TWI335462B - Method of repairing bright pixel defect of display device - Google Patents
Method of repairing bright pixel defect of display device Download PDFInfo
- Publication number
- TWI335462B TWI335462B TW097122738A TW97122738A TWI335462B TW I335462 B TWI335462 B TW I335462B TW 097122738 A TW097122738 A TW 097122738A TW 97122738 A TW97122738 A TW 97122738A TW I335462 B TWI335462 B TW I335462B
- Authority
- TW
- Taiwan
- Prior art keywords
- laser
- color filter
- bright pixel
- wavelength
- pixel defect
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1306—Details
- G02F1/1309—Repairing; Testing
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133512—Light shielding layers, e.g. black matrix
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
- G02F1/133516—Methods for their manufacture, e.g. printing, electro-deposition or photolithography
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Liquid Crystal (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Optical Filters (AREA)
Description
1335462 九、發明說明: 【發明所屬之技術領域】 本發明係與一種修復顯示裝置上之亮像素缺陷的 有關。詳言之,係與一種修復顯示裝置上之亮像素缺 方法有關,其可相對於具有亮像素缺陷的彩色濾光片 擇性地使用一具有高吸收光譜之波長帶的雷射,藉以 該彩色濾光片的亮像素缺陷。 【先前技術】 近年來,液晶顯示器因為低耗電、高可攜性技 集以及具有高附加價值,已成為下一世代高科技顯示 的焦點。主動陣列式液晶顯示器包括一用來切換施加 一像素上之電位的切換元件,此切換元件因為解析度 可用於動作片的優點而受到高度關注。 參照第1圖’建構一液晶面板5 〇 〇,其中將一彩 光片基板530(作為上方基板)和一薄膜電晶體(TFT)陣 板510(作為下方基板),彼此面對面黏合,並在基板 入液晶層520。利用切換已連接到數以千計之像素上的 來驅動液晶面板500 ’經由位址線來選擇像素,以施 位到相對應的像素上。在此,彩色濾光片基板5 3 〇包 璃基板5 3 1、紅/綠/藍(rgb)彩色濾光片5 3 2 '形成在 濾光片532之間的黑色矩陣533、用於共用電極之銦 化物(ITO)膜535、和配向膜536。在玻璃頂部則附接 偏先板5 3 7。 方法 陷的 來選 修復 術密 裝置 到每 尚和 色渡 列基 間注 TFT 加電 括玻 彩色 錫氧 有一 13354621335462 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a repair of a bright pixel defect on a display device. In particular, it relates to a method for repairing a bright pixel on a display device, which can selectively use a laser having a wavelength band of a high absorption spectrum with respect to a color filter having a bright pixel defect, whereby the color is used. Bright pixel defects in the filter. [Prior Art] In recent years, liquid crystal displays have become the focus of next generation high-tech displays because of low power consumption, high portability technology, and high added value. The active array type liquid crystal display includes a switching element for switching the potential applied to a pixel, which is highly concerned because of the advantages that the resolution can be used for the action sheet. Referring to FIG. 1 ', a liquid crystal panel 5 is constructed in which a color light substrate 530 (as an upper substrate) and a thin film transistor (TFT) array 510 (as a lower substrate) are bonded to each other face to face and on the substrate. Into the liquid crystal layer 520. The pixels are driven through the address lines by switching the connections that have been connected to the thousands of pixels to select the pixels to be applied to the corresponding pixels. Here, the color filter substrate 5 3 〇 glazing substrate 531 and the red/green/blue (rgb) color filter 5 3 2 ′ are formed in the black matrix 533 between the filters 532 for sharing. An indium (ITO) film 535 of an electrode, and an alignment film 536. A partial plate 5 3 7 is attached to the top of the glass. Method of trapping the repair of the secret device to each of the color and cross-column between the injection of TFT heating, glass, color, tin oxide, a 1335462
執行一薄膜電晶體陣列基板製程'一彩色濾光片基 製程、和一液晶胞製程,以製造出此液晶面板。 上述之薄膜電晶體陣列基板製程是一種重複實施 積、光微影蝕刻,以及在玻璃基板上蝕刻形成閘極線、 料線、薄膜電晶體和像素電極的製程。 上述之彩色濾光片基板製程是一種用來製造RGB 色濾光片的製程,該些彩色濾光片是以一預定順序配置 具有黑色矩陣的玻璃上’以實施彩色和形成共用電極所 的銦錫氧化物(ITO)膜。 上述之液晶胞製程使一種用來接合薄膜電晶體陣列 板和彩色濾光片基板的製程,使得薄膜電晶體陣列基板 彩色濾光片基板之間可維持一定間隙,並在該間隙中注 液晶,以形成液晶層。或者,近年來,已有人使用一次 落填充(one drop filling,0DF)製程以均勻地施加液晶 薄膜電晶體陣列基板上,之後再將此薄膜電晶體陣列基 與彩色遽光片基板彼此連接在—起。 在檢查這類液晶顯示器時,於液晶面板上顯示一測 圓樣’以偵測是否有缺陷像素存在。當發現具有缺陷的 素時,即實施一種可修復缺陷像素的製程。液晶缺陷可 括點缺陷(spot defect)、線缺陷(丨ine defect)、和顯示不 (display nonuniformity)。點缺陷通常因為tft不佳、像 電極不佳或彩色濾光片連線不佳所致。線缺陷則肇因於 間出現開放電路、線間出現短路、TFT因靜電而崩潰或 與驅動電路連接不良。顯示不均通常筆因於液晶胞厚度 板 沉 資 彩 在 需 基 和 入 掉 到 板 試 像 包 均 素 線 是 不 6 1335462A thin film transistor array substrate process "a color filter base process" and a liquid crystal cell process are performed to fabricate the liquid crystal panel. The above-described thin film transistor array substrate process is a process of repeatedly performing deposition, photolithography etching, and etching on a glass substrate to form a gate line, a material line, a thin film transistor, and a pixel electrode. The above-described color filter substrate process is a process for fabricating RGB color filters which are arranged on a glass having a black matrix in a predetermined order to perform color and form indium of a common electrode. Tin oxide (ITO) film. The liquid crystal cell process described above enables a process for bonding the thin film transistor array plate and the color filter substrate so that a certain gap can be maintained between the color filter substrate of the thin film transistor array substrate, and liquid crystal is injected into the gap. To form a liquid crystal layer. Alternatively, in recent years, a one-drop filling (0DF) process has been used to uniformly apply a liquid crystal film transistor array substrate, and then the thin film transistor array substrate and the color light-emitting substrate are connected to each other. Start. When such a liquid crystal display is inspected, a measurement circle is displayed on the liquid crystal panel to detect the presence or absence of defective pixels. When a defective element is found, a process for repairing defective pixels is implemented. Liquid crystal defects may include spot defects, 丨ine defects, and display nonuniformity. Point defects are usually caused by poor tft, poor image electrodes, or poor color filter connections. Line defects are caused by open circuits, short circuits between lines, TFT breakdown due to static electricity, or poor connection to the drive circuit. The display unevenness is usually due to the liquid crystal cell thickness of the board. The color of the board is required to be applied to the board and the board is sampled. The average line is not 6 1335462
均、液晶配向不均、TFT分佈在·特定位置或連 太高。 點缺陷和線缺陷一般多因為連線不佳所致 藝中’當發現開放電路時,該開放電路連線僅 而當發現短路時’短路電路連線僅彼此分離。 除了上述缺陷外,包括灰塵、有機物、金 會在液晶面板製造期間被吸附到液晶面板上。 被吸附到靠近彩色濾光片附近的區域時,對應 片的像素會發出比其餘像素更明亮的光線,因 光現象(light-leakage phenomenon)。目前正在 射來修復此亮像素缺陷的方法。 曰本專利申請案2006-7229號揭示了一種 配向膜,使配向膜受損,以減弱液晶配向性質 液晶所發出的光線,藉以排除漏光現象的技術 技術的問題在於無法完全排除液晶的配向性質 費大量的時間才能完成此種處理。 為了解決上述問題,韓國專利申請案1 〇_ 號提出了以飛秒(femtosecond)雷射來使缺陷像 法〇 當使用飛秒雷射(femt〇second laser)時,可 陷像素黑化;但是,用來震盪產生飛秒雷射的 貴。 【發明内容】 線時間常數 。在習知技 彼此連接, 屬等雜質還 當這些雜質 至彩色濾光 此稱此為漏 研發使用雷 照射雷射至 並因此降低 。但是,此 ,且需要耗 2006-86569 素黑化的方 有效地使缺 設備相當昂 7 1335462 因此’本發明目地在夯朋, ^ , &4a 在見.服上述問題,因此本發明目地 為k供一種一種修復一顯 .土甘 瑕置上之亮像素缺陷的方 法· ’具可使用相對於個別像音 ⑴像素具有兩吸收光譜之波長帶的 雷射,來有效地修復—亮像素缺陷。The average alignment of the liquid crystals is uneven, and the TFTs are distributed at a specific position or too high. Point defects and line defects are generally caused by poor wiring. When the open circuit is found, the open circuit is connected only when a short circuit is found. The short circuit connection is only separated from each other. In addition to the above defects, dust, organic matter, and gold are adsorbed onto the liquid crystal panel during the manufacture of the liquid crystal panel. When adsorbed to an area near the color filter, the pixels of the corresponding slice emit brighter light than the rest of the pixels, due to the light-leakage phenomenon. It is currently being shot to fix this bright pixel defect. The patent application No. 2006-7229 discloses an alignment film which damages the alignment film to weaken the light of the liquid crystal alignment property, and the technical technique of eliminating the light leakage phenomenon is that the alignment property of the liquid crystal cannot be completely excluded. A lot of time can be done to complete this process. In order to solve the above problem, Korean Patent Application No. 1 __ proposes a femtosecond laser to make a defect image like a femt〇second laser, which can be blackened by pixels; It is used to oscillate the cost of producing femtosecond lasers. SUMMARY OF THE INVENTION Line time constant. In the conventional technology, the impurities are connected to each other, and these impurities are also used as color filters. This is called leak. R&D uses lightning to illuminate the laser and thus reduce it. However, this, and the need to consume the blackening of 2006-86569 effectively makes the lack of equipment quite high. 1 1335462 Therefore, the purpose of the present invention is to meet the above problems, so the object of the present invention is k is a method for repairing a bright pixel defect placed on a display of sylvestris. 'A laser with a wavelength band having two absorption spectra relative to an individual image (1) pixel can be used to effectively repair a bright pixel defect. .
依據本發明,上述和其他特點可利用提供—種修復一 附接有偏光板之顯示器裂置的亮像素缺陷的方法來完成, 此方法包括:m亮像素缺陷的彩色遽光片是一红光 (r)區域時,照射一波長在400〜55〇nm間的雷射當具有 一亮像素缺陷的彩色濾光片是—綠光(G)區域時,照射一波 長在400〜480 nm間或600〜75〇 nm間的雷射,和/或當具 有一亮像素缺陷的彩色濾光片是一藍光(B)區域時,照射一 波長在520〜750 nm間的雷射。 較佳疋’雷射的脈衝期間為l〇〇ns或更小,且雷射具 有介於約1 Hz至1 kHz間的重複頻率。 較佳是,此方法更包括調整雷射的強度。In accordance with the present invention, the above and other features can be accomplished by providing a method of repairing a bright pixel defect that is spliced by a display with a polarizing plate attached thereto, the method comprising: m color pixel defective color light film is a red light (r) region, irradiating a laser with a wavelength between 400 and 55 〇nm. When a color filter having a bright pixel defect is a green (G) region, the illumination is at a wavelength between 400 and 480 nm or A laser between 600 and 75 〇 nm, and/or a laser having a wavelength between 520 and 750 nm when the color filter having a bright pixel defect is a blue (B) region. Preferably, the pulse period of the laser is 10 ns or less, and the laser has a repetition frequency between about 1 Hz and 1 kHz. Preferably, the method further comprises adjusting the intensity of the laser.
較佳是,此方法更包括調整雷射的強度和焦點距離, 使得彩色濾光片厚度的20%〜90%可被雷射所黑化。 較佳是,當顯示器沒有覆蓋層(overcoat layer)時,雷 射的脈衝期間為50 ns或更小,且雷射具有介於約1 Hz至 100 Hz間的重複頻率,且雷射功率約為10 mW或更小。 較佳是,以掃描式雷射照射法或阻隔照射式雷射照射 法(a block shot type laser irradiation method)或多阻隔照 射式雷射照射法(a multi block shot type laser irradiation method)將雷射照射到彩色濾光片上。在此狀況下,較佳是 8 1335462Preferably, the method further comprises adjusting the intensity and focus distance of the laser such that 20% to 90% of the thickness of the color filter can be blackened by the laser. Preferably, when the display has no overcoat layer, the pulse period of the laser is 50 ns or less, and the laser has a repetition frequency between about 1 Hz and 100 Hz, and the laser power is about 10 mW or less. Preferably, the laser is irradiated by a scanning type laser irradiation method or a block shot type laser irradiation method or a multi block shot type laser irradiation method Irradiate onto the color filter. In this case, it is preferably 8 1335462
以將雷射照射到彩色濾光片占。 較佳是,使用至少一選自下列的雷射來創造 雷射,包括:镱(Ytterbium)雷射、鈦-藍寶石雷: YLF雷射、Nd:玻璃雷射、Nd:釩酸鹽(YV04)雷 YAG雷射、織維雷射和染料雷射。 【實施方式】 以下將參照附圖來說明本發明較佳實施方式 依據本發明一種用來修復顯示裝置上之亮像 方法是照射具有一亮像素缺陷的像素(一彩色濾 周園黑色矩陣),使該缺陷像素被黑化。 當雷射照射在一有機膜層(如,一彩色濾光J 會打斷組成該膜層之有機物質間的耦接,結果該 被剝離並發射出自由基、群集物(clusters)、電子 包括内含中性原子、分子和正離子與負離子的電 該有機膜層被黑化。 剝離(ablation)是一種因為有機物的耗接分 使有機物質被分解成分子與離子的過程。但是, 此種解離,需要吸收比有機物質能階更高的能量 已黑化像素的發光能階被降低,因此’已黑 無法透光,而是可吸收從顯示器光源產生的光。 修復有缺陷的像素使得所偵測到的有缺陷像素之 成暗像素。 因此,在需要黑化的像素上照射透光度低之 出所要的 ^ ' Nd : 射、Nd : 素缺陷的 光片及其 4 )上時, 有機膜層 和光子, 漿,使得 子解離而 為了達成 〇 化的像素 藉此,可 亮像素變 波長的雷 9 1335462 射(亦即,a 具有向吸收度的波長): 參照第2圖來選擇波長 缺陷的彩色瀘*^ I例來1 -具有-亮像素 慮先片疋一紅光(11)區 具高吸收性沾冰i B 』有幻紅光£域中 波長疋5 5 0 nm或更小。當使用| ς λ 以上的雷射昭w 备使用波長在55〇nm 射,,、、射該紅光區域時,穿诱声古 晉的能 穿透度间,因此,需要大 層,包括覆:果將會嚴重破壞彩色渡光片下方的數種膜 覆蓋層、IT〇層和配向層。如果彩色濾光片下方To irradiate the laser to the color filter. Preferably, the laser is created using at least one laser selected from the group consisting of: Ytterbium laser, Titanium-sapphire mine: YLF laser, Nd: glass laser, Nd: vanadate (YV04) Ray YAG laser, weave laser and dye laser. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention for repairing a bright image on a display device according to the present invention is to illuminate a pixel having a bright pixel defect (a color filter black matrix). The defective pixel is blackened. When the laser is irradiated on an organic film layer (for example, a color filter J breaks the coupling between the organic substances constituting the film layer, as a result, it is peeled off and emits free radicals, clusters, electrons, and the like. The organic film layer is blackened by a neutral atom, a molecule, and a positive ion and a negative ion. Ablation is a process in which an organic substance is decomposed into a component and an ion because of the consumption of an organic substance. However, such dissociation, It is necessary to absorb higher energy than the energy level of the organic material. The illuminating energy level of the blackened pixel is reduced, so that 'black is not transparent, but light absorbed from the display light source can be absorbed. Repair defective pixels to detect The defective pixel is a dark pixel. Therefore, when a blackened pixel is irradiated with a low transmittance, a light film of Nd: Nd: a defect, and 4), the organic film is irradiated. Layers and photons, slurries, so that the sub-dissociation, in order to achieve the deuterated pixels, can be bright pixel variable wavelength Ray 9 1335462 shot (that is, a has a wavelength of absorbance): Refer to Figure 2 to select Long-defective color 泸*^ I case to 1 - has - bright pixels, the first piece of 疋 红 红 红 红 红 红 11 11 11 11 11 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有smaller. When using a laser with a wavelength above | ς λ, the wavelength of the laser is used at 55〇nm, and when the red light region is shot, the penetration of the lure of Kuching is interposed. Therefore, a large layer, including the overlay, is required: It will seriously damage several kinds of film coverings, IT layers and alignment layers under the color light-emitting sheet. If under the color filter
的一被破壞,液晶會跑到受損區域上方,結果產生氣泡’ 導致彩色濾光片更嚴重的缺陷。 同時,波長小於270nm的雷射無法穿透玻璃’結果雷 射無法到钱:& A > u . c /色)慮光片。波長大於750 nm的雷射可穿透 彩色渡光片’結果使得雷射無法在彩色渡光片上反應。 疋’當具有一亮像素缺陷的彩色濾光片是一紅光 ( 域時 較佳是照射一波長在2 7 0〜5 5 0 n m間的雷射到 彩色渡光片上,藉此可有效地使彩色濾光片被黑化使得 彩色渡光片的亮像素缺陷可被修復,而不會傷害彩色濾光 片下方的膜層。 依此’當希望修復此類亮像素缺陷時,需要照射波長 為低彩色濾光片穿透度的雷射。對紅光(R)區域,較佳是照 射如前述之波長在270〜550 nm間的雷射到彩色濾光片 上。對綠光(G)區域,較佳是照射波長在270〜480 nm間或 600〜700 nm間的雷射到彩色濾光片上。對藍光(B)區域, 則是照射一波長在270〜390 nm間或520〜750 nm間的雷 射。 10 1335462 第3圖示出一依據本發,明之偏光板的光穿透度簡圊。 如第1圖所示,偏光板是附接在彩色濾光片頂端。用來修 復亮像素缺陷的雷射光必須穿透此偏光板。因此,需要參 考第3圖的光穿透度。When one is destroyed, the liquid crystal will run over the damaged area, resulting in bubbles that cause more serious defects in the color filter. At the same time, a laser with a wavelength of less than 270 nm cannot penetrate the glass. As a result, the laser cannot reach the money: & A > u . c / color). A laser with a wavelength greater than 750 nm can penetrate a color aerator. The result is that the laser cannot react on a color light-emitting sheet.当 'When a color filter with a bright pixel defect is a red light (the field is preferably irradiated with a laser having a wavelength between 270 and 550 nm onto a color light-emitting sheet, thereby effectively The color filter is blackened so that the bright pixel defects of the color filter can be repaired without damaging the film under the color filter. Therefore, when it is desired to repair such bright pixel defects, it is necessary to illuminate the wavelength. A laser having a low color filter transmittance. For a red (R) region, it is preferred to irradiate a laser having a wavelength between 270 and 550 nm as described above to a color filter. The region is preferably a laser having a wavelength between 270 and 480 nm or between 600 and 700 nm. For the blue (B) region, the wavelength is between 270 and 390 nm or 520. Laser between ~750 nm. 10 1335462 Fig. 3 shows a light transmittance of a polarizing plate according to the present invention. As shown in Fig. 1, the polarizing plate is attached to the top of the color filter. The laser light used to repair bright pixel defects must penetrate the polarizer. Therefore, it is necessary to refer to the light transmittance of Figure 3.
從第3圖可知偏光板在可見光範圍中,其光穿透度約 為5 0%,在紫外光範圍下,則不透光,且隨著波長趨向近 紅外光Εϊ域其光穿透度也隨之增加。為此,當需要使附接 有偏光板之面板上任一 RGB遽光片黑化時,較佳是使用波 長在400 nm或以上之雷射光。It can be seen from Fig. 3 that the polarizing plate has a light transmittance of about 50% in the visible light range, and is opaque in the ultraviolet light range, and its light transmittance is also close to the near-infrared light field. It will increase. For this reason, when it is desired to blacken any of the RGB calenders on the panel to which the polarizing plate is attached, it is preferable to use laser light having a wavelength of 400 nm or more.
因此’需要排除第2圖中所得波長在400 nm以下的 範圍,才能有效地使附接有偏光板之顯示器被黑化β結論, 當具有一亮像素缺陷的彩色濾光片是一紅光(R)區域時,可 使用波長在400〜500 nm間的雷射來照射該彩色濾光片。 當具有一亮像素缺陷的彩色濾光片是一綠光(G)區域時,照 射一波長在400~480 nm間或600~750 nm間的雷射來照射 該彩色濾光片。而當具有一亮像素缺陷的彩色濾光片是_ 藍光(B)區域時,則可使用波長在520〜750 nm間的雷射來 照射該彩色濾光片。 第4A〜4C圖顯示照射雷射到具有亮像素缺陷之像素 上的各種方法。明確的說,第4A圖顯示一掃描式雷射照 射方法,第4B圖顯示一阻隔照射式雷射照射方法,和第 4C圖顯示多阻隔照射式雷射照射方法。 在此,掃描式雷射照射方法是掃描一光束形狀(參見第 4A圖之「S」)與一具有亮像素缺陷之像素區域之一部分相 1] 1335462 對應的雷射,使該雷射玎照射在’整個像素區域上。阻隔照 射式雷射照射方法則是夂即將一光束形狀與一具有亮像素 缺陷之像素整個區域相對應的雷射照射在整個像素區域上 一次。多阻隔照射式雷射照射方法則結合了掃描式雷射照 射方法與阻隔照射式雷射照射方法兩者。亦即,多阻隔照 射式雷射照射方法是依據阻隔照射式雷射照射方法來照射 雷射’同時,依據掃描式雷射照射方法繼續照射雷射。 雖然可使用上述任一種照射方法,較佳是將雷射照射 在彩色濾光片週圍的每一黑色矩陣之一部分上以及彩色濾 光片上。 參照第5圖’較佳是照雷射數次,以將彩色濾光片黑 化。 詳言之’當第一次照射雷射時(S1)’使用z•轴移動掃 描來找出對應至彩色濾光片10〇/〇厚度之區域的焦點深度 (depth of focus,d〇f),接著以χγ_軸移動掃描來使彩色濾 光片黑化。當彩色濾光片的黑化程度已由電荷耦接裝置 (CCD)攝影機確認後,如果認定彩色濾光片的黑化程度並 不足夠,則驅動Z-軸移動掃描,再次找出對應至彩色濾光 片20 %厚度之區域的焦點深度(d〇f),接著以XY-軸移動掃 描進行第二次雷射掃描(S2)。重複此步驟2〜4次,即可滿 意地將彩色濾光片黑化至欲求的黑化程度。 第6圖流程圏顯示用來黑化一彩色濾光片的方法,同 時依據上述方法移動焦點深度。 如第6圈所示,先以雷射照射彩色濾光片(S 1 0)使大約 12 1335462Therefore, it is necessary to exclude the wavelength obtained in Fig. 2 below 400 nm in order to effectively blacken the display to which the polarizing plate is attached. [Conclusion] When the color filter having a bright pixel defect is a red light ( In the R) region, the color filter can be illuminated using a laser having a wavelength between 400 and 500 nm. When a color filter having a bright pixel defect is a green (G) region, a laser having a wavelength between 400 and 480 nm or between 600 and 750 nm is irradiated to illuminate the color filter. When a color filter having a bright pixel defect is a blue light (B) region, a laser having a wavelength between 520 and 750 nm can be used to illuminate the color filter. Figures 4A to 4C show various methods of illuminating a laser onto a pixel having a bright pixel defect. Specifically, Fig. 4A shows a scanning laser irradiation method, Fig. 4B shows a barrier irradiation type laser irradiation method, and Fig. 4C shows a multi-barrier irradiation type laser irradiation method. Here, the scanning laser irradiation method is to scan a beam shape (see "S" in FIG. 4A) and a laser corresponding to a portion of the pixel region having a bright pixel defect 1] 1335462, so that the laser beam is irradiated On the 'full pixel area. The barrier laser irradiation method is to irradiate a laser beam corresponding to the entire area of a pixel having a bright pixel defect to the entire pixel area once. The multi-blocking laser irradiation method combines both a scanning laser irradiation method and a barrier irradiation laser irradiation method. That is, the multi-blocking laser irradiation method is to irradiate the laser according to the barrier-illuminated laser irradiation method while continuing to irradiate the laser according to the scanning laser irradiation method. While any of the above illumination methods can be used, it is preferred to irradiate the laser onto a portion of each of the black matrices surrounding the color filter and on the color filter. Referring to Fig. 5', it is preferable to perform laser irradiation several times to blacken the color filter. In detail, 'When the first laser is irradiated (S1)', the z•axis movement scan is used to find the depth of focus (d〇f) corresponding to the area of the color filter 10〇/〇 thickness. Then, the color filter is blackened by moving the scan with the χγ_axis. When the degree of blackening of the color filter has been confirmed by a charge coupled device (CCD) camera, if it is determined that the degree of blackening of the color filter is not sufficient, the Z-axis is scanned for scanning, and the corresponding color is found again. The depth of focus (d〇f) of the region of the filter 20% thick, followed by a second laser scan (S2) with an XY-axis shift scan. By repeating this step 2 to 4 times, the color filter can be satisfactorily blackened to the desired degree of blackening. Fig. 6 shows a method for blackening a color filter while moving the depth of focus according to the above method. As shown on the sixth lap, first illuminate the color filter (S 1 0) with a laser to make approximately 12 1335462
10%的彩色濾光片被黑化(S20),接著確認 化程度(S3 0),以決定彩色濾光片是否已 (S4 0)。當確認彩色濾光片已被黑化至欲求 此處理(S50)。相反的,如果認定認定彩色 度並不足夠,則再次移動焦點距離(86(^ , 雷射到彩色濾光片上,使其被更進一蚩地 可從Z-轴移動掃描和掃描透鏡間的$ 微米或更小範圍内的入射光直徑·5J* _ (DOP)。 [數學式1] DOF = λ!2{ΝΑ)2 [數學式2] NA = nsin 0 彩色濾光片的黑 黑化至欲求程度 .程度後,即結束 濾光片的黑化程 接著,再次照射 黑化。 點距離,以及2 算出焦點深度The 10% color filter is blackened (S20), and then the degree of confirmation (S3 0) is determined to determine whether or not the color filter has been (S40). When it is confirmed that the color filter has been blackened to the desired processing (S50). Conversely, if it is determined that the color is not sufficient, then move the focus distance again (86 (^, laser onto the color filter, so that it can be moved further from the Z-axis to scan between the scanning lens and the scanning lens). Incident light diameter in the range of $μm or less·5J* _ (DOP) [Math. 1] DOF = λ!2{ΝΑ)2 [Math 2] NA = nsin 0 Blackening of the color filter After the extent of the degree of desire, the blackening process of the filter is finished, and then the blackening is again irradiated. The distance of the point, and 2 the depth of focus is calculated.
[數學式3] //# = 1/2_ [數學式4] //# = efl/φ 數學式5可從數學式3與數學式 [數學式5] 衍生而得》 ΝΑ = φ/2{βΑ) 在以上的數學式中,ΝΑ代表有 欢的子丨 aperature),λ代表雷射的波長,e// # t表有 可確認入射光束的直徑愈大,带 电射波 愈淺。也可確認透鏡的焦點長度eA入 愈短 -徑值(numerical 效的焦點長度。 長愈短,DOF也 ,孔徑值(NA)將 13 1335462 愈大,因此,DOF將愈淺。[Math 3] //# = 1/2_ [Math 4] //# = efl/φ Mathematical formula 5 can be derived from Mathematical Formula 3 and Mathematical Formula [Mathematical Formula 5] ΝΑ = φ/2{ βΑ) In the above mathematical formula, ΝΑ represents a child's aperature, λ represents the wavelength of the laser, and e//# t indicates that the larger the diameter of the incident beam, the lighter the charged wave. It can also be confirmed that the focal length eA of the lens is shorter - the diameter value (the focal length of the numerical effect. The shorter the length, the DOF, the larger the aperture value (NA) will be 13 1335462, and therefore, the shallower the DOF will be.
黑化程度較佳是小於最大值的90%,較好是彩色濾光 片厚度的20%〜40〇/〇間’以防止在液晶面板視角範圍中出現 漏光現象。當彩色遽光片厚度的2〇%以下範圍被黑化時, 可完全防止(100%)漏光現象。相反的,當90%以上的彩色 濾光片厚度均被黑化時,可能會使堆疊在彩色濾光片下方 的膜層受損。此外,雷射能量也在促使一有機膜層被黑化 至適當厚度這件事上,扮演相當重要的角色。換言之,可 依據所輸出雷射的能量來調整黑化的程度。 參照第7圖,圖上示出一不具有覆蓋層(〇verc〇at Uyer) 的顯示器’用以降低製造成本並簡化製程β 同時’一覆蓋層具有如第8圓所示的吸光性。可從第 8圖上看出,在紫外光(UV)範圍以下幾乎沒有透光性,在 U V範圍内大約8 0 %的光會被吸收,只有大約2 0 %的光可 穿透。The degree of blackening is preferably less than 90% of the maximum value, preferably 20% to 40 Å/〇 of the thickness of the color filter to prevent light leakage in the viewing angle range of the liquid crystal panel. When the range of 2% or less of the thickness of the color reticle is blackened, (100%) light leakage can be completely prevented. Conversely, when more than 90% of the color filters are blackened, the layers stacked under the color filters may be damaged. In addition, laser energy plays a very important role in causing an organic film layer to be blackened to an appropriate thickness. In other words, the degree of blackening can be adjusted depending on the energy of the output laser. Referring to Fig. 7, there is shown a display having no cover layer ("ver verc" Uyer) for reducing manufacturing cost and simplifying process β while a cover layer has absorbance as shown by the eighth circle. It can be seen from Fig. 8 that there is almost no light transmission below the ultraviolet (UV) range, and about 80% of the light is absorbed in the U V range, and only about 20% of the light is permeable.
因此’沒有覆蓋層的顯示器的修復方式將與有覆蓋層 的顯示器的修復方式不同。這是因為從用來修復亮像素缺 限之雷射所產生的能量,會被覆蓋層吸收的緣故》因此, 在修復沒有覆蓋層之顯示器上的亮像素缺陷時,穿透彩色 濾光片的能量到達液晶層,結果造成液晶層受損。 為此,可使用低能量雷射來避免液晶層受損,但是, 此時卻不會有任何反應發生β 因此,在考慮上述問題時,必須滿足低能量雷射以及 能量施加時間短的條件。實驗結果顯示當使用雷射脈衝待 14 1335462 續50 ns或更短,且重複頻手在1 Hz至100 Hz之間,功 率1 0 mW或更小的雷射時,可令人滿意地修復沒有覆蓋層 的顯示器上的亮像素缺陷》 第9圊示出依據本發明之雷射光束的形狀。Therefore, the repair of a display without a cover layer will be different from that of a display with a cover layer. This is because the energy generated by the laser used to repair the defect of the bright pixel is absorbed by the cover layer. Therefore, when repairing the bright pixel defect on the display without the cover layer, the color filter is penetrated. The energy reaches the liquid crystal layer, and as a result, the liquid crystal layer is damaged. For this reason, a low-energy laser can be used to prevent the liquid crystal layer from being damaged, but at this time, no reaction occurs. Therefore, in consideration of the above problems, it is necessary to satisfy the conditions of low-energy laser and short energy application time. The experimental results show that when using a laser pulse for 14 1335462 for 50 ns or less, and repeating the frequency between 1 Hz and 100 Hz, the power of 10 mW or less can be satisfactorily repaired without Bright pixel defects on the display of the overlay layer. Figure 9 shows the shape of the laser beam in accordance with the present invention.
一開始從雷射震盪器發出的雷射為高斯式雷射光束, 其能量集中在中央區域。當雷射光束通過一光束成形器或 一光束均勻器之後,可使一特定範圍内的雷射光束強度被 均一化,結果可將雷射光束轉變成一放大尺寸的平坦頂部 形狀。此時,雷射照射區域也會隨著光束形狀的改變而改 變。此平坦頂部形狀也可變成一矩形平坦頂部300或是圓 形平坦頂部3 0 1。The laser emitted from the laser oscillator is a Gaussian laser beam whose energy is concentrated in the central region. When the laser beam passes through a beam shaper or a beam homogenizer, the intensity of the laser beam within a particular range is normalized, with the result that the laser beam is converted into a flat top shape of an enlarged size. At this time, the laser irradiation area also changes as the shape of the beam changes. This flat top shape can also become a rectangular flat top 300 or a round flat top 3 0 1 .
也可使用光束成形器或光束均勻器來改變所照射的雷 射大小和強度《所照射的雷射面積愈小,所需用以將像素 完全黑化的時間就愈長。可均勻地轉變雷射光束的大小以 提高黑化的速度,藉此本發明可施用到生產線上以大量製 造產品。在構成液晶面板的有機膜層中,可利用Z轴移動 掃描,使被適當轉變成具有矩形平坦頂部300或是圓形平 坦頂部301的雷射強度,將RGB像素黑化。 依據本發明,除了以上說明之外,可選擇性地使用波 長帶具有高吸收光譜(相對於彩色濾光片來說)之雷射,來 有效地修復一彩色濾光片的亮像素缺陷。 特別是,當顯示裝置上附接有一偏光板時,考量偏光 板的穿透度,可依據其波長有效地使彩色濾光片被黑化。 雖然已參照特定實施例詳細敘述本發明精神,然而該 15 1335462 等實施例僅是用於說明本發B月,而非限制本發明。須了解 熟悉此技術者可在不偏離本發明範圍及精神的情況下變化 或修改該實施例" 【圖式簡單說明】 第1圖示出含有雜質之液晶面板的部分示意圊; 第2圖示出依據彩色濾光片的波長,一彩色濾光片的 光穿透度圖; Φ 第3圖示出依據一偏光板之波長,該偏光板的光穿透 度圖; 第4A-4C圖詳細說明各種雷射照射方法; 第5圖示出一調整焦點距離並同時照射雷射的方法; 第6圖是黑化過程的流程圖; 第7圖是沒有覆蓋層之液晶面板的截面圖; 第8圖是一覆蓋層的光吸收性圖; 第9圖是依據本發明之雷射光束形狀的簡圖。A beam shaper or beam homogenizer can also be used to vary the size and intensity of the laser being illuminated. The smaller the area of the laser that is illuminated, the longer it takes to completely blacken the pixel. The size of the laser beam can be uniformly converted to increase the speed of blackening, whereby the present invention can be applied to a production line to mass-produce a product. In the organic film layer constituting the liquid crystal panel, the RGB pixels can be blackened by Z-axis moving scanning so as to be appropriately converted into a laser intensity having a rectangular flat top 300 or a circular flat top 301. In accordance with the present invention, in addition to the above description, a laser having a high absorption spectrum (relative to a color filter) of a wavelength band can be selectively used to effectively repair a bright pixel defect of a color filter. In particular, when a polarizing plate is attached to the display device, the transmittance of the polarizing plate is considered, and the color filter can be effectively blackened depending on the wavelength thereof. Although the spirit of the present invention has been described in detail with reference to the specific embodiments, the embodiments of the present invention are only intended to be illustrative of the present invention. It is to be understood that those skilled in the art can change or modify the embodiment without departing from the scope and spirit of the invention. [FIG. 1 shows a partial schematic diagram of a liquid crystal panel containing impurities; A light transmittance diagram of a color filter according to the wavelength of the color filter is shown; Φ FIG. 3 shows a light transmittance diagram of the polarizing plate according to the wavelength of a polarizing plate; FIG. 4A-4C A detailed description of various laser irradiation methods; FIG. 5 shows a method of adjusting the focal length and simultaneously irradiating the laser; FIG. 6 is a flow chart of the blackening process; and FIG. 7 is a cross-sectional view of the liquid crystal panel without the cover layer; Figure 8 is a light absorption diagram of a cover layer; Figure 9 is a schematic view of the shape of a laser beam in accordance with the present invention.
【主要元件符號說明】 300 矩 形 平 坦頂部 301 圓 形 平 坦 頂 部 500 液 晶 面 板 5 10 薄 膜 電 晶 體 陣列基板 520 液 晶 層 530 彩 色 濾- 光 片 基板 53 1 玻 璃 基 板 532 彩 色 底 光 片 533 黑 色 矩 陣 535 銦 錫 氧 化 物 (ITO)膜 536 配 向 膜 537 偏 光 板 16[Main component symbol description] 300 Rectangular flat top 301 Round flat top 500 Liquid crystal panel 5 10 Thin film transistor array substrate 520 Liquid crystal layer 530 Color filter - Light substrate 53 1 Glass substrate 532 Color base sheet 533 Black matrix 535 Indium tin Oxide (ITO) film 536 alignment film 537 polarizing plate 16
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20070059221 | 2007-06-18 | ||
KR1020080040587A KR100879011B1 (en) | 2007-06-18 | 2008-04-30 | How to repair the bright point of display device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200912440A TW200912440A (en) | 2009-03-16 |
TWI335462B true TWI335462B (en) | 2011-01-01 |
Family
ID=40369645
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097122738A TWI335462B (en) | 2007-06-18 | 2008-06-18 | Method of repairing bright pixel defect of display device |
TW097122723A TWI335451B (en) | 2007-06-18 | 2008-06-18 | Method of repairing bright pixel defect of display device |
TW097122725A TWI335461B (en) | 2007-06-18 | 2008-06-18 | Method of repairing bright pixel defect of display device |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097122723A TWI335451B (en) | 2007-06-18 | 2008-06-18 | Method of repairing bright pixel defect of display device |
TW097122725A TWI335461B (en) | 2007-06-18 | 2008-06-18 | Method of repairing bright pixel defect of display device |
Country Status (4)
Country | Link |
---|---|
JP (3) | JP5245144B2 (en) |
KR (3) | KR100879012B1 (en) |
CN (3) | CN101707897A (en) |
TW (3) | TWI335462B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101113230B1 (en) * | 2010-03-24 | 2012-02-20 | (주)미래컴퍼니 | Apparatus and Method for repairing brightness defect |
TWI430000B (en) | 2010-07-02 | 2014-03-11 | Ind Tech Res Inst | Method and system for repairing flat panel display |
CN102338942B (en) * | 2010-07-21 | 2013-07-10 | 财团法人工业技术研究院 | Method and system for repairing flat panel display |
JP5707960B2 (en) * | 2011-01-20 | 2015-04-30 | 凸版印刷株式会社 | Color filter layer defect correcting method and color liquid crystal display element |
JP5853331B2 (en) * | 2011-03-11 | 2016-02-09 | 株式会社ブイ・テクノロジー | Laser irradiation apparatus and method for correcting bright spot of liquid crystal display panel using the same |
CN102845132B (en) * | 2011-04-12 | 2015-12-16 | 株式会社日本有机雷特显示器 | The manufacture method of organic EL element and focal position of laser establishing method |
JP5744640B2 (en) * | 2011-06-21 | 2015-07-08 | 三菱電機株式会社 | Brightening point defect blackening method of liquid crystal panel |
JP5733065B2 (en) | 2011-07-07 | 2015-06-10 | 三菱電機株式会社 | Liquid crystal display panel and repair method |
CN102654661B (en) * | 2012-05-04 | 2015-01-21 | 京东方科技集团股份有限公司 | Repairing method of liquid crystal display panel |
JP2014157335A (en) * | 2013-02-18 | 2014-08-28 | Mitsubishi Electric Corp | Bright spot defect correction method of liquid crystal display device, and manufacturing method of liquid crystal display device |
US9304090B2 (en) * | 2013-03-11 | 2016-04-05 | Electro Scientific Industries, Inc. | Systems and methods for providing polarization compensated multi-spectral laser repair of liquid crystal display panels |
JP6214197B2 (en) * | 2013-04-24 | 2017-10-18 | 三菱電機株式会社 | Method of darkening a bright spot defect in a liquid crystal panel |
JP6265648B2 (en) | 2013-08-07 | 2018-01-24 | 三菱電機株式会社 | Color filter, liquid crystal panel and repair method |
KR20160139114A (en) | 2015-05-26 | 2016-12-07 | 삼성디스플레이 주식회사 | Display device and method for repairing display device |
KR102499179B1 (en) * | 2015-09-25 | 2023-02-10 | 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 | Liquid crystal display device and reparing method thereof |
JP6714898B2 (en) | 2016-03-30 | 2020-07-01 | 三菱電機株式会社 | Color filter substrate and manufacturing method thereof |
CN109212791A (en) | 2017-07-07 | 2019-01-15 | 京东方科技集团股份有限公司 | The undesirable restorative procedure of display panel, display panel bright spot |
CN107450209B (en) * | 2017-09-30 | 2021-01-15 | 京东方科技集团股份有限公司 | Bright spot repairing method and color film substrate |
KR102079455B1 (en) * | 2018-10-05 | 2020-02-19 | 주식회사 코윈디에스티 | Methdo and apparatus for repairing birght pixels of liquid crystal display |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001051265A (en) * | 1999-08-12 | 2001-02-23 | Toray Ind Inc | Manufacture of liquid crystal display device |
JP2001183615A (en) * | 1999-12-27 | 2001-07-06 | Toshiba Corp | Method for correcting luminescent point of liquid crystal display device and liquid crystal display device |
US7199330B2 (en) * | 2004-01-20 | 2007-04-03 | Coherent, Inc. | Systems and methods for forming a laser beam having a flat top |
JP3969408B2 (en) * | 2004-09-06 | 2007-09-05 | セイコーエプソン株式会社 | Defect repair method and defect repair device for liquid crystal display device |
KR101087238B1 (en) * | 2004-12-09 | 2011-11-29 | 엘지디스플레이 주식회사 | Repair apparatus and method of liquid crystal display panel |
KR20060086569A (en) * | 2005-01-27 | 2006-08-01 | 임채용 | Automatic door opening and closing method of car door |
KR101133765B1 (en) * | 2005-02-15 | 2012-04-09 | 삼성전자주식회사 | Repairing mechanism and method for display device |
KR100716472B1 (en) * | 2005-07-20 | 2007-05-10 | (주)미래컴퍼니 | Board defect correction device and method |
KR101232136B1 (en) * | 2005-09-14 | 2013-02-12 | 엘지디스플레이 주식회사 | Method of repair an Liquid Crystal Cell, method of manufacturing Liquid Crystal Display Device using the same, and Liquid Crystal Display repaired using the same |
KR100780012B1 (en) | 2006-12-29 | 2007-11-27 | 참앤씨(주) | Repair method and device for LCD panel |
KR20080065748A (en) * | 2007-01-10 | 2008-07-15 | 참앤씨(주) | Method and apparatus for repairing liquid crystal display panel |
-
2008
- 2008-04-30 KR KR1020080040603A patent/KR100879012B1/en active IP Right Grant
- 2008-04-30 KR KR1020080040573A patent/KR100879010B1/en active IP Right Grant
- 2008-04-30 KR KR1020080040587A patent/KR100879011B1/en active IP Right Grant
- 2008-06-17 JP JP2010513102A patent/JP5245144B2/en active Active
- 2008-06-17 CN CN200880020731A patent/CN101707897A/en active Pending
- 2008-06-17 CN CN200880020871A patent/CN101796453A/en active Pending
- 2008-06-17 JP JP2010513104A patent/JP5256564B2/en active Active
- 2008-06-17 CN CN2008801026711A patent/CN101779157B/en active Active
- 2008-06-17 JP JP2010513103A patent/JP2011508895A/en active Pending
- 2008-06-18 TW TW097122738A patent/TWI335462B/en active
- 2008-06-18 TW TW097122723A patent/TWI335451B/en active
- 2008-06-18 TW TW097122725A patent/TWI335461B/en active
Also Published As
Publication number | Publication date |
---|---|
CN101796453A (en) | 2010-08-04 |
TWI335461B (en) | 2011-01-01 |
CN101779157A (en) | 2010-07-14 |
JP2011508895A (en) | 2011-03-17 |
JP2011504599A (en) | 2011-02-10 |
KR100879012B1 (en) | 2009-01-15 |
TW200907466A (en) | 2009-02-16 |
JP5256564B2 (en) | 2013-08-07 |
KR20080111385A (en) | 2008-12-23 |
KR20080111384A (en) | 2008-12-23 |
TW200916886A (en) | 2009-04-16 |
KR20080111383A (en) | 2008-12-23 |
JP5245144B2 (en) | 2013-07-24 |
KR100879010B1 (en) | 2009-01-15 |
TW200912440A (en) | 2009-03-16 |
CN101779157B (en) | 2012-02-29 |
JP2010530991A (en) | 2010-09-16 |
CN101707897A (en) | 2010-05-12 |
KR100879011B1 (en) | 2009-01-15 |
TWI335451B (en) | 2011-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI335462B (en) | Method of repairing bright pixel defect of display device | |
TWI386709B (en) | Method for repairing defective cell of liquid crystal panel | |
JP2007171905A (en) | Method of repairing flat panel display device | |
TWI430000B (en) | Method and system for repairing flat panel display | |
CN101510016B (en) | Flat display panel, photoelectric device and bright spot repairing method thereof | |
KR101232136B1 (en) | Method of repair an Liquid Crystal Cell, method of manufacturing Liquid Crystal Display Device using the same, and Liquid Crystal Display repaired using the same | |
KR20100121428A (en) | Apparatus of repairing flat pannel display | |
KR20080022845A (en) | Color filter blackening device and method | |
TW200426446A (en) | Laser repairing device | |
WO2008156286A1 (en) | Method of repairing flat pannel display | |
WO2008156280A1 (en) | Method of repairing flat pannel display | |
JP5746065B2 (en) | Method and apparatus for darkening dark spot defects in liquid crystal display devices | |
WO2008156284A1 (en) | Method of repairing flat pannel display | |
US7573559B2 (en) | Apparatus and method for fabricating liquid crystal display panel having a bright spot defect corresponding to a particle in which an alignment film covers the particle | |
CN108254946A (en) | Display device and its manufacturing method and manufacturing device | |
JP3192269B2 (en) | Liquid crystal display device defect repair method | |
JP4660011B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JP6709978B2 (en) | Display device | |
CN119535824A (en) | Display panel maintenance method | |
JP2019133021A (en) | Display and method for manufacturing display | |
GB2435695A (en) | Method for fabricating liquid crystal display panel |