TWI296460B - High-performance power conditioner for clean energy with low input voltage - Google Patents
High-performance power conditioner for clean energy with low input voltage Download PDFInfo
- Publication number
- TWI296460B TWI296460B TW95101845A TW95101845A TWI296460B TW I296460 B TWI296460 B TW I296460B TW 95101845 A TW95101845 A TW 95101845A TW 95101845 A TW95101845 A TW 95101845A TW I296460 B TWI296460 B TW I296460B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- circuit
- power
- conversion
- low
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims description 61
- 239000003990 capacitor Substances 0.000 claims description 20
- 238000013461 design Methods 0.000 claims description 19
- 238000004804 winding Methods 0.000 claims description 18
- 230000003044 adaptive effect Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 11
- 230000001172 regenerating effect Effects 0.000 claims description 7
- 206010044565 Tremor Diseases 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000005284 excitation Effects 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 230000008929 regeneration Effects 0.000 claims description 2
- 238000011069 regeneration method Methods 0.000 claims description 2
- 210000004508 polar body Anatomy 0.000 claims 2
- 238000011217 control strategy Methods 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 230000004044 response Effects 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000009795 derivation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101100008044 Caenorhabditis elegans cut-1 gene Proteins 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005312 nonlinear dynamic Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Description
1296460 九、發明說明: 【發明所屬之技術領域】 本發明所涉及之技術領域包含自動控制、電力電子、 直流/直流轉換技術、直流/交流變流技術及能源科技之範 疇,雖然本發明所牽涉之技術領域廣泛,但其主要在於應 用潔淨能源於分散式發電系統,改善目前潔淨能源應用於 分散式發電系統之缺失。 【先前技術】 雖然科技的進步為人類的生活帶來許多的便利,但同 時也衍生出許多的問題如:石化燃料存量減少、能源危機 意識崛起、環保意識抬頭、京都議定書的規範及能源價格 的飆漲…等,除了減少現有能源使用的浪費外,新能源的 開發是刻不容緩。一般新能源對環境的衝擊不大,其所造 成之空氣、水或廢棄物等污染行為較不顯著,潔淨能源 (Clean Energy)如太陽能、燃料電池及風力…等為新能源中 較受到重視的[1,2],電力轉換系統若以太陽能或燃料電池 此類電壓較低的電源做為輸入時,須經由電力調節器將直 流電源轉換成交流電源以供負載使用[3,4],一般包含直流 輸入電源、電力調節器(Power Conditioner)、配電箱、變壓 器、蓄電池等,電力調節器主要由直流/直流轉換器 (Converter)、直流/交流變流器(Inverter)以及系統控制器所 構成,並視應用場合及使用者需求而有所不同。當系統輸 入電壓較低時,傳統以串接方式形成所需之直流匯流排電 壓[5,6],然而此匯流排電壓易受負載影響而改變,致使後 1296460 級變流器設計困難且於直流負載供應時產生電力品質不佳 的問題;再者,倘若串聯模組中任一模組發電功能衰退或 故障,易導致整體發電系統效能大打折扣。因此,一般以 兩級電源轉換方式完成交流電源輸出之目的,先將輸入電 壓透過直流/直流轉換器穩定昇壓後’再經由直流/交流變流 器轉換為交流電壓輸出。 習用之直流/直流昇壓電路通常採單電感所組成之昇 壓式轉換電路,該電路中功率半導體開關同時承受高電 壓、大電流及輸出二極體之逆向恢復突波電流,是故其電 源轉換效率不彰’昇壓偈限最南約七倍比例。其次,利用 變壓器昇壓,昇壓範圍受限於匝數比,倘若無法有效處理 漏感能量情形下,轉換效率難以提高。為改善此問題,本 發明延用參考文獻[7]之耦合電感雙向磁路能量傳遞之高 昇壓比轉換電路取代習用電路,其具有高昇壓比及較佳轉 換效率的優點,可提供系統一直流電壓昇壓比超過三十倍 以上之高效率直流/直流電源轉換。 為使潔淨能源電力轉換系統得以穩定的供電,本文以 微處理器針對變流器加以控制,一般解決控制問題時,常 常遭遇參數變化與各種不確定性的情況,在控制領域中有 著各式各樣的控制理論,例如比例、積分以及微分 (Proportional-Integral_Derivative,PID)控制[8],或是使用複 雜方程式的現代控制理論如計算轉矩控制(Computed1296460 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD The technical field to which the present invention relates includes automatic control, power electronics, DC/DC conversion technology, DC/AC converter technology, and energy technology, although the present invention relates to It has a wide range of technologies, but it mainly uses clean energy in decentralized power generation systems to improve the current lack of clean energy for distributed power generation systems. [Prior Art] Although advances in science and technology have brought many conveniences to human life, they have also spawned many problems such as: reduced stock of fossil fuels, rising awareness of energy crisis, rising awareness of environmental protection, norms of Kyoto Protocol, and energy prices. In addition to reducing the waste of existing energy use, the development of new energy is an urgent task. Generally, new energy has little impact on the environment, and the pollution caused by air, water or waste is less significant. Clean energy such as solar energy, fuel cell and wind power are more important in new energy. [1,2], if the power conversion system uses a low-voltage power source such as solar energy or a fuel cell as an input, the DC power supply must be converted into an AC power source for use by the load via the power conditioner [3, 4], generally It includes DC input power, Power Conditioner, distribution box, transformer, battery, etc. The power regulator is mainly composed of DC/DC converter, DC/AC converter and system controller. And depending on the application and user needs. When the input voltage of the system is low, the required DC bus voltage [5, 6] is formed in series, but the bus voltage is easily affected by the load, which makes the design of the rear 1296460 converter difficult and The problem of poor power quality occurs when the DC load is supplied; in addition, if the power generation function of any module in the series module is degraded or malfunctions, the overall power generation system performance is greatly reduced. Therefore, the output of the AC power supply is generally completed by a two-stage power conversion method, and the input voltage is first stably boosted by the DC/DC converter, and then converted into an AC voltage output via the DC/AC converter. The conventional DC/DC boost circuit usually adopts a boost converter circuit composed of a single inductor. The power semiconductor switch in the circuit is subjected to high voltage, large current and reverse recovery surge current of the output diode. The power conversion efficiency is not as good as the 'boost limit' is about seven times the south. Secondly, with the transformer boost, the boost range is limited by the turns ratio. If the leakage inductance energy cannot be effectively processed, the conversion efficiency is difficult to increase. In order to improve the problem, the present invention uses the high-boost ratio conversion circuit of the coupled inductor bidirectional magnetic circuit energy transfer of reference [7] to replace the conventional circuit, which has the advantages of high step-up ratio and better conversion efficiency, and can provide system continuous flow. High-efficiency DC/DC power conversion with voltage boost ratios over thirty times higher. In order to make the clean energy power conversion system stable power supply, this paper uses microprocessor to control the converter. When solving the control problem, it often encounters parameter changes and various uncertainties. There are various types in the control field. Control theory, such as Proportional-Integral_Derivative (PID) control [8], or modern control theory using complex equations such as Computed Torque Control (Computed)
Torque Control)、滑動模式控制(Siiding_M〇de Control)[9,10] 等都是為了於系統參數變動與各種外來的干擾下可使系統 7 1296460 的行為合乎設計的要求。比例、、積分以及微分控制器 省^结構簡單,易於設計且費用低,所以在工業界已被廣泛 使用’但對於具有不確定動態之系統,比例積分微分控制 器卻不能提供完善的性能。計算轉矩控制是利用消除非線 性方程式中的某些或全部的非線性項以得到其線性化方程 式,接著設計線性迴授控制器以違到所設計的閉迴路控制 特性。然而由於計算轉矩控制是基於理想化消除非線性動 態所發展之理論,其缺點是在時域中缺少對系統不確定量 I 的暸解,包括系統參數變化及外加擾動,因此通常選取較 大的控制增益以達到系統強健性及保證系統穩定。 可變結構控制(Variable Structure Control)或滑動模式 . 控制是有效的非線性強健控制之方法之一 [9_18],原因在於 • 動換式下’受控糸統動態不受系統不碟定量以及擾動項 的影響。設計滑動模式控制系統可分為兩大步驟,首先根 據所需求的閉迴路控制來選擇在狀態變化空間上的滑動平 ,面’再者設計控制法則使系統狀態朝向滑動平面栘動且保 持在滑動平面上。剛開始系統狀態軌跡接觸滑動平面前的 情况稱為迫近相位(Reaching Phase),一但系統狀態執跡到 達滑動平面後,系統狀態就會保持在平面上並朝向目標 點’此情況稱為滑動相位(Sliding Phase)。可是當系統狀態 處在迫近相位時仍會受系統參數變動以及外來干擾的影 妻’因此許多學者提出迫近相位的設計方式或者全域滑動 模式控制(Total Sliding-Mode Control),以降低系統不確定 里所造成的影響[12-15]。Gao和Hung[ 12]合力研究設計特 8 1296460 定迫近法則來具體說明系統狀態在迫近相位時之動態,然 而在此情況下系統不確定量仍會影響系統控制性能。全域 、滑動模式控制[13-15]即為控制過程不存在迫近相位模式且 所有狀態均在滑動平面上,整個控制過程中不受系統不確 定量影響’但仍有可能導致控制力顫抖現象以及激發系統 不穩定動態。過去幾年許多研究學者引用邊界層(Boundary Layer)觀念[16,17]以消除控制力顫抖現象,遺憾的是若選擇 不適當的邊界層寬度時易造成系統不穩定的控制響應,意 鲁 指無法保證在邊界層中穩定性的需求。因此亦有學者引入 可處理不確定量估測的適應性演算法[18]以求減少控制力 顫抖現象,本發明即採用此法應用於全橋式變流器的控制 ' 上。另,傳統全橋式變流器等效數學模型的推導皆以電阻 、 性負載為主[19],獲得等效數學模型之後進行系統控制器 的設計與穩定性的分析,但通常於負載性質改變時,控制 系統的穩定性將不再被保證因而導致系統響應變差。有鑑 於此,本發明利用狀態空間平均法及線性化的技巧進行數 學等效模型的推導並以未知負載的形式取代傳統以電阻性 負載為基礎的變流器等效模型,以期系統能適用於各種負 載。 備註:參考文獻 [1] S. R. Bull, "Renewable energy today and tomorrow/5 Proc. IEEE, vol· 89, no. 8, pp· 1216—1226, 2001.Torque Control), sliding mode control (Siiding_M〇de Control) [9,10], etc. are all designed to make the system 7 1296460's behavior conform to the design requirements of system parameters and various external disturbances. Proportional, integral, and derivative controllers are simple to use, easy to design, and low in cost, so they are widely used in the industry's. However, for systems with uncertain dynamics, proportional-integral-derivative controllers do not provide perfect performance. Computational torque control uses a nonlinear term that eliminates some or all of the nonlinear equations to obtain its linearization equation, and then designs a linear feedback controller to violate the designed closed loop control characteristics. However, since the calculated torque control is based on the idealized theory of eliminating nonlinear dynamics, its shortcoming is the lack of understanding of the system uncertainty I in the time domain, including system parameter changes and external disturbances. Control gain to achieve system robustness and system stability. Variable Structure Control or Sliding Mode. Control is one of the effective methods of nonlinear robust control [9_18], because • the dynamics of the controlled system are not subject to system non-disc and quantification Impact. The design of the sliding mode control system can be divided into two major steps. Firstly, according to the required closed loop control, the sliding flat in the state change space is selected. The surface design control law makes the system state move toward the sliding plane and keeps sliding. on flat surface. The situation before the system state trajectory touches the sliding plane is called the Reaching Phase. Once the system state trace reaches the sliding plane, the system state remains on the plane and faces the target point. This condition is called the sliding phase. (Sliding Phase). However, when the system state is in the near phase, it will still be affected by system parameter changes and external interference. Therefore, many scholars have proposed the approach phase design or the total sliding mode control (Total Sliding-Mode Control) to reduce the system uncertainty. The impact [12-15]. Gao and Hung [12] jointly studied the design of the special law 12 1296460 to determine the dynamics of the system state when the phase is approaching, but in this case the system uncertainty will still affect the system control performance. Global, sliding mode control [13-15] means that the control process does not have an impending phase mode and all states are on the sliding plane, and the whole control process is not affected by the system uncertainty. 'But it may still cause control tremor and Stimulate system instability. In the past few years, many researchers have used the Boundary Layer concept [16, 17] to eliminate the control tremor phenomenon. Unfortunately, if the inappropriate boundary layer width is chosen, it will easily cause the unstable control response of the system. There is no guarantee of stability in the boundary layer. Therefore, some scholars have introduced an adaptive algorithm that can handle uncertainty estimation [18] in order to reduce the control tremor phenomenon. The present invention uses this method to apply to the control of a full-bridge converter. In addition, the equivalent mathematical model of the traditional full-bridge converter is based on resistance and sexual load [19]. After obtaining the equivalent mathematical model, the design and stability of the system controller are analyzed, but usually in the load nature. When changing, the stability of the control system will no longer be guaranteed and the system response will be degraded. In view of this, the present invention utilizes state space averaging method and linearization technique to deduct the mathematical equivalent model and replace the traditional resistive load-based converter equivalent model in the form of unknown load, so that the system can be applied to Various loads. Remarks: References [1] S. R. Bull, "Renewable energy today and tomorrow/5 Proc. IEEE, vol· 89, no. 8, pp· 1216-1226, 2001.
[2] S· Rahman,“Green power: what is it and where can we find it?,” IEEE Power Energy Mag., vol. I, no. 1? pp. 30 — 37, 2003. 9 1296460 [3] S. Duryea,S. Islam,and W· Lawrance,“A battery management system for stand-alone photovoltaic energy systems/9 IEEE Ind Appl Mag., vol. 75 no. 3? pp. 67 — 72, 2001.[2] S. Rahman, “Green power: what is it and where can we find it?,” IEEE Power Energy Mag., vol. I, no. 1? pp. 30 — 37, 2003. 9 1296460 [3] S. Duryea, S. Islam, and W. Lawrance, "A battery management system for stand-alone photovoltaic energy systems/9 IEEE Ind Appl Mag., vol. 75 no. 3? pp. 67 — 72, 2001.
[4] K. Raiashekara,“Hybrid fuel-cell strategies for dean power generationZ,IEEE Trans. Ind. ΑρρΙ, νοΧ. 41? n〇· 3, pp. 682 — 689, 2005.[4] K. Raiashekara, “Hybrid fuel-cell strategies for dean power generation Z, IEEE Trans. Ind. ΑρρΙ, νοΧ. 41? n〇· 3, pp. 682 — 689, 2005.
[5] T· F· Wu,C. H. Chang,and Y· H. Chen,“A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications^ IEEE Trans. Ind. Electron., vol. 47? no. 25 pp. 287 — 296, 2000.[5] T·F· Wu, CH Chang, and Y·H. Chen, “A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications^ IEEE Trans. Ind. Electron., vol. 47? No. 25 pp. 287 — 296, 2000.
[6] T. J· Liang,Y· C· Kuo, and J· F Chen,“Single-stage photovoltaic energy conversion system^ IEE Proc. Electr, Power Appl, vol. 148, no. 4, pp· 339 —344, 2001.[6] T. J. Liang, Y·C· Kuo, and J· F Chen, “Single-stage photovoltaic energy conversion system^ IEE Proc. Electr, Power Appl, vol. 148, no. 4, pp· 339 — 344, 2001.
[7] R. J. Wai and R· Y· Duan,“High step-up converter with coupled-inductor/5 IEEE Trans. Power Electron., vol. 20? no. 5, pp. 1025-1035, 2005.[7] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor/5 IEEE Trans. Power Electron., vol. 20? no. 5, pp. 1025-1035, 2005.
[8] K. J. Astrom and T. Hagglund, PID Controller: Theory, Design, and Tuning. Research Triangle Park? NC: ISA? 1995.[8] K. J. Astrom and T. Hagglund, PID Controller: Theory, Design, and Tuning. Research Triangle Park? NC: ISA? 1995.
[9] Κ· K· Shyu,Y· W· Tsai,and C· K· Lai,“Sliding mode control for mismatched uncertain systems/9 Electronic Letters, vol. 34, no. 24, pp· 2359-2360, 1998· 10 1296460 [10] Κ· K. Shyu,Y. W· Tsai,and C· Κ· Lai, “Stability regions estimation for mismatched uncertain variable structure systems with bounded controllers/5 Electronic Letters, vol. 35, no. 16? pp. 1388 —1390, 1999.[9] Κ·K· Shyu, Y·W· Tsai, and C·K· Lai, “Sliding mode control for mismatched uncertain systems/9 Electronic Letters, vol. 34, no. 24, pp· 2359-2360, 1998 · 10 1296460 [10] Κ· K. Shyu, Y. W. Tsai, and C· Κ· Lai, “Stability regions estimation for mismatched uncertain variable structure systems with bounded controllers/5 Electronic Letters, vol. 35, no. 16 Pp. 1388-1390, 1999.
[11] V. I. Utkin,“Sliding mode control design principles and applications to electric drives/5 IEEE Trans, Ind Electron., vol. 40, no. 1,pp· 23 —36, 1993.[11] V. I. Utkin, “Sliding mode control design principles and applications to electric drives/5 IEEE Trans, Ind Electron., vol. 40, no. 1, pp· 23 — 36, 1993.
[12] W. Gao and J. C. Hung, "Variable structure control for nonlinear systems: a new approach/9 IEEE Tran. Ind. Electron^ vol. 40? no. 1,pp. 2 — 22, 1993.[12] W. Gao and J. C. Hung, "Variable structure control for nonlinear systems: a new approach/9 IEEE Tran. Ind. Electron^ vol. 40? no. 1, pp. 2 — 22, 1993.
[13] J. C. Hung, “Total invariant VSC for linear and nonlinear systems,” A seminar given at Harbin Institute of Technology, Harbin, China,Dec· 1996; Hunan University Changsha,China, Dec. 1996.[13] J. C. Hung, “Total invariant VSC for linear and nonlinear systems,” A seminar given at Harbin Institute of Technology, Harbin, China, Dec 1996; Hunan University Changsha, China, Dec. 1996.
[14] K. K. Shyu and J. C. Hung, "Totally invariant variable structure control systems/5 IEEE Conf Ind Electron. Contn Instrument., vol· 3, pp· 1119—1123, 1997.[14] K. K. Shyu and J. C. Hung, "Totally invariant variable structure control systems/5 IEEE Conf Ind Electron. Contn Instrument., vol· 3, pp·1119—1123, 1997.
[15] K. K. Shyu,J. Y. Hung,and J. C. Hung,“Total sliding mode trajectory control of robotic manipulators/5 IEEE Conf. Ind Electron. Contr. Instrument., vol. 3? pp. 1062—1066, 1999.[15] K. K. Shyu, J. Y. Hung, and J. C. Hung, “Total sliding mode trajectory control of robotic manipulators/5 IEEE Conf. Ind Electron. Contr. Instrument., vol. 3? pp. 1062-1066, 1999.
[16] J. J. E. Slotine and W. Li? Applied Nonlinear Control. Englewood 1296460[16] J. J. E. Slotine and W. Li? Applied Nonlinear Control. Englewood 1296460
Cliffs, NJ: Prentice-Hall, 1991.Cliffs, NJ: Prentice-Hall, 1991.
[17] K. J. Astrom and B. Wittenmark, Adaptive Control. New York: Addison-Wesley, 1995.[17] K. J. Astrom and B. Wittenmark, Adaptive Control. New York: Addison-Wesley, 1995.
[18] R. J. Wai, uAdaptive sliding-mode control for induction servo motor drived IEE Proc. Electr. Power Appl, vol. 147? no. 6? pp. 553-562, 2000.[18] R. J. Wai, uAdaptive sliding-mode control for induction servo motor drived IEE Proc. Electr. Power Appl, vol. 147? no. 6? pp. 553-562, 2000.
[19] S. L. Jung and Y. Y. Tzou, "Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve/5 IEEE Trans. Power Electron., vol. 11, no. 4, pp· 567-577, 1996· 【發明内容】 本發明所揭示高性能低輸入電壓潔淨能源電力轉換系 統之整體架構,如圖1所示,低輸入電壓潔淨能源以低壓 直流電源10表示,其輸出電壓Γ/;ν並與高昇壓比直流/直流 轉換電路20連接’提供系統高昇壓比及高轉換效率之直流 /直流電壓轉換,高昇壓比直流/直流轉換電路架構如圖2 所示,直流輸入電路201之直流電壓Κ/ΛΓ,於一次側電路202 之功率半導體開關2導通時,電流將能量儲存於I馬合電感 7;之一次側繞組Α,同時二次側電路204耦合電感&之二次 側繞組A因具雙向電流導通迴路,所感應之電壓% (此時極 性點為正),串聯一再生被動式緩震電路203之箝制電容q 電壓,經由功率半導體開關2與放電二極體乃2迴路,對二 次側電路204高壓電容〇2充電(充電電流為—t)。當功率 12 1296460 半導體開關2截止瞬間,一次側電路202電流離開功率半 導體開關ρ,經由再生被動式緩震電路203之箝制二極體Di 流入該電路之箝制電容^\。而二次側電路204之電流L必 須利用箝制二極體q及放電二極體乃2續流,以釋放耦^電 感r — _人側繞組A漏感所儲存的能量,由高壓電容&吸收 -月匕里,在釋放二次側繞組&漏感能量後,依據磁通不滅 205之整流二極體%導通注入該電路之濾波電容^,取得 不易變動之直流電壓(,改善f用單級式潔淨能源 電力轉換糸統之直流匯流排電壓易受負载變動影塑的缺 點、,並與全橋式變流器30做—連接電路,同時直流^壓^ 可視為定值,並與後級變流器動態 控制系統的設計。 動肩,有效簡化變流器 [公式推導] 令耦合電感7;之一次側繞組^與 Μ,搞合係數々定義為 人側繞組&之㈣ k L· ⑴ L,Lm 其中4為激磁電感(又稱互感),% 不[19] SL Jung and YY Tzou, "Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve/5 IEEE Trans. Power Electron., vol. 11, no. 4, pp· 567- 577, 1996· [Invention] The overall architecture of the high-performance low-input voltage clean energy power conversion system disclosed in the present invention, as shown in FIG. 1, the low input voltage clean energy is represented by a low-voltage DC power source 10, and its output voltage Γ/; ν is connected with the high step-up ratio DC/DC conversion circuit 20 to provide DC/DC voltage conversion with high step-up ratio and high conversion efficiency of the system. The high step-up ratio DC/DC conversion circuit architecture is shown in FIG. 2, and the DC input circuit 201 is The DC voltage Κ/ΛΓ, when the power semiconductor switch 2 of the primary side circuit 202 is turned on, the current is stored in the first horse winding inductor 7; the secondary side circuit 204 is coupled to the secondary side of the inductor & Winding A has a bidirectional current conducting loop, the induced voltage % (the polarity point is positive at this time), and the clamped capacitor q voltage of the regenerative passive cushioning circuit 203 is connected in series, The power semiconductor switches and the discharge diode 2 2 is the circuit for the secondary-side high-voltage capacitor circuit 204 〇2 (charging current -t). When the power 12 1296460 semiconductor switch 2 is turned off, the primary side circuit 202 current leaves the power semiconductor switch ρ, and the clamped diode Di of the regenerative passive cushion circuit 203 flows into the clamped capacitance of the circuit. The current L of the secondary side circuit 204 must use the clamp diode q and the discharge diode to be 2 freewheeling to release the energy stored in the leakage inductance of the inductor r__human side winding A, by the high voltage capacitor & In the absorption-moon ,, after releasing the secondary side winding &litude leakage energy, the rectifying diode of the magnetic flux 205 is turned on and the filter capacitor of the circuit is turned on, thereby obtaining a DC voltage that is not easily changed (for improving f) The DC busbar voltage of the single-stage clean energy power conversion system is susceptible to the fluctuation of the load, and is connected to the full-bridge converter 30. At the same time, the DC voltage can be regarded as a fixed value, and The design of the dynamic control system of the rear-stage converter. The movable shoulder, effectively simplifying the converter [formula derivation] Let the coupled inductor 7; the primary winding ^ and Μ, the combination coefficient 々 is defined as the human side winding & (4) k L· (1) L, Lm where 4 is the magnetizing inductance (also known as mutual inductance), % is not
Gn=^ = l±!± + £(t^Xn~l) ^in 1-D l — D 感’藉由電路的分析,可推導得知側繞組a之漏 關2所承受之電Μ如林式(2)及方程^^電壓增益及開 13 (2) 1296460Gn=^ = l±!± + £(t^Xn~l) ^in 1-D l — D Sense' By the analysis of the circuit, it can be deduced that the leakage of the side winding a is affected by Forest type (2) and equation ^^ voltage gain and open 13 (2) 1296460
'DS + 1 一D 2(1 - D)'DS + 1 - D 2 (1 - D)
^IN (3) 其中D為開關責任周期,令耦合係數A:等於1時,可改寫方 程式(2)及方程式(3)如下:^IN (3) where D is the duty cycle of the switch, so that the coupling coefficient A: is equal to 1, the formula (2) and equation (3) can be rewritten as follows:
Gv\ =Gv\ =
Vd _2 +Vd _2 +
VjnVjn
yDSyDS
Vin/(\ — D) (4)(5)Vin/(\ — D) (4)(5)
將方程式(5)代入方程式(4)後可得到開關所承受之電壓值 如下: VDS = + (6) 觀察方程式(6),將輸出電壓匕及匝數比π固定,功率 半導體開關δ所承受電壓與輸入電壓厂^及責任周期d無 關,因此可以確保功率半導體開關元件之所承受最高電壓 為定值。只要輸入電壓不高於開關2耐壓,依據方程式(6) 所設計之轉換電路,配合原本高電壓增益比之特性,將可 接受高、低電壓大範圍變動之輸入電壓。 全橋式變流器30連接高昇壓比直流/直流轉換電路 20,做為直流/交流轉換之用,系統控制單元50包含微處 理器60及驅動電路70,本發明透過系統狀態的迴授,利 用微處理器 60以正弦脈波寬度調變(Sinusoidal Pulse-Width-Modulation,SPWM)技術中的單極性(Unipolar) 電壓切換方式控制並輸出驅動信號,藉由變流器之驅動電 路70對全橋式變流器30的四個功率晶體開關進行控制, 其輸出與低通濾波器40連接,藉此對交流電壓進行濾波, 14 1296460 以知到設計之正弦輸出電壓v〇,並供電給負載8〇使用。 解耦後的系統等效電路如圖3所示,為使說明精簡易 於瞭解’專有名詞不至於冗長,電路歸屬圖號(如...電路 忉)省略之,直接對照說明所屬圖式即可明瞭。圖中p為 高昇壓比直流/直流轉換電路輸出之直流匯流排電壓二二 為直流匯流排電I經過全橋式變流器調變後含有高頻譜= 成份之交流電壓,其高頻諧波成份可透過適#設計之滤波 電感Zy及濾波電容所組成的低通濾波器所濾除,進一 步得到交流輸出電壓V〇並提供負載&使用,、及七分別為 1波電感及濾波電容之等效内阻’而電“因負載 夂化所引起之干擾電流。為方便分析及簡化狀態空間方程 式的推導’本文假設(1)濾波電感^及濾波電容&之等效内 阻很小’故於此忽略不計;(2)假設功率關為理想元件, 開關之導通損失及切換損失為零;(墙略開關導通與截止 之反應延遲時間;(4)開關切換頻率遠大於系統的自然頻率 及調變頻率’故於-開關切換周期内可將控制訊號及輸入/ 輸出電壓視為定值。 …依據上述假設條件,將單極性正弦脈波寬度調變的功 率開關切換方式分成正負半周,由於負半周除^的電壓極 性與正半周相反外,其動作原理與正半周相仿,因此,以 下細部分析以正半周期作一介紹。開關於正半周切換時具 有兩種不同狀態,等效電路如圖4所示,故本文針對正半 周利用狀態空間平均法及線性化技巧推導後,整個正半周 切換的動態空間方程式可表示為 15 1296460 VC/ ⑺ ⑻ WC/ 其中,· 、· . (9) "為:切1上分別為濾波電感、濾波電容及負載之電流, 尤義貝任周期Α=ν⑽/1·與橋式功率級增益 之亡方ί tν⑽為正弦控制信號、為三角波信號 ,方程式⑺至方程式(9),則I統動態模型可改 ;口方私式⑽所*,並透過拉氏轉換τ麵f〇_ 可進一步將變流器等效模型表示如圖5所示。Substituting equation (5) into equation (4), the voltage value of the switch can be obtained as follows: VDS = + (6) Observe equation (6), fix the output voltage 匝 and turns ratio π, and the power semiconductor switch δ The voltage is independent of the input voltage factory and the duty cycle d, thus ensuring that the highest voltage to which the power semiconductor switching element is subjected is constant. As long as the input voltage is not higher than the withstand voltage of switch 2, the conversion circuit designed according to equation (6), in combination with the original high voltage gain ratio, will accept input voltages with high and low voltage variations. The full-bridge converter 30 is connected to the high-boost DC/DC converter circuit 20 for DC/AC conversion. The system control unit 50 includes a microprocessor 60 and a drive circuit 70. The present invention transmits feedback through the system state. The microprocessor 60 controls and outputs a driving signal by a unipolar (unipolar) voltage switching method in a sinusoidal pulse-width-modulation (SPWM) technique, and the driving circuit 70 of the converter is fully integrated. The four power crystal switches of the bridge converter 30 are controlled, and the output thereof is connected to the low pass filter 40, thereby filtering the AC voltage, 14 1296460 to know the sinusoidal output voltage v〇 of the design, and supplying power to the load 8〇 use. The decoupled system equivalent circuit is shown in Figure 3. In order to make the description simple and easy to understand that 'proper nouns are not too long, the circuit attribution figure number (such as ... circuit 忉) is omitted, directly compare the description of the schema It will be clear. In the figure, p is the DC busbar voltage of the high-boost ratio DC/DC converter circuit. The voltage of the DC busbar is two. The DC busbar I is modulated by the full-bridge converter and contains the high-frequency spectrum of the component. The component can be filtered by a low-pass filter composed of a filter inductor Zy and a filter capacitor, and further obtain an AC output voltage V〇 and provide a load & use, and a seven-wave inductor and a filter capacitor respectively. Equivalent internal resistance 'and electric "interference current caused by load deuteration. For the convenience of analysis and simplification of the derivation of the state space equation" This paper assumes that (1) the filter inductance ^ and the filter capacitor & equivalent internal resistance is small ' Therefore, it is neglected; (2) Assume that the power is turned off as an ideal component, the conduction loss and switching loss of the switch are zero; (the reaction delay time of the wall switch is turned on and off; (4) the switching frequency of the switch is much larger than the natural frequency of the system. And the modulation frequency 'because the control signal and the input/output voltage can be regarded as fixed values during the switching period of the switch. ... according to the above assumptions, the power of the unipolar sinusoidal pulse width is modulated. The switching mode is divided into positive and negative half cycles. Since the voltage polarity of the negative half cycle is opposite to that of the positive half cycle, the operation principle is similar to that of the positive half cycle. Therefore, the following detailed analysis is introduced in the positive half cycle. The switch has two in the positive half cycle switching. For different states, the equivalent circuit is shown in Figure 4. Therefore, the dynamic space equation for the whole positive half cycle can be expressed as 15 1296460 VC/ (7) (8) WC/ where the positive half cycle is deduced by the state space averaging method and linearization technique. (9) " is: cut 1 is the current of the filter inductor, filter capacitor and load, especially the period Α = ν (10) / 1 · and the bridge power level gain ί tν (10) is The sinusoidal control signal, which is a triangular wave signal, and the equations (7) to (9), the dynamic model of the I system can be changed; the private mode of the mouth (10)*, and the transformation of the τ face by the Lagrangian f〇_ can further optimize the converter The model representation is shown in Figure 5.
WMWM
KPKP
LfCf ' ---iLfCf ' ---i
LfCf'con C/〇rC~fid (10) 選擇交流輸出電壓νσ作為系統狀態且%”作為控制變數,則 方程式(10)可重新整理如下·· •^(0 ~ aPx(t) + bpu{t) + cpz(t) + m(t) ~ (apn + ^apn)x(f) + (bpn + Abpn)u(t) + (Cpn+Acpn)Z(t) + m(t) =αρηχ(β) + bpn^(t)+Cpnz(t) + W(t) ( n ) 其中 4t) = v0、u(t) = vcon、af—vwc》、bp=KpwM/(LfC〇、 cp =-l/c,LL以及%、心及c〆分別表 示常態情況下α〆〜及的系統參數;△%、△心及Ac^代 表系統參數擾動量;w(〇代表總集不確定量並定義為 w(t) = Δα^χ(〇 + Abpnu(t) + h,cpnz{t) + m(t) (12) 1296460 其中總集不確定量之邊界值給定如方程式(13)所示,其中p 為一正值常數。 |w(0| < P (13)LfCf'con C/〇rC~fid (10) Select the AC output voltage νσ as the system state and %” as the control variable, then equation (10) can be rearranged as follows···^(0 ~ aPx(t) + bpu{ t) + cpz(t) + m(t) ~ (apn + ^apn)x(f) + (bpn + Abpn)u(t) + (Cpn+Acpn)Z(t) + m(t) =αρηχ (β) + bpn^(t)+Cpnz(t) + W(t) ( n ) where 4t) = v0, u(t) = vcon, af_vwc", bp=KpwM/(LfC〇, cp = -l/c, LL and %, heart and c〆 respectively represent the system parameters of α〆~ and in the normal state; △%, △心 and Ac^ represent the system parameter disturbance amount; w(〇 represents the total set uncertainty and is defined Let w(t) = Δα^χ(〇+ Abpnu(t) + h, cpnz{t) + m(t) (12) 1296460 where the boundary value of the total set uncertainty is given as shown in equation (13), Where p is a positive constant. |w(0| < P (13)
為使全橋式變流器於不確定量及外來干擾的情況下其 輸出電壓仍可有效的追隨電壓命令,本發明以適應性全域 滑動控制(Adaptive Total Sliding-Mode Control,ATSMC)對 變流器之輸出電壓進行控制,如圖6所示,定義控制誤差 己-X — V〇 ^cmd ’其中心/為輸出電壓命令,並設計 滑動平面為 (0 = c(e) c(e〇) ~ j—rAedr (14) 其中e = [e έ]Γ,A= j 1 ,勻及灸2為正值常數,c⑷代 一-允2 -允1」 表指標函數並將其設計成。為<〇的初始 值0 適應性全域滑動模式控制系統主要可分成三個部分: • 第一部份是系統性能規劃,此方式主要在明確規劃常態情 況下期望獲得的系統效能,且將其歸屬為基礎模型設計 (Baseline Model Design)〜;第二部分是約束控制器 (Curbing Controller) wc的建構,亦即消除產生來自於系統參 數變化、負載干擾電流以及未模式化系統動態之不可預測 的擾亂效應,使其能完全地滿足基礎模型設計的系統效 能;再者,第三部分為發展適應性演算法則(Adaptive Observation Design)^,對總集不確定量之上界進行估測, 17 1296460 以避免因約束控制器上界選取不當而造成的控制力顫抖現 象。適應性全域滑動變流器控制系統之整體控制設計如定 理一所示,此外,若系統後級直流/交流轉換機制改變時, 亦可以同樣方式進行推導,進而完成變流器控制系統設計。 [定理一] 假設方程式(11)所示之全橋式變流器採用適應性全域 滑動模式控制,控制器各部分設計如方程式(15)至方程式 (17)所示,並發展適應性演算法則如方程式(18)所示,則系 統之穩定度將得以被保證。 u = ub +uc (15) ub = -bpln(apnx + cpnz - + Ι^έ + k2e) (16) uc =-p(〇^sgn(^(〇) (17) kt) = jb-pln\Sl(t)\ (18) 其中sgn(·)為符號函數,·為絕對值函數,;l為一正值常數。 [證明] 依據里亞普諾(Lyapunov)穩定理論[16,17]的分析,變流器控 制系統的穩定度將可被保證,因定理一的證明與參考文獻 [18]大致相同,故此予以省略。 【實施方式】 本發明所揭示之高性能低輸入電壓潔淨能源電力轉換 系統,實施例採用6塊茂迪公司所生產的F-MSN-75W-R-02 型號之太陽能板併聯作為低壓直流電源供應高昇壓比直流 /直流轉換電路所使用,該太陽能板在標準測試條件 1296460 2下之單板電氣規格為額定輸出功率為 Μ567Λ頜疋輸出電壓為1T228V,額定輸出電流為 轉換效率;壓為η··,短路電流為4·9649Α及光電 關^主彳'、、' ·92/°,由於高昇壓比直流/直流轉換電路之開 ㉟I貝*週期D約為G·5時,將使得各電路元件導通電流具有 =漣波成份’尤其導通關係為互補之元件,其影響更 7、、者’且因太陽能板輸入電壓於17V左右接近最大功率 —而/、有#x佳的使用效率,故可彻方程式(4),並設定額 疋輸出電壓為2GGV ’本發明設計㈣比〃等於4,透過方程 式⑹可得到開關最高箝制電壓為34V。即使輸人最低電壓 為1〇V且輸出電壓為2〇〇V時,可經由方程式(4)計算此時責 任周期Z)為G.7 ’此為實務可接受之值。本發明^定高昇壓 比直流/直流轉換電路開關切換頻率*1〇〇kHz,為一般業界 所系用之咼頻切換頻率,詳細電路規格整理如下:In order to make the full-bridge converter follow the voltage command effectively under the condition of uncertainty and external interference, the present invention adopts Adaptive Total Sliding-Mode Control (ATSMC) to change the current. The output voltage of the device is controlled, as shown in Figure 6, the control error is defined as -X - V〇^cmd 'the center / is the output voltage command, and the sliding plane is designed to be (0 = c(e) c(e〇) ~ j-rAedr (14) where e = [e έ]Γ, A= j 1 , homogenization and moxibustion 2 are positive constants, c(4) generation one-allow 2 - allow 1" table index function and design it as <〇 initial value 0 The adaptive global sliding mode control system can be mainly divided into three parts: • The first part is the system performance planning, which is mainly to specify the system performance expected under the normal situation and to attribute it to Baseline Model Design~; The second part is the construction of the Curing Controller wc, which eliminates the unpredictable disturbances from system parameter changes, load disturbance currents and unpatterned system dynamics. Effect Can fully meet the system performance of the basic model design; in addition, the third part is the development of adaptive algorithm (Adaptive Observation Design) ^, the upper bound of the total set of uncertainty estimates, 17 1296460 to avoid the constraint controller The control tremor caused by improper selection of the upper bound. The overall control design of the adaptive global sliding converter control system is shown in Theorem 1. In addition, if the DC/AC conversion mechanism of the system is changed in the same way, it can be performed in the same way. Derivation, and then complete the design of the converter control system. [Theorem 1] Assume that the full-bridge converter shown in equation (11) adopts adaptive global sliding mode control, and the various parts of the controller are designed as equations (15) to equations ( 17) and develop the adaptive algorithm as shown in equation (18), then the stability of the system will be guaranteed. u = ub +uc (15) ub = -bpln(apnx + cpnz - + Ι^έ + k2e) (16) uc =-p(〇^sgn(^(〇) (17) kt) = jb-pln\Sl(t)\ (18) where sgn(·) is a sign function and · is an absolute value Function, ;l is a positive constant. [proof] According to Riapuno (Lyapunov) stability theory [16,17] analysis, the stability of the converter control system will be guaranteed, because the proof of theorem 1 is roughly the same as the reference [18], so it will be omitted. [Embodiment] The present invention The disclosed high-performance low-input voltage clean energy power conversion system adopts six F-MSN-75W-R-02 solar panels produced by Motech to be connected as a low-voltage DC power supply with high boost ratio DC/DC. The conversion circuit is used, the solar panel under the standard test condition 1296460 2, the electrical specifications of the board is rated output power is Μ567Λ, the output voltage of the jaw is 1T228V, the rated output current is the conversion efficiency; the pressure is η··, and the short-circuit current is 4 · 9649Α and photoelectric switch ^ main 彳 ',, ' · 92 / °, because the high boost ratio DC / DC conversion circuit open 35I Bay * cycle D is about G · 5, will make each circuit component conduction current has = 涟The wave component's special conduction relationship is a complementary component, and its influence is more, and the 'the solar panel input voltage is close to the maximum power at around 17V—and there is a good use efficiency of #x, so the equation can be Equation (4), and the set value 疋 output voltage is 2GGV ′. The design (4) of the present invention is equal to 4, and the maximum clamp voltage of the switch is 34V by the equation (6). Even if the minimum input voltage is 1 〇V and the output voltage is 2 〇〇V, the duty cycle Z) at this time can be calculated by equation (4) as G.7 ’, which is a practically acceptable value. The invention has a high-boost ratio DC/DC conversion circuit switching frequency *1 〇〇 kHz, which is a frequency switching frequency used by the general industry, and the detailed circuit specifications are as follows:
Vd : DC 200VVd : DC 200V
Tr : L{ =9μΗ ; I2 =143μΗ ; Nx : N2=3 : 12 ; k=0.97 ; core : EE-55 Q : IRFP048N : 55V/64A ; CIN : 3300μΡ/50Υ*2 Cx : 6.8μΡ/10〇ν ; C2 : 1μΡ/25〇ν*2 ; C〇 : 47μΡ/45〇ν*2 Dx : SB2060, 60V/20A (Schottky), TO-220AC D2,D〇 : SB20200CT, 200V/20A (Schottky), TO-220AB 為瞭解本發明所延用之高昇壓比直流/直流轉換電路 内容,以下實施例之實驗波形,電路元件之電壓及電流之 代號,敬請參閱圖2。 1296460 南昇壓比直流/直流轉換電路於輸出功率4〇w(輕載)及 320W(重載)時之實作響應如圖7及圖8所示,由圖中可以發 現開關兩端電壓〜被箝制在34V左右,開關電流^近似^ 波,顯示開關具有較佳的利用率並可降低導通損。檢视所 有的二極體電壓及電流波形,逆向恢復電流均低於導通電 流,且在未加緩震電路的情況下,二極體兩端不存在突波 電壓且低於輸出電壓200V,表示二極體已達成電壓箝制及 柔性切換效果,值得一提的是輕載時因電流不連續,耦合 電感一次侧及二次侧繞組之漏感將與其他元件内部的寄生 電容產生諧振現象,如圖7中v瓜波形即為一次側繞組之漏 感與開關内部寄生電容諧振所致。 圖9為高昇壓比直流/直流轉換電路於負載由8〇w遂漸 變化至320W時,整流二極體的電流心、電壓v外及開關 2的電壓v瓜實作響應波形,由圖可以發現在不同負載的情 況下,二極體的電壓均在2〇〇v以下,而開關!β電壓仍有不 錯的箝制效果,圖10為不同負載時的轉換效率,電路最高 轉換效率超過96.5%,於輕載時轉換效率均在95%以上,由 此可驗證本發明所採用高昇壓比直流/直流轉換電路之有 效性。 本發明採用德州儀器公司所生產之數位信號處理器 TMS320LF2407A實現適應性全域滑動模式控制於全橋式 變流器,開關切換頻率為20kHz,變流器詳細電路規袼整理 如下=Tr : L{ =9μΗ ; I2 =143μΗ ; Nx : N2=3 : 12 ; k=0.97 ; core : EE-55 Q : IRFP048N : 55V/64A ; CIN : 3300μΡ/50Υ*2 Cx : 6.8μΡ/10〇 ν ; C2 : 1μΡ/25〇ν*2 ; C〇: 47μΡ/45〇ν*2 Dx : SB2060, 60V/20A (Schottky), TO-220AC D2, D〇: SB20200CT, 200V/20A (Schottky), TO-220AB To understand the contents of the high step-up ratio DC/DC converter circuit used in the present invention, the experimental waveforms of the following embodiments, the voltage and current codes of the circuit components, please refer to FIG. 1296460 South boost ratio DC / DC conversion circuit in the output power 4 〇 w (light load) and 320 W (heavy load) real response as shown in Figure 7 and Figure 8, from the figure can be found at the voltage across the switch ~ It is clamped at about 34V, and the switching current is approximately ^ wave, which shows that the switch has better utilization and can reduce the conduction loss. View all the diode voltage and current waveforms, the reverse recovery current is lower than the on current, and in the absence of the cushioning circuit, there is no surge voltage at both ends of the diode and lower than the output voltage of 200V, indicating The diode has achieved voltage clamping and flexible switching effects. It is worth mentioning that the current leakage is discontinuous at light load, and the leakage inductance of the primary side and secondary winding of the coupled inductor will resonate with the parasitic capacitance inside other components, such as The waveform of the v melon in Fig. 7 is caused by the leakage inductance of the primary side winding and the resonance of the internal parasitic capacitance of the switch. Figure 9 is a high-boost ratio DC/DC converter circuit. When the load is changed from 8〇w遂 to 320W, the current center of the rectifying diode, the voltage v and the voltage of the switch 2 are reflected. It is found that the voltage of the diode is below 2〇〇v under different loads, and the switching!β voltage still has a good clamping effect. Figure 10 shows the conversion efficiency under different loads. The maximum conversion efficiency of the circuit exceeds 96.5%. The conversion efficiency is above 95% at light load, thereby verifying the effectiveness of the high step-up ratio DC/DC conversion circuit used in the present invention. The invention adopts the digital signal processor TMS320LF2407A produced by Texas Instruments Co., Ltd. to realize the adaptive global sliding mode control in the full bridge converter, the switching frequency of the switch is 20 kHz, and the detailed circuit rules of the converter are as follows:
Ta+Ja-Jb^tb^ : IRFP264:250V/38A 20 1296460 〇/:26.8μΡ 又。十系、、先輪出電壓命令為110Vrms/60Hz,並選擇 控制變數勾=249 Z, _ , 性 / · 9心=830,又=1.66;圖11為系統於電阻 ^系統分別採用基礎模型控制器與適應性全域滑動 制之貫作響應’由圖U(a)可發現經由基礎模型控 貫現之系統響應具有響應誤差,而適應性全域滑動Ta+Ja-Jb^tb^ : IRFP264:250V/38A 20 1296460 〇/:26.8μΡ Also. The ten system, the first wheel voltage command is 110Vrms/60Hz, and the control variable hook = 249 Z, _, sex / · 9 heart = 830, and = 1.66; Figure 11 shows the system using the basic model control in the resistance system The response of the adaptive and global sliding system is shown in Figure U(a). The system response via the basic model can be found to have response errors, while adaptive global sliding
Γ 則可幫助系統克服由不確定量造成之響應誤差,並 ®^善輪出雷㉟ &、、、心諧波失真(Total Harmonic Distortion, 1 HD) ’ 如圄 11 a、 阻性 、:Kb)所示。圖12(a)及圖12(b)分別為系統於電 ^ 、載日守輪载到重载及重載到輕載時的實作響應,由圖 可以發現系幼认& 於負載瞬間變化時系統輸出電壓仍可追隨命 、 ”、、貝不系統具有良好的暫態響應。圖13分別為系統 於電阻雷交把含& 从偷 B負載、電阻電感性負載及非線性負載下的實 作響應,由图 負载:“ **13(a)及圖13(b)可以發現系統對於電阻電容性 丄 電阻電感性負载均具有良好的控制響應,而在非線 性負载a年,& 2 ^淨、統因輸出電流瞬間變化造成輸出電壓於峰 值點p付$ & # ^ 的形況,但系統輸出電壓總諧波失真仍在諧 波管制規範限制5%之内。 【圖式簡單說明】Γ It can help the system overcome the response error caused by the uncertainty, and ®^, Harmonic Distortion (1 HD), such as 圄11 a, resistive, Kb) is shown. Fig. 12(a) and Fig. 12(b) show the actual response of the system to the load and the heavy load and the heavy load to the light load. The figure shows that the system recognizes & When the system changes, the output voltage can still follow the life, ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The actual response, from the graph load: "**13 (a) and Figure 13 (b) can be found that the system has a good control response to the resistive capacitive 丄 resistance inductive load, and in the non-linear load a year, & 2 ^Net, due to the instantaneous change of output current caused the output voltage to pay $ &# ^ at the peak point p, but the total harmonic distortion of the system output voltage is still within 5% of the harmonic control specification. [Simple description of the map]
圓 1 I Θ 發明高性能低輸入電壓潔淨能源電力轉換系統之 整體架構。 圖 2 jk 明高性能低輸入電壓潔淨能源電力轉換系統之 馬昇壓比直流/直流轉換電路架構。 "3 本發明高性能低輸入電壓潔淨能源電力轉換系統之 21 1296460 等效電路。 圖4 本發明高性能低輸入電壓潔淨能源電力轉換系統之 全橋式變流器於正半周切換時之兩種狀態··(a)G+及 導通;(b)h+及4+導通或心―及導通。 圖5 本發明高性能低輸入電壓潔淨能源電力轉換系統之 變流器等效模型。 圖6 本發明高性能低輸入電壓潔淨能源電力轉換系統之 適應性全域滑動模式變流器控制系統。 圖7 本發明高性能低輸入電壓潔淨能源電力轉換系統之 高昇壓比直流/直流轉換電路實施例之一,應用於太 陽能板昇壓至200V,輸出功率40W時各元件電壓及 電流波形。 圖8 本發明高性能低輸入電壓潔淨能源電力轉換系統之 高昇壓比直流/直流轉換電路實施例之一,應用於太 陽能板昇壓至200V,輸出功率320W時各元件電壓 及電流波形。 圖9 本發明高性能低輸入電壓潔淨能源電力轉換系統之 高昇壓比直流/直流轉換電路實施例之一,應用於太 陽能板昇壓至200V,輸出功率由80W變化至320W 時k、、及¥波形。 圖10本發明高性能低輸入電壓潔淨能源電力轉換系統之 高昇壓比直流/直流轉換電路實施例之一,應用於太 陽能板昇壓至200V,輸出功率由40W變化至320W 時之轉換效率。 22 1296460 圖11本發明高性能低輸入電壓潔淨能源電力轉換系統之 變流器控制系統實施例之一,系統於電阻性負載下 之實作響應:(a)基礎模型控制;(b)適應性全域滑動 模式控制。 圖12本發明高性能低輸入電壓潔淨能源電力轉換系統之 適應性全域滑動模式變流器控制系統實施例之一, 電阻性負載時之實作響應:(a)輕載到重載;(b)重載 到輕載。 圖13本發明高性能低輸入電壓潔淨能源電力轉換系統之 適應性全域滑動模式變流器控制系統於不同負載時 實作響應:(a)電阻電容性負載;(b)電阻電感性負載; (c)非線性負載。 【主要元件符號說明】 10 :低壓直流電源 20:高昇壓比直流/直流轉換電路 201 :直流輸入電路 202 : —次側電路 203 :再生被動式緩震電路 204 :二次側電路 205 :濾波電路 30 :全橋式變流器 40 :低通濾波器 50 :系統控制單元 60 :微處理器 23 1296460 70 :驅動電路 80 :負載 :低壓直流電源輸出電壓 :低壓直流電源輸出電流 ^ :高昇壓比直流/直流轉換電路輸出電壓 :全橋式變流器輸出電壓 全橋式變流器輸出電流 7;:具高激磁電流之變壓器(簡稱耦合電感) • 2:高昇壓比直流/直流轉換電路之功率半導體開關 A:耦合電感一次側繞組 A:耦合電感二次側繞組 . 4:耦合電感一次側激磁電感 4:耦合電感一次側繞組漏感 c/7V:直流輸入電路之輸入電容 q:再生被動式緩震電路之箝制電容 c2:二次側電路之高壓電容 ® :濾波電路之濾波電容 A:再生被動式緩震電路之箝制二極體 Z)2 :再生被動式緩震電路之放電二極體 :濾波電路之整流二極體 24Round 1 I 发明 Invented the overall architecture of a high performance, low input voltage clean energy power conversion system. Figure 2 jk shows the horse-boost ratio DC/DC conversion circuit architecture for high-performance, low-input, clean energy power conversion systems. "3 The high performance low input voltage clean energy power conversion system of the invention 21 1296460 equivalent circuit. Fig. 4 Two states of the full-bridge converter of the high performance low input voltage clean energy power conversion system of the present invention when switching in the positive half cycle·(a)G+ and conduction; (b)h+ and 4+ conduction or heart- And conduction. Fig. 5 is a converter equivalent model of the high performance low input voltage clean energy power conversion system of the present invention. Figure 6 is an adaptive global sliding mode converter control system for a high performance, low input voltage clean energy power conversion system of the present invention. Fig. 7 shows a high-boost ratio DC/DC conversion circuit embodiment of the high-performance low-input voltage clean energy power conversion system of the present invention, which is applied to a voltage and current waveform of each component when the solar panel is boosted to 200V and the output power is 40W. FIG. 8 is a schematic diagram of a high step-up ratio DC/DC conversion circuit of the high performance low input voltage clean energy power conversion system of the present invention, which is applied to voltage and current waveforms of various components when the solar panel is boosted to 200V and the output power is 320W. 9 is a high-boost ratio DC/DC conversion circuit embodiment of the high-performance low-input voltage clean energy power conversion system of the present invention, which is applied to a solar panel boosted to 200V, and the output power is changed from 80W to 320W, k, and ¥ Waveform. Fig. 10 is a schematic diagram of a high step-up ratio DC/DC conversion circuit of the high performance low input voltage clean energy power conversion system of the present invention, which is applied to a conversion efficiency when the solar panel is boosted to 200V and the output power is changed from 40W to 320W. 22 1296460 Figure 11. One of the embodiments of the converter control system for the high performance low input voltage clean energy power conversion system of the present invention, the system's actual response under resistive load: (a) basic model control; (b) adaptability Global sliding mode control. 12 is an embodiment of an adaptive global sliding mode converter control system of the high performance low input voltage clean energy power conversion system of the present invention, and the actual response in the case of resistive load: (a) light load to heavy load; (b ) Heavy to light load. Figure 13 is an adaptive global sliding mode converter control system of the high performance low input voltage clean energy power conversion system of the present invention that responds at different loads: (a) resistive capacitive load; (b) resistive inductive load; c) Non-linear load. [Main component symbol description] 10: Low-voltage DC power supply 20: High-boost ratio DC/DC conversion circuit 201: DC input circuit 202: - Secondary circuit 203: Regeneration passive mode circuit 204: Secondary circuit 205: Filter circuit 30 : Full-bridge converter 40: Low-pass filter 50: System control unit 60: Microprocessor 23 1296460 70: Drive circuit 80: Load: Low-voltage DC power supply Output voltage: Low-voltage DC power supply output current ^: High step-up ratio DC /DC converter circuit output voltage: full-bridge converter output voltage full-bridge converter output current 7;: transformer with high excitation current (referred to as coupled inductor) • 2: high boost ratio DC/DC converter circuit power Semiconductor switch A: coupled inductor primary winding A: coupled inductor secondary winding. 4: coupled inductor primary side magnetizing inductance 4: coupled inductor primary winding leakage inductance c/7V: DC input circuit input capacitor q: regenerative passive slow Clamping capacitor c2 of the shock circuit: high-voltage capacitor of the secondary circuit®: filter capacitor of the filter circuit A: clamped diode of the regenerative passive cushion circuit Z) 2: regenerative passive Discharging diode circuits: the filter circuit rectifier diode 24
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95101845A TWI296460B (en) | 2006-01-18 | 2006-01-18 | High-performance power conditioner for clean energy with low input voltage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95101845A TWI296460B (en) | 2006-01-18 | 2006-01-18 | High-performance power conditioner for clean energy with low input voltage |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200729683A TW200729683A (en) | 2007-08-01 |
TWI296460B true TWI296460B (en) | 2008-05-01 |
Family
ID=45068773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95101845A TWI296460B (en) | 2006-01-18 | 2006-01-18 | High-performance power conditioner for clean energy with low input voltage |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI296460B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868764B (en) * | 2014-02-26 | 2017-08-04 | 全汉企业股份有限公司 | Inverter and power supply conversion method thereof |
JP6394760B1 (en) * | 2017-07-27 | 2018-09-26 | オムロン株式会社 | Power converter and control method of power converter |
-
2006
- 2006-01-18 TW TW95101845A patent/TWI296460B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200729683A (en) | 2007-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Choi et al. | Fundamental duty modulation of dual-active-bridge converter for wide-range operation | |
Wai et al. | Newly designed ZVS multi-input converter | |
Kim et al. | Soft-switching current-fed push–pull converter for 250-W AC module applications | |
Wai et al. | High-efficiency single-input multiple-output DC–DC converter | |
TWI568166B (en) | A High Efficiency LLC Resonant Converter with Secondary Side Synchronous Rectifier Blind Control | |
TWI296457B (en) | High-performance power conditioner for solar photovoltaic system | |
Dusmez et al. | A fully integrated three-level isolated single-stage PFC converter | |
Choi et al. | High-frequency-link soft-switching PWM DC–DC converter for EV on-board battery chargers | |
CN103944395B (en) | Preceding stage DC converter for proton exchange membrane fuel cell and construction method thereof | |
CN103199707A (en) | Method for controlling drive pulses of DAB type bidirectional isolation DC-DC converter | |
TWI683523B (en) | LLC resonant converter capable of adjusting input voltage with load variation | |
CN106992535B (en) | A constant current precharging method for high voltage DC bus capacitors of power routers | |
Ngo et al. | Study of single-phase bidirectional battery charger for high power application | |
Jeong et al. | Electrolytic capacitor-less single-power-conversion on-board charger with high efficiency | |
Yu et al. | A soft-switching control for cascaded buck-boost converters without zero-crossing detection | |
Sun et al. | Adaptive dead-time modulation scheme for a bidirectional LLC resonant converter in energy router | |
Anwar et al. | A high power density drivetrain-integrated electric vehicle charger | |
TWI556078B (en) | Dynamic voltage restorer and transient voltage control mechanism thereof | |
TWI296460B (en) | High-performance power conditioner for clean energy with low input voltage | |
CN112737391B (en) | A single-phase single-stage boost inverter and control method | |
Choi et al. | High-efficiency supercapacitor charger using an improved two-switch forward converter | |
Cho et al. | Design of LCC resonant converter for renewable energy systems with wide-range input voltage | |
CN114499212A (en) | A current stress-optimized extended phase-shift control method for dual active full-bridge DC-DC converters | |
CN209805671U (en) | single three-phase input voltage compatible magnetic integrated bridgeless power factor correction device | |
Nandankar et al. | High efficiency discontinuous mode interleaved multiphase bidirectional dc-dc converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |