TWI292678B - Top-emittierendes, elektrolumineszierendes bauelement mit zumindest einer organischen schicht - Google Patents
Top-emittierendes, elektrolumineszierendes bauelement mit zumindest einer organischen schicht Download PDFInfo
- Publication number
- TWI292678B TWI292678B TW094123978A TW94123978A TWI292678B TW I292678 B TWI292678 B TW I292678B TW 094123978 A TW094123978 A TW 094123978A TW 94123978 A TW94123978 A TW 94123978A TW I292678 B TWI292678 B TW I292678B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- electrode
- light
- additional layer
- organic
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims description 224
- 238000000034 method Methods 0.000 claims description 86
- 239000012044 organic layer Substances 0.000 claims description 77
- 239000000463 material Substances 0.000 claims description 50
- 239000000758 substrate Substances 0.000 claims description 43
- 239000002245 particle Substances 0.000 claims description 21
- 230000003287 optical effect Effects 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 19
- 238000004544 sputter deposition Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 14
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 9
- 125000006850 spacer group Chemical group 0.000 claims description 8
- 238000003825 pressing Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000000149 argon plasma sintering Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 5
- 230000027756 respiratory electron transport chain Effects 0.000 claims description 5
- 238000007740 vapor deposition Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000002834 transmittance Methods 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 238000001459 lithography Methods 0.000 claims description 3
- 235000014676 Phragmites communis Nutrition 0.000 claims description 2
- 230000005670 electromagnetic radiation Effects 0.000 claims description 2
- 241000219112 Cucumis Species 0.000 claims 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 claims 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 claims 1
- 238000002109 crystal growth method Methods 0.000 claims 1
- 230000002708 enhancing effect Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 238000003475 lamination Methods 0.000 claims 1
- 238000004062 sedimentation Methods 0.000 claims 1
- 238000005204 segregation Methods 0.000 claims 1
- 239000012808 vapor phase Substances 0.000 claims 1
- 238000009736 wetting Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 27
- 238000010168 coupling process Methods 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- 230000008878 coupling Effects 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 9
- 239000003973 paint Substances 0.000 description 8
- 238000007639 printing Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000011368 organic material Substances 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229920002689 polyvinyl acetate Polymers 0.000 description 4
- 239000011118 polyvinyl acetate Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 3
- 230000001680 brushing effect Effects 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000013081 microcrystal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010025 steaming Methods 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000003849 aromatic solvent Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 210000003298 dental enamel Anatomy 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 239000000052 vinegar Substances 0.000 description 2
- 235000021419 vinegar Nutrition 0.000 description 2
- OIAQMFOKAXHPNH-UHFFFAOYSA-N 1,2-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC=C1C1=CC=CC=C1 OIAQMFOKAXHPNH-UHFFFAOYSA-N 0.000 description 1
- JZPKWSFDLUMUCI-UHFFFAOYSA-N 1-(2,3-dinaphthalen-1-ylphenyl)naphthalene Chemical compound C1=CC=C2C(C3=C(C=4C5=CC=CC=C5C=CC=4)C=CC=C3C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 JZPKWSFDLUMUCI-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- NJYYAYDDFDIBHK-UHFFFAOYSA-K 2-methylprop-2-enoate;yttrium(3+) Chemical compound [Y+3].CC(=C)C([O-])=O.CC(=C)C([O-])=O.CC(=C)C([O-])=O NJYYAYDDFDIBHK-UHFFFAOYSA-K 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 1
- 101150052863 THY1 gene Proteins 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 238000010288 cold spraying Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000011263 electroactive material Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229920006352 transparent thermoplastic Polymers 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/854—Arrangements for extracting light from the devices comprising scattering means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/877—Arrangements for extracting light from the devices comprising scattering means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
- H10K2102/3023—Direction of light emission
- H10K2102/3026—Top emission
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Description
1292678 九、發明說明: 發明所屬之技術領域 發光具有申請專利範圍第1項之特徵的頂部 mm牛’以及一種按照申請專利範圍第20項之 式製心種71部發光f激發級件的方法。 先前技術 ,對於此夠快速將數據以可視方式顯示 且體積更小、更不佔办pq、舌3击土一 抑 間重1更輕、以及成本更低的發光 而且這種顯示器不僅造價很低,同時還具祕《相對較低 的優點。由於有機發光二極體(qLed)的具有工作電壓較 低、能源使服輪高、以及_婦造成可赠射出任何 权、、且及顯Μ的需求持續上升。目前筆記型電腦、行動電 及數位1機所使用的平面顯示器仍以液晶顯示器 ’、、、主可讀晶顯示器具有若干缺點,例如其顯示的 對比度及顏色受視角的影響很大、圖像及對比度更換時的動 作缓慢、以朗鍵衫㈣波It及極化n造成·能低落 等缺點’因此為了達到所f要的亮度就必須投人相對而言較 多的電能。因此各界對於顯示效果更佳、小型、高解析度、 而且省電的彩色顯示11的需求是十分大的。使用以有機發光 二極體(OLED)為基礎的顯示器是液晶顯示器(lcd)之外的 另外種4擇’这疋因為有機發光二極體(〇LED)本身是由 發光像素所構成’因此不會有任何f景照明。例如可以用有 機發光二極體(OLED)製成厚度很薄且具有彈㈣顯示器, 1292678 顏色的平面發光組件等優點,因此有機發光二極體(0LED) 也適於用來製造照明元件。 有機發光一極體(OLED)的發光原理為電激發光,所謂 電激發光是指因為電子空穴對(也就是所謂的激子)復合而 發出光線。為達到發光的目的,有機發光二極體(〇LED)的 結構被設計成一種三明治結構,這種三明治結構至少有一層 被設置在兩個電極之間作為激化材料的有機薄膜,當正電荷 及負電荷會被注入激化材料,電荷就會從空穴及/或電極移 • 轉到有機層中的一個復合區,電荷會在這個復合區復合成單 譜線激子及/或三重譜線激子,並放出光線的。接下來激子 發出光線的復合會導致可見的有效光的發出,也就是從發光 二極體被發射出去的可見的有效光。會了使這個光線能^離 開發光組件,至少有一個電極必須是透明的。這個透明的電 極通常是由可導電的氧化物構成,這種氧化物稱為透明導電 氧化物(TCO : transparent conductive oxides)。基片的製造是 製造有機發光二極體(OLED)的出發點,因為構成有機發= _ —極體(OLED)的每一個構造層都是依序設置在這個基片 上。如果靠近基片的電極是透明的,則這種發光組件稱為,, 底部發光有機發光二極體(bottom-emission-OLED),,,如果另 外一片電極(離基片較遠的電極)才是透明的,則這種發光組 件稱為”頂部發光有機發光二極體(top_emission_〇LED),,。如 果介於基片及至少一層有機材料層之間的電極(就是靠近^ 片的電極)及離基片較遠的電極都是透明的,則這種發光^ 件稱為,,全透明有機發光二極體”。 & '、、 6 1292678 如前麻’在發光_的區或發射光線是 由電子及空穴的發光重合的激子狀態*產生的。有機發光二 極體的不同的構造層(例如透明電極及至少一個有機層)通 常具有不同的折射率,由於材料特性的關係,這些構造層的 折射率都大於1。由於在有機發光二極體内各構造層之間的 臨界面及/或在有機發光二極體及空氣之間_界面上可能 會出現全反射的情況’因此所產生的光子並不是全部都能夠 離開有機發光二極體而成為光線。此外,所產生的一部分光 馨 線會在有機發光二極體内被吸收。前句提及的全反射除了會 造成外部模式的傳播外,有機發光二極_構造方式也可能 導致光學基片模式及/或光學有機模式的傳播(也就是說光 線在基片、透明電極及/或至少一個有機層中傳播如果靠 近基片的電極是不透明的(頂部發光有機發光二極體),則除 了外部模式外,只可能在至少一個有機層及/或離基片較遠 的,極内產生合稱為總有機波的傳播^只有外部光學模式會 被觀察者視為光線,雖然外部光學模式佔有機發光二極體内 鲁產生的總發光量的比例會隨著有機發光二極體的構造方式 所不同’但是均小於2G%。因此有必要設法提高内部光 予榼式(也就是有機模式及基片模式)從有機發光二極體輸 出耦合的比例,以盡可能提高有機發光二極體的發光效率。 古截至目前為止已經有許多方法和設計方式被提出,以提 :輸,輪㈣合的效率’這些方法和設計方式大都是針對底 刹天光有機發光二極體而提出,目的是提高光學基片模式的 矜出麵 s。例如 I· Schnitzer 在 Appl. Phys. Lett.,Bd. 63, 2174 I292678 ' ^作用’會使光子在錢層㈣缝導損失而㈣獲的數 里^於在均質有機層内被擄獲的數量。 Λ 、除了上述利用有機激化層内材料本身的不均勻性的方 • &外’還有一種方法是在有機電激材料中加入異物(小至納 米級的微粒)’以避免在有機層⑽生波導效應,例如S.A. Carter et al·在 Appl. Phys Lett, Bd 7ι(ΐ997 年)一篇名 ^ "Enhanced luminance in polymer composite light emitting φ 的論文中提出的方法。例如可以用Ti02、Si02、或 是A1203來製作這種小至納米級的微粒,再加入聚合物發 光材料(例如MEH-PPV)中。 除了底部發光有機發光二極體外,由於頂部發光有機發 光二極體在特殊應用上也具有本文開頭提及的優點,因此^ 重要性也與日倶增。如果兩個電極和基片都是透明的,就可 以製造出整個都㈣發光的電激發光組件,也就是說可以製 造出向上及向下都可以發光的有機發光二極體。如果基片: 須和頂部發光有機發光二極體的基片-樣不能是透明的,則 除了玻璃外,有許多材料也都可以作為製作基片的材料,其 中有些材料可以使發光組件具有彈性,也就是說成為可以彎 曲的發光組件。此外’在這―類的頂部發光電激發光發光組 件中’也可以用金屬薄膜、石夕晶圓、或是其他具有石夕製電子 元件的基片及印刷電路板作為基片。 發明内容 本發明的目的是提高在前面提及之頂部發光電激發光 1292678 組件的至少-财機層缝生的紐的輸出_合效率。1292678 IX. Description of the Invention: Field of the Invention The method of illuminating the top mm cow's having the characteristics of the first item of the patent application range and a method for producing 71 kinds of luminescent f-exciting stages according to the method of claim 20 of the patent application. The prior art, for this fast enough to display the data visually and smaller, does not occupy the pq, the tongue 3 hits the soil, the weight is lighter, and the cost is lower, and the display is not only low in cost. At the same time, it also has the secret "relatively lower advantages. Due to the low operating voltage of the organic light-emitting diode (qLed), the high energy of the service, and the fact that the woman can give up any right, and the demand for display continues to rise. At present, flat-panel displays used in notebook computers, mobile phones, and digital cameras still have some disadvantages in liquid crystal displays, and main-readable crystal displays. For example, the contrast and color of the display are greatly affected by the viewing angle, and the image and The operation at the time of contrast replacement is slow, and the shortcomings such as the slamming shirt (4) wave It and the polarization n are low. Therefore, in order to achieve the desired brightness, it is necessary to inject relatively large amount of electric energy. Therefore, the demand for color display 11 with better display, small size, high resolution, and power saving is very large. The use of an organic light-emitting diode (OLED)-based display is another type of liquid crystal display (LCD). This is because the organic light-emitting diode (〇LED) itself is composed of light-emitting pixels. There will be any lighting for the scene. For example, an organic light-emitting diode (OLED) can be used to fabricate a lighting element by using an organic light-emitting diode (OLED) to form a thin-walled light-emitting device having a thin (four) display and a 1292678 color. The principle of luminescence of an organic light-emitting diode (OLED) is electro-excitation light, and the so-called electro-excitation light means that light is emitted due to recombination of electron-hole pairs (also called so-called excitons). For the purpose of illuminating, the structure of the organic light-emitting diode (〇LED) is designed as a sandwich structure having at least one organic film which is disposed between the two electrodes as an activating material, when positively charged and The negative charge will be injected into the intensifying material, and the charge will move from the hole and/or the electrode to a recombination zone in the organic layer. The charge will be combined into a single-line exciton and/or triplet in this recombination zone. Son, and let out the light. The recombination of the exciton light then causes the visible effective light to be emitted, that is, the visible effective light emitted from the light-emitting diode. It will be possible to make this light clear from the development of the optical components, at least one of the electrodes must be transparent. This transparent electrode is usually composed of an electrically conductive oxide called TCO (transparent conductive oxides). The fabrication of the substrate is the starting point for the fabrication of organic light-emitting diodes (OLEDs), since each of the constituent layers constituting the organic light-emitting body (OLED) is sequentially disposed on the substrate. If the electrode adjacent to the substrate is transparent, the light-emitting component is called, bottom-emission-OLED, if another electrode (electrode farther from the substrate) It is transparent, and this kind of light-emitting component is called "top-emission_LED", if it is between the substrate and at least one layer of organic material (that is, the electrode close to the film) ) and the electrodes farther away from the substrate are transparent, and the illuminating device is called a fully transparent organic light-emitting diode. & ', , 6 1292678 The area in which the light is emitted or the emitted light is generated by the exciton state* in which the light and electrons overlap. The different structural layers of the organic light-emitting diode (e.g., the transparent electrode and the at least one organic layer) typically have different refractive indices, and these structural layers have refractive indices greater than one due to material properties. Since the critical surface between the structural layers in the organic light-emitting diode and/or the total reflection between the organic light-emitting diode and the air may occur, the photons generated are not all capable of Leave the organic light-emitting diode and become light. In addition, a portion of the resulting luminescent line is absorbed in the organic light-emitting diode. In addition to the propagation of external modes mentioned in the previous sentence, the organic light-emitting diodes may also lead to the propagation of optical substrate modes and/or optical organic modes (that is, light on the substrate, transparent electrodes, and / or at least one of the organic layers propagates if the electrode adjacent to the substrate is opaque (top-emitting organic light-emitting diode), except for the external mode, only at least one organic layer and/or far from the substrate, The propagation of the total organic wave is generated in the pole. Only the external optical mode is regarded as light by the observer, although the external optical mode accounts for the proportion of the total amount of luminescence generated by the organic light-emitting diode. The structure of the body is different', but both are less than 2G%. Therefore, it is necessary to try to improve the ratio of the internal light-emitting (ie organic mode and substrate mode) output coupling from the organic light-emitting diode to maximize the organic light emission. Luminous efficiency of diodes. So far, many methods and design methods have been proposed to mention: the efficiency of the transmission, the round (four) combination of these methods and design Most of them are proposed for the bottom-lighted organic light-emitting diodes, in order to improve the exit surface of the optical substrate mode. For example, I·Schnitzer in Appl. Phys. Lett., Bd. 63, 2174 I292678 '^ Function' The number of photons that are sequestered in the money layer (4) and the amount obtained in (4) is captured in the homogeneous organic layer. 除了 In addition to the above-mentioned non-uniformity of the material itself in the organic intensifying layer 'Another method is to add foreign matter (small to nano-sized particles) to the organic electro-active material to avoid the waveguide effect in the organic layer (10), for example, SA Carter et al. in Appl. Phys Lett, Bd 7ι (ΐ997 A method proposed in the paper entitled "Enhanced luminance in polymer composite light emitting φ. For example, Ti02, SiO 2, or A1203 can be used to make such small to nano-sized particles, and then polymer luminescent materials are added. For example, in MEH-PPV). In addition to the bottom-emitting organic light-emitting diodes, since the top-emitting organic light-emitting diodes also have the advantages mentioned at the beginning of this article in special applications, the importance of ^ is also increasing. If both electrodes and the substrate are transparent, it is possible to manufacture the entire (four) light-emitting electroluminescent component, that is, to produce an organic light-emitting diode that can emit light up and down. If the substrate: The substrate of the top-emitting organic light-emitting diode must not be transparent, and in addition to glass, many materials can be used as the material for the substrate, some of which can make the light-emitting component elastic, that is, It can be a bendable light-emitting component. In addition, 'in this type of top-emitting electroluminescent light-emitting component' can also use metal film, Shi Xi wafer, or other substrates and printed circuit boards with Shi Xi electronic components. As a substrate. SUMMARY OF THE INVENTION It is an object of the present invention to improve the output-combination efficiency of at least a spliced core of the above-mentioned top illuminating electroluminescent light 1292678 component.
具有本發明之申請專糖圍第1項之特徵的發光組件就处 夠以-種極為簡單的方式達到上賴目的。本發明提出= 部發光電激發光組件(尤其是製作成有機發光二極體袭置的 發細件)具有—個基片、—個#近基片的第—個電極… 讎基Ji較遠的第二個電極、以及至少—個位於兩個電極之 間的發光有機層’從個發林機層發$的光線是穿透第二個 黾極叙射出去。本發明的這種發光組件的特徵是,在第二個 電極f至少—個有機層較遠的那—面上另外設置-個附加 層,這個附加層含有具光散㈣㈣異質(尤其是製作成散 射中。之形式的異質),且這個附加層的透光率大於〇6 加層的透光率r是以r = e-㈣的公式計算而得,其中表 吸收係數,d代表附加層的厚度。 乂 、本發明提出的頂部發光電激發光組件可以達到很好的 改善效果’最高可以將光線的輸出_效率提高4倍(實際數 料見所採㈣實施方式而定)。此外,除了前面提及的功能 外,附加層還可以具有其他的功能。 一本發明的基本構想是在第二個電極離有機層較遠的那 :面上設置—個輸㈣合層,這個輸㈣合層的作用是影響 教生在有機層及透明電極⑽光學駐的散射,以提高輸出 I馬合效率。這铺出_合層之所以具有這個效果是因為含有 具光散射仙的異質,崎麵―解致光贿意方式被 偏轉這些異質能夠造成光線的散射及/或繞射,而且這種 光子作用不只會發生在輸㈣合相,也會發生在輸出搞合 Ϊ292678 層的δ?σ界面上,尤盆e雜带 這些異質的,丈射及Μ结/極較遠的那個臨界面上。此外, 固有特性或非固“性"產以經由輸出輕合層本身的 以防止在有機層及/或接觸層:形殊結構可 的先線就會_合人外部模式。輪必=大部分 防止過多的光線在附加層内被吸收 ^和透明的,以The illuminating assembly having the features of the first item of the application of the present invention is in an extremely simple manner. The invention proposes that the illuminating electroluminescent component (especially the micro-component produced by the organic luminescent diode) has a substrate, a first electrode of the # near substrate, and the 雠Ji is farther away. The second electrode, and at least one of the light-emitting organic layers between the two electrodes, emits light from the hairline machine layer through the second bungee. The light-emitting assembly of the present invention is characterized in that an additional layer is additionally provided on the surface of the second electrode f at least one of the organic layers, the additional layer containing the light (4) (four) heterogeneity (especially made In the form of scattering, the heterogeneity of the form, and the transmittance of this additional layer is greater than that of 〇6. The transmittance r of the layer is calculated by the formula of r = e-(iv), where the absorption coefficient of the table, d represents the additional layer thickness.顶部 The top-emitting electroluminescent device of the present invention can achieve a good improvement effect. The output of the light can be increased by a factor of four (the actual number is determined by the implementation method). In addition, in addition to the previously mentioned functions, the additional layer may have other functions. A basic idea of the invention is to provide a transmission (four) layer on the surface of the second electrode that is far from the organic layer. The function of the transmission layer is to affect the teaching of the optical layer in the organic layer and the transparent electrode (10). Scattering to improve the output I horse efficiency. This paved _ layer has the effect because it contains a heterogeneous light scattering scent, the surface of the singularity - the sensation of the light bribe is deflected. These heterogeneities can cause light scattering and / or diffraction, and this photon effect is not only Occurs in the (four) phase, which also occurs on the δ?σ interface of the output 292678 layer, and the Eubola e-band has these heterogeneous, critical and far-reaching critical faces. In addition, the intrinsic property or non-solidity "produces through the output of the light layer itself to prevent the organic layer and / or the contact layer: the first line of the special structure will be _ people external mode. Wheel must = large Partially preventing excessive light from being absorbed in the additional layer and transparent,
需使用透光率大於0.6的輸出 2明人發現只 件能夠發出更多的光線。胃口層即了使本發明的發光組 中的的實施方式均記載於申請專利範圍 合層)可《緊靠在第二: ί第也與第二個電極至少間隔-定的距離。如果= 構成一個共同的臨界面及/或彼此連結^ =,就曹使有機模式能夠以很好的效率輸入柄合到附加声 二:應用場合中,也可以使附加層設置與“ 出的光線的距離’不如個距離應略小於發光組件發 约㈣達顺別高的輸㈣合效率的實施方式是以 句勾刀佈的方式將具有光學散射作用的料設置在附加層 内’且廷些作為散射微粒用的異f的尺寸介於G脚m至 ,100/ζΊ。_尺寸的肺絲可叫料會發生散射 月/ €隨光線波長變化的Rayleigh散射(散射強度與"又々 成正比)。如果使用尺寸大於⑽,的散射微粒,則光線沿 1292678 著散射方向前進的被吸收率會大幅提高,這種現象的 隨光線波長變化的散射現象—樣都是。林發: 所谓的”散射微粒”是指位於附加層内尺寸介於〇 〇 $ ^ ㈣之間且所造成散射係米氏散射(也就衫會隨= 的波長而變化的散射)的所有微粒或區域。 、良 此外,也可以將财光學騎作 罐較遠的表面上,且這些作為散:中 的尺寸介於〇.〇5"m至100/zm之間。 h、貝 另外-财利的實施方式是將上面提及的異 =附加層内及附加層的表面上,以產生效果更好的輪出: 極的厚度以弱’第二個電 =,加層的的輸二光 施方式是使附加層的折 間且取#_加層的 X録電極之 實施方式則是將第二個電極的另牛外;'種特別有利的 度。 幻与度進一步降到40nm的程 於第二個電二: =的貫施方式是,附加層的折射率大 在第二個電極和附加居二ϋ線攸電極進入附加層時, 是介於1.6 =之Γ介於U至2.3之間為佳,且最好 被輸入輕合到輸出樣有機模式就可以全部或大部分 ☆ 12 1292678 原則上也可以將本發明的輪出耦合層設置在具有多個 有機層的頂部發光電激發光組件上。如德國專利DE 1〇2 15 21〇 A1提出-的-種有利的方式是除了設置在兩個電極之 間的發光有漏外,糾再設置其他的有機層。在非反相結 構的情況下,這種發光組件的構造通式如下: L基片; 2·第一個電極,空穴注入陽極; 3·Ρ型摻雜的空穴注入及轉移層;An output with a transmittance greater than 0.6 is required. 2 It is found that only one piece can emit more light. The appetite layer is such that the embodiments of the illuminating group of the present invention are described in the patent application.) The "applied to the second: ί" is also spaced at least a predetermined distance from the second electrode. If = form a common critical surface and / or connect to each other ^ =, then Cao can make the organic mode input to the additional sound with a good efficiency: in the application, the additional layer can also be set to "out of the light" The distance is not as good as the distance should be slightly smaller than the light-emitting component (4), and the high-transmission (four) efficiency is implemented in a manner that the optical scattering material is placed in the additional layer in the manner of a knife-knife cloth. The size of the different f used as the scattering particles is between G feet m and 100/ζΊ. The size of the lungs can be scattered. Rayleigh scattering (scattering intensity and " If you use scattering particles with a size larger than (10), the absorption rate of the light moving along the scattering direction of 1292678 will be greatly improved. This phenomenon is related to the scattering phenomenon of the wavelength of the light—Linfa: so-called "Scattering particles" means all particles or regions located in an additional layer with a size between 〇〇$^(4) and resulting in scattering of the scattering Mie scattering (that is, the scattering of the shirt will vary with the wavelength of =). In addition It is also possible to ride the optical optics on the far surface of the can, and these are as the size of the dispersion: between 〇.〇5"m to 100/zm. h, Beiyue-Yi-li is implemented above The difference mentioned is in the additional layer and on the surface of the additional layer to produce a better effect of the rounding: the thickness of the pole is weaker than the 'secondary electricity=', and the layered transmission method is to make the additional layer The implementation of the X-electrode with the #_plus layer is the other one of the second electrode; the kind of special advantage. The illusion is further reduced to 40nm in the second electricity two: The mode of application is that the refractive index of the additional layer is greater between the second electrode and the additional second 攸 攸 electrode into the additional layer, which is preferably between 1.6 and U between U and 2.3, and most It is good to be input to the output mode organic mode to be all or most ☆ 12 1292678 In principle, the wheel-out coupling layer of the present invention can also be disposed on a top-emitting electroluminescent device having a plurality of organic layers, such as a German patent. An advantageous way to propose a DE 1〇2 15 21〇A1 is in addition to the illumination disposed between the two electrodes In addition to the leakage, other organic layers are arranged and corrected. In the case of a non-inverting structure, the structure of the light-emitting assembly is as follows: L substrate; 2. first electrode, hole injection anode; Doped hole injection and transfer layer;
4.报薄的空穴财間層,這辦間層是由—種最高佔用分子 軌道(HOMO . highest oeeupied moleeule Grbital)的能級能 夠與周圍其他構造層之構成材料的最高侧分子執道的 能級配合的材料製成; 5·發光層; .很缚的電子侧中間層,這個中間層是由一種最低未佔 子軌道(LUMO: l0west un_pied __ __ ⑽ 能夠與周圍其他構造層之構成材料的最低未用分軌道 的能級配合的材料製成; 1返 7· η型摻雜的電子注入及轉移層; 8·第二個電極,電子注入陰極。 在反相結構的情況下,這種發光組件的構造通式如下: 1. 基片 · 2. a) 3. a) 4. a) 第一個電極,電子注入陰極; η型摻雜的電子注入及轉移層; 很薄的電子側中間層,這個中間層是由一種最低未佔 13 1292678 用刀子軌道(LUMO : lowest unoccupied molecule orbital)的能級能夠與周圍其他構造層之構成材料的最 低未用分子執道的能級配合的材料製成; 5· a)發光層; 6.a)很薄的空穴側中間層,這個中間層是由一種最高分子 執道(HOMO : highest occupied molecule orbital)的能級 旎夠與周圍其他構造層之構成材料的最高佔用分子軌 道的能級配合的材料製成; _ 7.a) p型摻雜的空穴注入及轉移層; 8· a)第二個電極,空穴注入陽極。 一 ^德國專利DE 102 15 210 A1所述,空穴轉移層可以和 種5:主型有機材料形成P型摻雜,電子轉移層則可以和一 ^施主型有機材料形成η型摻雜。此種摻雜可以提高轉移層 (工八轉移層及電子轉移層)的導電度,因此經過摻雜的轉移 層的厚度可以大於未經摻雜的轉移的厚度(通常是2〇啲至 4〇nm之間)’而且不會導致卫作電壓大幅提高。因此,在發 • 練件為非反相結構的情況下…種有利的實施方式是在附 加層及激化有機層之間要另外設置—個有機層,這個另外設 置的有機層是一個與一種施主型有機材料形成η型摻雜的 電子轉移層,厚度介於5G腿至2/zm之間,尤其是介於 lOOrnn至i_nm之間;在發光組件為反相結構的情況下, ^種有#】的—方式是在附加層及激化有機層之間要另外 。又置個有機層’這個另外設置的有機層是一個與一為 型有機材料形成P型摻雜的電子轉移層,且厚度介於^咖 1292678 至2//m之間,尤其是介於lOOnm至l〇〇〇nm之間。當然, 除此之外’依據前面提及的本發明的發光組件的結構通式, 在附加層及激化有機層之間還有設置一個電極及在必^時 還可以設置一個閉鎖層。 為了說明的完整性,此處必須指出,依據不同的實施方 式(反相結構的情況及/或非反相結構的情況)本發明的發光 組件並不是一定必須具備前面提及的所有的構造層,此外, 也可以另外設置其他的構造層,例如另外設置—個很薄的 (厚度小於IGnm)位於電子轉移層及陰極之間的接觸改良 層’及/或另外設置-個很薄的(厚度小於1〇nm)位於陽極及 空穴轉移層之間的接觸改良層。對於接下來的製造步驟而 吕、’尤其是賴置緊靠在第二健極上或是位於第二個電極 11層的步驟而言’一件报重要的事是在發光有 ^層及輸_合層之間設置—錄厚的經摻_電荷轉移 ^護ϋ錢作喊輸峰合層時為發光錢層提供足夠的 作為輸出輕合層用的附加層的厚度應介於〇至 1000/ΖΠ1之間,尤其是介 另外一種有刹3 _至100_之間。 的輸出耦人^ 貫施方式是’附加層不僅能夠提高光線 護為設置她之間的構造層提供保 如口/錄子輻射)二!_機械荷载、電磁輻射、粒子輻射(例 了原有的功能外,附氣 '及/或化學藥品的影響。除 或保護的魏,這^=能触由這種方式提高—種封裝 ;在顯示器上的應用尤其重要。 15 1292678 將附加層設置在第二個電極上的工作可以經由一種或 =已知的技術來完成。例如,可以利用濺射技術、以結晶 生長技術、或是非晶形生長技術將附加層設置 土。不^使用何種技術,唯—的先決條件是,附㈣須5 釗面提及能夠提高光線輸出耦合效率的的異質。 1為了將附加層設置在第二個電極上,一種有利的實施方 式是使附加層具有一種能夠溶解並在其中加入非固有光學 激化異質的基材。這種基材可以具有一種内含非固有光學激 參化異質的光刻膠。另外一種可行的方式是將光刻膠的表面打 毛,這樣就可以將具有光學作用的異質設置在表面上。 也可以視應用場合的需要選擇使用内含固有光學激化 異質的附加層,例如内含彼此分開的不同相位的附加層,或 是有空穴的附加層。為了使這些異質能夠使光線形成米氏散 射,其尺寸應介於之間。 為了達到本發明的目的,本發明還提出一種製造頂部發 光電激發光組件的方法,尤其是一種用於製造有機發光二極 • 體裝置的方法,這種方法是設置一個靠近基片的第一個電 極、一個離基片較遠的第二個電極、以及至少一個位於兩個 電極之間的發光有機層,而且為了使光線能夠透射出去,第 二個電極必須是透明的。這種方法的特徵是··在第二個電極 離至少一個有機層較遠的那一面上設置一個含有可以使光 線發生散射的異質。這個附加層可以利用一種或數種已知的 技術被設置在第二個電極上,尤其是可以利用濕式化學法將 附加層設置在第二個電極上。可以用一種以濕式化學法混合 16 1292678 特定尺寸之散射微粒的基材來製作附加層。為了製作 便,遥可以在這種基材中加人適當的溶劑 有助於以濕式化學法形成附加層的作 方此外,加八1分散 基材料喊生_為散射微粒4. The thin hole layer of the thin layer, which is the highest level of the material of the highest structural molecular orbital (HOMO. highest oeeupied moleeule Grbital). The material is made of energy level; 5) luminescent layer; very bound electronic side intermediate layer, this intermediate layer is composed of a minimum unoccupied orbit (LUMO: l0west un_pied __ __ (10) can be combined with other structural layers around it The lowest level of unused orbital energy level matching material; 1 back 7 · n-type doped electron injection and transfer layer; 8 · second electrode, electron injection into the cathode. In the case of reversed phase structure, this The structure of the illuminating component is as follows: 1. Substrate · 2. a) 3. a) 4. a) first electrode, electron injection cathode; n-doped electron injection and transfer layer; very thin electron The middle layer, which is composed of a minimum unoccupied 13 1292678 (LUMO: lowest unoccupied molecule orbital) energy level capable of coordinating with the lowest unused molecular constitutive material of the surrounding structural layers. Made of materials 5) a) luminescent layer; 6. a) a very thin hole-side intermediate layer, which is composed of an energy level of the highest occupied molecule orbital (HOMO) and other surrounding structural layers. The material is made of the material of the highest occupied molecular orbital level; _ 7.a) p-doped hole injection and transfer layer; 8 a) The second electrode, the hole is injected into the anode. As described in German Patent DE 102 15 210 A1, the hole-transporting layer may form a P-type doping with the species 5: a main-type organic material, and the electron-transporting layer may form an n-type doping with a donor-type organic material. Such doping can increase the conductivity of the transfer layer (working eight transfer layer and electron transfer layer), so the thickness of the doped transfer layer can be greater than the thickness of the undoped transfer (usually 2 〇啲 to 4 〇) Between nm) 'and does not lead to a significant increase in the voltage of the guard. Therefore, in the case where the hairdressing member is a non-inverting structure, an advantageous embodiment is to additionally provide an organic layer between the additional layer and the intensifying organic layer, and the additionally disposed organic layer is a donor and a donor. The organic material forms an n-type doped electron transfer layer with a thickness between 5G legs and 2/zm, especially between l100rnn and i_nm; in the case where the light-emitting component is in a reversed phase structure, ^种有# The way to do this is to add another layer between the additional layer and the intensified organic layer. An organic layer is additionally provided. The additionally disposed organic layer is a P-type doped electron transfer layer formed with a type of organic material, and has a thickness of between 2,292,678 and 2/m, especially between 100 nm. Between l〇〇〇nm. Of course, in addition to the above-mentioned structural formula of the light-emitting component of the present invention, an electrode is provided between the additional layer and the intensifying organic layer, and a blocking layer may be provided when necessary. For the sake of completeness of the description, it must be pointed out here that, depending on the different embodiments (in the case of a reverse phase structure and/or the case of a non-inverting structure), the illumination assembly of the invention does not necessarily have to have all of the previously mentioned construction layers. In addition, other structural layers may be additionally provided, for example, a very thin (less than IGnm) contact improving layer between the electron transfer layer and the cathode and/or another thin layer (thickness) Less than 1 〇 nm) contact improving layer between the anode and the hole transport layer. For the next manufacturing step, Lu, 'especially the step of resting on the second pole or on the second electrode 11 layer' is an important thing in the luminescence. Between the layers, the thick layer of the _ charge transfer ϋ ϋ 作 作 作 作 作 作 作 作 作 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光 发光Between 1 and 1, in particular, there is another between 3 _ and 100 _. The output coupling method is that the 'additional layer can not only improve the light protection to provide the protection layer/recorder radiation for setting the structure layer between her two! _ mechanical load, electromagnetic radiation, particle radiation (for example In addition to the function of the gas, and / or the influence of chemicals. In addition to or protection of Wei, this ^ can be improved in this way - a package; the application on the display is particularly important. 15 1292678 The work on the second electrode can be done via one or = known techniques. For example, the additional layer can be grounded using sputtering techniques, crystal growth techniques, or amorphous growth techniques. The only prerequisite is that (4) must mention the heterogeneity that can improve the coupling efficiency of light output. 1 In order to arrange the additional layer on the second electrode, an advantageous embodiment is to make the additional layer have a Dissolving and adding a non-inherent optically excited heterogeneous substrate. The substrate may have a photoresist containing an extrinsic optically excited heterogeneous. Another possible way is to photolithography The surface is roughened so that an optically active heterogeneity can be placed on the surface. It is also possible to use an additional layer containing an intrinsic optically excited heterogeneity, such as an additional layer containing different phases separated from each other, depending on the application. Or an additional layer having holes. In order for these heterogeneties to cause the light to form Mie scattering, the size should be between. In order to achieve the object of the present invention, the present invention also provides a method of manufacturing a top-emitting electroluminescent device. In particular, a method for fabricating an organic light-emitting diode device by providing a first electrode adjacent to the substrate, a second electrode remote from the substrate, and at least one of the two The illuminating organic layer between the electrodes, and in order to transmit light, the second electrode must be transparent. This method is characterized by being disposed on the side of the second electrode that is further from the at least one organic layer. One contains a heterogeneity that scatters light. This additional layer can be placed in the second using one or several known techniques. On the electrode, in particular, the additional layer can be placed on the second electrode by wet chemical method. An additional layer can be made by mixing a substrate of 16 1292678 specific size scattering particles by wet chemical method. It is possible to add a suitable solvent to such a substrate to help form an additional layer by wet chemical method. In addition, add an octagonal dispersion material to scatter as a scattering particle.
二重很簡單且有利的方法是將構成附加層 層法或疋粘貼法將附加層設置在第_、、宜 加層的薄膜含有作為散射中心的=㈣極上,這種構成附 此外,也可以利用濺射法、結晶生 或是電漿加強式化學氣相沉積_咖;pi繼=»法、 吐⑽cal vapor desp〇siti〇n)將 anced 經由這種方法可以用結晶、非晶形、或是::=。 加層。-種特別有利的方式是,如 ^二〜成附 附加層,則應選擇有利 ^ :目—方式形成 :,成嶋峨組二:::及:以 *為了製作出成密度較高的光學作用 ::可以將具有不同栅流常數的不同的材料基/上 的目的是強化聚晶生長及/或位_ 此又去。讀做 以同時被驗上去,也ml個材料可 種方式製作的附加居是由I二上去’因此以這 另外一種有成㈣膜所構成。 上去或蒸鐘上1=方;是:,加層的材料機射 ^成附加層,而且在此程中,構成光學異 S ) 17 1292678 質的材料是以冷喷霧法被注入附加層。 另外一種有利的實施方式是將一種自尹曰 ΐί曰的有=蒸鑛上去以形成附加層。這個二‘會^ 結晶化的聚晶及因此而產生的光學異質,以及在第二; 的不同_峨《,非晶形),這些不_她;^ 或f成前面提及_射^蒸财機相方式形成附 ==:容易就可以將這些有機層設置在有機發光 極體社構上,而且不會對有機發光二極體的結構造成任 崎㈣合層的卿枝致和有機發光二極體的 斤射率相r ’不過這對於頂部發光组件而言是可以接受的。 如别面所述,—種有利的方式是先設置—個厚度介於 的3 ί^°°Γ之間且具有有機物摻雜的轉移層,這樣做 置利用熱蒸鐘或轉的方式將附加層設 對irr方且很薄的接觸層(翻電極)上,而且不會 ^先有機層造成任何損害。另外—種有利的方式是應用内 層因為與繼生編=層,鳴光組件的有機 成附利的實施方歧以濺射或蒸㈣方式將構 附加:日如」4十及構成散射中心的材料輪流加上去,以形成 月r依據材料的性質個別選擇最理想的蒸 所有這種實施方式可以用相同的蒸鑛或錢鑛 處種材料’也可以用不同的蒸鍵職方式來 如前面說明過的,也可以在附加層離第 •個電極較遠的 ^92678 =表面上形成光學異質。例如以刷子刷、研磨、 =影等方法射以在_層的表面上形絲㈣質: 谢法讎刪咖轉科= 且有=過長茶數。揣用此種實施方式時,輸出輕人^ 的磨附…—要求。I::::方== :的刷子刷等,都是以不均勻的方式去除從輪出耦人 在』的ΐ:Τ;^Γ固微結構的印章按厂堅 耦合層的材料材久變形,就是導致輸出 -種有利的方:輸出輕合效率的目的。 層上的作用力主要是沿著 4中’經由印章作用在附加 合層之下的有機發光二_^層分佈,以免損及位於輸出麵 就可以達到這個目的。I /、要印章具有適當的構造方式A two-fold simple and advantageous method is to form an additional layer method or a 疋 affixing method, and the additional layer is disposed on the _, 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Using sputtering, crystallization or plasma-enhanced chemical vapor deposition _ coffee; pi followed by the method, spit (10) cal vapor desp〇siti〇n) anced can be crystallized, amorphous, or ::=. Add layers. A particularly advantageous way is to form an additional layer, such as ^2~, to choose a favorable ^: mesh-form formation:, into the group 2::: and: in order to produce a higher density optical effect :: The purpose of different material bases/onsets with different gate current constants is to enhance polycrystalline growth and/or position. Read and do it at the same time, and the additional material that can be produced by the way of the material is formed by I. Therefore, it is composed of the other compound (4) film. Up or steaming on the 1 = square; yes: the layered material is injected into an additional layer, and during this process, the material that constitutes the optical iso S 17 17292678 is injected into the additional layer by cold spray. Another advantageous embodiment is to remove a steamed ore from Yin 曰 曰 曰 to form an additional layer. This two 'will ^ crystallized polycrystals and thus optical heterogeneity, and in the second; different _ 峨 ", amorphous", these are not _ her; ^ or f into the aforementioned _ shot ^ steamed Machine phase formation with ==: It is easy to set these organic layers on the organic light-emitting body structure, and does not cause the structure of the organic light-emitting diodes. The polar phase of the polar body is r' but this is acceptable for the top lighting assembly. As mentioned above, an advantageous way is to first set a transfer layer with a thickness of between 3 ί^°°Γ and having an organic doping, so that it is attached by means of a hot steam or a turn. The layer is placed on the irr-side and very thin contact layer (turning electrode), and does not cause any damage to the organic layer. In addition, an advantageous way is to apply the inner layer because of the implementation of the organic component of the illuminating component, and the method of sputtering or steaming (four) is added to the structure: the day is as "40" and constitutes the scattering center. The materials are added in turn to form the month r depending on the nature of the material. Individually choose the most ideal steam. All such embodiments can use the same steam or mineral ore material. You can also use different steaming methods as described above. Alternatively, an optical heterogeneity can be formed on the surface of the additional layer that is further away from the first electrode. For example, brushing, grinding, shadowing, etc., on the surface of the _ layer, the shape of the wire (four) quality: Xiefa 雠 咖 咖 = = = = = = = = = = When using this embodiment, the output of the light person ^ is attached...-required. I::::方== :The brush, etc., are all removed in a non-uniform way from the wheel to the person in the 』:Τ; ^ Γ 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微 微Deformation is the result of the output - a beneficial side: the purpose of output light efficiency. The force on the layer is mainly distributed along the 4 layers of the organic light-emitting layer under the additional layer through the seal, so as to avoid damage to the output surface. I /, the seal must be properly constructed
另外* ^種有利的方A、H 形成結構化表面的印章使這個用來按壓附加層表面以 可製作出這種印章。、波浪狀的圖案’例如以微影法即 另外一種有利的實施 附加層上形成一個結構化表式是以微影法或篩網印刷法在 一種能夠對有機發二7。 〜11體提高很好的保護效果的作 19 1292678 _ 業方式是先將附加層製作成薄膜,然後再以疊層法或粘貼法 將薄膜設置在發光組件上。 實施方式 第1圖顯示一種傳統型頂部發光組件(100)的基本構造 ,作用原理。在這個例子中,較靠近基片(11〇)的電極(12〇) 疋作為一個反射光線用的金屬層。在以下的說明中將稱讚電 # 極(120)為第一個電極。在第一個電極上設有數個有機層, 在第1圖中將這些有機層統稱為有機層結構(13〇)。這個有 機層結構(no)至少含有一個有機電激發光層。在有機層結 構(130)之上設有一個以透明材料(例如一種可導電的氧化物) 製成的第二個電極(14〇)。 如果在這兩個電極之間加上一個電壓,則電荷就會被注 入位於兩個之_有機層,也就是說電子會從—個電極 自接點流出及空穴會從另外—個電極流出並共同注入位於 _ 兩個電極之間的有機層,因而在激化區復合成電子空穴對, 亚發出光線。第1圖中的數字(131)代表—個發光點。如第! 圖的箭頭所示,光線會從這個發光點傳播出去。從第】圖中 可看出’光線在兩個層之_臨界面上會發生反射或是進入 下-個層。停留在發緣件,也就本例中停 留在有機層結構(130)及/或電極(14〇)内的光線稱為有機模 式’離開發光組件的光線(EM1 ’ EM2刪與為外部模式。由 於有機層對於在有機層内產生的光線的吸收係數並不等於 〇,因此這些光線在傳播的過程巾會在朝有機層的縱向方向 20 1292678 上被吸收 為了達到這個目的,本發明提出的方法是=出=;。 =置一個附加層(亦稱為輸出 cm,異料是設置在輸㈣合㈣就是設二 =52 第2圖顯示本發明之頂部發光組件的 夷===基本構造及作用原理。由於有機層的數量多 發脑SiE不重要,因此第2 _仙有機層 的的f機層。如圖2所示’在作為背板(backpl㈣ (120),有機層結構_設置在電極 戶Λ内^ (通常是在可見光範圍内的光線)就是在有機 二二ω 。位於有機層結構(13〇)之上的是第二個電 _,則是設 出的附加層⑽),也歧輸出搞合層 內妙古H ¥ —個電極(140)之上。在這個附加層(150) 本二ϋ、:於I11"至1(K)"m之間的散射微粒(151)。在 ’所有微_尺寸都大約是綱咖。 ^以料同的方式(視實施方式而定)製造㈣2圖顯示 、毛明的發光組件。例如以印刷(油墨射流印刷法、筛網 ^刷^車人1·生印刷法、塞子印刷法、高壓印刷法、低壓印刷 /、’版印刷去、壓通印刷法)、刮墨、自旋塗層、浸潰塗 曰旋轉k層嗔灑等濕式化學法將輸㈣合層^置在第二 @電極上以上逃方法製作的輪出耦合層有些本身内部就含 1292678 質因此不需另外加入任何添加物,有此 要添加散射微 n J以先將政射微溶解在溶劑中。 =製!?會用到不列材料中的一種或數種(視 以方式^),在製作過針,這些材料是作為溶劑、乳 劑、、及/或分散劑之用,並在被塗在有機發光二極體上之後 構成輸_合層材,例她由將溶継發的方式(硬化 被鑛在有機發光二極體上:In addition, the advantageous sides A, H form a stamp of the structured surface which is used to press the surface of the additional layer to make such a stamp. The wavy pattern ', for example, by lithography, another advantageous implementation, forms a structured form on the additional layer by means of lithography or screen printing in a type capable of organic hair. ~11 body to improve the effect of good protection 19 1292678 _ industry is to first make the additional layer into a film, and then laminate or paste the film on the light-emitting components. Embodiments Fig. 1 shows the basic construction and operation principle of a conventional top lighting assembly (100). In this example, the electrode (12〇) closer to the substrate (11〇) is used as a metal layer for reflecting light. In the following description, the electric pole (120) will be praised as the first electrode. A plurality of organic layers are provided on the first electrode, and these organic layers are collectively referred to as an organic layer structure (13〇) in Fig. 1. This organic layer structure (no) contains at least one organic electroluminescent layer. A second electrode (14 Å) made of a transparent material such as an electrically conductive oxide is provided over the organic layer structure (130). If a voltage is applied between the two electrodes, the charge will be injected into the two organic layers, that is, the electrons will flow out from the junction and the holes will flow out from the other electrode. And the organic layer located between the two electrodes is co-injected, and thus is combined into an electron-hole pair in the excitation region to emit light. The number (131) in Fig. 1 represents a luminous point. As the first! As the arrow in the figure shows, light will travel from this point of illumination. It can be seen from the figure that 'the light will reflect on the _ critical surface of the two layers or enter the next layer. Staying in the edge member, that is, the light that stays in the organic layer structure (130) and/or the electrode (14〇) in this example is called the organic mode 'light leaving the light-emitting component (EM1' EM2 is deleted as an external mode. Since the absorption coefficient of the organic layer for the light generated in the organic layer is not equal to 〇, the ray of the ray is absorbed in the longitudinal direction 20 1292678 of the organic layer. To achieve this, the method proposed by the present invention Yes = out =; = = set an additional layer (also known as output cm, dissimilar material is set at the input (four) combination (four) is set two = 52 Figure 2 shows the basic structure of the top light-emitting component of the present invention and The principle of action. Since the number of organic layers is too large, brain SiE is not important, so the f-layer of the second organic layer is as shown in Fig. 2, as the back plate (backpl (four) (120), the organic layer structure _ is set at the electrode The inside of the household (usually the light in the visible range) is in the organic dih ω. The second electric _ is located above the organic layer structure (13 〇), which is the additional layer (10)) The output of the difference is in the layer of the ancient H H - an electrode (140) In this additional layer (150), the second ϋ, the scattering particles (151) between I11" to 1(K)"m. In all the micro-sizes are about the outline coffee. ^The same Method (depending on the embodiment) Manufacturing (4) 2 shows the light-emitting components of Maoming. For example, printing (ink jet printing method, screen brushing, motor vehicle 1 production printing method, plug printing method, high pressure printing method, low pressure) Wet chemical method such as printing/, 'printing, press-through printing method, scraping ink, spin coating, dipping coating, rotating k-layer shower, etc., placing the (four) layer on the second @ electrode The wheel-out coupling layer made by the escape method has some internal 1292678 quality, so there is no need to add any additional additives. Therefore, it is necessary to add the scattering micro-n J to dissolve the political light in the solvent first. One or more of the materials (depending on the method), which are used as solvents, emulsions, and/or dispersants, and after being coated on the organic light-emitting diodes The composition of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
-?《合溶解,例如溶解在有機溶液中的聚氟化物溶液或聚苯 乙烯溶液,例如二曱苯(Xylol)、甲苯(T〇lu〇1)、苯甲輕 (Anisol)、三甲基苯(Trimethylbenz〇i)等芳香類的溶劑。 -以有機非聚合的塗層構成材料製成的溶液,例如有機玻 璃溶液,例如溶解在芳香類溶劑(例如曱苯)中的鄰_聯三苯 (Ortho-Terphenyl)或 1,3,5-三-α -萘基 _ 苯(1, 3,5-Tri-alpha-Naphtyl-Benzol); -在被塗上去後聚合化的單體或是單體的混合物(例如甲基 丙烯酸甲酯(Me thy 1 me thacry 1 ate)或烯丙基二乙二醇碳酸 鹽(Allyldiglycolcarbonat)),或是在被塗上去後經加熱、化 學處理、或是光激發被聚合的單體的衍生物; --在被塗上去後經加成聚合而連結在一起的單體或單體的 混合物,例如聚合碳酸鹽; —光學粘劑; ―光刻膠; -透明或半透明的粘著劑,例如化學硬化粘著劑(例如雙成 22 !292678 ,的jfe著劑)、熱硬化粘著劑(例如丙烯酸鹽或環氧樹脂)、或 疋务、外線硬化粘著劑(例如丙烯酸鹽或環氧樹脂); 一透明的熱塑性塑膠,例如底密度聚乙烯、聚合碳酸鹽、 以及氨基甲酸酯(P〇lyUrethane); -熱固性塑膠,例如酚醛樹脂(phen〇lharze)或三聚氰胺樹脂 (Melaminharze); —以聚丙烯酸醋、聚乙烯醇、或是聚醋酸乙烯酯配製成的 含水乳劑、有機乳劑、或是氟化有機乳劑; _ ~,漆’例如醇酸樹脂漆、梢化纖維素漆、雙成份漆(例如 聚氨基甲醋漆)、可加水稀釋的漆、人造樹脂漆、以及丙烯 酸漆; -膠原蛋白,例如明膠、赛璐玢(Zell〇phan)、或是赛璐珞 (Zelluloid); -聚合物分散劑,例如溶在水中的二氧化鈦微粒及聚醋酸 乙烯酯; -以無機材料配製的溶液或分散劑,例如鹽溶液 φ 視所應用的基質材料,可以從許多可能的組合中選擇散 射微粒’例如: —無機微結晶(例如鹽結晶)、金屬氧化物(例如矽酸鹽)、藍 寶石微結晶、Mg〇、或是si〇2 ; -無機微結晶(例如碳氫化合物)、結晶化的聚合微粒(例如 殿粉)、纖維素或合成聚合物(例如聚醯胺(Polyamide)、聚 _3,4_乙烯二經噻吩(pED〇T):聚(苯乙烯磺酸鹽(pss)結 晶)); 23 1292678 —氣相一氧化梦(Aerosile); -無機非晶形材料,例如石英)(si〇2); -納米級的微粒; -聚合物的粉末,例如聚合碳酸鹽、聚醯亞胺、聚酯、聚 乙婦(PE)、聚丙烯(pp)、聚醚、榮光聚合物、聚醯胺、以及 聚醋酸乙烯酯; -非聚合物的粉末,例如有機材料(例如芳香族物質)、脂肪 族物質、以及雜環物質; • 二,泡,例如以惰性碳氫化合物(戊烷)、惰性氣體(氬氣)、 氮氣、二氧化碳、基材溶液的FCKW等氣體產生的氣泡; -氣泡,例如經由在基材溶液内發生的化學反應產生氣態 的反應產物(例如二氧化碳或氮氣)。 此外,在一種圖式中繪出的實施方式中也可以利用乾式 法以堆疊方式成附加層。在這種實施方式中,在製作堆疊用 的薄膜雜要將前φ提及的光學異質加到薄動,前面提及 的^有基質材料及其與前面提及的各種散射微粒的組合只 _ 要是雜進行堆疊作業就可以被加人薄助作為光學異 質。例如將氣相二氧化石夕(Aerosile)微粒加到聚醋酸乙稀醋^ 成的薄膜内’然後再將這種薄膜堆疊在頂部發光的有機發光 二極體上。另外一種可行的方式是將薄膜粘貼在頂部發光的 有機發光二極體上。-種有利的方式是讀轉來進行枯貼 由薄膜構成的附加層的玉作,其中雙师的—個面是和附加 層薄膜接觸,另外-個賴是與發光元件接觸,尤其是與一 個電極接觸。 ’、^ 24 1292678 本發明之頂部發光電激發光組件的另外一種等級的附 加層是可以下列方法中的任一種方法製成:濺射、物理氣相 沉積法(PVD ·· physical vapor deposition)、化學氣相沉積法 (CVD : chemical vapor deposition)、電漿加強式化學氣相沉 積法(PECVD : plasma enhanced chemical vapor desposition)、 分子光外延法(MBE ·· molecular beam epitaxy)、金屬有機蒸 汽壓力外延法(MOVPE ·· metal organic vapor pressure epitaxy)、或是有機氣相沉積法(ovpd : organic vapor phase deposition)。在應用這些方法時通常會使用以下的材料: -金屬氧化物,例如二氧化矽(Si〇2)、氧化矽(ZnO)、二氧 化锆(Zr02)、氧化鋁(A1203)、氧化銦錫(ΓΓΟ)、氧化銦辞 (IZO)、二氧化鈦(Ti〇2)、氧化鎵(Ga203); -能帶間隙較大的二元半導體化合物,例如Π4ν族及ΙΠ 族氮化物化合物及其化合物半導體; -有機層(例如經蒸鍍再聚合化的單體),例如曱基丙烯酸甲 酯(ΜΜΑ)或丙烯酸; -由小分子構成的有機層,例如芳香族物質、脂肪族物質、 雜環、酮類物質(例如四二苯胺螺二芴(螺_tad)、三咔唑基 二本胺(TCTA)、鄰菲羅林(Bphen))。 除了可以讓屬於可見光波長範圍的光線透過之外,以上 用於製作附加層的大多數材料的另外—個特徵是其折射率 大於或等於有機層的折射率。這有助於在激化有機層内產生 的光線輸人耦合到本㈣之發光組_加相,並穿過 中心離開發光組件。由於這些用於製作附加層的大多數材料 25 1292678 都可以讓屬於可見光波長範圍的光線透過,但是對屬於紫外 線波長範圍的光線卻具有很高的吸收率,因此以這些材料製 成的附加層不僅可以保護有機層免於濕氣及空氣的影響,也 可以使有機層免於受到紫外線的破壞。 在濺射金屬氧化物時,例如在利用濺射方法以IT〇製 作透明電極或是濺射二氧化矽製作附加層時,發光組件的有 機層都可能會因為與電㈣用或是受到外力衝擊而受損。因 ,在利用此類方法製作附加層時應使用一種不反應的惰性 氣體,例如氬氣,此外還可以將二極體最上—層的^機^製 作%•特別厚’續對二極體的發光有機層提供保護作用 3:‘Τ=Γ210Α1提出的方法利用摻雜 挺间-極體取上-層的有機層的導電性,以防止 個有機層時發生過大的電壓降。二極體最上 (也稱為轉移層)的厚錢常在觸η ^層 度視實際的實施方式而定)。在後面的加 在機射透明電極及域濺_加層時 二疋-? "Dissolve, for example, a polyfluoride solution or a polystyrene solution dissolved in an organic solution, such as xylol, toluene (T〇lu〇1), benzotrile (Anisol), trimethyl An aromatic solvent such as benzene (Trimethylbenz〇i). a solution made of an organic non-polymeric coating material, such as an organic glass solution, such as Ortho-Terphenyl or 1,3,5- dissolved in an aromatic solvent such as toluene. Tri-α-naphthyl-Benzol (1,3,5-Tri-alpha-Naphtyl-Benzol); - a monomer or a mixture of monomers that are polymerized after being coated (eg, methyl methacrylate (Me) Thy 1 me thacry 1 ate) or allyldiglycolcarbonat), or a derivative of a monomer that has been heated, chemically treated, or photoexcited after being applied; a monomer or mixture of monomers which are bonded together by addition polymerization, such as a polymeric carbonate; an optical adhesive; a photoresist; a transparent or translucent adhesive, such as a chemical hardening Adhesive (for example, jfe agent of 22:292678), thermosetting adhesive (such as acrylate or epoxy), or enamel, external hardening adhesive (such as acrylate or epoxy) a transparent thermoplastic such as bottom density polyethylene, polymeric carbonate, and urethane (P〇lyUrethane); - Thermosetting plastics, such as phenolic resin or melamine resin; (Melaminharze); an aqueous emulsion formulated with polyacrylic acid vinegar, polyvinyl alcohol or polyvinyl acetate, Organic emulsions, or fluorinated organic emulsions; _ ~, paints such as alkyd paints, tipized cellulose paints, two-component paints (such as polyurethane paint), water-dilutable paints, synthetic resin paints, and Acrylic paint; - Collagen, such as gelatin, Zell〇phan, or Zelluloid; - Polymer dispersant, such as titanium dioxide particles and polyvinyl acetate dissolved in water; - Formulated with inorganic materials Solution or dispersant, such as a salt solution φ. Depending on the substrate material used, scattering particles can be selected from many possible combinations, such as: - inorganic microcrystals (eg salt crystals), metal oxides (eg citrate), Sapphire microcrystals, Mg〇, or si〇2; -Inorganic microcrystals (such as hydrocarbons), crystallized polymeric particles (such as temple powder), cellulose or synthetic polymers (such as polyfluorene) (Polyamide), poly_3,4_ethylene dithiophene (pED〇T): poly(styrene sulfonate (pss) crystal)); 23 1292678 - gas phase oxidation dream (Aerosile); - inorganic amorphous Materials such as quartz) (si〇2); - nanoscale particles; - polymer powders, such as polymeric carbonates, polyimine, polyester, polyethylene (PE), polypropylene (pp), poly Ether, glory polymer, polyamine, and polyvinyl acetate; - non-polymeric powders, such as organic materials (such as aromatics), aliphatic materials, and heterocyclic materials; Bubbles generated by gases such as hydrocarbons (pentane), inert gases (argon), nitrogen, carbon dioxide, FCKW, etc. of the substrate solution; - bubbles, for example, via gaseous reactions occurring in the substrate solution to produce gaseous reaction products ( For example carbon dioxide or nitrogen). Furthermore, in the embodiment depicted in one of the figures, the dry method can also be used to form additional layers in a stacked manner. In this embodiment, the optical heterogeneity mentioned in the preceding φ is added to the thin movement in the production of the film for stacking, and the aforementioned matrix material and its combination with the various scattering particles mentioned above are only _ If the stacking operation is mixed, it can be added as a light heterogeneity. For example, gas phase dioxide aerosile particles are added to a film of polyvinyl acetate vinegar, and then the film is stacked on the top-emitting organic light-emitting diode. Another possible way is to attach the film to the top-emitting organic light-emitting diode. An advantageous way is to read and transfer the jade made of an additional layer composed of a film, wherein the face of the double master is in contact with the additional layer film, and the other one is in contact with the light-emitting element, especially with one Electrode contact. ', ^ 24 1292678 Another grade of additional layer of the top-emitting electroluminescent device of the present invention can be made by any of the following methods: sputtering, physical vapor deposition (PVD) Chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), molecular beam epitaxy (MBE · molecular beam epitaxy), metal organic vapor pressure epitaxy Method (MOVPE · metal organic vapor pressure epitaxy), or organic vapor phase deposition (ovpd: organic vapor phase deposition). The following materials are usually used in the application of these methods: - metal oxides such as cerium oxide (Si〇2), cerium oxide (ZnO), zirconium dioxide (ZrO2), aluminum oxide (A1203), indium tin oxide ( ΓΓΟ), indium oxide (IZO), titanium dioxide (Ti〇2), gallium oxide (Ga203); - binary semiconductor compounds with large gaps, such as Π4ν and 氮化 nitride compounds and their compound semiconductors; An organic layer (for example, a monomer which is subjected to vapor deposition repolymerization), such as methyl methacrylate or acrylate; an organic layer composed of small molecules such as an aromatic substance, an aliphatic substance, a heterocyclic ring, a ketone type Substance (eg tetraphenylanilinium disulfide (spiro-tad), tricarbazolyl diamine (TCTA), phenanthroline (Bphen)). In addition to being able to transmit light belonging to the visible wavelength range, the other feature of most of the materials used to make the additional layer is that its refractive index is greater than or equal to the refractive index of the organic layer. This helps the light generated in the intensified organic layer to be coupled to the illuminating group _ phase of the present (4) and exit the illuminating assembly through the center. Since most of these materials used to make additional layers 25 1292678 can transmit light in the visible wavelength range, but have a high absorption rate for light belonging to the ultraviolet wavelength range, additional layers made of these materials are not only The organic layer can be protected from moisture and air, and the organic layer can be protected from ultraviolet light. When sputtering a metal oxide, for example, when a transparent electrode is formed by IT sputtering using a sputtering method or an additional layer is sputtered with cerium oxide, the organic layer of the light-emitting component may be affected by electricity (4) or by external force. And damaged. Therefore, in the production of additional layers by such methods, a non-reactive inert gas, such as argon, should be used. In addition, the uppermost layer of the diode can be made to have a special thickness. The luminescent organic layer provides protection. 3: The method proposed by 'Τ=Γ210Α1 utilizes the conductivity of the doped interlayer-polar body to take up the organic layer of the layer to prevent an excessive voltage drop from occurring in the organic layer. The thickest of the diodes (also known as the transfer layer) is often measured in terms of the actual implementation. In the latter part of the machine to shoot the transparent electrode and the field splash _ add layer
層都可以為錄其下方驗財機層提餘護^度的轉移 在本發明的另外—種有利的實施方式中 ,(例如znSe或GaN)是從氣相中被沉積出來乍由二層的 讀方法不需用到氣體魏因此對二極體^ ^於這種 外,會比前面提及的製作方法小很多。這種=成的 t真空熱蒸發的方式將製作附加層的㈣㉞^方法是 上。以ZnSe作為製作附加層的材料時, =明電極 _至_之間。在熱蒸發過程中發;組 26The layers may all be transferable for the recovery of the lower layer of the money detector layer. In a further advantageous embodiment of the invention, (for example znSe or GaN) is deposited from the gas phase by two layers. The reading method does not require the use of gas Wei and therefore the diodes are much smaller than the previously mentioned fabrication methods. This method of forming a vacuum layer by vacuum evaporation will produce an additional layer of (4) 34^ method. When ZnSe is used as the material for the additional layer, = between the electrodes _ to _. In the process of thermal evaporation; group 26
1292678 隔一段足夠的距離,以刼 成不良影響。當然,在對有機層結射的有機層造 且經過摻雜哺卵# ^㈣造方树,具奴夠厚度 影響。胁層亦有助於減少熱輕射對有機層的不良 發光組件的表面不夠會被自動執行。由於 :單:顧膜,但由於熱力工會 長晶芽就會長成—個封t 段時間後,這些生 /、 &些⑽界限尤其會大量έΗ現在生長方向 上’而且會對進入附加層的光線造成很好的散射作用。另外 -種有助於將附加層(輸_合層)分解成單—的微晶區域 的方法是雛蒸料關IWV騎料(例如ZnSe及⑽) 或πι族氮化物(例如GaN及A1N)。由於這些材料具有不同 的栅流結構,因此適於在分離的結晶區域結成塊狀,而且這 些材料的折射率也各不相同,因此可以形成散射率特別好的 光學異質。 以濺射金屬氡化物產生輸出耦合光線的實施方式會形 成一種完全非晶形的薄膜。另外一種實施方式是以輪流濺射 附加層材料及利用喷霧法塗上金屬微粒的方式使散射微粒 進入附加層。這種冷喷霧法是將一種作為散射中心的金屬粉 27 1292678 末(例如銅粉)喷入附加層内。另外一種實施方式是以輪流將 附加層材料及一種金屬(例如銅)濺射在發光組件上的方式 形成附加層及其所含的光學異質。使用這種方法時,濺射金 屬的時間要設定的很短,以便只能形成金屬團,而不會形成 會過度吸收光線的金屬膜。 在以蒸鍍方式形成輸出耦合光線用的有機層的實施方 式中,可以利用濺鍍法或冷喷霧法將散射中心加入附加層, 也就是將微金屬粒或金屬氧化物争作為光學異質加入附加 • 層。本發明的另外一種實施方式是以蒸鍍方式將半導體化合 物串蒸鍍到有機層之間。在本發明的另外一種實施方式中, 為了在輸出耦合層内形成散射中心,故選用本身會以結晶方 式被析出的有機材料。視實施方式的不同,可以用樹脂質瀝 青(Antracen)、酞菁配位基(Phthalocyanine)、聯三苯二胺 (TPD)、花四羧-二酐(PTCDA)、或是鄰菲羅林(Bphen)為 材料來製作本發明之發光組件的附加層。 此外,本發明還有另外一種實施方式是先以蒸鍍方式設 φ 置有機層,然後再照射紫外線產生聚合作用以形成附加層。 同樣的,這種實施方式也可以利用冷噴霧法或金屬賤射法將 被金屬粒或金屬氧化物串加入附加層内作為散射中心。本發 明的另外一種實施方式的附加層是以曱基丙烯酸曱^ (MMA)製成,這種材料在加入散射微粒後經紫外線照射會 聚合成普蔡克西玻璃(PMMA : —種有介電性質的有機玻 璃)。這種將附加層進行聚合化的作法的好處是附加層不會 因為加入散射微粒而受損。 28 1292678 在第 :輪:合加·含有光學異質=發::: 除了以上描述的實施方式外,也可 在發光組件的附加層的表面上,此種方式使㈡= 尺寸介於50nm至l〇〇nm之間。原 予彳、質的 均可作為製作此種構造方式之發光組件:附 面提及的所有製作薄膜的材料亦均可 ^、材科,刚 式之發光組件㈣蹄料,以轉=種構造方 沉積、以及蒸鍍的材料亦均可作為此、用於濺射、 的濺射、沉積、_的材料。附力件 =:=方法來完成,視不==經 =包來:成本發明之發光組件的輪出輕合層的表面 _-用帶有微結構的印章蓋印 -對以有機玻璃製成的附加層進行噴砂處理 —用刷子刷 -研磨 第3圖a/b)顯示本發明之頂部發光電激發光組件的一 種貫=方式,其輸_合層距第二個電極㈣的表面被結構 化。苐3圖a/b)中的基片⑽)、第一個電極(12〇)、有機層 結構_、以及第二個電極⑽)均與$2_示完全相同。 從第3圖a顯示的側視圖可以看出,在這種實施方式中 29 1292678 層(152)表面的結構化是由依序均句排列的對稱溝槽 (152)所形成。在第3圖a _的實施方式中,這種表面社 構是以刷子在附加層上沿著垂直於圖_方向刷動而產 :。在-種未在圖式中繪出的實施方式中,可以將附加層的 ,面結構製作成凸起或凹陷的形狀,*且這種表面結構可以 是一維的(也就是線性的),也可以是二維的。 ,第3 ® b顯_實施方式中,附加層⑽)的表面結 構則=不均勻的。從第3圖b可看出,附加層⑽)的表面 結構帶有以研磨法產生的不規則分佈的凹陷(153)。 第4圖顯示利用印章⑽)在附加層(1 結構。印章⑽)具有許多個彼此相隔—定間距的= (171)。每—個刀鋒_都具有兩個朝刀尖方向聚撤的面 (Π2’173)。此種實施方式的第—個步驟是在第二個電極⑽ 上設置附加層(15G),然後再按照第4 _示的方式對附加 層(150)的表面進行結構化處理,其過程是將印章(17〇)放在 附加層(15G)的表面上’並以—定按壓力⑻將印章(17〇)壓入 附加層(150)的表面。此時由於刀鋒(171)的形狀在附加芦 (15〇)會形成如第4圖中的箭頭(:n,F2)所示的力的變化: 線。從第4圖巾可以看出,由於印章形狀的關,印章產生 的大部分按壓力在輸出糕合層(150)内會往側向方向作用, 因此不會作用在位於輸出耦合層(15〇)下方的有機層(13〇) 上。移去印章(Π0)後’輸出輕合層⑽)的表面就會θ出現許 多彼此間隔一定間距的溝槽。這些溝槽及/或溝槽之間的接 觸面構成這種實施方式的光學激化異質。 1292678 第5圖顯示的實施方式是在發光組件内另外加入一種 間隔塊(180),例如一種由光刻膠或二氧化矽製成的間隔塊 (180) ’其作用是防止作為模具用的印章(I%)被按壓過深而 造成有機層結構變形或受損。這種結構方式尤其適用於主動 式矩陣顯示器及/或被動式矩陣顯示器的陰極分離或像素定 義。在本發明的發光組件中,這歡置在顯示器内的間隔塊 (⑽)應具備足夠的尺寸及穩定性,以保財機層不會因為 作為模具用印章(170)的按壓作用而受損。1292678 A sufficient distance apart to cause adverse effects. Of course, in the organic layer that is formed by the organic layer, and through the doping of the egg # ^ (four) square tree, with the thickness of the slave. The threat layer also helps to reduce the poor heat of the organic layer. The insufficient surface of the light-emitting component is automatically executed. Because: single: film, but because the thermal union long crystal buds will grow into a period of time after a period of t, these (10) boundaries will especially be a large number of current growth direction 'and will enter the additional layer Light causes good scattering. Another way to help break down the additional layer (transport-to-layer) into a single-crystallite region is to charge the IWV rider (eg ZnSe and (10)) or πι nitride (eg GaN and A1N). . Since these materials have different gate flow structures, they are suitable for forming a block in the separated crystal regions, and the refractive indices of these materials are also different, so that an optical heterogeneity with particularly good scattering ratio can be formed. Embodiments that produce output coupling light by sputtering metal bismuth will form a completely amorphous film. In another embodiment, the scattering particles are introduced into the additional layer by alternately sputtering the additional layer material and applying the metal particles by spraying. This cold spray method is to spray a metal powder 27 1292678 (for example, copper powder) as a scattering center into an additional layer. Another embodiment forms an additional layer and the optical heterogeneity it contains by alternately sputtering additional layer material and a metal (e.g., copper) onto the light emitting assembly. When using this method, the time for sputtering the metal is set to be short so that only metal clusters can be formed without forming a metal film which excessively absorbs light. In an embodiment in which an organic layer for outputting coupling light is formed by vapor deposition, a scattering center may be added to an additional layer by sputtering or cold spraying, that is, micro metal particles or metal oxides are added as optical heterogeneous. Additional • Layer. In another embodiment of the present invention, a semiconductor compound string is vapor-deposited between organic layers. In another embodiment of the present invention, in order to form a scattering center in the output coupling layer, an organic material which is itself precipitated in a crystalline manner is selected. Depending on the embodiment, resinous pitch (Antracen), Phthalocyanine, tert-triphenyldiamine (TPD), tetracarboxylic- dianhydride (PTCDA), or phenanthroline (or phenanthroline) may be used. Bphen) is an additional layer of material for making the light-emitting component of the present invention. Further, in still another embodiment of the present invention, the organic layer is first set by vapor deposition, and then irradiated with ultraviolet rays to cause polymerization to form an additional layer. Similarly, this embodiment can also use a cold spray method or a metal sputtering method to add a metal particle or a metal oxide string into the additional layer as a scattering center. An additional layer of another embodiment of the present invention is made of yttrium methacrylate (MMA) which is polymerized into puxixi glass by PM irradiation after the addition of scattering particles (PMMA: organic organic matter) glass). The advantage of this method of polymerizing the additional layer is that the additional layer is not damaged by the addition of scattering particles. 28 1292678 In the first: round: combined with optical heterogeneity = hair::: In addition to the embodiment described above, it can also be on the surface of the additional layer of the light-emitting component, in such a way that (2) = size between 50nm and l 〇〇nm between. The original enamel and quality can be used as the illuminating component for making this type of construction: all the materials for making the film mentioned in the attached side can also be used, the material, the rigid-type illuminating component (4), the material of the stalk Both square deposition and vapor deposition materials can also be used as materials for sputtering, sputtering, deposition, and _. Attachment === method to complete, depending on == by = package: cost of the light-emitting component of the invention, the surface of the light-emitting layer _- stamped with a stamp with a microstructure - made of plexiglass The additional layer is sandblasted - brushed - ground (Fig. 3 a/b) shows a cross-mode of the top-emitting electroluminescent device of the present invention, the surface of which is connected to the surface of the second electrode (four) Chemical. The substrate (10), the first electrode (12 Å), the organic layer structure _, and the second electrode (10) in Fig. 3/b) are all identical to the $2_. As can be seen from the side view shown in Fig. 3a, in this embodiment the structuring of the surface of the layer 29(292) is formed by symmetric grooves (152) arranged in sequential order. In the embodiment of Fig. 3a, the surface structure is produced by brushing on the additional layer in a direction perpendicular to the direction of the drawing. In an embodiment not depicted in the drawings, the additional layered surface structure may be formed into a convex or concave shape, and the surface structure may be one-dimensional (ie, linear). It can also be two-dimensional. In the third embodiment, the surface structure of the additional layer (10) is = non-uniform. As can be seen from Fig. 3b, the surface structure of the additional layer (10) has irregularly distributed depressions (153) produced by grinding. Figure 4 shows the use of the seal (10)) in the additional layer (1 structure. The seal (10)) has a number of spaced apart - fixed spacing = (171). Each blade has two faces that are gathered toward the tool tip (Π2'173). The first step of this embodiment is to provide an additional layer (15G) on the second electrode (10), and then to structure the surface of the additional layer (150) in the manner shown in Figure 4, the process is A stamp (17 〇) is placed on the surface of the additional layer (15G) and the stamp (17 〇) is pressed into the surface of the additional layer (150) with a predetermined pressing force (8). At this time, due to the shape of the blade (171), a change in force as indicated by an arrow (:n, F2) in FIG. 4 is formed in the additional reed (15 :): line. As can be seen from the 4th towel, due to the seal shape, most of the pressing force generated by the seal will act in the lateral direction in the output cake layer (150), so it will not act on the output coupling layer (15〇). ) on the underlying organic layer (13〇). After removing the stamp (Π0), the surface of the output light-bonding layer (10) will have a number of grooves spaced apart from each other by a certain distance. The contact surfaces between the trenches and/or trenches constitute the optically excited heterogeneity of this embodiment. 1292678 The embodiment shown in Fig. 5 is to additionally add a spacer block (180) in the light-emitting assembly, such as a spacer block (180) made of photoresist or ruthenium dioxide, which serves to prevent the seal used as a mold. (I%) is pressed too deep to cause deformation or damage to the organic layer structure. This configuration is especially useful for cathode separation or pixel definition of active matrix displays and/or passive matrix displays. In the light-emitting assembly of the present invention, the spacer block ((10)) which is placed in the display should have sufficient size and stability so that the fuser layer is not damaged by the pressing action of the stamp (170) as a mold. .
乐〇圓顯不 ^ …一不一罔货啊之照明用發光組 的式。在第6圖的實施方式中,設置間隔片(190) 項且借^護有機層⑽)。同樣的,這些間隔片(190)也必 對有機層造成的機最=合層硬化之前進行觀步驟 從篩網印刷技術相^ 行結構化處理的—種彳、—種方法是騎加層表面進 將以濕式化學方法。使料種方_步驟是先 個電極上,㈣合層設置在發光崎的第二 壓。以織物_輪_=置於輪_合層的表面並進行按 用的刮板(例如—的表面的作業是_ _印刷常 外-種實施方式是以:酸酿刮板)來進行。本發明的另 、二甶織物以濕化學法多刮到另外一個結 31 1292678 ϊί以位於這個結構層之下的結構層被溶解,复優點 ^可从使雜㈣合相表錢行結構化的 得= 石1二論=了種人實施方式,最重要的—點是在輸== 灸輸出耦合層的表面變形都必須維持不變。The music is not displayed in the form of a lighting group. In the embodiment of Fig. 6, the spacer (190) item is provided and the organic layer (10) is protected. Similarly, these spacers (190) must also be subjected to structural processing before the layering of the organic layer, and the method of structuring from the screen printing technique is to ride the surface of the layer. Progress will be in wet chemical methods. The seeding step _ is the first electrode, and the (four) layer is set at the second pressure of the illuminating strip. The fabric_wheel_= is placed on the surface of the wheel-to-ply layer and the squeegee is applied (for example, the operation of the surface is _ _ printing often - the embodiment is: acid squeegee). The other two-ply fabric of the present invention is further scraped by wet chemical method to another knot 31 1292678 以, the structural layer located under the structural layer is dissolved, and the complex advantage can be structured from the heterogeneous (four) phase combination Get = Stone 1 2 = The implementation of the species, the most important point is that the surface deformation of the output coupling layer must be maintained.
合声在本發明的其他的實施方式中,使輸出輕 成打毛)的作#是以_械性的方法來完 為位;μ下合層特別軟或是厚度特別薄,而無法 ί二==下=學保護時,尤_此 面變形的非機械=為可細的使附加層的表 -活性乾蝕刻 -非活性乾蝕刻 -濕式化學蝕刻,例如用酸液進行蝕刻 ••照相石板變形法 如果有機層結構制敏感或是脆弱,在將輪㈣合層設 在有機層結構之前應先錄㈣合層的表面打毛,以大幅 降低發光組件絲受的機械負荷、熱負荷、幅射負荷、及/ 或化學負荷。例如將—片已預先經過結構化處理的薄膜設置 在發^組件上即可拥到這種有利的方法。這種作業方式是 先然前面提及的-種溶劑材料巾析出—片全透明或半透明 的薄膜。然後以前面提及的一種機械性或非機械性方法將薄 膜的-個表面(正面)打毛,以防止在薄膜内產生全反射,達 到防止或财在發光崎㈣财制模式/電姉式的目 的。在將薄膜設置在發光組件上時應將薄膜光滑的那一面 32 1292678 且通常疋連接在發光組件的第二 (背面)連接在發光組件上, 個電極上。 本發明之這種實施方式的發光組件的這種薄膜是由^ 乙酸乙烯樹脂(P〇lyvinylacetat)製成,在處理時應先將薄^ 的一個表面以研磨方式打毛,然後將光滑的那一面設置或粘 貼在透明電極上,也就是設置或粘貼在頂部電極上。以這種 方式製作的發光組件的發級率最高可以提高3〇〇%。 卜在本發明的一種未在圖式中繪出但卻是十分有利的實 • 施方式以一種預先經過結構化處理的薄膜作為附加層,且在 $作時是以_將薄膜的光滑面㈣在發光組件的透明頂 邛電極上此處所使用的枯膠必須是透明度很高,而且能夠 將有機層很好的封住的枯膠。由於這種枯膠能約為有機層提 供很好的保護作用,因此不必為有機發光二極體(Ο·)另 外叹置-個封裝保護層。視實施方式而定,薄膜表面的結構 化方式可財錄可能,其巾—種特前綱結構化方式是 ^薄膜表面形成高度介於Ι/m至iGG//m之間的屋脊狀條 # τ此外,也可以採用較平坦的結構化方式,例如金字塔狀 的結構。 曰在本發明的另外一種特別有利的實施方式中,輸出耦合 層疋作為由_料構成的有機層被蒸鍍到透明的彬電極 上。由於鄰菲轉本身會被部分結日日日析出,@此可以構成輸 出耦合層内的散射中心。為了保護有機層 ,應另外以一片很 的玻璃將發光組件封裝起來。為了避免這個玻賴裝層對發 光組件的光線輪&造成不彡響,這個玻璃封裝層應與輸出 33 1292678 耦合層相隔一段足夠的距離,以便使這個玻璃封裝層只是作 為一個平面平行的玻璃片。In other embodiments of the present invention, the output of the light-cutting is made in a mechanical manner; the lower layer is particularly soft or extremely thin, and cannot be used. ==下=学保护, especially the non-mechanical deformation of this surface = fine-grained surface-active dry etching-inactive dry etching-wet chemical etching of additional layers Slate deformation method If the organic layer structure is sensitive or fragile, before the wheel (four) layer is placed in the organic layer structure, the surface of the layer should be recorded (4) to reduce the mechanical load and heat load of the illuminating component wire. Radiation load, and / or chemical load. This advantageous method can be achieved, for example, by placing a film which has been previously structured by the sheet on the hair module. This type of operation is preceded by the deposition of a solvent-based material sheet--a fully transparent or translucent film. Then, the surface (front side) of the film is roughened by a mechanical or non-mechanical method mentioned above to prevent total reflection in the film, thereby preventing or illuminating (4) financial mode/electric type. the goal of. The surface on which the film is to be smoothed when the film is placed on the light-emitting assembly 32 1292678 and usually connected to the second (back) of the light-emitting assembly is connected to the electrodes. The film of the light-emitting assembly of this embodiment of the present invention is made of vinyl acetate (P〇vinylacetat), and a surface of the thin film should be firstly ground in a grinding manner, and then smoothed. One side is set or pasted on the transparent electrode, that is, set or pasted on the top electrode. The emission rate of the light-emitting component produced in this manner can be increased by up to 3%. An embodiment of the present invention which is not shown in the drawings but which is very advantageous is a pre-structured film as an additional layer, and is used as a smooth surface of the film (4) The glue used here on the transparent top electrode of the light-emitting component must be a high-transparency and capable of sealing the organic layer well. Since the glue can provide a good protection against the organic layer, it is not necessary to additionally slap the protective layer for the organic light-emitting diode (Ο·). Depending on the embodiment, the structuring of the surface of the film can be recorded. The special structuring method of the film is to form a ridge strip with a height between Ι/m and iGG//m. τ In addition, a flatter structured approach, such as a pyramidal structure, can also be employed. In a further particularly advantageous embodiment of the invention, the output coupling layer is deposited as an organic layer of material onto the transparent electrode. Since the neighboring Philippine turn itself will be partially precipitated, @this can form the scattering center in the output coupling layer. In order to protect the organic layer, the illuminating component should be encapsulated in a very small piece of glass. In order to prevent the glass layer from igniting the light wheel of the light-emitting component, the glass package layer should be separated from the output layer 33 1292678 by a sufficient distance so that the glass package layer is only a plane parallel glass. sheet.
34 1292678 圖式簡單說明 以下配合圖式及若干實際的實施方式對本發明 作進一步的說明。 各 第1圖:傳統型頂部發光有機二極體的基本構造及作用 示意圖。 ’、里 =用圖原卿發光組種實财摘基本構造 =造 継件㈣卜-織方式的 ί=頂部發光組件的製作方法的原理示意圖。 構上:、Θ㈣作方法應用在—個有機發光二極體結 ϋ二上將第4圖的製作方法應用在另外—個有機發光二極 元件符號說明 100 有機發光二極^ 110 基片 120 第一個電極 130 有機層/層結構 140 第二個電極 150 輸出孝馬合層 35 1292678 151 散射微粒 152 槽,溝 153 凹陷 160 絕緣材料 170 印章 171 刀具 172, 173 切割面。蓋印面 • 180 間隔塊 190 間隔片 EMI ,EM2 外部模式 OM1 有機模式 S 按壓力 FI, F2 在附加層内的作用力方向34 1292678 BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be further described in conjunction with the drawings and several embodiments. Each Figure 1: Schematic diagram of the basic structure and function of a conventional top-emitting organic diode. ‘, 里=Use the original image of the illuminating group to develop the basic structure of the basics = 造 ( 四 四 四 四 四 ί ί ί 原理 原理 原理 原理 原理 顶部 顶部 顶部 顶部 顶部 顶部 顶部 顶部 顶部 顶部 顶部 顶部 顶部 顶部The structure: Θ (4) is applied to an organic light-emitting diode junction 2. The fabrication method of Figure 4 is applied to another organic light-emitting diode component symbol 100 organic light-emitting diodes 110 substrate 120 One electrode 130 organic layer/layer structure 140 The second electrode 150 outputs the filial layer 35 1292678 151 scattering particles 152 grooves, grooves 153 depressions 160 insulating material 170 stamp 171 cutter 172, 173 cutting surface. Stamping surface • 180 spacer block 190 spacer EMI, EM2 external mode OM1 organic mode S pressing force FI, F2 direction of force in the additional layer
3636
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004035965A DE102004035965B4 (en) | 2004-07-23 | 2004-07-23 | Top-emitting, electroluminescent component with at least one organic layer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200607388A TW200607388A (en) | 2006-02-16 |
TWI292678B true TWI292678B (en) | 2008-01-11 |
Family
ID=35786553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW094123978A TWI292678B (en) | 2004-07-23 | 2005-07-14 | Top-emittierendes, elektrolumineszierendes bauelement mit zumindest einer organischen schicht |
Country Status (8)
Country | Link |
---|---|
US (1) | US8022619B2 (en) |
EP (1) | EP1771895B1 (en) |
JP (1) | JP5043658B2 (en) |
KR (1) | KR101081710B1 (en) |
CN (1) | CN101019250A (en) |
DE (1) | DE102004035965B4 (en) |
TW (1) | TWI292678B (en) |
WO (1) | WO2006010355A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI451611B (en) * | 2011-05-19 | 2014-09-01 | Au Optronics Corp | Organic light emitting device |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7540978B2 (en) | 2004-08-05 | 2009-06-02 | Novaled Ag | Use of an organic matrix material for producing an organic semiconductor material, organic semiconductor material and electronic component |
DE102004042461A1 (en) * | 2004-08-31 | 2006-03-30 | Novaled Gmbh | Top-emitting, electroluminescent device with frequency conversion centers |
DE502005009415D1 (en) | 2005-05-27 | 2010-05-27 | Novaled Ag | Transparent organic light emitting diode |
EP1729346A1 (en) * | 2005-06-01 | 2006-12-06 | Novaled AG | Light-emitting device with an electrode arrangement |
EP1739765A1 (en) * | 2005-07-01 | 2007-01-03 | Novaled AG | Organic light-emitting diode and stack of organic light emitting diodes |
EP1808909A1 (en) * | 2006-01-11 | 2007-07-18 | Novaled AG | Electroluminescent light-emitting device |
DE102006051746A1 (en) * | 2006-09-29 | 2008-04-03 | Osram Opto Semiconductors Gmbh | Optoelectronic component with a luminescence conversion layer |
JP5239145B2 (en) * | 2006-10-16 | 2013-07-17 | 凸版印刷株式会社 | Optical component and manufacturing method thereof |
JP2008108439A (en) * | 2006-10-23 | 2008-05-08 | Nec Lighting Ltd | Electroluminescent device and electroluminescent panel |
DE102007006348A1 (en) * | 2006-12-22 | 2008-06-26 | Osram Opto Semiconductors Gmbh | Radiation emitting component, particularly opto-electronic element has organic layer formed to produce radiation and radiation decoupling side, where layer is arranged between organic layer and radiation decoupling side |
US20090051278A1 (en) * | 2007-08-21 | 2009-02-26 | Fujifilm Corporation | Organic electroluminescent display device having scattering member |
DE102007044597A1 (en) | 2007-09-19 | 2009-04-02 | Osram Opto Semiconductors Gmbh | Optoelectronic component |
DE102007062040B8 (en) * | 2007-12-21 | 2021-11-18 | Osram Oled Gmbh | Radiation-emitting device |
JP5568224B2 (en) * | 2008-07-04 | 2014-08-06 | ユー・ディー・シー アイルランド リミテッド | Organic electroluminescence device |
DE102008056370B4 (en) * | 2008-11-07 | 2021-09-30 | Osram Oled Gmbh | Method for producing an organic radiation-emitting component and organic radiation-emitting component |
DE102009030101A1 (en) * | 2008-12-08 | 2010-07-15 | Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh | Wear protection layer based on a synthetic resin matrix, process for their preparation and their use |
KR20100081772A (en) * | 2009-01-07 | 2010-07-15 | 삼성모바일디스플레이주식회사 | Organic light emitting diode display |
KR100989133B1 (en) * | 2009-01-07 | 2010-10-20 | 삼성모바일디스플레이주식회사 | Organic light emitting display |
KR101147428B1 (en) * | 2009-02-09 | 2012-05-23 | 삼성모바일디스플레이주식회사 | Organic light emitting diode display |
DE102009025123A1 (en) | 2009-06-16 | 2010-12-23 | Osram Opto Semiconductors Gmbh | Radiation-emitting device |
WO2011010582A1 (en) * | 2009-07-23 | 2011-01-27 | コニカミノルタホールディングス株式会社 | Sheet-like structural body, method for manufacturing sheet-like structural body, and surface-emitting body using sheet-like structural body |
DE102009036134A1 (en) | 2009-08-05 | 2011-02-10 | Schott Ag | Substrate glass for light-emitting diodes with a layer containing scattering particles and method for its production |
JP5297991B2 (en) | 2009-12-11 | 2013-09-25 | 株式会社日立製作所 | Organic light emitting diode and light source device using the same |
CN102326448B (en) * | 2010-03-01 | 2015-03-25 | 松下电器产业株式会社 | Organic EL device and method for manufacturing same |
US8237174B2 (en) * | 2010-05-10 | 2012-08-07 | National Central University | LED structure |
JP5986992B2 (en) * | 2010-06-14 | 2016-09-06 | ノヴァレッド ゲーエムベーハー | Organic light emitting device |
US8637858B2 (en) | 2010-09-24 | 2014-01-28 | Novaled Ag | Tandem white OLED |
JP6062636B2 (en) * | 2011-03-10 | 2017-01-18 | ローム株式会社 | Organic EL device |
DE102011076750A1 (en) * | 2011-05-31 | 2012-12-06 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for producing an optoelectronic component |
KR101829890B1 (en) | 2011-12-23 | 2018-02-20 | 삼성디스플레이 주식회사 | Organic light emitting display apparatus and method of manufacturing the same |
DE102012207151A1 (en) * | 2012-04-30 | 2013-10-31 | Osram Opto Semiconductors Gmbh | ORGANIC LIGHT-EMITTING COMPONENT AND METHOD FOR PRODUCING AN ORGANIC LIGHT-EMITTING COMPONENT |
CN102709489B (en) * | 2012-05-31 | 2015-10-21 | 昆山维信诺显示技术有限公司 | The preparation method of high index of refraction scattering layer and the OLED preparation method of high light-emitting efficiency |
KR102128943B1 (en) | 2012-07-02 | 2020-07-01 | 헬리아텍 게엠베하 | Transparent electrode for optoelectronic components |
DE102012105810B4 (en) * | 2012-07-02 | 2020-12-24 | Heliatek Gmbh | Transparent electrode for optoelectronic components |
DE102013108039A1 (en) * | 2013-07-26 | 2015-01-29 | Osram Opto Semiconductors Gmbh | Radiation-emitting device |
DE102013111736B4 (en) * | 2013-10-24 | 2024-11-07 | Pictiva Displays International Limited | Organic light-emitting diode and method for producing an organic light-emitting diode |
DE102013221991A1 (en) * | 2013-10-29 | 2015-04-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electro-optic, organic semiconductor device with spaced-apart electrodes |
EP2897186B1 (en) * | 2014-01-21 | 2018-12-26 | Covestro Deutschland AG | UV protection film for OLEDs |
US9843012B2 (en) | 2014-12-26 | 2017-12-12 | Industrial Technology Research Institute | Top emitting organic electroluminescent devices |
TWI599556B (en) * | 2015-07-03 | 2017-09-21 | 友達光電股份有限公司 | Organic emitting device |
CN110098345B (en) * | 2019-04-17 | 2020-11-06 | 深圳市华星光电半导体显示技术有限公司 | Organic light emitting diode display and method of manufacturing the same |
CN110137383A (en) * | 2019-06-24 | 2019-08-16 | 昆山国显光电有限公司 | A kind of production method of display panel and display panel |
DE102020215067A1 (en) | 2020-11-30 | 2022-06-02 | Robert Bosch Gesellschaft mit beschränkter Haftung | Display device for displaying at least one image, method for producing a display device and method for operating a display device |
CN113097410A (en) * | 2021-03-19 | 2021-07-09 | 深圳市华星光电半导体显示技术有限公司 | Display panel, manufacturing method thereof and display device |
CN113871546A (en) * | 2021-09-16 | 2021-12-31 | 深圳市华星光电半导体显示技术有限公司 | OLED display panel, manufacturing method thereof and light-emitting device |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3203227B2 (en) * | 1998-02-27 | 2001-08-27 | 三洋電機株式会社 | Display device manufacturing method |
JP2000075836A (en) * | 1998-09-02 | 2000-03-14 | Sharp Corp | Organic EL light emitting device and driving method thereof |
JP3640578B2 (en) * | 1998-09-14 | 2005-04-20 | 株式会社オプテク | Organic semiconductor laser |
JP2000196140A (en) * | 1998-12-28 | 2000-07-14 | Sharp Corp | Organic electroluminescent device and manufacturing method thereof |
JP2000196410A (en) * | 1998-12-31 | 2000-07-14 | Kazuhiko Yamanouchi | High-stability and high-coupling surface acoustic wave substrate, surface acoustic wave filter using the same and surface acoustic wave function element |
JP3368225B2 (en) * | 1999-03-11 | 2003-01-20 | キヤノン株式会社 | Method for manufacturing diffractive optical element |
US6878297B1 (en) * | 1999-06-09 | 2005-04-12 | Cambridge Display Technology, Limited | Method of producing organic light-emissive devices |
JP2001052871A (en) * | 1999-08-04 | 2001-02-23 | Toray Ind Inc | Organic electroluminescent device |
JP2001148292A (en) * | 1999-09-08 | 2001-05-29 | Denso Corp | Organic EL device |
US7233026B2 (en) * | 2000-03-23 | 2007-06-19 | Emagin Corporation | Light extraction from color changing medium layers in organic light emitting diode devices |
US6777871B2 (en) * | 2000-03-31 | 2004-08-17 | General Electric Company | Organic electroluminescent devices with enhanced light extraction |
GB2361356B (en) | 2000-04-14 | 2005-01-05 | Seiko Epson Corp | Light emitting device |
US7525165B2 (en) * | 2000-04-17 | 2009-04-28 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method thereof |
TW516164B (en) * | 2000-04-21 | 2003-01-01 | Semiconductor Energy Lab | Self-light emitting device and electrical appliance using the same |
TWI245147B (en) * | 2000-06-19 | 2005-12-11 | Nitto Denko Corp | Polarizing plate and liquid crystal display using the same |
US6840999B2 (en) * | 2000-07-25 | 2005-01-11 | Board Of Regents The University Of Texas System | In situ regrowth and purification of crystalline thin films |
WO2002037580A1 (en) * | 2000-11-02 | 2002-05-10 | 3M Innovative Properties Company | Brightness enhancement of emissive displays |
JP2004513483A (en) * | 2000-11-02 | 2004-04-30 | スリーエム イノベイティブ プロパティズ カンパニー | Bright and contrast enhanced direct-view luminescent display |
US6933673B2 (en) * | 2001-04-27 | 2005-08-23 | Semiconductor Energy Laboratory Co., Ltd. | Luminescent device and process of manufacturing the same |
US6789835B2 (en) * | 2001-07-11 | 2004-09-14 | Harley-Davidson Motor Company Group, Inc. | Motorcycle windshield assembly |
JP4152665B2 (en) * | 2001-07-11 | 2008-09-17 | 株式会社半導体エネルギー研究所 | Light emitting device and manufacturing method thereof |
US6734457B2 (en) * | 2001-11-27 | 2004-05-11 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US7141817B2 (en) * | 2001-11-30 | 2006-11-28 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
DE10164016B4 (en) * | 2001-12-28 | 2020-01-23 | Osram Opto Semiconductors Gmbh | Organic light emitting diode (OLED) and process for its production |
US7012363B2 (en) * | 2002-01-10 | 2006-03-14 | Universal Display Corporation | OLEDs having increased external electroluminescence quantum efficiencies |
DE10215210B4 (en) * | 2002-03-28 | 2006-07-13 | Novaled Gmbh | Transparent, thermally stable light-emitting component with organic layers |
US20040069995A1 (en) * | 2002-05-08 | 2004-04-15 | Zeolux Corporation | Feedback enhanced light emitting device |
US6670772B1 (en) | 2002-06-27 | 2003-12-30 | Eastman Kodak Company | Organic light emitting diode display with surface plasmon outcoupling |
US6965197B2 (en) * | 2002-10-01 | 2005-11-15 | Eastman Kodak Company | Organic light-emitting device having enhanced light extraction efficiency |
JP2004153089A (en) * | 2002-10-31 | 2004-05-27 | Toyoda Gosei Co Ltd | Group III nitride compound semiconductor light emitting device and method of manufacturing the same |
US7224532B2 (en) * | 2002-12-06 | 2007-05-29 | Chevron U.S.A. Inc. | Optical uses diamondoid-containing materials |
WO2004056839A1 (en) * | 2002-12-19 | 2004-07-08 | Semiconductor Energy Laboratory Co., Ltd. | Organometal complex, electroluminescent element containing the organometal complex and luminescent device including the electroluminescent element |
JP2004207136A (en) * | 2002-12-26 | 2004-07-22 | Nitto Denko Corp | Surface light source and display device using it |
WO2004086462A2 (en) | 2003-03-24 | 2004-10-07 | Konarka Technologies, Inc. | Photovoltaic cell with mesh electrode |
CN1638585A (en) * | 2003-12-26 | 2005-07-13 | 日东电工株式会社 | Electroluminescence device, planar light source and display using the same |
KR101097301B1 (en) * | 2005-02-05 | 2011-12-23 | 삼성모바일디스플레이주식회사 | White light emitting device |
US7531955B2 (en) * | 2005-07-12 | 2009-05-12 | Eastman Kodak Company | OLED device with improved efficiency and robustness |
DE502005005126D1 (en) * | 2005-08-11 | 2008-10-02 | Novaled Ag | Method for producing a top-emitting component and use |
-
2004
- 2004-07-23 DE DE102004035965A patent/DE102004035965B4/en not_active Expired - Fee Related
-
2005
- 2005-07-12 KR KR1020077003762A patent/KR101081710B1/en active IP Right Grant
- 2005-07-12 WO PCT/DE2005/001229 patent/WO2006010355A2/en active Application Filing
- 2005-07-12 JP JP2007521783A patent/JP5043658B2/en not_active Expired - Fee Related
- 2005-07-12 EP EP05778553.7A patent/EP1771895B1/en active Active
- 2005-07-12 CN CNA2005800243182A patent/CN101019250A/en active Pending
- 2005-07-12 US US11/572,458 patent/US8022619B2/en not_active Expired - Fee Related
- 2005-07-14 TW TW094123978A patent/TWI292678B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI451611B (en) * | 2011-05-19 | 2014-09-01 | Au Optronics Corp | Organic light emitting device |
Also Published As
Publication number | Publication date |
---|---|
US8022619B2 (en) | 2011-09-20 |
JP2008507809A (en) | 2008-03-13 |
WO2006010355A3 (en) | 2006-10-19 |
KR101081710B1 (en) | 2011-11-09 |
JP5043658B2 (en) | 2012-10-10 |
WO2006010355B1 (en) | 2006-12-14 |
TW200607388A (en) | 2006-02-16 |
CN101019250A (en) | 2007-08-15 |
EP1771895A2 (en) | 2007-04-11 |
DE102004035965A1 (en) | 2006-06-08 |
US20080048557A1 (en) | 2008-02-28 |
EP1771895B1 (en) | 2016-06-08 |
WO2006010355A2 (en) | 2006-02-02 |
DE102004035965B4 (en) | 2007-07-26 |
KR20070044454A (en) | 2007-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI292678B (en) | Top-emittierendes, elektrolumineszierendes bauelement mit zumindest einer organischen schicht | |
US11569481B2 (en) | OLED device having enhancement layer(s) | |
CN102823018B (en) | Luminescent device and article | |
Hong et al. | Recent developments in light extraction technologies of organic light emitting diodes | |
RU2470415C2 (en) | Organic light-emitting diode with radiating layer containing material with low refraction coefficient for improved light release | |
KR102163400B1 (en) | Microlens array architectures for enhanced light outcoupling from an oled array | |
US20080238310A1 (en) | OLED with improved light outcoupling | |
JP2008507809A5 (en) | ||
JP2012178279A (en) | Organic electroluminescent element | |
US10211429B2 (en) | Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces | |
Lee et al. | Enhanced light extraction from organic light-emitting diodes using a quasi-periodic nano-structure | |
Peng et al. | Improving light extraction of organic light‐emitting devices by attaching nanostructures with self‐assembled photonic crystal patterns | |
Mikami et al. | 60.4 L: Late‐News paper: High efficiency 200‐lm/W green light emitting organic devices prepared on High‐Index of refraction substrate | |
EP4294153A1 (en) | Organic electroluminescent devices | |
US10770690B2 (en) | OLED with minimal plasmonic losses | |
JP2019079725A (en) | Organic el element, lighting device including organic el element, surface light source, and display device | |
CN117529129A (en) | Organic electroluminescent device | |
JP2013137936A (en) | Optical substrate and method for manufacturing the same, and light emitting display device | |
CN102130304A (en) | An organic light-emitting device with improved light output efficiency |