[go: up one dir, main page]

TW202504193A - Surface Emitting Laser - Google Patents

Surface Emitting Laser Download PDF

Info

Publication number
TW202504193A
TW202504193A TW113102661A TW113102661A TW202504193A TW 202504193 A TW202504193 A TW 202504193A TW 113102661 A TW113102661 A TW 113102661A TW 113102661 A TW113102661 A TW 113102661A TW 202504193 A TW202504193 A TW 202504193A
Authority
TW
Taiwan
Prior art keywords
layer
dbr
emitting laser
spacer
surface emitting
Prior art date
Application number
TW113102661A
Other languages
Chinese (zh)
Inventor
田中雅之
中島博
Original Assignee
日商索尼集團公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商索尼集團公司 filed Critical 日商索尼集團公司
Publication of TW202504193A publication Critical patent/TW202504193A/en

Links

Abstract

本發明之課題在於提供一種能夠實現高效率化與低電壓化之面發光雷射。 本揭示之一實施形態之面發光雷射包含第1DBR層、第2DBR層、活性層、第1間隔層、第2間隔層、穿隧接面層、第1電極層及第2電極層。第1電極層不經由第1DBR層而與第1間隔層電性連接。第2電極層不經由第2DBR層而與第2間隔層電性連接。第1間隔層在與穿隧接面層非對向之區域具有平坦之露出面。第1電極層形成為與第1間隔層中較露出面為深之部位相接。 The subject of the present invention is to provide a surface emitting laser capable of achieving high efficiency and low voltage. The surface emitting laser of one embodiment of the present disclosure includes a first DBR layer, a second DBR layer, an active layer, a first spacer layer, a second spacer layer, a tunneling junction layer, a first electrode layer and a second electrode layer. The first electrode layer is electrically connected to the first spacer layer without passing through the first DBR layer. The second electrode layer is electrically connected to the second spacer layer without passing through the second DBR layer. The first spacer layer has a flat exposed surface in a region not opposite to the tunneling junction layer. The first electrode layer is formed to be in contact with a portion of the first spacer layer that is deeper than the exposed surface.

Description

面發光雷射Surface Emitting Laser

本揭示係關於一種面發光雷射。The present disclosure relates to a surface emitting laser.

針對面發光雷射,例如曾於專利文獻1、2中揭示。 [先前技術文獻] [專利文獻] Regarding surface emitting lasers, for example, they have been disclosed in patent documents 1 and 2. [Prior art document] [Patent document]

[專利文獻1]日本特開2007-315883號公報 [專利文獻2]日本特開平9-27671號公報 [Patent document 1] Japanese Patent Publication No. 2007-315883 [Patent document 2] Japanese Patent Publication No. 9-27671

[發明所欲解決之問題][The problem the invention is trying to solve]

為了將雷射光放出至空間中,必須考量對於眼睛之視網膜之充分之安全(視力無害)。因而,近年來,業界進行應對視力無害之面發光雷射之開發。於應對視力無害之面發光雷射中,要求高效率且低耗電。較理想提供一種能夠實現高效率化與低電壓化之面發光雷射。 [解決問題之技術手段] In order to emit laser light into space, sufficient safety for the retina of the eye must be considered (no harm to vision). Therefore, in recent years, the industry has been developing surface-emitting lasers that are harmless to vision. In surface-emitting lasers that are harmless to vision, high efficiency and low power consumption are required. It is ideal to provide a surface-emitting laser that can achieve high efficiency and low voltage. [Technical means to solve the problem]

本揭示之一實施形態之面發光雷射包含第1DBR層、第2DBR層、活性層、第1間隔層、第2間隔層、穿隧接面層、第1電極層及第2電極層。活性層配置於第1DBR層與第2BDR層之間。第1間隔層配置於活性層與第1DBR層之間。第2間隔層配置於活性層與第2DBR層之間。穿隧接面層配置於活性層與第2DBR層之間。第1電極層於不經由第1DBR層下與第1間隔層電性連接。第2電極層於不經由第2DBR層下與第2間隔層電性連接。第1間隔層在與穿隧接面層非對向之區域具有平坦之露出面。第1電極層形成為與第1間隔層中較露出面深之部位相接。The surface emitting laser of one embodiment of the present disclosure includes a first DBR layer, a second DBR layer, an active layer, a first spacer layer, a second spacer layer, a tunneling junction layer, a first electrode layer and a second electrode layer. The active layer is disposed between the first DBR layer and the second DBR layer. The first spacer layer is disposed between the active layer and the first DBR layer. The second spacer layer is disposed between the active layer and the second DBR layer. The tunneling junction layer is disposed between the active layer and the second DBR layer. The first electrode layer is electrically connected to the first spacer layer without passing through the first DBR layer. The second electrode layer is electrically connected to the second spacer layer without passing through the second DBR layer. The first spacer layer has a flat exposed surface in a region not facing the tunnel junction layer. The first electrode layer is formed to be in contact with a portion of the first spacer layer that is deeper than the exposed surface.

以下,針對用於實施本揭示之形態,參照圖式詳細地說明。以下之說明係本揭示之一具體例,本發明不限定於以下之態樣。又,本揭示針對各圖所示之各構成要件之配置或尺寸、尺寸比等,亦不限定於其等。此外,說明係按照以下之順序進行。 1.第1實施形態…圖1~圖14 埋入下部電極半導體層之例 2.第1實施形態之變化例 變化例A:以金屬層與鍍覆層構成下部電極之例(圖15) 變化例B:以擴散金屬區域與合金金屬層構成下部電極之例(圖16) 變化例C:以擴散金屬區域與合金金屬層及金屬層構成下部電極之例(圖17) 變化例D:於活性層與相接於活性層之半導體層之界面形成有下部電極之例(圖18) 變化例E:於台面之周圍設置有環狀之下部電極之例(圖19、圖20) 變化例F:埋入下部電極之部分之剖面形狀設為正錐形之例(圖21) 變化例G:埋入下部電極之部分設為錐體形狀之例(圖22) 變化例H:使用離子注入形成有穿隧接面部之例(圖23) 變化例I:於半導體層與上部DBR層之間設置有透明導電層之例(圖24) 變化例J:以介電體構成下部DBR層之例(圖25) 變化例K:以介電體DBR層與反射金屬層構成下部反射鏡之例(圖26) 變化例L:以GaAs系半導體構成下部DBR層之例(圖27) 變化例M:於背面出射型之面發光雷射中,埋入下部電極半導體層之例(圖28) 變化例N:於背面出射型之面發光雷射中,以介電體構成下部DBR層之例(圖29) 變化例O:於背面出射型之面發光雷射中,以GaAs系半導體構成下部DBR層之例(圖30) 變化例P:於背面出射型之面發光雷射中,以介電體DBR層與反射金屬層構成上部反射鏡之例(圖31) 3.第2實施形態 於槽部之底面設置有下部電極之例(圖32、圖33) 4.第2實施形態之變化例 變化例Q:於背面出射型之面發光雷射中,埋入下部電極半導體層之例(圖34) The following is a detailed description of the form used to implement the present disclosure with reference to the drawings. The following description is a specific example of the present disclosure, and the present invention is not limited to the following form. In addition, the present disclosure is not limited to the configuration, size, size ratio, etc. of each component shown in each figure. In addition, the description is carried out in the following order. 1. The first embodiment… Figures 1 to 14 Example of embedding the lower electrode semiconductor layer 2. Variations of the first embodiment Variation A: An example in which the lower electrode is formed by a metal layer and a plating layer (Figure 15) Variation B: An example in which the lower electrode is formed by a diffused metal region and an alloy metal layer (Figure 16) Variation C: An example in which the lower electrode is formed by a diffused metal region, an alloy metal layer, and a metal layer (Figure 17) Variation D: An example in which a lower electrode is formed at the interface between an active layer and a semiconductor layer connected to the active layer (Figure 18) Variation E: An example in which a ring-shaped lower electrode is provided around the table (Fig. 19, Fig. 20) Variation F: An example in which the cross-sectional shape of the portion where the lower electrode is buried is set to be a right cone (Fig. 21) Variation G: An example in which the portion where the lower electrode is buried is set to be a cone shape (Fig. 22) Variation H: An example in which a tunneling junction is formed using ion implantation (Fig. 23) Variation I: An example in which a transparent conductive layer is provided between the semiconductor layer and the upper DBR layer (Fig. 24) Variation J: An example in which the lower DBR layer is formed by a dielectric (Fig. 25) Variation K: An example in which a lower reflector is formed by a dielectric DBR layer and a reflective metal layer (Fig. 26) Variation L: Example of forming the lower DBR layer with GaAs semiconductor (Fig. 27) Variation M: Example of burying the lower electrode semiconductor layer in a back-emitting surface-emitting laser (Fig. 28) Variation N: Example of forming the lower DBR layer with a dielectric in a back-emitting surface-emitting laser (Fig. 29) Variation O: Example of forming the lower DBR layer with GaAs semiconductor in a back-emitting surface-emitting laser (Fig. 30) Variation P: Example of forming the upper reflector with a dielectric DBR layer and a reflective metal layer in a back-emitting surface-emitting laser (Fig. 31) 3. Second embodiment Example of providing a lower electrode on the bottom surface of the groove (Fig. 32, Fig. 33) 4. Variations of the second embodiment Variation Q: An example of burying the lower electrode semiconductor layer in a back-emitting surface-emitting laser (Figure 34)

<1.第1實施形態> [構成] 針對本揭示之第1實施形態之面發光雷射1進行說明。圖1係顯示面發光雷射1之剖面構成例者。圖2係顯示面發光雷射1之上表面構成例者。 <1. First Implementation Form> [Structure] The surface emitting laser 1 of the first implementation form of the present disclosure is described. FIG1 shows an example of a cross-sectional structure of the surface emitting laser 1. FIG2 shows an example of an upper surface structure of the surface emitting laser 1.

面發光雷射1於基板10上具備垂直共振器構造20。基板10係當使垂直共振器構造20磊晶生長時使用之晶體生長基板。於面發光雷射1中,基板10能夠省略。The surface emitting laser 1 has a vertical resonator structure 20 on a substrate 10. The substrate 10 is a crystal growth substrate used when epitaxially growing the vertical resonator structure 20. In the surface emitting laser 1, the substrate 10 can be omitted.

垂直共振器構造20具有:半導體DBR(distributed Bragg reflector,分散式布拉格反射器)層21及介電體DBR層26、以及配置於半導體DBR層21及介電體DBR層26之間之凹腔層。凹腔層係配合振盪波長λ 0及用途而設計。凹腔層例如具有:活性層23、配置於活性層23與半導體DBR層21之間之間隔層22、配置於活性層23與介電體DBR層26之間之間隔層24、25、及配置於活性層23與介電體DBR層26之間之穿隧接面層。 The vertical resonator structure 20 has: a semiconductor DBR (distributed Bragg reflector) layer 21 and a dielectric DBR layer 26, and a cavity layer arranged between the semiconductor DBR layer 21 and the dielectric DBR layer 26. The cavity layer is designed in accordance with the oscillation wavelength λ 0 and the purpose. The cavity layer, for example, has: an active layer 23, a spacer layer 22 arranged between the active layer 23 and the semiconductor DBR layer 21, spacer layers 24 and 25 arranged between the active layer 23 and the dielectric DBR layer 26, and a tunneling junction layer arranged between the active layer 23 and the dielectric DBR layer 26.

間隔層24配置於活性層23側,間隔層25配置於介電體DBR層26側。穿隧接面層如例如圖1所示般由間隔層24、25包圍。於穿隧接面層之底面相接間隔層24,於穿隧接面層之上表面及側面相接間隔層25。穿隧接面層如例如圖1所示般由相互積層之高濃度p層28及高濃度n層29構成。於高濃度p層28之底面相接間隔層24,於高濃度p層28之側面相接間隔層25。於高濃度n層29之底面相接高濃度p層28,於高濃度n層29之上表面及側面相接間隔層25。The spacer layer 24 is arranged on the side of the active layer 23, and the spacer layer 25 is arranged on the side of the dielectric DBR layer 26. The tunnel junction layer is surrounded by the spacer layers 24 and 25 as shown in FIG1 , for example. The spacer layer 24 is connected to the bottom surface of the tunnel junction layer, and the spacer layer 25 is connected to the top surface and the side surface of the tunnel junction layer. The tunnel junction layer is composed of a high-concentration p layer 28 and a high-concentration n layer 29 stacked on each other as shown in FIG1 , for example. The spacer layer 24 is connected to the bottom surface of the high-concentration p layer 28, and the spacer layer 25 is connected to the side surface of the high-concentration p layer 28. The high-concentration p layer 28 is in contact with the bottom surface of the high-concentration n layer 29 , and the spacer layer 25 is in contact with the top surface and side surfaces of the high-concentration n layer 29 .

穿隧接面層形成由穿隧接面形成之電流限制構造。於穿隧接面層中,在高濃度p層28與高濃度n層29之邊界中,高濃度p層28之傳導帶與高濃度n層29之價帶彼此接近,形成由高濃度p層28與高濃度n層29形成之穿隧接面。藉此,於穿隧接面層中,電流自高濃度n層29流向高濃度p層28。The tunneling junction layer forms a current limiting structure formed by the tunneling junction. In the tunneling junction layer, at the boundary between the high-concentration p layer 28 and the high-concentration n layer 29, the conduction band of the high-concentration p layer 28 and the valence band of the high-concentration n layer 29 are close to each other, forming a tunneling junction formed by the high-concentration p layer 28 and the high-concentration n layer 29. As a result, in the tunneling junction layer, current flows from the high-concentration n layer 29 to the high-concentration p layer 28.

面發光雷射1構成為自介電體DBR層26側出射振盪波長λ 0之雷射光L。具體而言,於垂直共振器構造20中,半導體DBR層21側之反射鏡之對數及反射率、與介電體DBR層26側之反射鏡之對數及反射率構成為自介電體DBR層26側出射振盪波長λ 0之雷射光L。因此,面發光雷射1係自設置於介電體DBR層26側之光出射面1S出射雷射光L之上表面出射型之雷射。 The surface emitting laser 1 is configured to emit laser light L having an oscillation wavelength λ 0 from the dielectric DBR layer 26 side. Specifically, in the vertical resonator structure 20, the logarithm and reflectivity of the reflective mirror on the semiconductor DBR layer 21 side and the logarithm and reflectivity of the reflective mirror on the dielectric DBR layer 26 side are configured to emit laser light L having an oscillation wavelength λ 0 from the dielectric DBR layer 26 side. Therefore, the surface emitting laser 1 is a surface emitting type laser that emits laser light L from a light emitting surface 1S provided on the dielectric DBR layer 26 side.

於垂直共振器構造20中,至少活性層23、間隔層24、穿隧接面層、間隔層25及介電體DBR層26構成沿基板10之法線方向延伸之柱狀之台面部20A。於圖1中,顯示藉由間隔層22之一部分、活性層23、間隔層24、穿隧接面層、間隔層25及介電體DBR層26構成台面部20A之例。台面部20A例如於俯視下為圓形狀。半導體DBR層21就與台面部20A之位置關係,設置於基板10側之區域。In the vertical resonator structure 20, at least the active layer 23, the spacer layer 24, the tunneling junction layer, the spacer layer 25 and the dielectric DBR layer 26 constitute a columnar mesa portion 20A extending in the normal direction of the substrate 10. FIG. 1 shows an example in which the mesa portion 20A is constituted by a portion of the spacer layer 22, the active layer 23, the spacer layer 24, the tunneling junction layer, the spacer layer 25 and the dielectric DBR layer 26. The mesa portion 20A is, for example, circular in a plan view. The semiconductor DBR layer 21 is disposed in a region on the side of the substrate 10 in relation to the position of the mesa portion 20A.

穿隧接面層於俯視下設置於台面部20A之中央部分。穿隧接面層例如於俯視下為圓形狀。穿隧接面層就與活性層23之位置關係,設置於基板10的相反側(即光出射面1S側)之位置。於間隔層25之上表面,在與穿隧接面層對向之部位形成有與穿隧接面層之形狀對應之形狀之凸部。該凸部於俯視下設置於台面部20A之中央部分,例如於俯視下為圓形狀。The tunneling junction layer is disposed in the central portion of the mesa portion 20A in a plan view. The tunneling junction layer is, for example, circular in a plan view. The tunneling junction layer is disposed on the opposite side of the substrate 10 (i.e., the light emitting surface 1S side) in relation to the position of the active layer 23. A convex portion having a shape corresponding to the shape of the tunneling junction layer is formed on the upper surface of the spacer layer 25 at a position opposite to the tunneling junction layer. The convex portion is disposed in the central portion of the mesa portion 20A in a plan view, and is, for example, circular in a plan view.

介電體DBR層26與間隔層25之上表面相接,例如與上述之凸部之上表面相接。此外,於圖1中,顯示介電體DBR層26不僅與間隔層25之上表面中之上述之凸部之上表面相接,亦與上述之凸部之側面及底部邊緣部分相接之例。此外,介電體DBR層26中與上述之凸部之側面及底部邊緣部分相接之部位無助於雷射振盪。The dielectric DBR layer 26 is in contact with the upper surface of the spacer layer 25, for example, in contact with the upper surface of the above-mentioned convex portion. In addition, FIG. 1 shows an example in which the dielectric DBR layer 26 is in contact with not only the upper surface of the above-mentioned convex portion in the upper surface of the spacer layer 25, but also the side surface and bottom edge portion of the above-mentioned convex portion. In addition, the portion of the dielectric DBR layer 26 in contact with the side surface and bottom edge portion of the above-mentioned convex portion does not contribute to laser oscillation.

面發光雷射1進而如例如圖1、圖2所示般,於台面部20A之上部具備接觸層27、及作為上部電極之電極層32。接觸層27與間隔層25及電極層32相接。接觸層27如例如圖1所示般,與間隔層25之凸部之底部邊緣部分相接,例如於俯視下為包圍間隔層25之凸部之環形狀。接觸層27係用於使間隔層25與電極層32彼此歐姆接觸之層。電極層32與接觸層27相接,經由接觸層27、進而於經由介電體DBR層26下與間隔層25電性連接。電極層32如例如圖1、圖2所示般,於俯視下為包圍間隔層25之凸部之環形狀。The surface emitting laser 1 further includes a contact layer 27 and an electrode layer 32 as an upper electrode on the upper portion of the mesa portion 20A, as shown in, for example, FIG. 1 and FIG. 2 . The contact layer 27 is in contact with the spacer layer 25 and the electrode layer 32. As shown in, for example, FIG. 1 , the contact layer 27 is in contact with the bottom edge portion of the protrusion of the spacer layer 25 and is, for example, in a ring shape surrounding the protrusion of the spacer layer 25 in a plan view. The contact layer 27 is a layer for making the spacer layer 25 and the electrode layer 32 in ohmic contact with each other. The electrode layer 32 is in contact with the contact layer 27, and is electrically connected to the spacer layer 25 through the contact layer 27 and further through the dielectric DBR layer 26. As shown in FIG. 1 and FIG. 2, the electrode layer 32 is in a ring shape surrounding the protrusion of the spacer layer 25 in a plan view.

面發光雷射1進而如例如圖1所示般,於相當於台面部20A之底部邊緣之部位具備作為下部電極之電極層31。於相當於台面部20A之底部邊緣之部位,如例如圖1、圖2所示般,間隔層22之一部分露出。以下,將間隔層22中相當於台面部20A之底部邊緣之部位稱為露出面22S。露出面22S為平坦面。露出面22S例如為與半導體DBR層21之積層面平行之坦面。電極層31形成為與露出面22S之一部分相接,且亦與間隔層22中較露出面22S深之部位相接。間隔層22於露出面22S內具有未到達半導體DBR層21之深度之凹部22A。電極層31形成為埋入凹部22A,於凹部22A之內表面中與間隔層22相接。電極層31於不經由半導體DBR層21下與間隔層22電性連接。因此,於面發光雷射1中,由電極層31及電極層32形成之電流路徑(圖1中之虛線部分)不經由半導體DBR層21及介電體DBR層26而設置。The surface emitting laser 1 further has an electrode layer 31 as a lower electrode at a position corresponding to the bottom edge of the mesa portion 20A, as shown in, for example, FIG. 1. At a position corresponding to the bottom edge of the mesa portion 20A, a portion of the spacer layer 22 is exposed, as shown in, for example, FIG. 1 and FIG. 2. Hereinafter, the portion of the spacer layer 22 corresponding to the bottom edge of the mesa portion 20A is referred to as an exposed surface 22S. The exposed surface 22S is a flat surface. The exposed surface 22S is, for example, a flat surface parallel to the stacking surface of the semiconductor DBR layer 21. The electrode layer 31 is formed to be in contact with a portion of the exposed surface 22S and also in contact with a portion of the spacer layer 22 that is deeper than the exposed surface 22S. The spacer layer 22 has a recess 22A in the exposed surface 22S, which has a depth that does not reach the semiconductor DBR layer 21. The electrode layer 31 is formed to bury the recess 22A and is in contact with the spacer layer 22 in the inner surface of the recess 22A. The electrode layer 31 is electrically connected to the spacer layer 22 without passing through the semiconductor DBR layer 21. Therefore, in the surface emitting laser 1, the current path formed by the electrode layer 31 and the electrode layer 32 (the dotted line portion in FIG. 1) is provided without passing through the semiconductor DBR layer 21 and the dielectric DBR layer 26.

其次,針對構成面發光雷射1之各構成要素之材料進行說明。Next, the materials of the components of the surface emitting laser 1 are explained.

基板10係n型InP基板。於n型InP基板中,作為n型雜質,例如含有矽(Si)等。The substrate 10 is an n-type InP substrate. The n-type InP substrate contains, for example, silicon (Si) as an n-type impurity.

半導體DBR層21係非摻雜之半導體DBR層。半導體DBR層21係將含有非摻雜之InP之低折射率半導體層及含有非摻雜之AIGaInAs之高折射率半導體層交替積層而構成者。低折射率半導體層及高折射率半導體層之光學厚度分別為例如λ 0×1/4。 The semiconductor DBR layer 21 is a non-doped semiconductor DBR layer. The semiconductor DBR layer 21 is formed by alternately laminating a low-refractive-index semiconductor layer containing non-doped InP and a high-refractive-index semiconductor layer containing non-doped AlGaInAs. The optical thicknesses of the low-refractive-index semiconductor layer and the high-refractive-index semiconductor layer are, for example, λ 0 ×1/4.

間隔層22、24、25含有InP系半導體而構成。間隔層22例如由n型InP構成。於n型InP中,作為n型雜質,例如含有矽(Si)等。間隔層24例如由p型InP構成。於p型InP中,作為p型雜質,例如含有碳(C)、鋅(Zn)、鎂(Mg)、鈹(Be)等。間隔層25例如由n型InP構成。於n型InP中,作為n型雜質,例如含有矽(Si)等。The spacer layers 22, 24, and 25 are composed of an InP-based semiconductor. The spacer layer 22 is composed of, for example, n-type InP. In the n-type InP, for example, silicon (Si) is contained as an n-type impurity. The spacer layer 24 is composed of, for example, p-type InP. In the p-type InP, for example, carbon (C), zinc (Zn), magnesium (Mg), and curium (Be) are contained as a p-type impurity. The spacer layer 25 is composed of, for example, n-type InP. In the n-type InP, for example, silicon (Si) is contained as an n-type impurity.

介電體DBR層26係將由第1介電體材料形成之低折射率介電體層及由第2介電體材料形成之高折射率介電體層交替積層而構成者。低折射率介電體層及高折射率介電體層之光學厚度分別為例如λ 0×1/4。低折射率介電體層例如由SiO 2形成。高折射率介電體層例如由Ta 2O 5形成。介電體DBR層26之材料不限定於上述之介電體材料。 The dielectric DBR layer 26 is formed by alternately laminating a low refractive index dielectric layer formed of a first dielectric material and a high refractive index dielectric layer formed of a second dielectric material. The optical thicknesses of the low refractive index dielectric layer and the high refractive index dielectric layer are, for example, λ 0 × 1/4. The low refractive index dielectric layer is formed of, for example, SiO 2. The high refractive index dielectric layer is formed of, for example, Ta 2 O 5. The material of the dielectric DBR layer 26 is not limited to the above-mentioned dielectric materials.

接觸層27例如由含有較間隔層25中所含之n型雜質濃度為高濃度之n型雜質之n型InGaAs構成。於n型InGaAs中,作為n型雜質,含有與間隔層25中所含之n型雜質相同之雜質。電極層31具有自間隔層22之凹部22A之內表面側依序積層有Ti、Pt、Au之構造。Ti、Pt、Au例如藉由濺鍍法或蒸鍍法形成。電極層32例如具有自接觸層27側依序積層有Ti、Pt、Au、或AuGe、Ni、Au之構造。電極層32之材料不限定於上述之材料。The contact layer 27 is composed of, for example, n-type InGaAs containing n-type impurities having a higher concentration than the n-type impurity concentration contained in the spacer layer 25. In the n-type InGaAs, as an n-type impurity, the same impurity as the n-type impurity contained in the spacer layer 25 is contained. The electrode layer 31 has a structure in which Ti, Pt, and Au are sequentially layered from the inner surface side of the recess 22A of the spacer layer 22. Ti, Pt, and Au are formed, for example, by sputtering or evaporation. The electrode layer 32 has a structure in which Ti, Pt, Au, or AuGe, Ni, and Au are sequentially layered from the contact layer 27 side. The material of the electrode layer 32 is not limited to the above-mentioned materials.

高濃度P層28由含有較間隔層24中所含之p型雜質濃度為高濃度之p型雜質之p型AlGalnAs構成。於p型AlGalnAs中,作為p型雜質,例如含有與間隔層24中所含之p型雜質相同之雜質。高濃度n層29由含有較間隔層25中所含之n型雜質濃度為高濃度之n型雜質之n型InP構成。於n型InP中,作為n型雜質,例如含有與間隔層25中所含之n型雜質相同之雜質。The high-concentration P layer 28 is composed of p-type AlGalnAs containing a p-type impurity with a higher concentration than the p-type impurity contained in the spacer layer 24. In the p-type AlGalnAs, for example, the same impurity as the p-type impurity contained in the spacer layer 24 is contained as the p-type impurity. The high-concentration n layer 29 is composed of n-type InP containing an n-type impurity with a higher concentration than the n-type impurity contained in the spacer layer 25. In the n-type InP, for example, the same impurity as the n-type impurity contained in the spacer layer 25 is contained as the n-type impurity.

[製造方法] 其次,針對本實施形態之面發光雷射1之製造方法進行說明。 [Manufacturing method] Next, the manufacturing method of the surface emitting laser 1 of this embodiment is described.

為了製造面發光雷射1,例如於由InP構成之基板10上,藉由例如MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬氣相沈積)法等磊晶生長法批次形成化合物半導體。此時,作為化合物半導體之原料,例如,使用三甲基鋁(TMAl)、三甲基鎵(TMGa)、三甲基銦(TMIn)等之甲基系有機金屬氣體、磷化氫(PH 3)氣體、及砷化氫(AsH 3)氣體,作為施體雜質之原料,使用例如乙矽烷(Si 2H 6),作為受體雜質之原料,使用例如四溴化碳(CBr 4)。 In order to manufacture the surface emitting laser 1, compound semiconductors are formed in batches by epitaxial growth methods such as MOCVD (Metal Organic Chemical Vapor Deposition) on a substrate 10 made of InP. At this time, as raw materials of the compound semiconductors, for example, methyl-based organic metal gases such as trimethylaluminum (TMAl), trimethylgallium (TMGa), and trimethylindium (TMIn), hydrogen phosphide (PH 3 ) gas, and hydrogen arsenide (AsH 3 ) gas are used, as raw materials of donor impurities, for example, disilane (Si 2 H 6 ) is used, and as raw materials of acceptor impurities, for example, carbon tetrabromide (CBr 4 ) is used.

首先,於基板10上,藉由例如MOCVD法等磊晶生長法,形成半導體DBR層21、間隔層22、活性層23、間隔層24、高濃度p層28及高濃度n層29(圖3)。其次,例如,當形成俯視下圓形狀之抗蝕劑層(未圖示)後,以該抗蝕劑層為遮罩,將高濃度p層28及高濃度n層29選擇性地蝕刻。藉此,形成俯視下圓形狀之高濃度p層28及高濃度n層29(圖4)。之後,去除抗蝕劑層。First, on the substrate 10, a semiconductor DBR layer 21, a spacer layer 22, an active layer 23, a spacer layer 24, a high-concentration p-layer 28, and a high-concentration n-layer 29 are formed by an epitaxial growth method such as MOCVD (FIG. 3). Next, after forming an anti-etching agent layer (not shown) that is circular in a top view, the high-concentration p-layer 28 and the high-concentration n-layer 29 are selectively etched using the anti-etching agent layer as a mask. Thus, a high-concentration p-layer 28 and a high-concentration n-layer 29 that are circular in a top view are formed (FIG. 4). Thereafter, the anti-etching agent layer is removed.

其次,於包含圓形狀之高濃度p層28及高濃度n層29之表面之表面上,藉由例如MOCVD法等磊晶生長法,形成間隔層25及接觸層27(圖5)。此時,於間隔層25及接觸層27,在與圓形狀之高濃度p層28及高濃度n層29對向之區域,形成仿照圓形狀之高濃度p層28及高濃度n層29之形狀之階差構造部。Next, a spacer layer 25 and a contact layer 27 are formed on the surface including the circular high-concentration p layer 28 and the high-concentration n layer 29 by an epitaxial growth method such as MOCVD (FIG. 5). At this time, a step structure portion imitating the shape of the circular high-concentration p layer 28 and the high-concentration n layer 29 is formed in the spacer layer 25 and the contact layer 27 in the region opposite to the circular high-concentration p layer 28 and the high-concentration n layer 29.

其次,例如,當形成覆蓋以俯視下圓形狀之高濃度p層28及高濃度n層29為中心之規定之區域之圓形狀之抗蝕劑層(未圖示)後,以該抗蝕劑層為遮罩,將接觸層27等半導體層選擇性地蝕刻,且將半導體層蝕刻至到達間隔層22之深度。此時,較佳為使用藉由例如C1系氣體進行之RIE(Reactive Ion Etching,反應性離子蝕刻)。此時,形成柱狀之台面部20A(圖6)。此時,於台面部20A之底部邊緣,間隔層22露出。即,於台面部20A之底部邊緣形成露出面22S。之後,去除抗蝕劑層。Next, for example, after forming a circular anti-etching agent layer (not shown) covering a predetermined area centered on the circular high-concentration p-layer 28 and the high-concentration n-layer 29 in a top view, the semiconductor layer such as the contact layer 27 is selectively etched using the anti-etching agent layer as a mask, and the semiconductor layer is etched to a depth reaching the spacer layer 22. At this time, it is preferred to use RIE (Reactive Ion Etching) performed by, for example, a C1-based gas. At this time, a columnar mesa portion 20A is formed (FIG. 6). At this time, the spacer layer 22 is exposed at the bottom edge of the mesa portion 20A. That is, an exposed surface 22S is formed at the bottom edge of the mesa portion 20A. Afterwards, the resist layer is removed.

其次,形成與台面部20A(接觸層27)之上表面相接之電極層32(圖7)。繼而,例如,當形成覆蓋電極層32及台面部20A、且僅於露出面22S之規定部位具有開口之抗蝕劑層(未圖示)後,以該抗蝕劑層為遮罩,將間隔層22選擇性地蝕刻,且將間隔層22蝕刻至未達半導體DBR層21之深度。此時,較佳為使用藉由例如C1系氣體進行之RIE。如此,於露出面22S內形成凹部22A(圖8)。之後,去除抗蝕劑層。Next, an electrode layer 32 is formed in contact with the upper surface of the mesa portion 20A (contact layer 27) (FIG. 7). Then, for example, after an anti-etching agent layer (not shown) is formed that covers the electrode layer 32 and the mesa portion 20A and has an opening only at a predetermined portion of the exposed surface 22S, the spacer layer 22 is selectively etched using the anti-etching agent layer as a mask, and the spacer layer 22 is etched to a depth that does not reach the semiconductor DBR layer 21. At this time, it is preferred to use RIE using, for example, a C1-based gas. In this way, a recess 22A is formed in the exposed surface 22S (FIG. 8). Thereafter, the anti-etching agent layer is removed.

其次,以埋入凹部22A之方式形成電極層31(圖9)。藉此,電極層31與露出面22S之一部分相接,且亦與間隔層22中較露出面22S深之部位(具體而言為凹部22A之內表面)相接。其次,當形成台面部20A之上表面中僅於由電極層32包圍之部位具有開口之抗蝕劑層(未圖示)後,以該抗蝕劑層為遮罩,將接觸層27選擇性地蝕刻。如此,使間隔層25之凸部露出(圖10)。之後,去除抗蝕劑層。Next, the electrode layer 31 is formed by embedding the recess 22A (Fig. 9). Thus, the electrode layer 31 is in contact with a portion of the exposed surface 22S and also in contact with a portion of the spacer layer 22 that is deeper than the exposed surface 22S (specifically, the inner surface of the recess 22A). Next, after an anti-etching agent layer (not shown) having an opening only in the portion surrounded by the electrode layer 32 on the upper surface of the mesa portion 20A is formed, the contact layer 27 is selectively etched using the anti-etching agent layer as a mask. In this way, the convex portion of the spacer layer 25 is exposed (Fig. 10). Thereafter, the anti-etching agent layer is removed.

繼而,例如,使用真空蒸鍍法,於間隔層25之包含凸部之表面在內之表面整體形成介電體DBR層26(圖11)。繼而,選擇性地去除形成之介電體DBR層26中由電極層32包圍之部位以外之部分。如此,製造面發光雷射1。Next, for example, a dielectric DBR layer 26 is formed on the entire surface of the spacer layer 25 including the surface of the convex portion by vacuum evaporation ( FIG. 11 ). Then, the portion of the formed dielectric DBR layer 26 other than the portion surrounded by the electrode layer 32 is selectively removed. In this way, the surface emitting laser 1 is manufactured.

[動作] 於如此構成之面發光雷射1中,當在與間隔層22電性連接之電極層31、和與接觸層27電性連接之電極層32之間施加規定之電壓時,將受由高濃度P層28及高濃度n層29構成之穿隧接面層限制之電流注入活性層23,藉此,產生由電子與電洞之再結合而產生之發光。此時,對於在活性層23產生之光,藉由穿隧接面層形成積層面內方向上之光侷限。其結果,藉由垂直共振器構造20,以振盪波長λ 0產生雷射振盪。而且,自介電體DBR層26漏出之光為束狀之雷射光L,並自光出射面1S輸出至外部。 [Operation] In the surface emitting laser 1 thus constructed, when a predetermined voltage is applied between the electrode layer 31 electrically connected to the spacer layer 22 and the electrode layer 32 electrically connected to the contact layer 27, a current limited by the tunneling junction layer composed of the high-concentration P layer 28 and the high-concentration n layer 29 is injected into the active layer 23, thereby generating light generated by the recombination of electrons and holes. At this time, the light generated in the active layer 23 is confined in the direction of the layer surface by the tunneling junction layer. As a result, laser oscillation is generated at an oscillation wavelength λ 0 by the vertical resonator structure 20. Then, the light leaking out from the dielectric DBR layer 26 is a beam-shaped laser light L, and is output to the outside from the light emitting surface 1S.

[效果] 其次,針對本實施形態之面發光雷射1之效果進行說明。 [Effects] Next, the effects of the surface emitting laser 1 of this embodiment will be described.

為了將雷射光放出至空間中,必須考量對於眼睛之視網膜之充分之安全(視力無害)。因而,近年來,業界進行應對視力無害之面發光雷射之開發。於應對視力無害之面發光雷射中,要求高效率且低耗電。In order to emit laser light into space, sufficient safety for the retina of the eye must be considered (no harm to vision). Therefore, in recent years, the industry has been developing surface-emitting lasers that are harmless to vision. In surface-emitting lasers that are harmless to vision, high efficiency and low power consumption are required.

另一方面,於本實施形態中,在配置於活性層23與半導體DBR層21之間之間隔層22,在與穿隧接面層非對向之區域設置有平坦之露出面22S。而且,電極層31形成為與間隔層22中較露出面22S深之部位相接。藉此,例如,相較於在圖12所記載之比較例之面發光雷射100中將電極層131僅設置於露出面22S之情形,流經間隔層22內之橫向方向之電流之密度減小,動作電壓亦降低。On the other hand, in the present embodiment, the spacer layer 22 disposed between the active layer 23 and the semiconductor DBR layer 21 is provided with a flat exposed surface 22S in a region not facing the tunnel junction layer. Furthermore, the electrode layer 31 is formed to be in contact with a portion of the spacer layer 22 that is deeper than the exposed surface 22S. Thus, for example, compared with the case where the electrode layer 131 is provided only on the exposed surface 22S in the surface emitting laser 100 of the comparative example described in FIG. 12 , the density of the current flowing in the spacer layer 22 in the lateral direction is reduced, and the operating voltage is also reduced.

如例如圖13所示般,可使實施例之面發光雷射1之薄片電阻相較於比較例之面發光雷射100之薄片電阻大幅度降低。其結果,如例如圖14所示般,可使實施例之面發光雷射1之動作電壓相較於比較例之面發光雷射100之動作電壓大幅度(亦為約0.2 V)降低。As shown in FIG13 , the sheet resistance of the surface emitting laser 1 of the embodiment can be significantly reduced compared to the sheet resistance of the surface emitting laser 100 of the comparative example. As a result, as shown in FIG14 , the operating voltage of the surface emitting laser 1 of the embodiment can be significantly reduced (also by about 0.2 V) compared to the operating voltage of the surface emitting laser 100 of the comparative example.

又,於本實施形態中,由於由電極層31及電極層32形成之電流路徑不經由半導體DBR層21及介電體DBR層26而設置,故無須以摻雜雜質之半導體構成半導體DBR層21及介電體DBR層26兩者。其結果,可降低由半導體DBR層21及介電體DBR層26中之自由載子吸收所致之損失。又,由於亦可使間隔層22本身之雜質濃度降低,故針對此點,亦可降低由間隔層22中之自由載子吸收所致之損失。因此,可實現高效率化與低電壓化。Furthermore, in this embodiment, since the current path formed by the electrode layer 31 and the electrode layer 32 is provided without passing through the semiconductor DBR layer 21 and the dielectric DBR layer 26, it is not necessary to form both the semiconductor DBR layer 21 and the dielectric DBR layer 26 with a semiconductor doped with impurities. As a result, the loss caused by free carrier absorption in the semiconductor DBR layer 21 and the dielectric DBR layer 26 can be reduced. Furthermore, since the impurity concentration of the spacer layer 22 itself can also be reduced, the loss caused by free carrier absorption in the spacer layer 22 can also be reduced in this regard. Therefore, high efficiency and low voltage can be achieved.

又,於本實施形態中,藉由因自由載子吸收所致之損失之降低,可提高振盪效率。又,由於藉由動作電壓之降低,可降低面發光雷射1中之消耗電力,又,可將面發光雷射1之溫度上升抑制為較低,故可提高面發光雷射1之可靠性。又,藉由動作電壓之降低,可實現面發光雷射1之陣列化。In addition, in this embodiment, the oscillation efficiency can be improved by reducing the loss due to free carrier absorption. In addition, since the power consumption in the surface emitting laser 1 can be reduced by reducing the operating voltage, the temperature rise of the surface emitting laser 1 can be suppressed to a low level, so the reliability of the surface emitting laser 1 can be improved. In addition, by reducing the operating voltage, the surface emitting laser 1 can be arrayed.

於本實施形態中,在間隔層22之露出面22S內形成有凹部22A,電極層31形成為埋入凹部22A。藉此,由於電極層31與間隔層22中較露出面22S深之部位相接,故相較於將電極僅設置於露出面22S之情形,流經間隔層22內之橫向方向之電流之密度減小,動作電壓亦降低。又,由於由電極層31及電極層32形成之電流路徑不經由半導體DBR層21及介電體DBR層26而設置,故無須以摻雜雜質之半導體構成半導體DBR層21及介電體DBR層26兩者。其結果,可降低由半導體DBR層21及介電體DBR層26中之自由載子吸收所致之損失。因此,可實現高效率化與低電壓化。In this embodiment, a recess 22A is formed in the exposed surface 22S of the spacer layer 22, and the electrode layer 31 is formed to bury the recess 22A. As a result, since the electrode layer 31 is in contact with a portion of the spacer layer 22 that is deeper than the exposed surface 22S, the density of the current flowing in the spacer layer 22 in the lateral direction is reduced compared to the case where the electrode is only provided on the exposed surface 22S, and the operating voltage is also reduced. Furthermore, since the current path formed by the electrode layer 31 and the electrode layer 32 is not provided through the semiconductor DBR layer 21 and the dielectric DBR layer 26, it is not necessary to form both the semiconductor DBR layer 21 and the dielectric DBR layer 26 with a semiconductor doped with impurities. As a result, the loss caused by free carrier absorption in the semiconductor DBR layer 21 and the dielectric DBR layer 26 can be reduced. Therefore, high efficiency and low voltage can be achieved.

於本實施形態中,電極層31形成為與露出面22S之一部分相接,且亦與間隔層22中較露出面22S深之部位相接。藉此,相較於將電極僅設置於露出面22S之情形,流經間隔層22內之橫向方向之電流之密度減小,動作電壓亦降低。又,由於由電極層31及電極層32形成之電流路徑不經由半導體DBR層21及介電體DBR層26而設置,故無須以摻雜雜質之半導體構成半導體DBR層21及介電體DBR層26兩者。其結果,可降低由半導體DBR層21及介電體DBR層26中之自由載子吸收所致之損失。因此,可實現高效率化與低電壓化。In this embodiment, the electrode layer 31 is formed to be in contact with a portion of the exposed surface 22S and also in contact with a portion of the spacer layer 22 that is deeper than the exposed surface 22S. Thus, compared with the case where the electrode is provided only on the exposed surface 22S, the density of the current flowing in the spacer layer 22 in the lateral direction is reduced, and the operating voltage is also reduced. In addition, since the current path formed by the electrode layer 31 and the electrode layer 32 is provided without passing through the semiconductor DBR layer 21 and the dielectric DBR layer 26, it is not necessary to form both the semiconductor DBR layer 21 and the dielectric DBR layer 26 with a semiconductor doped with impurities. As a result, the loss caused by free carrier absorption in the semiconductor DBR layer 21 and the dielectric DBR layer 26 can be reduced. Therefore, high efficiency and low voltage can be achieved.

於本實施形態中,電極層31具有自凹部22A之內表面側依序積層有有Ti、Pt、Au之構造。Ti與凹部22A之內表面相接,與凹部22A之內表面(間隔層22)歐姆接觸。Pt防止間隔層22中所含之雜質擴散至Au。Au提高電極層31與焊料之接合性。藉此,可實現低電壓化。In this embodiment, the electrode layer 31 has a structure in which Ti, Pt, and Au are sequentially layered from the inner surface side of the recess 22A. Ti is in contact with the inner surface of the recess 22A and is in ohmic contact with the inner surface of the recess 22A (spacer layer 22). Pt prevents impurities contained in the spacer layer 22 from diffusing to Au. Au improves the bonding property between the electrode layer 31 and the solder. This can achieve low voltage.

於本實施形態中,間隔層22、24、25含有InP系半導體而構成,半導體DBR層21由非摻雜之半導體構成,介電體DBR層26由介電體構成。藉此,可降低由半導體DBR層21及介電體DBR層26中之自由載子吸收所致之損失。因此,可實現高效率化。In this embodiment, the spacer layers 22, 24, and 25 are formed of an InP-based semiconductor, the semiconductor DBR layer 21 is formed of a non-doped semiconductor, and the dielectric DBR layer 26 is formed of a dielectric. This can reduce the loss caused by free carrier absorption in the semiconductor DBR layer 21 and the dielectric DBR layer 26. Therefore, high efficiency can be achieved.

於本實施形態中,半導體DBR層21及介電體DBR層26構成為自介電體DBR層26側出射雷射光L。藉此,可實現上表面出射型之雷射。In this embodiment, the semiconductor DBR layer 21 and the dielectric DBR layer 26 are configured so that the laser light L is emitted from the dielectric DBR layer 26 side. Thus, a top-emission type laser can be realized.

於本實施形態中,設置有台面部20A。藉此,可將電極層31形成於穿隧接面層之附近。其結果,可實現低電壓化。In this embodiment, the mesa portion 20A is provided. Thus, the electrode layer 31 can be formed near the tunnel junction layer. As a result, a lower voltage can be achieved.

<2.第1實施形態之變化例> [變化例A] 於上述實施形態中,電極層31如例如圖15所示般,可具有:自凹部22A之內表面側依序積層有Ti、Pt、Au之金屬層31a、及形成於金屬層31a上之鍍覆層31b。此情形下,相較於以金屬層31a構成電極層31整體之情形,可縮短電極層31之TAT(Turn Around Time,周轉時間)。 <2. Variations of the first embodiment> [Variation A] In the above embodiment, the electrode layer 31 may include, for example, a metal layer 31a in which Ti, Pt, and Au are sequentially layered from the inner surface side of the recess 22A, and a coating layer 31b formed on the metal layer 31a, as shown in FIG. 15. In this case, the TAT (Turn Around Time) of the electrode layer 31 can be shortened compared to the case where the electrode layer 31 is composed entirely of the metal layer 31a.

[變化例B] 於上述實施形態中,電極層31如例如圖16所示般,可具有擴散金屬區域31c、及合金金屬層31d。合金金屬層31d與露出面22S相接,例如係自露出面22S側依序積層有AuGe、Ni、Au之層。合金金屬層31d例如可為自露出面22S側依序積層有Pd、Ge之層。擴散金屬區域31c為間隔層22中較露出面22S深之部位,且與合金金屬層31d相接。擴散金屬區域31c例如藉由以規定之溫度加熱形成於露出面22S之合金金屬層31d,使合金金屬層31d中所含之Ge擴散至間隔層22中較露出面22S深之部位,而形成。此情形下,可不將間隔層22蝕刻而形成凹部22A,降低動作電壓。其結果,可實現低電壓化。 [Variation B] In the above-mentioned embodiment, the electrode layer 31 may have a diffused metal region 31c and an alloy metal layer 31d as shown in FIG16. The alloy metal layer 31d is in contact with the exposed surface 22S, and is, for example, a layer in which AuGe, Ni, and Au are sequentially layered from the exposed surface 22S side. The alloy metal layer 31d may be, for example, a layer in which Pd and Ge are sequentially layered from the exposed surface 22S side. The diffused metal region 31c is a portion of the spacer layer 22 that is deeper than the exposed surface 22S and is in contact with the alloy metal layer 31d. The diffused metal region 31c is formed, for example, by heating the alloy metal layer 31d formed on the exposed surface 22S at a predetermined temperature, so that the Ge contained in the alloy metal layer 31d diffuses to a portion of the spacer layer 22 deeper than the exposed surface 22S. In this case, the spacer layer 22 does not need to be etched to form the recess 22A, thereby reducing the operating voltage. As a result, low voltage can be achieved.

[變化例C] 於上述變化例B中,電極層31進而如例如圖17所示般,可具有金屬層31e。金屬層31e形成於合金金屬層31d上,由與合金金屬層31d不同之材料構成。金屬層31e例如為自合金金屬層31d側依序積層有Ti、Pt、Au而構成之積層體。此情形下,可實現低電壓化。 [Variation C] In the above-mentioned variation B, the electrode layer 31 may further have a metal layer 31e as shown in FIG. 17, for example. The metal layer 31e is formed on the alloy metal layer 31d and is made of a material different from that of the alloy metal layer 31d. The metal layer 31e is, for example, a laminated body in which Ti, Pt, and Au are sequentially layered from the side of the alloy metal layer 31d. In this case, a low voltage can be achieved.

[變化例D] 於上述實施形態及其變化例中,露出面22S可和活性層23與間隔層22之界面形成於同一面內。於本變化例中,露出面22S如例如圖18所示般,和活性層23與間隔層22之界面形成於同一面內。此情形下,相較於上述實施形態,可縮短電流路徑之距離,故而可實現低電壓化。 [Variation D] In the above-mentioned embodiment and its variation, the exposed surface 22S can be formed in the same plane as the interface between the active layer 23 and the spacer layer 22. In this variation, the exposed surface 22S is formed in the same plane as the interface between the active layer 23 and the spacer layer 22, as shown in FIG. 18, for example. In this case, the distance of the current path can be shortened compared to the above-mentioned embodiment, so that low voltage can be achieved.

[變化例E] 於上述實施形態及其變化例中,電極層31可於俯視下形成於包圍電極層32之環狀區域內。於本變化例中,電極層31如例如圖19、圖20所示般,於俯視下為包圍電極層32之環形狀。圖19係顯示本變化例之面發光雷射1之剖面構成例者。圖20係顯示圖19所記載之面發光雷射1之上表面構成例者。藉此,相較於上述實施形態,流經間隔層22內之橫向方向之電流之密度進一步減小,動作電壓亦進一步降低。其結果,可實現進一步之低電壓化。 [Variation E] In the above-mentioned embodiment and its variation, the electrode layer 31 can be formed in an annular region surrounding the electrode layer 32 in a top view. In this variation, the electrode layer 31 is in an annular shape surrounding the electrode layer 32 in a top view, as shown in, for example, FIG. 19 and FIG. 20. FIG. 19 shows an example of a cross-sectional structure of the surface-emitting laser 1 of this variation. FIG. 20 shows an example of an upper surface structure of the surface-emitting laser 1 described in FIG. 19. Thus, compared with the above-mentioned embodiment, the density of the current flowing in the lateral direction in the spacer layer 22 is further reduced, and the operating voltage is also further reduced. As a result, further low voltage can be achieved.

[變化例F] 於上述實施形態及其變化例中,凹部22A之積層方向之剖面形狀可為正錐形形狀。於本變化例中,凹部22A之積層方向之剖面形狀如例如圖21所示般,可為正錐形形狀。此時,電極層31中埋入凹部22A之部分為使凹部22A之形狀反轉之形狀。此情形下,亦與上述實施形態及其變化例同樣,流經間隔層22內之橫向方向之電流之密度減小,動作電壓亦降低。其結果,可實現低電壓化。 [Variation F] In the above-mentioned embodiment and its variation, the cross-sectional shape of the recess 22A in the lamination direction can be a right pyramid shape. In this variation, the cross-sectional shape of the recess 22A in the lamination direction can be a right pyramid shape as shown in FIG. 21, for example. At this time, the portion of the electrode layer 31 that embeds the recess 22A is a shape that reverses the shape of the recess 22A. In this case, as in the above-mentioned embodiment and its variation, the density of the current flowing in the lateral direction in the spacer layer 22 is reduced, and the operating voltage is also reduced. As a result, low voltage can be achieved.

[變化例G] 於上述實施形態及其變化例中,凹部22A之形狀可為擂缽狀。於本變化例中,凹部22A之形狀如例如圖22所示般,可為擂缽狀。此時,電極層31中埋入凹部22A之部分為使凹部22A之形狀反轉之形狀。此情形下,亦與上述實施形態及其變化例同樣,流經間隔層22內之橫向方向之電流之密度減小,動作電壓亦降低。其結果,可實現低電壓化。 [Variation G] In the above-mentioned embodiment and its variation, the shape of the recess 22A may be a mortar shape. In this variation, the shape of the recess 22A may be a mortar shape, as shown in FIG. 22 . At this time, the portion of the electrode layer 31 that embeds the recess 22A is a shape that reverses the shape of the recess 22A. In this case, as in the above-mentioned embodiment and its variation, the density of the current flowing in the lateral direction in the spacer layer 22 is reduced, and the operating voltage is also reduced. As a result, low voltage can be achieved.

[變化例H] 於上述實施形態及其變化例中,穿隧接面層可於俯視下形成於由藉由對於垂直共振器構造20進行離子注入而經高電阻化之區域包圍之區域。於本變化例中,如例如圖23所示般,穿隧接面層TJ可於俯視下形成於由藉由對於垂直共振器構造20(高濃度p層28及高濃度n層29)進行離子注入而經高電阻化之區域33包圍之區域。 [Variation H] In the above-mentioned embodiment and its variation, the tunnel junction layer can be formed in a region surrounded by a region made high in resistance by ion implantation in the vertical resonator structure 20 in a top view. In this variation, as shown in FIG. 23, for example, the tunnel junction layer TJ can be formed in a region surrounded by a region 33 made high in resistance by ion implantation in the vertical resonator structure 20 (high-concentration p-layer 28 and high-concentration n-layer 29) in a top view.

於區域33中,因由離子注入所致之載子濃度之降低,而由高濃度p層28及高濃度n層29形成之穿隧接面消失。藉此,區域33之電阻較穿隧接面層TJ之電阻大。注入區域33之離子之離子種類具體而言可設為O離子、N離子、B離子、H離子、He離子等。其中,O離子可將區域33氧化,而更佳。In the region 33, due to the reduction of carrier concentration caused by ion injection, the tunnel junction formed by the high-concentration p-layer 28 and the high-concentration n-layer 29 disappears. As a result, the resistance of the region 33 is greater than the resistance of the tunnel junction layer TJ. The type of ions injected into the region 33 can be specifically set to O ions, N ions, B ions, H ions, He ions, etc. Among them, O ions can oxidize the region 33, which is more preferable.

如此,於本變化例中,藉由離子注入而形成電流限制構造。此情形下,可省略如上述實施形態之對於高濃度p層28及高濃度n層29之蝕刻。Thus, in this variation, the current confinement structure is formed by ion implantation. In this case, the etching of the high-concentration p-layer 28 and the high-concentration n-layer 29 in the above-mentioned embodiment can be omitted.

[變化例I] 於上述變化例中,區域33可跨及自間隔層25之上表面到達間隔層22之區域而形成。於上述變化例H中,區域33如例如圖24所示般,可跨及自間隔層25之上表面到達間隔層22之區域而形成。此時,可設置透明導電層34而取代接觸層27。透明導電層34配置於介電體DBR層26與間隔層25之間,與間隔層25之上表面中由區域33包圍之部分相接,且與電極層32相接。透明導電層34與間隔層25及電極層32電性連接,構成面發光雷射1之電流路徑之一部分。 [Variation I] In the above variation, the region 33 may be formed across the region from the upper surface of the spacer layer 25 to the spacer layer 22. In the above variation H, the region 33 may be formed across the region from the upper surface of the spacer layer 25 to the spacer layer 22 as shown in FIG. 24. In this case, a transparent conductive layer 34 may be provided instead of the contact layer 27. The transparent conductive layer 34 is disposed between the dielectric DBR layer 26 and the spacer layer 25, and is connected to the portion of the upper surface of the spacer layer 25 surrounded by the region 33, and is connected to the electrode layer 32. The transparent conductive layer 34 is electrically connected to the spacer layer 25 and the electrode layer 32, and constitutes a part of the current path of the surface emitting laser 1.

透明導電層34例如由銦系透明導電性材料、錫系透明導電性材料、或鋅系透明導電性材料構成。作為銦系透明導電性材料,例如舉出:銦-錫氧化物(包含ITO、氧化銦錫(Indium Tin Oxide)、摻雜Sn之In 2O 3、結晶性ITO及非晶ITO)、銦-鋅氧化物(IZO、氧化銦鋅(Indium Zinc Oxide))、銦-鎵氧化物(IGO)、摻雜銦之鎵-鋅氧化物(IGZO、In-GaZnO 4)、IFO(摻雜F之In 2O 3)、ITiO(摻雜Ti之In 2O 3)、InSn、或InSnZnO等。作為錫系透明導電性材料,例如舉出氧化錫(SnO 2)、ATO(摻雜Sb之SnO 2)、FTO(摻雜F之SnO 2)等。作為鋅系透明導電性材料,例如舉出氧化鋅(包含ZnO、摻雜A1之ZnO(AZO)或摻雜B之ZnO)、摻雜鎵之氧化鋅(GZO)、AlMgZnO(摻雜氧化鋁及氧化鎂之氧化鋅)。 The transparent conductive layer 34 is made of, for example, an indium-based transparent conductive material, a tin-based transparent conductive material, or a zinc-based transparent conductive material. Examples of the indium-based transparent conductive material include indium-tin oxide (including ITO, indium tin oxide (Indium Tin Oxide), In 2 O 3 doped with Sn, crystalline ITO, and amorphous ITO), indium-zinc oxide (IZO, indium zinc oxide (Indium Zinc Oxide)), indium-gallium oxide (IGO), indium-doped gallium-zinc oxide (IGZO, In-GaZnO 4 ), IFO (In 2 O 3 doped with F), ITiO (In 2 O 3 doped with Ti), InSn, or InSnZnO. Examples of tin-based transparent conductive materials include tin oxide (SnO 2 ), ATO (Sb-doped SnO 2 ), and FTO (F-doped SnO 2 ). Examples of zinc-based transparent conductive materials include zinc oxide (including ZnO, Al-doped ZnO (AZO) or B-doped ZnO), Ga-doped zinc oxide (GZO), and AlMgZnO (aluminum oxide and magnesium oxide-doped zinc oxide).

如此,於本變化例中,設置與間隔層25及電極層32電性連接之透明導電層34。藉此,即便於區域33跨及自間隔層25之上表面到達間隔層22之區域而形成之情形下,亦可對於面發光雷射1注入電流。Thus, in this variation, a transparent conductive layer 34 is provided which is electrically connected to the spacer layer 25 and the electrode layer 32. Thus, even when the region 33 is formed from the upper surface of the spacer layer 25 to the region of the spacer layer 22, current can be injected into the surface emitting laser 1.

[變化例J] 於上述實施形態及其變化例中,如例如圖25所示般,可設置介電體DBR層35而取代半導體DBR層21。 [Variation J] In the above-mentioned embodiment and its variation, as shown in FIG. 25 , a dielectric DBR layer 35 may be provided instead of the semiconductor DBR layer 21.

介電體DBR層35係將由第1介電體材料形成之低折射率介電體層及由第2介電體材料形成之高折射率介電體層交替積層而構成者。低折射率介電體層及高折射率介電體層之光學厚度分別為例如λ 0×1/4。低折射率介電體層例如由SiO 2形成。高折射率介電體層例如由Ta 2O 5形成。介電體DBR層35之材料不限定於上述之介電體材料。介電體DBR層35之材料可為與介電體DBR層26不同之材料,亦可為與介電體DBR層26共通之材料。 The dielectric DBR layer 35 is formed by alternately laminating a low refractive index dielectric layer formed of a first dielectric material and a high refractive index dielectric layer formed of a second dielectric material. The optical thicknesses of the low refractive index dielectric layer and the high refractive index dielectric layer are, for example, λ 0 × 1/4, respectively. The low refractive index dielectric layer is formed of, for example, SiO 2. The high refractive index dielectric layer is formed of, for example, Ta 2 O 5. The material of the dielectric DBR layer 35 is not limited to the above-mentioned dielectric materials. The material of the dielectric DBR layer 35 may be a material different from that of the dielectric DBR layer 26, or may be a material common to the dielectric DBR layer 26.

如此,於本變化例中,設置有介電體DBR層35。藉此,可降低由介電體DBR層35中之自由載子吸收所致之損失。因此,可實現高效率化與低電壓化。Thus, in this variation, the dielectric DBR layer 35 is provided. This can reduce the loss caused by free carrier absorption in the dielectric DBR layer 35. Therefore, high efficiency and low voltage can be achieved.

[變化例K] 於上述變化例J中,如例如圖26所示般,可設置與介電體DBR層35之與活性層23為相反側相接之反射金屬層36。反射金屬層36自活性層23觀察相當於介電體DBR層35層側之反射鏡之終端部。反射金屬層36係輔助介電體DBR層35之功能之層,係有助於削減介電體DBR層35之對數之層。反射金屬層36例如含有金(Au)、銀(Ag)或鋁(A1)而構成。反射金屬層36之膜厚例如為20 nm以上。 [Variation K] In the above-mentioned variation J, as shown in FIG. 26, a reflective metal layer 36 may be provided to contact the dielectric DBR layer 35 on the opposite side to the active layer 23. The reflective metal layer 36 corresponds to the end of the reflector on the dielectric DBR layer 35 side when viewed from the active layer 23. The reflective metal layer 36 is a layer that assists the function of the dielectric DBR layer 35 and helps reduce the logarithm of the dielectric DBR layer 35. The reflective metal layer 36 is composed of, for example, gold (Au), silver (Ag) or aluminum (Al). The film thickness of the reflective metal layer 36 is, for example, 20 nm or more.

如此,於本變化例中,設置有反射金屬層36。藉此,可削減介電體DBR層35之對數,故而相較於未設置反射金屬層36之情形,可縮短面發光雷射1之TAT(Turn Around Time,周轉時間)。Thus, in this variation, the reflective metal layer 36 is provided. This can reduce the number of pairs of the dielectric DBR layer 35, thereby shortening the TAT (Turn Around Time) of the surface emitting laser 1 compared to the case where the reflective metal layer 36 is not provided.

[變化例L] 於上述實施形態及其變化例A~I中,如例如圖27所示,可設置基板40及半導體DBR層41而取代基板10及半導體DBR層21。 [Variation L] In the above-mentioned embodiment and its variations A to I, as shown in FIG. 27 , a substrate 40 and a semiconductor DBR layer 41 may be provided instead of the substrate 10 and the semiconductor DBR layer 21.

基板40係當使半導體DBR層41磊晶生長時使用之晶體生長基板。於本變化例中,基板40能夠省略。基板40係n型GaAs基板。於n型GaAs基板中,作為n型雜質,例如含有矽(Si)等。半導體DBR層41係非摻雜之GaAs系半導體DBR層。半導體DBR層41係將含有非摻雜之AlAs之低折射率半導體層及含有非摻雜之GaAs之高折射率半導體層交替積層而構成者。低折射率半導體層及高折射率半導體層之光學厚度分別為例如λ 0×1/4。 The substrate 40 is a crystal growth substrate used when epitaxially growing the semiconductor DBR layer 41. In this variation, the substrate 40 can be omitted. The substrate 40 is an n-type GaAs substrate. In the n-type GaAs substrate, silicon (Si) or the like is contained as an n-type impurity. The semiconductor DBR layer 41 is a non-doped GaAs-based semiconductor DBR layer. The semiconductor DBR layer 41 is formed by alternatingly laminating a low-refractive-index semiconductor layer containing non-doped AlAs and a high-refractive-index semiconductor layer containing non-doped GaAs. The optical thicknesses of the low-refractive-index semiconductor layer and the high-refractive-index semiconductor layer are, for example, λ 0 ×1/4, respectively.

於本變化例中,形成有半導體DBR層41之基板40將半導體DBR層41側之表面朝向間隔層22而貼合。此處,半導體DBR層41不包含於電流路徑中。因此,能夠貼合與振盪波長λ 0之大小及用途相應之半導體DBR層41。 In this variation, the substrate 40 formed with the semiconductor DBR layer 41 is bonded with the surface of the semiconductor DBR layer 41 facing the spacer layer 22. Here, the semiconductor DBR layer 41 is not included in the current path. Therefore, a semiconductor DBR layer 41 corresponding to the size and purpose of the oscillation wavelength λ 0 can be bonded.

[變化例M] 於上述實施形態及其變化例A~J、L中,面發光雷射1可為於背面設置有光出射面1S之背面出射型之雷射。於本變化例中,面發光雷射1如例如圖28所示般,構成為自半導體DBR層21側出射振盪波長λ 0之雷射光L。具體而言,於垂直共振器構造20中,半導體DBR層21側之反射鏡之對數及反射率、與介電體DBR層26側之反射鏡之對數及反射率可構成為自半導體DBR層21側出射振盪波長λ 0之雷射光L。即便於如此構成之情形下,亦可獲得與上述實施形態及其變化例A~J、L同樣之效果。 [Variation M] In the above-mentioned embodiment and its variations A to J and L, the surface-emitting laser 1 may be a back-emitting laser having a light emitting surface 1S provided on the back side. In this variation, the surface-emitting laser 1 is configured to emit laser light L having an oscillation wavelength λ 0 from the semiconductor DBR layer 21 side, as shown in FIG. 28 , for example. Specifically, in the vertical resonator structure 20, the logarithm and reflectivity of the reflective mirror on the semiconductor DBR layer 21 side and the logarithm and reflectivity of the reflective mirror on the dielectric DBR layer 26 side may be configured to emit laser light L having an oscillation wavelength λ 0 from the semiconductor DBR layer 21 side. Even in the case of such a configuration, the same effects as those of the above-mentioned embodiment and its variations A to J and L can be obtained.

[變化例N] 於上述變化例M中,如例如圖29所示,可設置介電體DBR層35而取代基板10及半導體DBR層21。即便於如此構成之情形下,亦可獲得與上述變化例M同樣之效果。 [Variation N] In the above-mentioned variation M, as shown in FIG. 29, for example, a dielectric DBR layer 35 may be provided instead of the substrate 10 and the semiconductor DBR layer 21. Even in such a configuration, the same effect as that of the above-mentioned variation M can be obtained.

[變化例O] 於上述變化例M中,如例如圖30所示,可設置半導體DBR層41而取代基板10及半導體DBR層21。即便於成為此構成之情形下,亦可獲得與上述變化例M同樣之效果。 [Variation O] In the above-mentioned variation M, as shown in FIG. 30, for example, a semiconductor DBR layer 41 may be provided instead of the substrate 10 and the semiconductor DBR layer 21. Even in the case of this configuration, the same effect as that of the above-mentioned variation M can be obtained.

[變化例P] 於上述實施形態及其變化例A~J、L~O中,如例如圖31所示般,可設置與介電體DBR層26之與活性層23相反側相接之反射金屬層37。反射金屬層37自活性層23觀察,相當於介電體DBR層26側之反射鏡之終端部。反射金屬層37係輔助介電體DBR層26之功能之層,且係有助於削減介電體DBR層26之對數之層。反射金屬層37例如含有金(Au)、銀(Ag)或鋁(A1)而構成。反射金屬層37之膜厚例如為20 nm以上。 [Variation P] In the above-mentioned embodiment and its variations A to J, L to O, a reflective metal layer 37 may be provided in contact with the dielectric DBR layer 26 on the opposite side of the active layer 23, as shown in FIG. 31 . The reflective metal layer 37 corresponds to the end of the reflector on the dielectric DBR layer 26 side when viewed from the active layer 23. The reflective metal layer 37 is a layer that assists the function of the dielectric DBR layer 26 and helps reduce the logarithm of the dielectric DBR layer 26. The reflective metal layer 37 is composed of, for example, gold (Au), silver (Ag) or aluminum (Al). The film thickness of the reflective metal layer 37 is, for example, 20 nm or more.

如此,於本變化例中,設置有反射金屬層37。藉此,可削減介電體DBR層26之對數,相較於未設置反射金屬層37之情形,可提高面發光雷射1之排熱性。Thus, in this variation, the reflective metal layer 37 is provided. This can reduce the number of pairs of the dielectric DBR layer 26, and improve the heat dissipation performance of the surface emitting laser 1 compared to the case where the reflective metal layer 37 is not provided.

<3.第2實施形態> [構成] 針對本揭示之第2實施形態之面發光雷射2進行說明。圖32係顯示面發光雷射2之剖面構成例者。圖33係顯示面發光雷射2之上表面構成例者。 <3. Second Implementation Form> [Structure] The second implementation form of the surface emitting laser 2 of the present disclosure is described. FIG. 32 shows an example of a cross-sectional structure of the surface emitting laser 2. FIG. 33 shows an example of an upper surface structure of the surface emitting laser 2.

於本實施形態中,在上述第1實施形態及變化例A~L中,對於垂直共振器構造20設置有槽部20B而取代台面部20A。於槽部20B之底面形成有露出面22S。即便於設為此構成之情形下,亦可獲得與上述第1實施形態及變化例A~L同樣之效果。In this embodiment, in the first embodiment and variations A to L, a groove portion 20B is provided in place of the mesa portion 20A in the vertical resonator structure 20. An exposed surface 22S is formed on the bottom surface of the groove portion 20B. Even in the case of this configuration, the same effects as those of the first embodiment and variations A to L can be obtained.

<4.第2實施形態之變化例> [變化例Q] 於上述第2實施形態中,面發光雷射2可為於背面設置有光出射面1S之背面出射型之雷射。於本變化例中,面發光雷射2如例如圖34所示般,構成為自半導體DBR層21側出射振盪波長λ 0之雷射光L。即便於成為此構成之情形下,亦可獲得與上述第2實施形態同樣之效果。 <4. Variation of the Second Embodiment> [Variation Q] In the second embodiment, the surface emitting laser 2 may be a back-emitting laser having a light emitting surface 1S provided on the back. In this variation, the surface emitting laser 2 is configured to emit laser light L having an oscillation wavelength λ 0 from the semiconductor DBR layer 21 side, as shown in FIG. 34 . Even in this configuration, the same effect as in the second embodiment can be obtained.

以上,舉出複數個實施形態及其等之變化例來說明了本揭示,但本揭示不限定於上述實施形態等,能夠進行各種變化。此外,本說明書中所記載之效果終極而言僅為例示。本揭示之效果不限定於本說明書中所記載之效果。本揭示可具有本說明書中所記載之效果以外之效果。In the above, a plurality of embodiments and variations thereof are cited to illustrate the present disclosure, but the present disclosure is not limited to the above embodiments and variations thereof, and various variations are possible. In addition, the effects described in this specification are ultimately for illustration only. The effects of the present disclosure are not limited to the effects described in this specification. The present disclosure may have effects other than those described in this specification.

又,例如,本揭示可採用如以下之構成。 (1) 一種面發光雷射,其包含: 第1DBR(Distributed Bragg Reflector,分散式布拉格反射器)層; 第2DBR層; 活性層,其配置於前述第1DBR層與前述第2BDR層之間; 第1導電型之第1間隔層,其配置於前述活性層與前述第1DBR層之間; 第2導電型之第2間隔層,其配置於前述活性層與前述第2DBR層之間; 穿隧接面層,其配置於前述活性層與前述第2DBR層之間; 第1電極層,其於不經由前述第1DBR層下與前述第1間隔層電性連接;及 第2電極層,其於不經由前述第2DBR層下與前述第2間隔層電性連接;且 前述第1間隔層在與前述穿隧接面層非對向之區域具有平坦之露出面; 前述第1電極層形成為與前述第1間隔層中較前述露出面深之部位相接。 (2) 如(1)之面發光雷射,其中前述第1間隔層於前述露出面內具有凹部;且 前述第1電極層形成為埋入前述凹部。 (3) 如(1)或(2)之面發光雷射,其中前述第1電極層形成為與前述露出面之一部分相接,且亦與前述第1間隔層中較前述露出面深之部位相接。 (4) 如(2)之面發光雷射,其中前述第1電極層具有自前述凹部之內表面側依序積層有Ti、Pt、Au之構造。 (5) 如(2)之面發光雷射,其中前述第1電極層具有:自前述凹部之內表面側依序積層有Ti、Pt、Au之金屬層、及形成於前述金屬層上之鍍覆層。 (6) 如(1)或(3)之面發光雷射,其中前述第1電極層具有:與前述露出面相接之合金金屬層;及前述第1間隔層中較前述露出面深之部位、且為與前述合金金屬層相接之擴散金屬區域。 (7) 如(6)之面發光雷射,其中前述第1電極層進步一具有形成於前述合金金屬層上之由與前述合金金屬層不同之材料構成之金屬層。 (8) 如(1)至(7)中任一項之面發光雷射,其中前述露出面和前述活性層與前述第1間隔層之界面形成於同一面內。 (9) 如(1)至(8)中任一項之面發光雷射,其中前述第1電極層於俯視下形成於包圍前述第2電極層之環狀區域內。 (10) 如(2)之面發光雷射,其中前述凹部之積層方向之剖面形狀為正錐形形狀。 (11) 如(2)之面發光雷射,其中前述凹部之形狀為擂缽狀。 (12) 如(1)至(11)中任一項之面發光雷射,其包括包含前述第1間隔層、前述活性層、前述穿隧接面層及前述第2間隔層之積層構造;且 前述穿隧接面層於俯視下形成於由藉由對於前述積層構造進行離子注入而經高電阻化之區域包圍之區域。 (13) 如(1)至(12)中任一項之面發光雷射,其進一步包含透明導電層,該透明導電層配置於前述第2間隔層與前述第2DBR層之間,且與前述第2電極電性連接。 (14) 如(1)至(13)中任一項之面發光雷射,其中前述第1間隔層及前述第2間隔層含有InP系半導體而構成;且 前述第1DBR層係非摻雜之半導體DBR層; 前述第2DBR層係介電體DBR層。 (15) 如(1)至(13)中任一項之面發光雷射,其中前述第1間隔層及前述第2間隔層含有InP系半導體而構成;且 前述第1DBR層及前述第2DBR層係介電體DBR層。 (16) 如(15)之面發光雷射,其進一步包含與前述第1DBR層之與前述活性層為相反側相接之反射金屬層。 (17) 如(1)至(13)中任一項之面發光雷射,其中前述第1間隔層及前述第2間隔層含有InP系半導體而構成;且 前述第1DBR層係非摻雜之GaAs系半導體DBR層; 前述第2DBR層係介電體DBR層。 (18) 如(1)至(17)中任一項之面發光雷射,其中前述第1DBR層及前述第2DBR層構成為自前述第2DBR層側出射雷射光。 (19) 如(1)至(17)中任一項之面發光雷射,其進一步包含與前述第2DBR層之與前述活性層為相反側相接之反射金屬層。 (20) 如(1)至(19)中任一項之面發光雷射,其包含台面部,該台面部至少包含前述活性層、前述穿隧接面層及前述第2間隔層。 (21) 如(1)至(19)中任一項之面發光雷射,其包括包含前述第1DBR層、前述第1間隔層、前述活性層、前述穿隧接面層、前述第2間隔層及前述第2DBR層之積層構造;且 前述積層構造進一步包含具有前述露出面作為底面之槽部; 前述第1電極層形成為與前述第1間隔層中較前述槽部內之前述露出面為深之部位相接。 Furthermore, for example, the present disclosure may adopt the following structure. (1) A surface emitting laser, comprising: A first DBR (Distributed Bragg Reflector) layer; A second DBR layer; An active layer disposed between the first DBR layer and the second DBR layer; A first spacer layer of the first conductivity type disposed between the active layer and the first DBR layer; A second spacer layer of the second conductivity type disposed between the active layer and the second DBR layer; A tunneling junction layer disposed between the active layer and the second DBR layer; A first electrode layer electrically connected to the first spacer layer without passing through the first DBR layer; and The second electrode layer is electrically connected to the second spacer layer without passing through the second DBR layer; and the first spacer layer has a flat exposed surface in a region not opposite to the tunnel junction layer; the first electrode layer is formed to be in contact with a portion of the first spacer layer that is deeper than the exposed surface. (2) A surface emitting laser as in (1), wherein the first spacer layer has a recess in the exposed surface; and the first electrode layer is formed to bury the recess. (3) A surface emitting laser as in (1) or (2), wherein the first electrode layer is formed to be in contact with a portion of the exposed surface and also in contact with a portion of the first spacer layer that is deeper than the exposed surface. (4) A surface emitting laser as in (2), wherein the first electrode layer has a structure in which Ti, Pt, and Au are sequentially layered from the inner surface side of the recess. (5) A surface emitting laser as in (2), wherein the first electrode layer has: a metal layer in which Ti, Pt, and Au are sequentially layered from the inner surface side of the recess, and a coating layer formed on the metal layer. (6) A surface emitting laser as in (1) or (3), wherein the first electrode layer has: an alloy metal layer in contact with the exposed surface; and a diffused metal region in the first spacer layer that is deeper than the exposed surface and in contact with the alloy metal layer. (7) A surface emitting laser as in (6), wherein the first electrode layer further comprises a metal layer formed on the alloy metal layer and made of a material different from the alloy metal layer. (8) A surface emitting laser as in any one of (1) to (7), wherein the exposed surface and the interface between the active layer and the first spacer layer are formed in the same plane. (9) A surface emitting laser as in any one of (1) to (8), wherein the first electrode layer is formed in an annular region surrounding the second electrode layer in a plan view. (10) A surface emitting laser as in (2), wherein the cross-sectional shape of the recess in the stacking direction is a right pyramidal shape. (11) The surface emitting laser as described in (2), wherein the shape of the concave portion is a mortar shape. (12) The surface emitting laser as described in any one of (1) to (11), comprising a laminated structure including the first spacer layer, the active layer, the tunneling junction layer and the second spacer layer; and the tunneling junction layer is formed in a region surrounded by a region that has been made highly resistive by ion implantation into the laminated structure in a top view. (13) The surface emitting laser as described in any one of (1) to (12), further comprising a transparent conductive layer, which is disposed between the second spacer layer and the second DBR layer and is electrically connected to the second electrode. (14) A surface emitting laser as described in any one of (1) to (13), wherein the first spacer layer and the second spacer layer contain an InP semiconductor; and the first DBR layer is a non-doped semiconductor DBR layer; and the second DBR layer is a dielectric DBR layer. (15) A surface emitting laser as described in any one of (1) to (13), wherein the first spacer layer and the second spacer layer contain an InP semiconductor; and the first DBR layer and the second DBR layer are dielectric DBR layers. (16) A surface emitting laser as described in (15), further comprising a reflective metal layer in contact with the first DBR layer on the side opposite to the active layer. (17) A surface emitting laser as described in any one of (1) to (13), wherein the first spacer layer and the second spacer layer are composed of InP semiconductors; and the first DBR layer is a non-doped GaAs semiconductor DBR layer; and the second DBR layer is a dielectric DBR layer. (18) A surface emitting laser as described in any one of (1) to (17), wherein the first DBR layer and the second DBR layer are configured to emit laser light from the side of the second DBR layer. (19) A surface emitting laser as described in any one of (1) to (17), further comprising a reflective metal layer in contact with the second DBR layer on the side opposite to the active layer. (20) A surface emitting laser as described in any one of (1) to (19), comprising a mesa portion, the mesa portion comprising at least the aforementioned active layer, the aforementioned tunneling junction layer and the aforementioned second spacer layer. (21) A surface emitting laser as described in any one of (1) to (19), comprising a laminated structure comprising the aforementioned first DBR layer, the aforementioned first spacer layer, the aforementioned active layer, the aforementioned tunneling junction layer, the aforementioned second spacer layer and the aforementioned second DBR layer; and the aforementioned laminated structure further comprises a groove portion having the aforementioned exposed surface as a bottom surface; the aforementioned first electrode layer is formed to be in contact with a portion of the aforementioned first spacer layer that is deeper than the aforementioned exposed surface in the aforementioned groove portion.

於本揭示之一實施形態之面發光雷射中,在配置於活性層與第1DBR層之間之第1間隔層,在與穿隧接面層非對向之區域設置有平坦之露出面。而且,第1電極層形成為與第1間隔層中較露出面深之部位相接。藉此,相較於將第1電極僅設置於露出面之情形,流經第1間隔層內之橫向方向之電流之密度減小,動作電壓亦降低。又,由於將由第1電極層及第2電極層形成之電流路徑不經由第1DBR層及第2DBR層而設置,故例如無須以摻雜雜質之半導體構成第1DBR層及第2DBR層兩者。例如,能夠以非摻雜之半導體或介電體構成第1DBR層及第2DBR層兩者。又,例如,能夠以非摻雜之半導體構成第1DBR層,以介電體構成第2DBR層。其結果,可降低由第1DBR層及第2DBR層中之自由載子吸收所致之損失。因此,可實現高效率化與低電壓化。In a surface emitting laser of one embodiment of the present disclosure, a first spacer layer disposed between an active layer and a first DBR layer is provided with a flat exposed surface in a region not facing the tunnel junction layer. Furthermore, a first electrode layer is formed to be in contact with a portion of the first spacer layer that is deeper than the exposed surface. Thus, compared with a case where the first electrode is provided only on the exposed surface, the density of the current flowing in the first spacer layer in the lateral direction is reduced, and the operating voltage is also reduced. Furthermore, since the current path formed by the first electrode layer and the second electrode layer is provided without passing through the first DBR layer and the second DBR layer, for example, it is not necessary to form both the first DBR layer and the second DBR layer with a doped semiconductor. For example, both the first DBR layer and the second DBR layer can be formed with a non-doped semiconductor or a dielectric. Furthermore, for example, the first DBR layer can be formed with a non-doped semiconductor and the second DBR layer can be formed with a dielectric. As a result, the loss caused by free carrier absorption in the first DBR layer and the second DBR layer can be reduced. Therefore, high efficiency and low voltage can be achieved.

1,2,100:面發光雷射 1S:光出射面 10:基板 20:垂直共振器構造 20A:台面部 20B:槽部 21,41:半導體DBR層 22,24,25:間隔層 22A:凹部 22S:露出面 23:活性層 26,35:介電體DBR層 27:接觸層 28:高濃度p層 29:高濃度n層 31,32,131:電極層 31a,31e:金屬層 31b:鍍覆層 31c:擴散金屬區域 31d:合金金屬層 33:區域 34:透明導電層 36,37:反射金屬層 40:基板 L:雷射光 TJTJ:穿隧接面層 1,2,100: Surface emitting laser 1S: Light emitting surface 10: Substrate 20: Vertical resonator structure 20A: Terrane 20B: Groove 21,41: Semiconductor DBR layer 22,24,25: Spacer layer 22A: Recess 22S: Exposed surface 23: Active layer 26,35: Dielectric DBR layer 27: Contact layer 28: High concentration p layer 29: High concentration n layer 31,32,131: Electrode layer 31a,31e: Metal layer 31b: Cladding layer 31c: Diffused metal region 31d: Alloy metal layer 33: Region 34: Transparent conductive layer 36,37: Reflective metal layer 40: Substrate L: Laser light TJTJ: Tunneling junction layer

圖1係顯示本揭示之第1實施形態之面發光雷射之剖面構成例之圖。 圖2係顯示圖1之面發光雷射之上表面構成例之圖。 圖3係顯示圖1之面發光雷射之製造方法之一例之圖。 圖4係顯示連續於圖3之製造工序之一例之圖。 圖5係顯示連續於圖4之製造工序之一例之圖。 圖6係顯示連續於圖5之製造工序之一例之圖。 圖7係顯示連續於圖6之製造工序之一例之圖。 圖8係顯示連續於圖7之製造工序之一例之圖。 圖9係顯示連續於圖8之製造工序之一例之圖。 圖10係顯示連續於圖9之製造工序之一例之圖。 圖11係顯示連續於圖10之製造工序之一例之圖。 圖12係顯示比較例之面發光雷射之剖面構成例之圖。 圖13係顯示載子濃度與薄片電阻之關係之一例之圖。 圖14係顯示實施例及比較例之面發光雷射之I-V特性之一例之圖。 圖15係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖16係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖17係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖18係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖19係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖20係顯示圖19之面發光雷射之上表面構成例之圖。 圖21係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖22係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖23係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖24係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖25係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖26係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖27係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖28係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖29係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖30係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖31係顯示圖1之面發光雷射之剖面構成之一變化例之圖。 圖32係顯示本揭示之第2實施形態之面發光雷射之剖面構成例之圖。 圖33係顯示圖32之面發光雷射之上表面構成例之圖。 圖34係顯示圖32之面發光雷射之剖面構成之一變化例之圖。 FIG. 1 is a diagram showing an example of a cross-sectional structure of a surface-emitting laser of the first embodiment of the present disclosure. FIG. 2 is a diagram showing an example of an upper surface structure of the surface-emitting laser of FIG. 1. FIG. 3 is a diagram showing an example of a method for manufacturing the surface-emitting laser of FIG. 1. FIG. 4 is a diagram showing an example of a manufacturing process that is continuous with FIG. 3. FIG. 5 is a diagram showing an example of a manufacturing process that is continuous with FIG. 4. FIG. 6 is a diagram showing an example of a manufacturing process that is continuous with FIG. 5. FIG. 7 is a diagram showing an example of a manufacturing process that is continuous with FIG. 6. FIG. 8 is a diagram showing an example of a manufacturing process that is continuous with FIG. 7. FIG. 9 is a diagram showing an example of a manufacturing process that is continuous with FIG. 8. FIG. 10 is a diagram showing an example of a manufacturing process that is continuous with FIG. 9. FIG. 11 is a diagram showing an example of a manufacturing process that is continuous with FIG. 10. FIG. 12 is a diagram showing an example of a cross-sectional configuration of a surface-emitting laser of a comparative example. FIG. 13 is a diagram showing an example of a relationship between carrier concentration and sheet resistance. FIG. 14 is a diagram showing an example of I-V characteristics of a surface-emitting laser of an embodiment and a comparative example. FIG. 15 is a diagram showing an example of a variation of the cross-sectional configuration of the surface-emitting laser of FIG. 1. FIG. 16 is a diagram showing an example of a variation of the cross-sectional configuration of the surface-emitting laser of FIG. 1. FIG. 17 is a diagram showing an example of a variation of the cross-sectional configuration of the surface-emitting laser of FIG. 1. FIG. 18 is a diagram showing a variation of the cross-sectional configuration of the surface emitting laser of FIG. 1 . FIG. 19 is a diagram showing a variation of the cross-sectional configuration of the surface emitting laser of FIG. 1 . FIG. 20 is a diagram showing an example of the upper surface configuration of the surface emitting laser of FIG. 19 . FIG. 21 is a diagram showing a variation of the cross-sectional configuration of the surface emitting laser of FIG. 1 . FIG. 22 is a diagram showing a variation of the cross-sectional configuration of the surface emitting laser of FIG. 1 . FIG. 23 is a diagram showing a variation of the cross-sectional configuration of the surface emitting laser of FIG. 1 . FIG. 24 is a diagram showing a variation of the cross-sectional configuration of the surface emitting laser of FIG. 1 . FIG. 25 is a diagram showing a variation of the cross-sectional configuration of the surface emitting laser of FIG. 1 . FIG. 26 is a diagram showing a variation of the cross-sectional structure of the surface emitting laser of FIG. 1. FIG. 27 is a diagram showing a variation of the cross-sectional structure of the surface emitting laser of FIG. 1. FIG. 28 is a diagram showing a variation of the cross-sectional structure of the surface emitting laser of FIG. 1. FIG. 29 is a diagram showing a variation of the cross-sectional structure of the surface emitting laser of FIG. 1. FIG. 30 is a diagram showing a variation of the cross-sectional structure of the surface emitting laser of FIG. 1. FIG. 31 is a diagram showing a variation of the cross-sectional structure of the surface emitting laser of FIG. 1. FIG. 32 is a diagram showing a cross-sectional structure example of the surface emitting laser of the second embodiment of the present disclosure. FIG. 33 is a diagram showing an example of the upper surface structure of the surface emitting laser of FIG. 32. FIG34 is a diagram showing a variation of the cross-sectional structure of the surface-emitting laser of FIG32.

1:面發光雷射 1: Surface emitting laser

1S:光出射面 1S: Light exit surface

10:基板 10: Substrate

20:垂直共振器構造 20: Vertical resonator structure

20A:台面部 20A: Countertop

21:半導體DBR層 21: Semiconductor DBR layer

22,24,25:間隔層 22,24,25: Interlayer

22A:凹部 22A: Recess

22S:露出面 22S: Reveal your face

23:活性層 23: Active layer

26:介電體DBR層 26: Dielectric DBR layer

27:接觸層 27: Contact layer

28:高濃度p層 28: High concentration p layer

29:高濃度n層 29: High concentration n layers

31,32:電極層 31,32: Electrode layer

L:雷射光 L:Laser light

Claims (21)

一種面發光雷射,其包含: 第1DBR(Distributed Bragg Reflector,分散式布拉格反射器)層; 第2DBR層; 活性層,其配置於前述第1DBR層與前述第2BDR層之間; 第1導電型之第1間隔層,其配置於前述活性層與前述第1DBR層之間; 第2導電型之第2間隔層,其配置於前述活性層與前述第2DBR層之間; 穿隧接面層,其配置於前述活性層與前述第2DBR層之間; 第1電極層,其不經由前述第1DBR層而與前述第1間隔層電性連接;及 第2電極層,其不經由前述第2DBR層而與前述第2間隔層電性連接;且 前述第1間隔層在與前述穿隧接面層非對向之區域具有平坦之露出面; 前述第1電極層形成為與前述第1間隔層中較前述露出面深之部位相接。 A surface emitting laser, comprising: a first DBR (Distributed Bragg Reflector) layer; a second DBR layer; an active layer disposed between the first DBR layer and the second DBR layer; a first spacer layer of the first conductivity type disposed between the active layer and the first DBR layer; a second spacer layer of the second conductivity type disposed between the active layer and the second DBR layer; a tunneling junction layer disposed between the active layer and the second DBR layer; a first electrode layer electrically connected to the first spacer layer without passing through the first DBR layer; and The second electrode layer is electrically connected to the second spacer layer without passing through the second DBR layer; and the first spacer layer has a flat exposed surface in a region not opposite to the tunnel junction layer; the first electrode layer is formed to be in contact with a portion of the first spacer layer that is deeper than the exposed surface. 如請求項1之面發光雷射,其中前述第1間隔層於前述露出面內具有凹部;且 前述第1電極層形成為埋入前述凹部。 The surface emitting laser of claim 1, wherein the first spacer layer has a recess in the exposed surface; and the first electrode layer is formed to bury the recess. 如請求項1之面發光雷射,其中前述第1電極層形成為與前述露出面之一部分相接,且亦與前述第1間隔層中較前述露出面深之部位相接。In the surface emitting laser of claim 1, the first electrode layer is formed to be in contact with a portion of the exposed surface and also in contact with a portion of the first spacer layer that is deeper than the exposed surface. 如請求項2之面發光雷射,其中前述第1電極層具有自前述凹部之內表面側依序積層有Ti、Pt、Au之構造。The surface emitting laser of claim 2, wherein the first electrode layer has a structure in which Ti, Pt, and Au are sequentially layered on the inner surface side of the concave portion. 如請求項2之面發光雷射,其中前述第1電極層具有:自前述凹部之內表面側依序積層有Ti、Pt、Au之金屬層、及形成於前述金屬層上之鍍覆層。The surface emitting laser of claim 2, wherein the first electrode layer comprises: a metal layer of Ti, Pt, and Au stacked in sequence from the inner surface side of the recess, and a coating layer formed on the metal layer. 如請求項1之面發光雷射,其中前述第1電極層具有:與前述露出面相接之合金金屬層;及前述第1間隔層中較前述露出面深之部位、且為與前述合金金屬層相接之擴散金屬區域。The surface emitting laser of claim 1, wherein the first electrode layer comprises: an alloy metal layer in contact with the exposed surface; and a diffused metal region in the first spacer layer which is deeper than the exposed surface and in contact with the alloy metal layer. 如請求項6之面發光雷射,其中前述第1電極層進步一具有形成於前述合金金屬層上、包含與前述合金金屬層不同之材料的金屬層。As in claim 6, the surface emitting laser, wherein the first electrode layer further comprises a metal layer formed on the alloy metal layer and comprising a material different from the alloy metal layer. 如請求項1之面發光雷射,其中前述露出面和前述活性層與前述第1間隔層之界面形成於同一面內。The surface emitting laser of claim 1, wherein the exposed surface and the interface between the active layer and the first spacer layer are formed in the same plane. 如請求項1之面發光雷射,其中前述第1電極層於俯視下形成於包圍前述第2電極層之環狀區域內。As in the surface emitting laser of claim 1, the first electrode layer is formed in an annular region surrounding the second electrode layer in a top view. 如請求項2之面發光雷射,其中前述凹部之積層方向之剖面形狀為正錐形形狀。As in the surface emitting laser of claim 2, the cross-sectional shape of the aforementioned recess in the stacking direction is a right pyramidal shape. 如請求項2之面發光雷射,其中前述凹部之形狀為擂缽狀。As in the surface emitting laser of claim 2, the shape of the aforementioned recess is a pestle-shaped. 如請求項1之面發光雷射,其具備包含前述第1間隔層、前述活性層、前述穿隧接面層及前述第2間隔層之積層構造;且 前述穿隧接面層於俯視下形成於由藉由對前述積層構造進行離子注入而經高電阻化之區域包圍之區域。 The surface emitting laser of claim 1 has a laminated structure including the first spacer layer, the active layer, the tunneling junction layer and the second spacer layer; and the tunneling junction layer is formed in a region surrounded by a region that has been made highly resistive by ion implantation into the laminated structure in a top view. 如請求項1之面發光雷射,其進一步包含透明導電層,該透明導電層配置於前述第2間隔層與前述第2DBR層之間,且與前述第2電極電性連接。The surface emitting laser of claim 1 further comprises a transparent conductive layer, wherein the transparent conductive layer is disposed between the second spacer and the second DBR layer and is electrically connected to the second electrode. 如請求項1之面發光雷射,其中前述第1間隔層及前述第2間隔層含有InP系半導體而構成;且 前述第1DBR層係非摻雜之半導體DBR層; 前述第2DBR層係介電體DBR層。 The surface emitting laser of claim 1, wherein the first spacer layer and the second spacer layer are composed of InP-based semiconductors; and the first DBR layer is a non-doped semiconductor DBR layer; and the second DBR layer is a dielectric DBR layer. 如請求項1之面發光雷射,其中前述第1間隔層及前述第2間隔層含有InP系半導體而構成;且 前述第1DBR層及前述第2DBR層係介電體DBR層。 The surface emitting laser of claim 1, wherein the first spacer layer and the second spacer layer are composed of InP semiconductors; and the first DBR layer and the second DBR layer are dielectric DBR layers. 如請求項15之面發光雷射,其進一步包含與前述第1DBR層之與前述活性層相反側相接之反射金屬層;且 前述反射金屬層自前述活性層觀察,相當於前述第1DBR層側之反射鏡之終端部。 The surface emitting laser of claim 15 further comprises a reflective metal layer connected to the first DBR layer on the opposite side of the active layer; and the reflective metal layer, when observed from the active layer, corresponds to the terminal end of the reflective mirror on the first DBR layer side. 如請求項1之面發光雷射,其中前述第1間隔層及前述第2間隔層含有InP系半導體而構成;且 前述第1DBR層係非摻雜之GaAs系半導體DBR層; 前述第2DBR層係介電體DBR層。 The surface emitting laser of claim 1, wherein the first spacer layer and the second spacer layer are composed of InP semiconductors; and the first DBR layer is a non-doped GaAs semiconductor DBR layer; and the second DBR layer is a dielectric DBR layer. 如請求項1之面發光雷射,其中前述第1DBR層及前述第2DBR層構成為自前述第2DBR層側出射雷射光。The surface emitting laser of claim 1, wherein the first DBR layer and the second DBR layer are configured to emit laser light from the side of the second DBR layer. 如請求項1之面發光雷射,其進一步包含與前述第2DBR層之與前述活性層相反側相接之反射金屬層;且 前述反射金屬層自前述活性層觀察,相當於前述第2DBR層側之反射鏡之終端部。 The surface emitting laser of claim 1 further comprises a reflective metal layer connected to the side of the second DBR layer opposite to the active layer; and the reflective metal layer, when observed from the active layer, corresponds to the terminal end of the reflective mirror on the side of the second DBR layer. 如請求項1之面發光雷射,其包含台面部,該台面部至少包含前述活性層、前述穿隧接面層及前述第2間隔層。The surface emitting laser of claim 1 comprises a mesa portion, which at least comprises the active layer, the tunnel junction layer and the second spacer layer. 如請求項1之面發光雷射,其具備包含前述第1DBR層、前述第1間隔層、前述活性層、前述穿隧接面層、前述第2間隔層及前述第2DBR層之積層構造;且 前述積層構造進一步包含具有前述露出面作為底面之槽部; 前述第1電極層形成為與前述第1間隔層中較前述槽部內之前述露出面為深之部位相接。 The surface emitting laser of claim 1 has a laminated structure including the first DBR layer, the first spacer layer, the active layer, the tunneling junction layer, the second spacer layer and the second DBR layer; and the laminated structure further includes a groove having the exposed surface as the bottom surface; the first electrode layer is formed to be connected to a portion of the first spacer layer that is deeper than the exposed surface in the groove.
TW113102661A 2023-03-03 2024-01-24 Surface Emitting Laser TW202504193A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023-032514 2023-03-03

Publications (1)

Publication Number Publication Date
TW202504193A true TW202504193A (en) 2025-01-16

Family

ID=

Similar Documents

Publication Publication Date Title
US20230197906A1 (en) Semiconductor light emitting device
US5677924A (en) Resonant-cavity optical device
US5557627A (en) Visible-wavelength semiconductor lasers and arrays
JP5404386B2 (en) Optoelectronic semiconductor chip
US9160138B2 (en) Light-emitting element array
US11031752B2 (en) Surface-emitting laser and electronic apparatus
EP2675024B1 (en) Electron beam pumped vertical cavity surface emitting laser
CN113574751B (en) Vertical cavity surface emitting laser device
US20220393433A1 (en) Surface emission laser, surface emission laser array, electronic equipment, and surface emission laser manufacturing method
US20100183041A1 (en) Semiconductor laser element and semiconductor laser device
US9397479B2 (en) Silicon DBR structure-integrated light element, and preparation method
JP7453588B2 (en) Vertical cavity surface emitting laser device
JPH05283808A (en) Surface light-emitting layser having low-resistance bragg reflection layer
US20070153863A1 (en) Surface-emitting type semiconductor laser and method for manufacturing the same
WO2019171869A1 (en) Surface-emitting laser
JPWO2017038448A1 (en) Nitride semiconductor device
TW202504193A (en) Surface Emitting Laser
WO2024185436A1 (en) Surface-emitting laser
US20230096932A1 (en) Surface emitting laser
US11923661B2 (en) Surface emitting laser and method of manufacturing the same
WO2024190073A1 (en) Surface-emitting laser and surface-emitting laser array
JP2015028995A (en) Surface-emitting laser array and method of manufacturing the same
JP2006190762A (en) Semiconductor laser
WO2021193375A1 (en) Surface-emitting laser
TW202504195A (en) Surface Emitting Laser and Surface Emitting Laser Array