TW522471B - Method of correcting a mask layout - Google Patents
Method of correcting a mask layout Download PDFInfo
- Publication number
- TW522471B TW522471B TW91105952A TW91105952A TW522471B TW 522471 B TW522471 B TW 522471B TW 91105952 A TW91105952 A TW 91105952A TW 91105952 A TW91105952 A TW 91105952A TW 522471 B TW522471 B TW 522471B
- Authority
- TW
- Taiwan
- Prior art keywords
- pattern
- scope
- patent application
- item
- linear
- Prior art date
Links
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
522471 五、發明說明(l) 發明之領域 本發明係提供一種修正光罩佈局圖的方法,尤指一種 修正一光罩佈局圖進行圖案轉移時所產生之系統誤差 (systematic error)的方法。 背景說明 為了在半導體晶片上 (integrated circuits, foundry)必須先製作一光 計的佈局(layout)圖案, 製程將光罩上的圖案歷經 半導體晶片上的光阻,之 片上光阻未覆蓋的區域上 加以去除。故光罩上的圖 先轉印到光阻,然後再到 製程可說是半導體製程中 將光罩上的圖案經由微影 晶片,已成為研究半導體 形成一設計的積體電路 1C)’ 晶圓廠(semiconductor 罩(mask)’並在光罩上形成一設 再藉由微影(photolithography) 曝光顯影後以一定的比例轉印到 後再利用一蝕刻製程將半導體晶 的物質,例如矽或二氧化矽等, 案便藉由微影和飿刻兩個製程, 半導體晶片上。所以微影和蝕刻 兩個非常重要的製程,因此如何 t钱刻製程準確地轉印到半導體 製程非常重·要的課題。 由於在進行微影製程來將光罩圖案轉移5 , '^光層日奔, 高密度排列的光罩圖案的轉角處(corner)非常=1尽才、 度曝光(overexpose)或是曝光不足而產生井战各易因為過 - +接近效應522471 V. Description of the Invention (l) Field of the Invention The present invention provides a method for correcting a mask layout, especially a method for correcting a systematic error generated when a mask layout is subjected to pattern transfer. Background description In order to integrate circuits, foundry, a layout pattern of a photometer must be made first, and the pattern on the photomask passes through the photoresist on the semiconductor wafer, and the area on the sheet is not covered by the photoresist. To remove. Therefore, the image on the photomask is first transferred to the photoresist, and then to the process. It can be said that the pattern on the photomask is passed through the lithographic wafer in the semiconductor process. It has become a research integrated circuit for forming a designed integrated circuit. A semiconductor mask is formed on the photomask and developed by photolithography. After being transferred to a certain ratio, it is transferred to a semiconductor crystal by an etching process, such as silicon or silicon. Silicon oxide, etc., uses two processes: lithography and engraving on semiconductor wafers. So lithography and etching are two very important processes, so how to accurately transfer the lithography process to the semiconductor process is very important. As the lithography process is used to transfer the mask pattern 5, the light layer is running at a high angle, and the corners of the mask pattern with high density are very equal to = 1, overexpose, or Underexposure causes well battles due to over- + approach effects
522471 五、發明說明(2) (optical proximity effect),進而影響圖案轉移之準痛 度。因此目前解決的方法,是利用電腦輔助設計 (computer aided design, CAD)的方式來對光罩圖案進行 一光學近似修正(optical proximity correction, OPC),以消除光學接近效應。 然而除了光學接近效應之外’光罩圖案仍可能於進行 蝕刻製程時,因為設計於半導體晶片上的元件圖案具有不 同的圖案密度(pattern density),而引發微負荷效應 (micro-loading effect),影響蝕刻之均勻性。 請參考圖一,圖一為習知之一光罩佈局圖示意圖。如 圖一所示,光罩佈局圖上包含有複數個具有相同線寬¥之 線形元件圖案A、B、C,分別用來定義不同區域的字元線 (word 1 ine)或位元線(bit 1 ine)等導電區域。其中二元 件圖案A之間的線距(line space) s定義為a,二元件圖案b 之間的線距s定義為b,而二元件圖案C之間的線距s定義為 c,且線距a、b、c之數值並不相等。換句話說,光罩佈局 圖上之各元件圖案A、B、C之間具有不相等的圖案密度。 請參考圖二,圖二為依據圖一所示之光罩佈局圖進行 蝕刻製程來將圖案轉移至一半導體晶片上時,所獲得之蝕 刻後臨界(after-etch-inspection critical dimension, ΑΕΙ CD)線寬w’與線距s之間的關係示意圖。其中縱轴係表522471 V. Description of the invention (2) (optical proximity effect), which further affects the quasi-pain of pattern transfer. Therefore, the current solution is to use computer aided design (CAD) to perform an optical proximity correction (OPC) on the mask pattern to eliminate the optical proximity effect. However, in addition to the optical proximity effect, the photomask pattern may still be used in the etching process, because the element patterns designed on the semiconductor wafer have different pattern densities, which causes a micro-loading effect. Affects the uniformity of etching. Please refer to FIG. 1. FIG. 1 is a schematic diagram of a conventional photomask layout. As shown in Figure 1, the reticle layout diagram includes a plurality of linear element patterns A, B, and C having the same line width ¥, which are respectively used to define a word line (word 1 ine) or a bit line ( bit 1 ine) and other conductive areas. The line space s between the two element patterns A is defined as a, the line space s between the two element patterns b is defined as b, and the line distance s between the two element patterns C is defined as c, and the line The distances a, b, and c are not equal. In other words, the element patterns A, B, and C on the reticle layout chart have unequal pattern densities. Please refer to FIG. 2. FIG. 2 is an after-etch-inspection critical dimension (ΑΕΙ CD) obtained when the pattern is transferred to a semiconductor wafer by an etching process according to the mask layout shown in FIG. 1. A schematic diagram of the relationship between the line width w 'and the line spacing s. Where the vertical axis table
第5頁 522471 五、發明說明(3)Page 5 522471 V. Description of the invention (3)
示光罩佈局圖上之各元件圖案轉移至半導體晶片上之蝕刻 後線寬,橫軸係表示光罩佈局圖上之各元件圖案之間的線 距,空心圓圈係為一線寬量測值,而黑色實線則係利用數 值方法以及各線寬量測值所作之一線寬逼近曲線(f i 11 i ng curve)。如圖二所示,光罩佈局圖上之各元件圖案之蝕刻 後線寬w’可能受到微負荷或其他系統誤差因素影響,產生 蝕刻不均勻的現象,例如各元件圖案之蝕刻後線寬可能隨 著線距增加而遞增,也就是說圖案密度愈低、愈孤立的線 形圖案所可能獲得的蝕刻後線寬愈大於較密集的線形圖案 所獲得之蝕刻:後線寬。 由於在傳統0 . 1 8微米製程之I C設計時,微負荷效應並 非考量半導體晶片整體均勻度之主要因素,,因此由微負荷 效應所造成之蝕刻不均勻亦經常被忽略。然而隨著半導體 元件尺寸之縮減以及積集度之提昇,目前對於元件均勻度 之要求亦日趨嚴苛。假設微負荷效應可造成1 0奈米 (narometer,nm)的線寬誤差,則此一誤差對於0.15, 0. 1 3甚至0. 1微米製程來說,誤差率已高達6% ,8% ,甚 至1 0% 。因此如何改善半導體晶片之表面均勻度以提高產The line width of each element pattern on the photomask layout diagram after being transferred to the semiconductor wafer. The horizontal axis represents the line spacing between the element patterns on the photomask layout diagram. The hollow circle is a linewidth measurement. The black solid line is a line width approximation curve (fi 11 i ng curve) made by using numerical methods and various line width measurements. As shown in Figure 2, the etched line width w 'of each element pattern on the mask layout may be affected by micro-load or other system error factors, resulting in uneven etching. For example, the line width of each element pattern may be etched. As the line pitch increases, it means that the lower the pattern density and the more isolated the linear pattern, the greater the post-etching line width that can be obtained than the denser line pattern: the post-line width. Because in the traditional IC design of the 0.18 micron process, the micro-load effect is not a major factor in considering the overall uniformity of the semiconductor wafer, the etching unevenness caused by the micro-load effect is often ignored. However, with the reduction in the size of semiconductor devices and the increase in the degree of accumulation, the requirements for the uniformity of devices have become increasingly strict. Assuming that the micro-load effect can cause a line width error of 10 nanometers (narometer, nm), the error rate has reached 6%, 8% for 0.15, 0.1 3, or even 0.1 micron processes. Even 10%. So how to improve the surface uniformity of semiconductor wafers to increase production
品良率,已成為0. 1 5微米以下製程之一重要課題。 發明概述 因此,本發明之目的即在提供一種修正光罩佈局圖的Product yield has become an important issue for processes below 0.1 5 microns. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for correcting a layout of a photomask.
第6頁 522471 五、發明說明(4) 方法’以有效避免微負荷效應所造成的圖案偏差 ’首先係提供 案的光罩佈局 上之各元件圖 元件圖案,之 包含有複數 圖,然後進行 案之間的圖案 後再分別對各 在本發明之最佳實施例中 個具有不同圖案密度之元件圖 一檢測程式,依據光罩佈局圖 密度將各疋件圖案分為複數類 類元件圖案進行修正。 由於本發明可以依據引起微負荷效應之 光罩佈局圖上:的元件圖案進行分 ^ ^岔度來對 作適度修…此可以有效改4導 度,尤其可以提高0.15微米以下製MU U面句勻 發明之詳細說明 圖三為本發明修正-光罩佈局圖以避免 產士微負何效應的方法流程圖。b圖三所示,本發明方法 係先進行步驟10,冑供一光罩饰4目資料庫。胃光罩佈局 圖上包含有複數個(線形)元件圖案,分別用來定義單晶片 (single-chip)上不同區域之導電區域,例如記憶區 (memory cell region)以及邏輯電路區(1〇gic circuit region)之字元線或位元線等具有不同電路設計需求之元 件圖案,或用來定義多晶片(mul ti_chip)上的元件圖案, 且該資料庫中包含有各該元件圖案之參數資料。 522471 五、發明說明(5) 由於微負荷效應係由各元件圖案之間的圖案密度差異 所導致,因此本發明隨後即進行步驟2 0,提供一檢測程 式,並根據各元件圖案的圖案密度來進行分類,如步驟3 0 所示,將各元件圖案分為複數類元件圖案32、34、36、 38,包含第一類元件圖案、第二類元件圖案至第N-1類元 件圖案以及第N類圖案等,或者稱為密集(dense)圖案、次 密集(sub-dense)圖案、半密集(semi-dense)圖案以及孤 立(i solated)圖案等。 隨後如步驟4 0所示,根據分類結果再分別對各類元件 圖案進行不同程度之線寬值補償修正。例如分別對第一類 元件圖案32進行一第一定值修正42,對第二類元件圖案34 進行一第二定值修正4 4,對第N - 1類元件圖案3 6進行一第 N-1定值修正46,以及對第N類元件圖案义8進行一第N定值 修正4 8等步驟。最後,進行步驟5 0,綜合各修正值並輸出 包含各修正元件圖案之光罩佈局圖,即完成本發明之光罩 圖案修正。 修正後之光罩佈局圖請參考圖四,圖四係以圖一所示 之等線寬元件圖案A、B、C為例來進行線寬修正,亦即分 別對具有較低圖案密度之元件圖案A與B進行不同程度之線 寬縮減,以分別形成元件圖案A’以及B’。此外,在本發明 之其他實施例中,進行線寬修正時亦可以依據各元件圖案Page 6 522471 V. Explanation of the invention (4) The method 'to effectively avoid the pattern deviation caused by the micro-load effect' is to first provide the element diagrams and element patterns on the mask layout, including the plural diagrams, and then proceed with the case. After detecting the patterns between the component patterns in the preferred embodiment of the present invention, a detection program is performed, and each component pattern is divided into a plurality of types of component patterns according to the density of the mask layout image. . Because the present invention can be modified according to the element pattern on the layout of the photomask that causes the micro-load effect, it can be appropriately modified ... This can effectively modify the 4 degree of conductivity, especially can improve the MU U face sentence below 0.15 microns Detailed Description of Uniform Invention FIG. 3 is a flow chart of a method for modifying the reticle layout of the present invention to avoid the negative effects of the midwife. As shown in Figure 3b, the method of the present invention first proceeds to step 10, and provides a photomask to decorate a 4 mesh database. The gastric mask layout diagram contains a plurality of (linear) component patterns, which are used to define the conductive areas of different areas on the single-chip, such as the memory cell region and the logic circuit area (10 gic circuit region), such as word lines or bit lines, with different circuit design requirements, or used to define device patterns on multiple chips (mul ti_chip), and the database contains parameter data for each of the device patterns . 522471 V. Description of the invention (5) Since the micro-load effect is caused by the difference in pattern density between element patterns, the present invention then proceeds to step 20, provides a detection program, and calculates the pattern density of each element pattern. Classify, as shown in step 30, divide each element pattern into plural types of element patterns 32, 34, 36, 38, including the first type element pattern, the second type element pattern to the N-1 type element pattern, and the first N-type patterns and the like are also referred to as dense patterns, sub-dense patterns, semi-dense patterns, and isolated patterns, and the like. Subsequently, as shown in step 40, different types of component widths are compensated and corrected according to the classification results. For example, a first fixed value correction 42 is performed for the first type of element pattern 32, a second fixed value correction 4 for the second type of element pattern 34, and an Nth- 1 fixed value correction 46, and performing an N fixed value correction 4 8 on the Nth type element pattern definition 8. Finally, step 50 is performed to synthesize the correction values and output a mask layout diagram including the pattern of each correction element, thereby completing the mask pattern correction of the present invention. Please refer to Figure 4 for the revised mask layout. Figure 4 uses line-width component patterns A, B, and C shown in Figure 1 as examples to perform line-width correction, that is, for components with lower pattern densities, respectively. The patterns A and B are reduced in line width to different degrees to form element patterns A ′ and B ′, respectively. In addition, in other embodiments of the present invention, the line width correction may also be performed according to each element pattern.
第8頁 522471 五、發明說明(6) 之圖案密度的大小來決定增加或刪減其線寬。Page 8 522471 V. Description of the invention (6) The pattern density determines whether to increase or decrease its line width.
如圖五與圖六所示,本發明經微負荷修正後之元件圖 案A’以及B’於進行圖案轉移之後,所獲得之蝕刻後線寬值 將可落於一合理線寬範圍(如1 2 6〜1 3 2奈米之間)内,進而 縮小與元件圖案C之蝕刻後線寬(介於1 2 3〜1 3 3奈米之間)之 間的差異,而且本發明經微負荷修正後之全體線寬偏差值 可降至5〜6奈米以下,遠低於傳統未經微負荷修正高達1 5 奈米之蝕刻偏差值,因此相較於傳統未經微負荷修正之光 罩佈局圖,本發明可以有效改善半導體晶片之蝕刻均勻 度。As shown in Figures 5 and 6, after the micro-load correction of the element patterns A 'and B' of the present invention after pattern transfer, the obtained line width values after etching will fall within a reasonable line width range (such as 1 2 6 to 1 3 2 nanometers), and further reduce the difference between the line width after etching of the element pattern C (between 1 2 3 to 1 3 3 nanometers), and the present invention is micro-loaded. After the correction, the overall line width deviation value can be reduced to 5-6 nanometers, which is far lower than the traditional etching deviation value of up to 15 nanometers without micro-load correction, so it is compared with the traditional mask without micro-load correction. According to the layout diagram, the present invention can effectively improve the etching uniformity of a semiconductor wafer.
本發明之特徵主要係依據光罩佈局圖上各元件圖案的 圖案密度來對各元件圖案分類,之後再針對同一類元件圖 案中的各元件圖案進行一等值線寬修正。.本發明所依據之 圖案密度可以由二線形圖案之間的線距來決定,例如由 a、b、c之大小排列來決定元件圖案A、B、C之圖案密度高 低順序以及其相對應之線寬修正值大小。此外,圖案密度 亦可以由任何其他可以分辨密集圖案或孤立圖案之方法決 定,例如由線形圖案之線寬w除以二鄰近線形圖案之間的 線距s來決定,進而獲得二元件圖案A之間的圖案密度 d = w / a之計算公式。 除了依據各元件圖案的圖案密度來對各元件圖案分The feature of the present invention is mainly to classify each element pattern according to the pattern density of each element pattern on the photomask layout drawing, and then perform an isoline width correction for each element pattern in the same type of element pattern. The pattern density on which the present invention is based can be determined by the line spacing between two linear patterns. For example, the order of the pattern a, b, and c determines the order of the pattern density of the element patterns A, B, and C, and their corresponding Line width correction value. In addition, the pattern density can also be determined by any other method that can distinguish dense patterns or isolated patterns. For example, the line width w of a linear pattern is divided by the line spacing s between two adjacent linear patterns to obtain the two-element pattern A. The formula for calculating the pattern density d = w / a. In addition to dividing each element pattern according to the pattern density of each element pattern
第9頁 522471 五、發明說明(7) 類,在本發明之其他實施例中,亦可以直接利用各元件圖 案於進行圖案轉移(蝕刻製程)後之臨界線寬偏差資料來進 行各元件圖案的分類。也就是說,本發明亦可以利用圖二 之蝕刻後線寬與線距之關係圖來設定複數個線距範圍,至 少將各元件圖案分類為密集圖案、半密集圖案以及孤立圖 案等,之後再對同一類中之各元件圖案進行等值之線寬修 正 ° 相較於習知之修正光罩佈局圖的方法,本發明依據引 起微負荷效應之圖案密度來對光罩佈局圖上的元件圖案進 行分類,並且對各類元件圖案作適度修正,因此可以有效 改善半導體晶片之表面均勻度,尤其可以提高0. 1 5微米以 下製程之產品良率。 以上所述僅為本發明之較佳實施例\凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明專利之涵 蓋範圍。Page 9 522471 V. Description of invention (7) In other embodiments of the present invention, the critical line width deviation data of each element pattern after pattern transfer (etching process) can also be directly used to perform the element pattern classification. That is to say, the present invention can also use the relationship diagram of line width and line pitch after etching to set a plurality of line pitch ranges, and at least classify each element pattern into a dense pattern, a semi-dense pattern, and an isolated pattern. Equivalent line width correction of each element pattern in the same category ° Compared with the conventional method of correcting the mask layout, the present invention performs a component pattern on the mask layout according to the pattern density that causes the micro-load effect. Classification, and appropriate correction of various element patterns, so can effectively improve the surface uniformity of semiconductor wafers, especially can improve the yield of products below 0.1 5 microns. The above description is only a preferred embodiment of the present invention \ Every equivalent change and modification made in accordance with the scope of the patent application for the present invention shall fall within the scope of the patent of the present invention.
522471 圖式簡單說明 圖示之簡單說明 圖一為習知之一光罩佈局圖示意圖。 圖二為習知之一光罩佈局圖之蝕刻後線寬與線距之間 的關係示意圖。 圖三為本發明之修正一光罩佈局圖的方法流程圖。 圖四為依據本發明方法所修正之一光罩佈局圖示意 圖。522471 Simple illustration of the diagram Simple illustration of the diagram Fig. 2 is a schematic diagram showing the relationship between the line width and the line pitch after etching in one of the conventional photomask layout drawings. FIG. 3 is a flowchart of a method for modifying a photomask layout of the present invention. FIG. 4 is a schematic diagram of a photomask layout modified according to the method of the present invention.
圖五為本發明經微負荷修正後之蝕刻後線寬與傳統未 經微負荷修正之蝕刻後線寬的比較圖。 圖六為本發明經微負荷修正後之線寬偏差值與傳統未 經微負荷修正之線寬偏差值的比較圖。 圖示之符號說明 10 〜50 修正光罩佈局圖步驟 A、 B、O A,、B, 元件圖案 a、 b ^ c 線距 W 線寬Fig. 5 is a comparison diagram of the line width after etching with micro-load correction according to the present invention and the line width after etching without conventional micro-load correction. Fig. 6 is a comparison chart of the line width deviation value after the micro load correction of the present invention and the conventional line width deviation value without the micro load correction. Explanation of symbols in the diagram 10 ~ 50 Correction of mask layout steps A, B, O A ,, B, component pattern a, b ^ c Line pitch W Line width
第11頁Page 11
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91105952A TW522471B (en) | 2002-03-26 | 2002-03-26 | Method of correcting a mask layout |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91105952A TW522471B (en) | 2002-03-26 | 2002-03-26 | Method of correcting a mask layout |
Publications (1)
Publication Number | Publication Date |
---|---|
TW522471B true TW522471B (en) | 2003-03-01 |
Family
ID=28037908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91105952A TW522471B (en) | 2002-03-26 | 2002-03-26 | Method of correcting a mask layout |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW522471B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102543688A (en) * | 2008-01-16 | 2012-07-04 | 益华公司 | Spacer double patterning for lithography operations |
CN112018124A (en) * | 2019-05-31 | 2020-12-01 | 台湾积体电路制造股份有限公司 | Integrated circuit (IC) and method for forming an integrated circuit |
TWI722903B (en) * | 2019-05-31 | 2021-03-21 | 台灣積體電路製造股份有限公司 | Integrated circuit and method of forming the same |
-
2002
- 2002-03-26 TW TW91105952A patent/TW522471B/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102543688A (en) * | 2008-01-16 | 2012-07-04 | 益华公司 | Spacer double patterning for lithography operations |
CN112018124A (en) * | 2019-05-31 | 2020-12-01 | 台湾积体电路制造股份有限公司 | Integrated circuit (IC) and method for forming an integrated circuit |
TWI722903B (en) * | 2019-05-31 | 2021-03-21 | 台灣積體電路製造股份有限公司 | Integrated circuit and method of forming the same |
US11264396B2 (en) | 2019-05-31 | 2022-03-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-type high voltage devices fabrication for embedded memory |
CN112018124B (en) * | 2019-05-31 | 2024-07-12 | 台湾积体电路制造股份有限公司 | Integrated circuit (IC) and method for forming an integrated circuit |
US12096621B2 (en) | 2019-05-31 | 2024-09-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-type high voltage devices fabrication for embedded memory |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11061317B2 (en) | Method of fabricating an integrated circuit with non-printable dummy features | |
US8881072B2 (en) | Method for compensating for variations in structures of an integrated circuit | |
US9268209B2 (en) | Mask and method of forming pattern by using the same | |
TWI237746B (en) | Optical proximity correction method | |
US6571383B1 (en) | Semiconductor device fabrication using a photomask designed using modeling and empirical testing | |
CN113093469B (en) | Method for target pattern correction, mask production and semiconductor structure formation | |
CN104166304B (en) | Method for correcting auxiliary pattern | |
CN1255704C (en) | A Method of Correcting Mask Layout | |
US9711420B1 (en) | Inline focus monitoring | |
TW522471B (en) | Method of correcting a mask layout | |
JP2011028120A (en) | Method for forming pattern, program for forming pattern, and method for manufacturing semiconductor device | |
US20170316140A1 (en) | Method, apparatus and system for forming recolorable standard cells with triple patterned metal layer structures | |
US7970485B2 (en) | Systems and methods for determining width/space limits for a mask layout | |
US8701052B1 (en) | Method of optical proximity correction in combination with double patterning technique | |
TWI540380B (en) | Method of optical proximity correction | |
TWI773900B (en) | Method for adjusting and processing integrated circuit layout and system for processing integrated circuit layout | |
US6974650B2 (en) | Method of correcting a mask layout | |
TW201430484A (en) | Method of optical proximity correction | |
US6824937B1 (en) | Method and system for determining optimum optical proximity corrections within a photolithography system | |
US6784005B2 (en) | Photoresist reflow for enhanced process window for random, isolated, semi-dense, and other non-dense contacts | |
Yang et al. | New OPC verification method using die-to-database inspection | |
Yen et al. | Low-k 1 optical lithography for 100 nm logic technology and beyond | |
Yang et al. | OPC accuracy enhancement through systematic OPC calibration and verification methodology for sub-100nm node | |
Ma et al. | Design Driven Test Patterns for SMO OPC and SPA | |
US7153711B2 (en) | Method for improving a drive current for semiconductor devices on a wafer-by-wafer basis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |