current monitoring method by sensing low side switch |
CN107727925B (en) * | 2017-11-10 | 2020-04-14 | 电子科技大学 | A High Precision Wide Range Peak Current Sampling Circuit |
TWI678064B (en) * | 2018-03-05 | 2019-11-21 | 聯發科技股份有限公司 | Inverter circuit and method for controlling driver of inverter circuit |
TWI742581B (en) * | 2020-03-23 | 2021-10-11 | 立錡科技股份有限公司 | Switching regulator and control circuit thereof and quick response method |
CN113179091B (en) * | 2021-04-13 | 2022-07-12 | 北京工业大学 | Fixed slope triangular wave signal generating and sampling circuit |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5111133A (en) * | 1990-09-27 | 1992-05-05 | Analogic Corporation | Converter circuit for current mode control |
US5903452A (en) * | 1997-08-11 | 1999-05-11 | System General Corporation | Adaptive slope compensator for current mode power converters |
US6498466B1 (en) * | 2000-05-23 | 2002-12-24 | Linear Technology Corp. | Cancellation of slope compensation effect on current limit |
JP2005269807A (en) * | 2004-03-19 | 2005-09-29 | Renesas Technology Corp | Switching regulator |
-
2007
- 2007-06-19 DE DE102007028568A patent/DE102007028568B4/en not_active Expired - Fee Related
- 2007-06-21 CN CN2007101125818A patent/CN101093958B/en not_active Expired - Fee Related
- 2007-06-22 TW TW096122495A patent/TWI354433B/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI509957B (en) * | 2013-07-22 | 2015-11-21 | Upi Semiconductor Corp | Phase adjustment circuit of power converter, power converter and control method thereof |
US9331575B2 (en) | 2013-07-22 | 2016-05-03 | Upi Semiconductor Corp. | Phase adjustment circuit of power converter, power converter, and control method thereof |
TWI513152B (en) * | 2013-09-17 | 2015-12-11 | Upi Semiconductor Corp | Time signal generator and time signal generating method |
US9520777B2 (en) | 2013-09-17 | 2016-12-13 | Upi Semiconductor Corp. | Time signal generator and time signal generating method |
Also Published As
Publication number | Publication date |
---|---|
CN101093958A (en) | 2007-12-26 |
DE102007028568B4 (en) | 2009-12-03 |
DE102007028568A1 (en) | 2008-04-10 |
CN101093958B (en) | 2010-06-02 |
TW200803130A (en) | 2008-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI354433B (en) | Switching regulators and slope compensation method | |
US7733671B2 (en) | Switching regulators | |
CN102237797B (en) | System and method for detection and compensation of aggressive output filters for switched mode power supplies | |
US7119525B1 (en) | Control circuit of DC—DC converter and its control method | |
US8358118B2 (en) | Current mode boost converter with fixed PWM/PFM boundary | |
US20190165683A1 (en) | Systems and methods for high precision and/or low loss regulation of output currents of power conversion systems | |
USRE40915E1 (en) | Programmable current-sensing circuit providing continuous temperature compensation for DC-DC converter | |
TWI235541B (en) | Current detection circuit and method for use in DC-to-DC converter | |
US8405368B2 (en) | Multiple phase switching regulator with phase current sharing | |
US9369043B2 (en) | Phase current balancing for multiphase converters | |
Berkhout et al. | A 4Ω 2.65 W class-D audio amplifier with embedded DC-DC boost converter, current sensing ADC and DSP for adaptive speaker protection | |
US20090146634A1 (en) | Single integrator sensorless current mode control for a switching power converter | |
JP5320424B2 (en) | DC-DC converter control device and DC-DC converter | |
CN114094824B (en) | Switching power supply circuit and control method | |
US8860391B2 (en) | DC-DC converter, and power supply circuit having DC-DC converter | |
CN112106286B (en) | Methods, apparatus, and systems to facilitate current sensing for valley current controlled power converters | |
CN109494982B (en) | Switching power supply control mode switching circuit and switching power supply chip | |
JP2020018162A (en) | Output current detection of dc/dc converter including external power stage | |
KR101861361B1 (en) | Sensing capacitor for constant on-time and constant off-time switching regulators | |
US9618540B2 (en) | Current sensing module and power conversion apparatus and electronic apparatus using the same | |
CN103986328A (en) | DC-DC converters having improved current sensing and related methods | |
TW201227203A (en) | Method for improving voltage identification (VID) transient response and voltage regulator | |
CN108432112B (en) | DC-DC converter and semiconductor integrated circuit for driving load | |
US7352161B2 (en) | Burst-mode switching voltage regulator with ESR compensation | |
US20140285172A1 (en) | Power circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |