TWI250303B - Integrated location system and method of vehicle - Google Patents
Integrated location system and method of vehicle Download PDFInfo
- Publication number
- TWI250303B TWI250303B TW93110021A TW93110021A TWI250303B TW I250303 B TWI250303 B TW I250303B TW 93110021 A TW93110021 A TW 93110021A TW 93110021 A TW93110021 A TW 93110021A TW I250303 B TWI250303 B TW I250303B
- Authority
- TW
- Taiwan
- Prior art keywords
- positioning
- gps
- positioning system
- ins
- integrated
- Prior art date
Links
Landscapes
- Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
1250303 政、發明說明 【發明所屬之技術領域】 本發明是有關於一種整合定位系統與方法, 關於-種無須使用昂貴陀螺儀之整合定位系統與方法別是有 【先前技術】 導航系統除了可指引船隻與飛機之航行 指引陸地上車子之行走方向。導航必須先確定载具°的;亦可 速度與方向,然後依著地圖的指示,維持行進方、、立置、 地。因此,載具之定位是導航系統最基本的需心到達目的 定位:星定位系統與慣性定位系統是载具經常使用之 ^糸、、先。/、中,衛星定位系統係藉由接收多顆 信號,而計曾屮恭且p古 钉生之微波 而提供載具之定位參考。衛星定位系統 二貝枓,進 對定位精確度的控制(目前約…公尺)?::=方 水準’故為-般戶外運動體所廣泛使用之定 =用的 衛星定位系統因為各項因素之故,會有丢星不能:位… 所計算出之相關資料產生誤差而須加以;T位、:及 知是利用慣性宗仞έ+ 又止之問題。一般習 的定位方法之:進行補救。慣性定位系統是最古老 去之一,此慣性定位系統裝置有慣性 如加速度計、陀蟫儀弋 、里/則早兀,例 的慣性定位最常用之感測器。目前較常見 、位糸、、先都是以陀螺儀為主。惟陀螺傜 貴、損壞率較高。故以陀螺儀作為慣性定位二杜昂 濟效益。 饿作為〖“生疋位兀件’實不符經 l25〇3〇3 衛星定位系統與慣性定位系統之定位裝置各有優缺 點’且彼此具有互補性。衛星定位系統之定位性能穩定且精 確’但定位計算的演算較為費時,致使一般每秒僅能更新幾 一欠而已、價格貴、耗電約10〜50微安、供電起始後約有一 分鐘的時間定位失效、衛星訊號易受遮蔽而導致定位失效等 缺點。至於慣性定位系統則具有一開始就能定位、短時間的 疋位準確、無訊號遮蔽效應、若僅採用加速度計則系統簡單 耗電少、價格低廉(約僅有衛星定位系統的五分一)。但慣性 疋位系統最大的缺點是定位有累積誤差,須要經常在固定點 修正定位精確度,且易受載具之震動影響慣性量測等。 述觀之,在定位性能上沒有一種定位系統是完美 =。右能整合上述兩種定位系統,則可獲得較為完善的定位 凌置,但卻會增加系統之成本與耗電量。 【發明内容】 人^發明之目的就是在提供一種無陀螺儀之GPS圖整 陀S’因其1NS模組僅使用加速度計,而無須使用昂 、本發明之另此’可大轉低㈣胸整合定位之成本。 另一目的是在提供一種盔陀蜾 整合定位系统,可简„敫人 u“累儀之GPs/ms 使每秒定奸出^ ⑽和以位計算’並可 疋位輪出報告增加到超過十次。豆中— 報告之次數孫% 4 /、 ’母秒定位輸出 係取決於微處理機之運算速度, 兀微處理機約可古十管 牛例而言,八位 法定位時°因此,可於⑽無 用1NS來加以彌補並提供定位輪出。 1250303 本發明之又一目的是在提供一種無陀螺儀之gps/ins 整合定位方法,其係藉由GPS提供載具之初始的位置、速 度大小及方向,以供INS下一時刻(例如每〇 ·丨秒)之定位輸 出。另一方面,當GPS再次定位後,則會校正INS之定位 輸出,使INS不會有過久的累積誤差。因此,使得INS能 夠彌補GPS定位輸出的不連續性。 根據本發明之上述目的,提出一種無陀螺儀之Gps/iNs 整合定位系統,適用定位一載具,且此無陀螺儀之Gps/iNs 整合定位系統至少包括:一微控制器,此微控制器至少包括 二類比/數位(A/D)接腳以及一 RX接腳;一衛星定位系統, 此衛星定位系統與上述之微控制器之RX接腳連接,藉以透 過上述之RX接腳將載具之全球定位資料傳送至微控制 器;以及一慣性定位系統,此慣性定位系統具有雙軸加速器 而適用以測量載具之二軸加速度資料,其中此雙軸加速器與 上述之類比/數位接腳連接,以分別透過這些類比/數位接腳 而將載具之軸加速度資料傳送至微控制器。 依…、本發明一較佳實施例,全球定位資料之輸出週期為 1秒’而慣性定位資料之輸出週期為秒。 人根據本發明之目的,提出一種無陀螺儀之GPS/INS整 口定位方法’適用定位一載具,且此無陀螺儀之gps/ins 一 方去至少包括:啟動一 GPS/INS整合模組,其中 PS/INS整合模組至少包括一微控制器、一衛星定位系 統以及-丨曾A / v 、 疋位糸統,$己錄此載具之加速度資料;當模組 ’程式開始判斷衛星定位系統是否有效定位;當衛星 1250303 定位系統為有效定位時,設 起始條件(^,,魏慣性定位系統之第-起始條件反推與輸出慣性)定此慣性定位系統 极备, 氣出至k=l之INS宏仞次 二义施1同日”INS也利用第—起始條件严产), =疋位系統之一取樣週期;當位於慣性 後時刻定位資料(二:二;)計:及輸出慣性定位系統之 否有效定位上 判斷衛星定位系統是 否中當衛星m统並未有效定位時, 斷疋否已達慣性定位系統之取樣週期的步驟。 依照本發明一較佳實施例,慣性定位系統之取樣週期為 〇.1秒,且衛星m统之GPS^f料的輸出週期為、秒。 【實施方式】 、本發明揭露一種整合定位系統與方法,此整合定位系統 並無需使用陀螺儀。為了使本發明之敘述更加詳盡與完備, 可參照下列描述並配合第1圖至第丨丨圖之圖示。凡 疋位是導航系統最基本的需求,因此當導航系統之定位 裝置無法定位時,導航系統將失去其效用,而恐將造成載具 不便甚至造成傷害。典型之GPS定位失效會有下列三^ 形發生: —,n (1) 一般GPS模組每秒只有一次的定位輸出,故在秒 與秒間,GPS可視為失去定位。說明如下: y 1250303 時間(sec):〜51.0 51」51.2 51.3..ί51.9 μ』52^〜 GPS定位丄一^無定隹定位定位 (2) GPS模組剛開始供電的前一分鐘,Gps模組尚 校正本身㈣間及參數,並無法提供定位輸出。說明如^在 時間(咖):0 (M 0.2..丄0."2.0."3.〇 57 〇 58 〇 59 〇 6〇 〇 〜 · J——复綠玉GPS定位 (3) 當GPS衛星之訊號為障礙物所韻時,訊號無法到 達GPS接收天線,此時GPS將不能提供定位輸出,尤其是 在室内或都市大樓林立的街道。說明如下: 疋 時間(sec):~100.0 ⑻.〇 102.0."107·0 1〇8〇 1〇9〇 11〇〇 ⑴ 〇〜Gps 定位-L衛星訊號受障礙物遮蔽、GPS夫宏n GPS定位 在GPS定位系統中,當有效衛星接收數在四顆以上, 則GPS能夠產生經度入、緯度幻及高度w世界大地系統 -84(WGS-84)座標系的三維輸出。當Gps未定位,表示輸出 為無效的經緯度。GPS未定位的情形是受限於Gps固有的 特性。由於INS具有下列優點:(1)INS定位計算較簡單, 尤其僅使用加速度計及八位元微處理機,可以定位輸出到每 秒十次;(2)INS —開始就能定位,且短時間的定位準確, 但=起始參考點的位置;以及(3)INS之定位原理,並無需 依靠外來參考訊號,故無訊號遮蔽的問題,既使在室内也能 夠疋位。因此,INS之優勢正好可彌補Gps無法定位的情 況,並克服GPS之缺失。 然而,INS包括幾項昂貴的慣性感測器,例如感測物體 轉動角速度的陀螺儀、感測地球磁北方向的羅盤、及感測物 1250303 體線性運動之力口# _叫_ 宜 速又计’ Ί、有加速度計之價格較為便 旗、,、、有2〜3美元。因此,本發明就是提供一種盔陀 ,之㈣_整合定位系統,僅利用INS之加速度言;的= 月匕就能達到GPS/INS整合的效果。在整合GPS與INS時, 位輸出是WGS_84座標系統之地理座標表示法,而 I:s是必須有參考點的相對定位,因&測若是以GPS之 =位輸出為參考點,便是基於WGS_84座標系統下的卡式座 &表不法’如帛i圖所示。故整合Gps與ms時亦必須進 行座標轉換。 、 睛參照第2圖,第2圖係繪示平面運動 < ⑽载體座 j系(X,y)與GPS導航座標系(N,E)之關係圖。若慣性量測 :元(Inertial Measurement Unit ; IMU)感測器之加速度計及 指北針置於^面運動物體的旋轉中心,則所量測的平面運動 加速度[ax,ay]、及y軸跟北方夾角θ的變化量(角速度)、及 栽體實際上的線加速度(☆,()滿足下式: AN(t) m)BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated positioning system and method, and relates to an integrated positioning system and method that do not require an expensive gyroscope. [Prior Art] Navigation system can guide The navigation of the ship and the aircraft guides the direction of the car on the land. Navigation must first determine the vehicle °; speed and direction, and then follow the map instructions to maintain the travel, standing, ground. Therefore, the positioning of the vehicle is the most basic purpose of the navigation system. The positioning of the satellite positioning system and the inertial positioning system are frequently used by the vehicle. In the middle, the satellite positioning system provides a positioning reference for the vehicle by receiving a plurality of signals and counting the microwaves that have been created by the singer. The satellite positioning system, two shells, the control of the positioning accuracy (currently about ... meters)?:: = square level, so it is widely used in the outdoor sports body = the use of satellite positioning system because of various factors For this reason, there will be a loss of stars: the position... The calculated data will be subject to errors; the T-bit, and the knowledge are the problems of using the inertia and the end. The general positioning method: to remedy. The inertial positioning system is one of the oldest. The inertial positioning system has inertia such as accelerometer, gyroscopic 弋, 里/就兀, and the most commonly used sensor for inertial positioning. At present, it is more common, and it is mainly based on gyroscopes. However, the gyro is expensive and the damage rate is high. Therefore, the gyroscope is used as the inertial positioning of the two Duang benefits. Hungry as a "small sputum" does not conform to the l25 〇 3 〇 3 satellite positioning system and the positioning device of the inertial positioning system have their own advantages and disadvantages 'and complement each other. The positioning performance of the satellite positioning system is stable and accurate 'but The calculation of the positioning calculation is time-consuming, so that only a few owes per second can be updated, the price is expensive, the power consumption is about 10~50 microamperes, the time after the start of the power supply is about one minute, the positioning is invalid, and the satellite signal is easily shielded. Disadvantages such as positioning failure. As for the inertial positioning system, it can be positioned from the beginning, the position is accurate in a short time, and there is no signal shielding effect. If only the accelerometer is used, the system is simple and consumes less power, and the price is low (about satellite positioning system only) The fifth advantage is that the biggest disadvantage of the inertial clamping system is that the positioning has accumulated error, it is necessary to correct the positioning accuracy at a fixed point frequently, and it is susceptible to the inertia measurement of the vibration of the vehicle. There is no positioning system that is perfect =. Right can integrate the above two positioning systems, you can get a more perfect positioning, but it will increase the system. The cost and power consumption of the invention. [The invention] The purpose of the invention is to provide a GPS diagram without a gyroscope. Since the 1NS module uses only an accelerometer, it is not necessary to use the invention. 'The cost of integrated positioning can be greatly changed. (IV) The other purpose is to provide a helmet-and-horse integrated positioning system that can be used to make a GPs/ms per second. Calculate 'can increase the number of rounds of reports to more than ten times. Beans - reported the number of times Sun 4 /, 'mother seconds positioning output depends on the operating speed of the microprocessor, 兀 microprocessor can be about 10 In the case of cattle, the eight-position method can be compensated for by (10) useless 1NS and provide positioning and rotation. 1250303 Another object of the present invention is to provide a gps/ins integrated positioning method without gyroscope, which The initial position, speed and direction of the vehicle are provided by GPS for the positioning output of the INS at the next moment (for example, every 〇·丨 second). On the other hand, when the GPS is repositioned, the INS is corrected. Position the output so that the INS won't be too long Cumulative error. Therefore, the INS can make up for the discontinuity of the GPS positioning output. According to the above object of the present invention, a Gps/iNs integrated positioning system without a gyroscope is proposed, which is suitable for positioning a carrier, and the Gps without the gyroscope The /iNs integrated positioning system includes at least: a microcontroller including at least two analog/digital (A/D) pins and an RX pin; a satellite positioning system, the satellite positioning system and the above micro control The RX pin is connected to transmit the global positioning data of the carrier to the microcontroller through the RX pin; and an inertial positioning system having a two-axis accelerator for measuring the two axes of the carrier Acceleration data, wherein the dual-axis accelerator is coupled to the analog/digital pin described above to transmit the axle acceleration data of the carrier to the microcontroller through the analog/digital pins, respectively. According to a preferred embodiment of the present invention, the output period of the global positioning data is 1 second' and the output period of the inertial positioning data is seconds. According to the object of the present invention, a GPS/INS whole port positioning method without a gyroscope is proposed for positioning a carrier, and the gps/ins side of the gyroscope-free device includes at least: starting a GPS/INS integrated module. The PS/INS integrated module includes at least a microcontroller, a satellite positioning system, and an A/V, a digital system, and the acceleration data of the vehicle is recorded; when the module 'program starts to determine the satellite positioning Whether the system is effectively positioned; when the positioning system of the satellite 1250303 is effectively positioned, the initial condition (^, the first-start condition of the Wei inertial positioning system is reversed and the output inertia is determined), and the inertial positioning system is prepared. The INS macro of the k=l is the second day of the same day. The INS also uses the first-start condition to produce strictly. The = one sampling system of the clamp system; when the inertia is located, the data is located (2:2;): And determining whether the satellite positioning system is in the effective positioning of the inertial positioning system, and determining whether the satellite system has not been effectively positioned, and whether the sampling cycle has reached the sampling period of the inertial positioning system. According to a preferred embodiment of the present invention, the inertia GPS The sampling period is 〇.1 second, and the output period of the GPS device of the satellite system is seconds. [Embodiment] The present invention discloses an integrated positioning system and method, and the integrated positioning system does not need to use a gyroscope. In order to make the description of the present invention more detailed and complete, reference can be made to the following description and the diagrams of Fig. 1 to Fig. 1. Where the position is the most basic requirement of the navigation system, when the positioning device of the navigation system cannot be positioned The navigation system will lose its utility, and it will cause inconvenience or even damage to the vehicle. The typical GPS positioning failure will have the following three shapes: —, n (1) The general GPS module only has one positioning output per second. Therefore, between seconds and seconds, GPS can be regarded as lost positioning. The description is as follows: y 1250303 time (sec): ~51.0 51"51.2 51.3.. ί51.9 μ』52^~ GPS positioning 丄一^无定隹 positioning positioning (2 The GPS module has just corrected itself (4) and parameters before the power supply of the GPS module, and it cannot provide positioning output. Description such as ^ in time (coffee): 0 (M 0.2.. 丄 0. " 2.0. " 3. 〇 57 〇 58 〇 59 〇 6 〇〇 ~ · J - complex green jade GPS positioning (3) When the GPS satellite signal is an obstacle, the signal cannot reach the GPS receiving antenna. At this time, the GPS will not be able to provide positioning output, especially in indoor or urban buildings. The description is as follows: 疋 time: sec: ~100.0 (8) .〇102.0."107·0 1〇8〇1〇9〇11〇〇(1) 〇~Gps Positioning-L satellite signal is obscured by obstacles, GPS Fuhong n GPS positioning in GPS positioning system, when effective satellite receiving If the number is more than four, the GPS can generate three-dimensional output of the longitude, latitude, and height w world earth system-84 (WGS-84) coordinate system. When the GPS is not positioned, the output is invalid latitude and longitude. GPS is not positioned. The situation is limited by the inherent characteristics of Gps. Because INS has the following advantages: (1) INS positioning calculation is relatively simple, especially using only accelerometers and octet microprocessors, you can locate the output to ten times per second; (2) INS - can be positioned at the beginning, and the positioning is accurate for a short time, but = starting reference point The position of the INS; and (3) the positioning principle of the INS, and does not need to rely on the external reference signal, so there is no problem of signal shielding, even if it can be placed indoors. Therefore, the advantage of INS can just make up for the situation that GPS can not be located, and Overcoming the lack of GPS. However, the INS includes several expensive inertial sensors, such as a gyroscope that senses the angular velocity of the object, a compass that senses the north magnetic direction of the earth, and a force port that senses the linear motion of the body 1250303. _ 宜 速 算 ' 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有= month 匕 can achieve the effect of GPS / INS integration. When integrating GPS and INS, the bit output is the geographic coordinate representation of the WGS_84 coordinate system, and I: s is the relative positioning of the reference point, because & If the GPS = bit output is used as the reference point, it is based on the WCS_84 coordinate system. The card holder & table method is not shown in the figure. Therefore, coordinate conversion must be performed when integrating GPS and ms. 2 pictures, 2 is a diagram showing the plane motion < (10) the relationship between the carrier j system (X, y) and the GPS navigation coordinate system (N, E). If the inertial measurement: Inertial Measurement Unit (IMU) sensor The accelerometer and the north arrow are placed at the center of rotation of the moving object, and the measured plane motion acceleration [ax, ay], and the variation of the y-axis and the north angle θ (angular velocity), and the actual The linear acceleration (☆, () satisfies the following formula: AN(t) m)
(2) 其中ΔΝ是載具往北方的位移,ΔΕ是載具往東方的位移,而 C b η為載體座標糸與導航座標系間的座標轉換。其中, cbn -sin0 COS0 cos^ sin^ (3) 因此,藉由羅盤量測物體運動方向與北方夾角θ及角速 1250303 度’同時使用雙軸加速度計量測ax和ay,進而獲得 ΔΑ^(^) ^ (~u{k) ·sin0(k) + v(k)·cos6{k))·T; AE(k) « (u(k)·cos0{k) + v(yt) ·sin0(k)) T (4) 其中’免表示?==打,T為足夠短的取樣週期,因此位置之緯 度變化量ΔΦ(1〇,經度變化量Δ又(k)為 (5) △雄卜继 re Re 其中RE為地球半徑。因此, φ^) = -1) + Αφ(ίί) ; m = _ 1} + AA(k) ^ 而完成INS定位。 因此,只要速率V = 反車身座標系之y軸與北方夾 角Θ已知,均可利用上述公式,獲得單位時間載具位置變化 量A(Kk)及Δλ(1〇的值。 一般,在GPS接收模組之美國國家海洋電子協會 (Nati〇nal Marine Electr〇nics Ass〇ciaU〇n ; νμεα)定位輸出 格式中,GPRMC或GPVTG等格式輸出中,具有載具之速 度大小及方向的運動資料,而引共Gps定位失效後設定應 之初始位置、速度大小及方向的依據,以計算下—時刻之定 =出。在本發明之較佳實施例中,⑽之定位資料輸出週 期為0 · 1秒。(2) where ΔΝ is the displacement of the vehicle to the north, ΔΕ is the displacement of the vehicle to the east, and C b η is the coordinate transformation between the carrier coordinate and the navigation coordinate system. Among them, cbn -sin0 COS0 cos^ sin^ (3) Therefore, by measuring the direction of motion of the object with the compass and the angle between the north and the angular velocity of 1250303 degrees, the axis acceleration is used to measure ax and ay, and then ΔΑ^( ^) ^ (~u{k) ·sin0(k) + v(k)·cos6{k))·T; AE(k) « (u(k)·cos0{k) + v(yt) ·sin0 (k)) T (4) where 'free? == hit, T is a sampling period that is short enough, so the latitude change ΔΦ of the position ΔΦ (1〇, the longitude change Δ is again (k) is (5) △ 雄 继 following re Re where RE is the radius of the earth. Therefore, φ ^) = -1) + Αφ(ίί) ; m = _ 1} + AA(k) ^ and complete the INS positioning. Therefore, as long as the rate V = the y-axis and the north angle 反 of the anti-body coordinate system are known, the above formula can be used to obtain the vehicle position change amount A(Kk) and Δλ (1〇 value per unit time. Generally, in GPS The receiving module of the National Ocean Electronics Association (Nati〇nal Marine Electr〇nics Ass〇ciaU〇n; νμεα) positioning output format, GPLMC or GPVTG format output, with the speed and direction of the vehicle's motion data, After the failure of the GPS positioning, the initial position, the speed and the direction of the direction are set to calculate the lower-time limit = output. In the preferred embodiment of the present invention, the positioning data output period of (10) is 0 · 1 second.
在GPS之第一種定位失效情形中,受到GP 出一次定位結果的影響,在秒盥 僅輸 m ^ . 矽興心之間並無定位資料輪出, 因而可視為GPS定位失效。在太 别出 ,.^ 在本&明中,僅使用一顆等站 加速度計及GPS所提供夕夂a、, 領雙軸 g之母秒初始位置、速度大小及方 12 1250303 ^ ^ ϋ^ ^ n ^ „ (sine)4# ^ (cosine)^# , ff 算下一時刻(每0· 1秒)之速度大小及方向。 首先,定義GPS肖INS定位輸出在某一時段,例如 70.0〜71」秒如下(如NMEA格式中之GpRMc輸出广 (m,w,m,m),(々,c,m..〜 (7) 其中,GPS符號代表為GPS之定 1翰出,例如以,而符號 INS代表經由加速度計算之定位輸出,例如π。在本發明 於C至㉗一秒之間’增加九個Gps/ms整合模組之 疋位輸出,而使定位資料輸出增加至每秒十次。 π參照第3圖所示,第3圖係給+_ ^ ^ ^ 口你、、、日不/飞車在導航座標系下 的迷度向量三角形之示意圖。在 m A l· ^ a,, 在oab的二角形上6代表時 间马A的未知對地速房· 角, &代表呀間為Α的未知對地方向 代夺日… 間為w的已知對地速度;〜 樣間隔為丁…", °角。、北方夾角),岣代表取 化。太J ㈣為經由加速度計所量測的對地速度變 設 〃運動所具有的趨勢,並於第4圖假 y軸加速度心(幻之方向與 一直線卜,二古虫 日守刻速度匕丨的方向在同 是接近y轴方向,九Γ 了大轉f ’不然速度匕1的方向 週運動也古:子在轉彎,只要取樣時間過短,圓 文勒也旎近似直線運動。因此 咐“ r,-tan-1 豈 和 13 (8) (9) 1250303 6{k)«lim r-»oIn the first type of GPS positioning failure, the GP is affected by a positioning result. In the second, only m ^ is transmitted. There is no positioning data between the Xing Xingxin, so it can be regarded as GPS positioning failure. In too much, .^ In this & Ming, only use one station accelerometer and GPS to provide the evening a, the collar double axis g of the mother's initial position, speed and square 12 1250303 ^ ^ ϋ ^ ^ n ^ „ (sine)4# ^ (cosine)^# , ff Calculate the speed and direction of the next moment (every 0·1 second). First, define the GPS INS positioning output at a certain time, for example 70.0 ~71" seconds are as follows (such as the GpRMc output in the NMEA format is wide (m, w, m, m), (々, c, m.. ~ (7) where the GPS symbol represents a set of GPS, for example And the symbol INS represents the positioning output calculated by the acceleration, for example, π. In the present invention, the clamp output of the nine Gps/ms integrated modules is increased between C and 27 seconds, and the positioning data output is increased to each. Ten times in seconds. π refers to Figure 3, and Figure 3 is a schematic diagram of the obscurity vector triangle for the +_ ^ ^ ^ mouth for you, ,,,,,,,,,,,,,,,,,,,,,,,,,, ^ a,, on the dip of the oab, 6 represents the unknown of the time of the horse A. The angle, & represents the unknown direction of the land, and the known direction of the land. Degree; ~ sample spacing is D...", ° angle., north angle), 岣 represents taking. Tai J (4) is the trend of the ground speed change 〃 movement measured by the accelerometer, and 4 Figure y-axis acceleration heart (the direction of the illusion and the line of the imaginary, the direction of the second worm's slashing speed 匕丨 is in the same direction as the y-axis, and the Γ Γ 大 ' ' ' ' ' ' ' ' 的Ancient: The child is turning, as long as the sampling time is too short, the round Wenler also approximates a linear motion. Therefore, “r,-tan-1 岂 and 13 (8) (9) 1250303 6{k)«lim r-»o
Wk-x -¥k~2 T lim ^k~xWk-x -¥k~2 T lim ^k~x
T—o T 進一步(1 )式可以獲得以,1>),和表示速度變化如下: (10) |4| = 士2(灸)+β(心士⑽+¾¾ |AF,|«r|a,| 其中如果^:>0(々—p〇),則。從OAB的三角形上 應用正弦定律T—o T Further (1) can be obtained as, 1>), and the speed change is as follows: (10) |4| = ±2 (moxibustion) + β (heart (10) + 3⁄43⁄4 |AF,|«r| a,| where ^:>0(々-p〇), then apply the sine law from the triangle of the OAB
Vk-x Vk AVk ⑴) sin 爲 sinsin 其中僅有1¾ ak+Pk+yk=^ 進而獲得 A:-l △巧和n為已知,且 (12) (13) sina, =sin[^-(^ +^)] = sin(^ +^} 將(13)代入(1 1)式,獲得 A = taiT1 ^Yk e •COSh (14) 在(14)式 *,u ^ ^ 獲得b,然徭!/ 4 口马已知數,故可順 …、设^和q。另一方面,在 到下列的: 在OBA二角形,又可 以吻卜叭·!| 因為 h-i 與〇^ A (15: 的要靠ax之方二°而㈧會有兩組解,那一個解是正』 之後,考慮载體庙辦么〃 …弟2圖,在獲得^與^ 移娜和往東/^與導航座標系的轉換,計算往北方] 果方位移ΔΕα : 14 1250303 ^ (k) = fk I cos ^ · Γ ; AE (k) = 1¾ I sin ψ1ζ · T ( i 6) 當藉由雙轴加速度計裝置在汽車上量測、和ay,並利 用上—時刻的速度大小和速度方向%」,便可以順利獲 仔下—時刻載具速度大小h和速度方向㈧。以下將此演算 /务寫成函數/GPS和/INS之表示式, 或者 匕^/廳 (18) 以上的過程’由於INS會有累積誤差,考慮當gps再 次定位後’可以GPS之定位資料來校正INs之定位輸出, ,不會有過久的累積誤差,而亦可利用ins來彌補Gps 定位輸出的不連續性。 第二種GPS定位失效為Gps起始供電時所需之校正時 :。因為㈣無需校正時間,因此可馬上量測載具之加速Vk-x Vk AVk (1)) sin is sinsin where only 13⁄4 ak+Pk+yk=^ and then A:-l △ and n are known, and (12) (13) sina, =sin[^-( ^ +^)] = sin(^ +^} Substituting (13) into (1 1), obtain A = taiT1 ^Yk e • COs (14) Obtain b in (14), u ^ ^, then ! / 4 mouth horse known number, so can be ..., set ^ and q. On the other hand, in the following: In the OBA dime, you can kiss the slap!! | Because hi and 〇 ^ A (15: It depends on the side of the ax two and (eight) there will be two sets of solutions, then the solution is positive. After that, consider the carrier temple to do it... the brother 2 picture, in the ^ and ^ move the na and east / ^ and navigation coordinates System transformation, calculation to the north] fruit displacement ΔΕα : 14 1250303 ^ (k) = fk I cos ^ · Γ ; AE (k) = 13⁄4 I sin ψ1ζ · T (i 6) when using a two-axis accelerometer device Measuring and ay in the car, and using the speed of the upper-time and the speed direction %", you can successfully get the speed of the vehicle and the speed direction (eight). The following calculation / transaction is written as a function / The representation of GPS and /INS, or the process of 匕^/hall (18) above INS will have cumulative error. Considering that GPS positioning can be used to correct the positioning output of INs when GPS is repositioned, there will be no accumulated error for too long, and ins can also be used to compensate for the discontinuity of Gps positioning output. The second type of GPS positioning failure is the correction required when the Gps starts to supply power. Because (4) there is no need to correct the time, the acceleration of the vehicle can be measured immediately.
度’進而計算速度大小及$ y , H 及疋位。但疋’由於INS無法獲得 ’、運動方向,故只能-直記錄GPS校正期内間的加速度 大小如下: (说,‘,喘f,^),··〜, 便糟由找至㈤⑽,⑬,^ 下: 一直等到時間6G秒時,⑽之定位f料開始輸出| = 599 )。改寫(1 1 )式如Degree' then calculates the magnitude of the velocity and $ y , H and 疋. However, 由于 'Because INS can't get' and the direction of motion, it can only record the acceleration of GPS correction period as follows: (say, ', asthma f, ^), ··~, it is found by (5) (10), 13,^ Next: Wait until the time is 6G seconds, the positioning of (10) f material starts to output | = 599 ). Rewrite (1 1 ) as
PkPk
h smrk \-rk, 15 (20) (21) 1250303 和因而得到, 其中和"。更進一步,將久代入(12)式獲得 心,然後從(15)式可以獲得。再逐一追溯獲得GPS定位 前之INS定位輸出週期的定位資料如下: ¥lf9)? (C??... ? (^9Fr?ΨΓ). (22) 而這個演算過程以函數表示如下: [vlNJ AN-fV (23) 第三種GPS定位失效之情況係指,當GPS衛星之訊號 為障礙物所遮蔽後,有效衛星數量不足所造成之不能定位。 在本發明中,可利用GPS定位失效前之速度大小及方向, 繼續使用INS來產生定位輸出如下: (瑞W溫,喘“潞),〜 (24) 其中,在第91秒之後,GPS便失去定位,一直到第107秒 才又回復定位,此期間由INS提供所有的定位輸出。在此 期間,隨著時間的增加INS定位輸出資料會產生較大之定 位誤差,而待GPS回復定位時,再利用GPS定位資料來校 正GPS定位前之INS定位資料。 請參照第5圖,第5圖係繪示依照本發明一較佳實施例 的一種GPS/INS整合定位系統之示意圖。此GPS/INS整合 定位系統適用以進行載具之定位,且無須使用陀螺儀。 16 1250303 GPS/INS整合定位系統包括微控制器204、衛星定位系統 200以及具有雙軸加速計202之慣性定位系統。在此較佳實 施例中,微控制器204至少包括二個類比/數位(A/D)接腳以 及一個RX接腳。其中,衛星定位系統200之輸出端201與 微控制器204之RX接腳連接,以透過此RX接腳將載具之 衛星定位資料,例如經度λ、緯度0、速度大小F與速度方 向V,傳送至微控制器204中,以供微控制器204進行處理。 慣性定位系統之雙軸加速計202可用以測量載具之二軸加 速度資料,例如X軸加速度ax與y軸加速度ay,其中雙軸 加速計202具有軸資料之輸出端203與輸出端205,且輸出 端203與輸出端205分別與微控制器204之二A/D接腳連 接,藉以分別透過這些A/D接腳而將載具之二軸加速度資 料傳送至微控制器204中。 請同時參照第6圖,第6圖係繪示第5圖之GPS/INS 整合系統之定位輸出的資料格式示意圖。此實施例之特點在 於,加速度微控制器204從既有衛星定位系統200之資料輸 出中獲得每秒的精確定位,同時每秒取樣雙軸加速計202 十次,依照本發明將描述於後之GPS/INS整合定位方法來 演算整合GPS/INS定位資料。在此GPS/INS整合定位系統 中,微控制器204更至少包括輸出介面206,以輸出載具之 NMEA定位輸出格式的GPS/INS整合定位資料。在此較佳 實施例中,衛星定位系統200之全球定位資料的輸出週期為 1秒。 在本發明之另一較佳實施例中,請參照第7圖,微控制 17 1250303 為2 0 4更肖j冬 . 後之慣性^次固TX輸出接腳’而可用以輸出載具經整合 與微控制琴2料。此外,衛星定位系、统200之輸出端2(Π 衛星定位資RX接腳連接,透過此RX接腳將載具之 中,慣:定二,二, 出介面咖整、人幹出王^位資料並非從微控制器2〇4之輸 接腳以及衛星二: 分別從微控制器2〇4之TX輸出 疋糸統200之輸出端201輸出。其中,慣性 期車輸出週期較佳為^秒,全歧位資料的輸出週 佳為1移、,如第8圖所示。 的一磁1帛1 2 3 4 5 6圖’第6圖係繪示依照本發明-較佳實施例 明:.、、、陀螺儀之GPS/INS整合定位方法之流程 :之:陀螺儀…/INS整合定位方法,可適用以進行載 ::疋位。此無陀螺儀《GPS/INS整合定位方法首先 100,啟動GPS/INS整合模組,例如第5圖或第7圖所 PS/INS整合定位系統。因此’啟動GPS/INS整合模 亦即啟動GPS/INS整合定位系統之微控制器2〇4、衛星定 18 1 先200以及慣性定位系統之雙軸加速計202。由於,當 2 匍生定位系統啟動時,衛星定位系統尚處校正本身的時間及 3 多數日守期而並無法提供定位輸出。此時,又由於⑽益兩 4 校:時間:因此可馬上利用慣性定位系統之雙軸加速計;: 5 订里測’並如同步驟101所述’判斷是否已達INS之取樣 6 週期:當判斷結果為“是”日夺,即記錄載具之加速度,並藉 則隹算速度大小及定位,如步驟! G 2所述。而當判斷結果^ 否”時’則再次進行步驟101。在本發明之較佳實施例 1250303 中,1NS之取樣週期微(Μ秒。 接下來,進行步驟104,判斷衛星定位系統 身之時間與參數之妒 舍兀成本 么士果為“不,,士 供有效之定位資料。當判斷 ° ·、、 日寸,回到步驟102,再繼續記錄載且之加速 ^ ^ 果為疋時,代表衛星定位系統為有效定 位。由於INS無法獲得載 加⑭π 具钱之對地方#,和僅能獲得 速度數值,同時會有累積定位誤差產生。於是,待衛星定 位系統開始輸出Gp Ζ待俯生疋 4疋位貝枓時,進订步驟 慣性定位系統之起始條杜—Λ、 娜106先將 口條件σ又疋成GPS開始輸出之定位資料 再利用所設定之慣性定 : (15)式、(16)式、(5)式 Λ (12)式 而獲得GPS定位 )式’逐-反推(仏以囊), 疋位削之所有INS定位,也就是從到免=1 之f貝性定位輸出資料。在步驟i 而變數k-戰表前,或目前時刻以前刻’ 二進:步驟⑽,記錄並輸出衛星定位系統之GPS 疋位貝枓,並設定慣性定位 (νΓ,ψΓ,ΦΓΛΓ) 〇 ffn Ft € τ ,χ Λ —個起始條件 依據來推算慣性定位季^始條件為 (V ^ ^ '、、、死之下一時刻之定位資料 (心,Λ+1)。在步驟108中, 變數…則代表目前時刻。接下^數:代表上-時刻,而 接下來’進行步驟1 1 0,判斷异 否已達丨貝性定位系統之取樣 .w W 月在本發明之較佳實施例 中,〖貝丨生疋位糸統之取樣週期較 系統之定位資料輸出週期為 :^ 亦即慣性定位 1移。當判斷結果為“否” 19 1250303 時’則再次判斷是否已達慣性定位 斷結果為“是” & u ^ L 取樣週期,直至判 112,利用慣判斷結果為“是,,時,進行步驟 ^貝性疋位糸統之雙軸速 度資料,例如痒 樣載具之加速 J女X軸加速度ax與y軸加速a。 性定位系統之起始條件心《'彻;:様之截J 速度資料,並利用⑽式、⑽式、 式、(5)式、以及(6)式,來計算慣性定 :6) 定位資料並以目前時、 (γ腐燃丁〜 < 疋位資料 CL A+1,t Λ+1)作為慣性定位 ,後,步驟114,輸出所推;出 中,衛星定位系統之GPS定位資料輸出為 位資料輸出之間每隔(M秒輸出測定 =疋 次GPS定位資料輸出之間 貝科’也就疋說兩 接下來,谁;r牛锁" 、有九_人的1Ns定位資料輸出。 "丄判斷衛星定位系統是否有效定位。 :ΓΛ 定位時’回到步驟⑽,再次判斷 疋否已達慣性定位系統之取樣週期,如果θ :斷 心儒賴起始條件,計算並 〉疋;以 而當衛星定位系統已有效定位時,代表衛星定 下一秒之GPS定位資料輪ψ ,, ”、 進仃 時之GPS定一 此可提供慣性定位系統此 二Γ貝枓’以供慣性定位系統進行-定位資料 座與第U圖,第1〇圖係繪示一 4 屋糸統下之INS母五秒受 又GPS权正-次的定位輸出結 20 1250303 果,而第ii圖係繪示在WGS_84座標系統下之ins每秒受 GPS校正-次的定位輸出結果。從第1()圖中可知㈣每 五秒受GPS校正一次’結果㈣之累積誤差影響定位輸出 的結果很大。而在第U圖巾,INS改以每秒受⑽校正一 次的定位輸出結果’在INS的累積誤差還不是很大時,⑽ 便校正-次,而得到肖Gps近似的定位輸出,並可增加每 秒之定位輸出為原來僅有Gps的十倍。 甶上述本發明較佳實施例可 2發明UPS⑽整合定位系統之INS模組僅使用加速 度计,而可不須使用昂貴之陀螺儀。目 gps/INS整合定位之成本。 韬降低h smrk \-rk, 15 (20) (21) 1250303 and thus get, and and ". Further, the heart is obtained by substituting (12) and then obtained from (15). The tracking data of the INS positioning output cycle before GPS positioning is traced one by one as follows: ¥lf9)? (C??... ? (^9Fr?ΨΓ). (22) And this calculation process is expressed as a function as follows: [vlNJ AN-fV (23) The third GPS positioning failure condition means that when the GPS satellite signal is obscured by obstacles, the number of effective satellites is insufficient to locate. In the present invention, GPS positioning can be used before failure. The speed and direction of the speed, continue to use the INS to generate the positioning output as follows: (Ri W temperature, asthma "潞", ~ (24) Among them, after the 91st second, GPS will lose positioning, until the 107th second before replying Positioning, during which the INS provides all the positioning output. During this period, the INS positioning output data will generate a large positioning error with the increase of time, and when the GPS is restored, the GPS positioning data is used to correct the GPS positioning. INS positioning data. Please refer to FIG. 5, which is a schematic diagram of a GPS/INS integrated positioning system according to a preferred embodiment of the present invention. The GPS/INS integrated positioning system is suitable for positioning vehicles. And do not need to use 16 1250303 The GPS/INS integrated positioning system includes a microcontroller 204, a satellite positioning system 200, and an inertial positioning system having a dual axis accelerometer 202. In the preferred embodiment, the microcontroller 204 includes at least two analogies/ A digital (A/D) pin and an RX pin, wherein the output 201 of the satellite positioning system 200 is coupled to the RX pin of the microcontroller 204 to locate satellite data of the carrier through the RX pin, for example The longitude λ, the latitude 0, the velocity magnitude F and the velocity direction V are transmitted to the microcontroller 204 for processing by the microcontroller 204. The two-axis accelerometer 202 of the inertial positioning system can be used to measure the two-axis acceleration data of the carrier. For example, the X-axis acceleration ax and the y-axis acceleration ay, wherein the two-axis accelerometer 202 has the output end 203 and the output end 205 of the axis data, and the output end 203 and the output end 205 are respectively connected to the A/D of the microcontroller 204. The foot is connected to transmit the two-axis acceleration data of the carrier to the microcontroller 204 through the A/D pins respectively. Please refer to FIG. 6 and FIG. 6 to show the GPS/INS integration of FIG. System positioning output data Schematic diagram of the format. This embodiment is characterized in that the acceleration microcontroller 204 obtains accurate positioning per second from the data output of the existing satellite positioning system 200, while sampling the dual-axis accelerometer 202 ten times per second, which will be described in accordance with the present invention. The GPS/INS integrated positioning method is used to calculate the integrated GPS/INS positioning data. In this GPS/INS integrated positioning system, the microcontroller 204 further includes at least an output interface 206 for outputting the NMEA positioning output format of the vehicle. /INS integrates location data. In the preferred embodiment, the global positioning data of the satellite positioning system 200 has an output period of one second. In another preferred embodiment of the present invention, please refer to FIG. 7 , the micro control 17 1250303 is 2 0 4 more short j winter. After the inertia ^ secondary solid TX output pin 'can be used to output the carrier integrated With the micro control piano 2 materials. In addition, the satellite positioning system, the output 2 of the system 200 (Π satellite positioning RX pin connection, through the RX pin will be in the carrier, used to: two, two, out of the interface coffee, people out of the king ^ The bit data is not output from the microcontroller 2〇4 and the satellite 2: output from the output terminal 201 of the TX output system 200 of the microcontroller 2〇4, respectively, wherein the output period of the inertia period car is preferably ^ Second, the output week of the full-discrimination data is preferably 1 shift, as shown in Fig. 8. A magnetic 1帛1 2 3 4 5 6 figure 'Fig. 6 is a diagram showing a preferred embodiment according to the present invention. :.,,, gyroscope GPS / INS integrated positioning method flow: it: gyroscope ... / INS integrated positioning method, can be applied to carry:: 疋 position. This gyroscope-free "GPS / INS integrated positioning method first 100, start GPS / INS integration module, such as the PS / INS integrated positioning system in Figure 5 or Figure 7. Therefore 'start GPS / INS integration mode is to start the GPS / INS integrated positioning system of the microcontroller 2 〇 4 , satellite set 18 1 first 200 and inertial positioning system dual-axis accelerometer 202. Because, when the 2 twin positioning system starts, the satellite positioning system It is still correcting the time of its own and 3 most of the daily defensive period and can not provide the positioning output. At this time, because of (10) benefit two 4 school: time: so you can immediately use the two-axis accelerometer of the inertial positioning system;: 5 'And as described in step 101' to determine whether the INS sampling has been completed for 6 cycles: when the judgment result is "yes", the acceleration of the vehicle is recorded, and the speed and positioning are calculated, such as the step! G 2 In the preferred embodiment 1250303 of the present invention, the sampling period of 1NS is micro (leap second. Next, step 104 is performed to determine the satellite positioning system body. The time and parameters of the cost of the 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么 么At that time, it represents the satellite positioning system for effective positioning. Since the INS can not obtain the positional value of 14π with money, and only the speed value can be obtained, there will be accumulated positioning error. Therefore, the satellite positioning system starts to output Gp. When the 疋 4 枓 枓 , , , , , , , , , , , , , , , , , 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性(15), (16), (5), Λ (12), and GPS positioning). 'Peak-to-reverse (仏 囊), all INS positioning of the 削 position, that is, from to 1 f 性 定位 定位 定位 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 ΓΓ,ψΓ,ΦΓΛΓ) 〇ffn Ft € τ ,χ Λ—A starting condition is used to estimate the inertial positioning season. The starting condition is (V ^ ^ ', , and the positioning data at the moment of death (heart, Λ+ 1). In step 108, the variable ... represents the current time. Next, the number is: represents the upper-time, and then 'step 1 1 0, the difference is determined to have reached the sampling of the mussel positioning system. w W Month In the preferred embodiment of the invention, The sampling period of the clamp system is compared with the positioning data output period of the system: ^, that is, the inertial positioning 1 shift. When the judgment result is "No" 19 1250303, then it is judged again whether the inertial positioning result is "Yes" & u ^ L sampling period until the judgment 112, and the conventional judgment result is "Yes, when, the steps are performed. The biaxial velocity data of the 贝 疋 , , , , , 加速 加速 加速 加速 加速 加速 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 女 ax 女 ax ax ax ax Data, and use (10), (10), (5), and (6) to calculate the inertia: 6) Position the data and present the time (γ 腐 燃 〜 & & & & CL CL CL CL CL CL CL CL CL +1, t Λ +1) as inertial positioning, then, step 114, the output is pushed; in the out, the GPS positioning data output of the satellite positioning system is between the bit data output (M seconds output measurement = GPS positioning) The data output between Beca 'is also said that the next two, who; r cattle lock ", there are nine _ person's 1Ns positioning data output. " 丄 determine whether the satellite positioning system is effectively positioned. : 定位 when positioning Go to step (10) and judge again whether the sampling period of the inertial positioning system has been reached. : Breaking the starting condition of the Confucianism, calculating and 疋; so when the satellite positioning system has been effectively positioned, it represents the satellite positioning data rim of the next second, ", the GPS when entering the 定 定Providing an inertial positioning system, the second Γ 枓 以 以 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性 惯性The positioning output is 20 1250303, and the ii diagram shows the GPS-corrected positioning output of the ins per second under the WGS_84 coordinate system. It can be seen from the 1() diagram that the GPS is corrected every five seconds. The cumulative error of the result (4) affects the result of the positioning output. In the U-shaped towel, the INS is changed to the positioning output of (10) corrected per second. When the cumulative error of the INS is not very large, (10) is corrected - Secondly, the positioning output of the Approximation of the Given Gps is obtained, and the positioning output per second is increased ten times that of the original Gps. The preferred embodiment of the present invention can be used to invent the INS of the UPS (10) integrated positioning system using only the acceleration. No need to use expensive gyroscopes. The cost of gps/INS integration positioning.
由上述本發明較佳實施例可知,本發明之又一優點就曰 二本發明之無陀螺儀…/INS整合定位系統,可SAccording to the preferred embodiment of the present invention, another advantage of the present invention is that the gyro-free//INS integrated positioning system of the present invention can be used.
::j:INS之定位計算,並可使每秒定位輪出報告增 加到起過十次。因此,可於GPS 加以彌補GPS之不足。 t幻用INS來 因為本發較佳實施例可知,本發明之再-優點就 無陀螺狀咖⑽整合定位方法,可藉 二,每。,之定位輸出。二 利用GPS定位資料來校正m 可修正⑽之累積誤差,進而達到利因此 位輸出之不連續性的目的。 來彌補Gp“ 雖然本發明已以一較佳實施例揭露如上,然其並非用以 21 1250303 限定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾’因此本發明之保護範圍 S視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖係繪示導航座標系(N,E,D)與載體座標系(χ,y, Z)在地球座標系統之示意圖。 第2圖係繪示平面運動之INS載體座標系幻與導航 座標系(N,E)之關係圖。 第3圖係繪示汽車在導航座標系下的速度向量三角形 之不意圖。 第4圖係繪示假設、在Vki之軸向上之示意圖。 第5圖係緣示依照本發明一較佳實施例的_種 GPS/INS整合系統之示意圖。 第6圖係繪示第5圖之Gps/INS整合系統之定位輪出 的資料格式示意圖。 第7圖係緣示依照本發明另一較佳實施例的一種 GPS/INS整合系統之示意圖。 第8圖係繪示第7圖之Gps/INS整合系統之定位輪出 的資料格式示意圖。 第9圖係繪示依照本發明一較佳實施例的一種無陀螺 儀之GPS/INS整合定位方法之流程圖。 、 第10圖係繪示在WGS_84座標系統下之INS每五秒受 GPS校正一次的定位輸出結果。 22 1250303 第11圖係繪示在WGS-84座標系統下之INS每秒受 GPS校正一次的定位輸出結果。 【元件代表符號簡單說明】 100 :啟動 101 : 0.1秒取樣時間到? 102 :記錄加速度(ax,ay) 104 : GPS是否有效定位? 106 ··設定INS起始條件為(,反推 (OO/KD及輸出INS定位資料從k-Ι至k=l 108 :記錄和輸出GPS定位資料,設定INS起始條件 110 : 0.1秒取樣時間到? 112 :取樣加速度(ax,ay)、計算(〇〇=,;)、並以此 為下一時刻的起始條件 114 :輸出INS定位資料 116 : GPS是否有效定位? 200 :衛星定位系統 201 :輸出端 202 :雙軸加速計 203 :輸出端 204 :微控制器 2 0 5 ·輸出端 206 :輸出介面 23::j: The positioning calculation of the INS, and can increase the positioning round-trip report per second to ten times. Therefore, GPS can be used to make up for the lack of GPS. Depending on the preferred embodiment of the present invention, the re-exposure of the present invention is that there is no gyro-like coffee (10) integrated positioning method, which can be borrowed from each other. , the positioning output. 2. Using GPS positioning data to correct m can correct the cumulative error of (10), and thus achieve the purpose of the discontinuity of the output. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; (χ, y, Z) is a schematic diagram of the Earth coordinate system. Figure 2 is a diagram showing the relationship between the INS carrier coordinate system of the plane motion and the navigation coordinate system (N, E). Figure 3 shows the car navigation. The velocity vector triangle under the coordinate system is not intended. Fig. 4 is a schematic diagram showing the assumption in the axial direction of Vki. Fig. 5 is a diagram showing a GPS/INS integrated system according to a preferred embodiment of the present invention. Figure 6 is a schematic diagram showing the data format of the positioning wheel of the Gps/INS integrated system of Figure 5. Figure 7 is a schematic diagram of a GPS/INS integrated system according to another preferred embodiment of the present invention. Figure 8 shows the Gps/INS of Figure 7. FIG. 9 is a flow chart showing a GPS/INS integrated positioning method without a gyroscope according to a preferred embodiment of the present invention. FIG. 10 is a diagram showing the WGS_84. The INS under the coordinate system is GPS-corrected for positioning results every five seconds. 22 1250303 Figure 11 shows the positioning results of the INS per second corrected by GPS under the WGS-84 coordinate system. Description] 100: Start 101: 0.1 second sampling time to? 102: Record acceleration (ax, ay) 104: Is GPS effective positioning? 106 ··Set INS start condition to (, reverse push (OO/KD and output INS positioning) Data from k-Ι to k=l 108: Record and output GPS positioning data, set INS start condition 110: 0.1 second sampling time to ? 112: sampling acceleration (ax, ay), calculation (〇〇 =, ;), And as the starting condition of the next moment 114: Output INS positioning data 116: Is the GPS effectively positioned? 200: Satellite positioning system 201: Output 202: Dual-axis accelerometer 203: Output 204: Microcontroller 2 0 5 · Output 206 : Output interface 23
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93110021A TWI250303B (en) | 2004-04-09 | 2004-04-09 | Integrated location system and method of vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93110021A TWI250303B (en) | 2004-04-09 | 2004-04-09 | Integrated location system and method of vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200533945A TW200533945A (en) | 2005-10-16 |
TWI250303B true TWI250303B (en) | 2006-03-01 |
Family
ID=37432997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93110021A TWI250303B (en) | 2004-04-09 | 2004-04-09 | Integrated location system and method of vehicle |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI250303B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8750267B2 (en) | 2009-01-05 | 2014-06-10 | Qualcomm Incorporated | Detection of falsified wireless access points |
US8781492B2 (en) | 2010-04-30 | 2014-07-15 | Qualcomm Incorporated | Device for round trip time measurements |
US8831594B2 (en) | 2008-12-22 | 2014-09-09 | Qualcomm Incorporated | Post-deployment calibration of wireless base stations for wireless position determination |
TWI497034B (en) * | 2008-05-29 | 2015-08-21 | Applied Res Lab | A Satellite Attitude Estimation System and Method |
US9125153B2 (en) | 2008-11-25 | 2015-09-01 | Qualcomm Incorporated | Method and apparatus for two-way ranging |
US9213082B2 (en) | 2008-11-21 | 2015-12-15 | Qualcomm Incorporated | Processing time determination for wireless position determination |
US9291704B2 (en) | 2008-11-21 | 2016-03-22 | Qualcomm Incorporated | Wireless-based positioning adjustments using a motion sensor |
US9645225B2 (en) | 2008-11-21 | 2017-05-09 | Qualcomm Incorporated | Network-centric determination of node processing delay |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102162856A (en) * | 2010-12-29 | 2011-08-24 | 上海华勤通讯技术有限公司 | Mobile terminal capable of being positioned under condition of weak positioning signal and method for positioning same |
CN103033184B (en) * | 2011-09-30 | 2014-10-15 | 迈实电子(上海)有限公司 | Error correction method, device and system for inertial navigation system |
-
2004
- 2004-04-09 TW TW93110021A patent/TWI250303B/en not_active IP Right Cessation
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI497034B (en) * | 2008-05-29 | 2015-08-21 | Applied Res Lab | A Satellite Attitude Estimation System and Method |
US9213082B2 (en) | 2008-11-21 | 2015-12-15 | Qualcomm Incorporated | Processing time determination for wireless position determination |
US9291704B2 (en) | 2008-11-21 | 2016-03-22 | Qualcomm Incorporated | Wireless-based positioning adjustments using a motion sensor |
US9645225B2 (en) | 2008-11-21 | 2017-05-09 | Qualcomm Incorporated | Network-centric determination of node processing delay |
US9125153B2 (en) | 2008-11-25 | 2015-09-01 | Qualcomm Incorporated | Method and apparatus for two-way ranging |
US8831594B2 (en) | 2008-12-22 | 2014-09-09 | Qualcomm Incorporated | Post-deployment calibration of wireless base stations for wireless position determination |
US9002349B2 (en) | 2008-12-22 | 2015-04-07 | Qualcomm Incorporated | Post-deployment calibration for wireless position determination |
US8750267B2 (en) | 2009-01-05 | 2014-06-10 | Qualcomm Incorporated | Detection of falsified wireless access points |
US8781492B2 (en) | 2010-04-30 | 2014-07-15 | Qualcomm Incorporated | Device for round trip time measurements |
US9247446B2 (en) | 2010-04-30 | 2016-01-26 | Qualcomm Incorporated | Mobile station use of round trip time measurements |
Also Published As
Publication number | Publication date |
---|---|
TW200533945A (en) | 2005-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103900565B (en) | A kind of inertial navigation system attitude acquisition method based on differential GPS | |
CN104180821B (en) | Milemeter calibration method based on synchronous measurement and location calculation | |
CN107121141A (en) | A kind of data fusion method suitable for location navigation time service micro-system | |
TWI250303B (en) | Integrated location system and method of vehicle | |
CN103900571B (en) | A kind of carrier posture measuring method based on the rotary-type SINS of inertial coodinate system | |
CN113834483B (en) | An Inertial/Polarization/Geomagnetic Fault Tolerant Navigation Method Based on Observability | |
CN106772493A (en) | Unmanned plane course calculating system and its measuring method based on Big Dipper Differential positioning | |
CN108594272A (en) | A kind of anti-deceptive interference Combinated navigation method based on Robust Kalman Filter | |
US7298323B2 (en) | Apparatus and method for locating user equipment using global positioning system and dead reckoning | |
CN102109349B (en) | MIMU (Micro Inertial Measurement Unit) system with ECEF (Earth Centered Earth Fixed) model | |
CN103900566B (en) | A kind of eliminate the method that rotation modulation type SINS precision is affected by rotational-angular velocity of the earth | |
CN103543289B (en) | A kind of method and device obtaining terminal direction of motion | |
CN111443363A (en) | Satellite navigation deception identification method and device | |
CN106093992A (en) | A kind of sub-meter grade combined positioning and navigating system based on CORS and air navigation aid | |
CN202382747U (en) | Combined navigation device for small-sized underwater glider | |
CN105527642B (en) | A kind of single star positioner and method | |
CN103712621B (en) | Polarised light and infrared sensor are assisted inertial navigation system method for determining posture | |
CN110887472A (en) | A fully autonomous attitude calculation method for deep fusion of polarization-geomagnetic information | |
CN107702711A (en) | A kind of pedestrian course Estimation System based on inexpensive sensor and ground constraint diagram | |
CN116448145A (en) | Navigation attitude determination method based on polarization vector space difference | |
CN105674815A (en) | Attitude measuring device applied to high-speed rotating projectile body | |
CN104216405A (en) | Navigation method and equipment for field robot | |
CN111912402B (en) | Geomagnetic information assisted GPS (global positioning system) -based attitude measurement method and device for high-rotation carrier | |
CN108426577A (en) | Auxiliary based on wearable device, which is ridden, enhances the method and apparatus of positioning | |
CN105180928B (en) | A kind of boat-carrying star sensor localization method based on inertial system gravity characteristic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |