[go: up one dir, main page]

TW202503481A - Charger and charging system - Google Patents

Charger and charging system Download PDF

Info

Publication number
TW202503481A
TW202503481A TW113124740A TW113124740A TW202503481A TW 202503481 A TW202503481 A TW 202503481A TW 113124740 A TW113124740 A TW 113124740A TW 113124740 A TW113124740 A TW 113124740A TW 202503481 A TW202503481 A TW 202503481A
Authority
TW
Taiwan
Prior art keywords
charging
charger
electronic device
power
power line
Prior art date
Application number
TW113124740A
Other languages
Chinese (zh)
Inventor
李東昇
林同聲
Original Assignee
洪笙科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/221,888 external-priority patent/US20230361592A1/en
Application filed by 洪笙科技股份有限公司 filed Critical 洪笙科技股份有限公司
Publication of TW202503481A publication Critical patent/TW202503481A/en

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

An improved charger and charging system for an electronic device is provided. The charger includes a power delivery controller configured to determine which pins of a USB Type-C connector are used for charging. The power delivery controller is capable of designating pins other than the VBUS pin for charging, thereby distributing the current for charging an electronic device more efficiently.

Description

充電器與充電系統Chargers and Charging Systems

本發明一般涉及電子裝置充電系統的領域。更具體地說,本發明涉及一種針對電子裝置且使用USB Type-C連接器和增強充電模式的充電器及充電系統。The present invention generally relates to the field of electronic device charging systems. More specifically, the present invention relates to a charger and a charging system for electronic devices using a USB Type-C connector and an enhanced charging mode.

在電子裝置領域中,充電效率和安全性至關重要。傳統充電系統經常使用標準的功率傳輸(Power delivery, PD)協定與USB Type-C連接器。在這些系統中,Type C連接器的VBUS針腳通常用於充電。然而,這種方法有幾個限制。 首先,使用單一VBUS針腳進行充電可能導致電流分布不均,這可能會過載針腳並減少連接器的壽命。這也可能限制充電速度,因為單一針腳的電流容量是有限的。 其次,傳統充電系統在充電模式方面經常缺乏彈性。它們通常運作在單一固定輸出電壓模式下,無論被充電的電子裝置的特定要求或能力為何。這可能導致能源使用上的無效率,並且如果充電模式不適合裝置的要求,可能會損壞電子裝置。然而,某些電子裝置,如高容量電池或馬達,需要在恆定電流模式下充電。在這種情況下,典型的固定輸出電壓無法滿足電子裝置的充電要求。 此外,在充電器與電子裝置斷開連接或充電器退出其運作模式時,傳統充電系統經常沒有機制來最小化待機與空載功耗。這可能導致不必要的能源浪費,並降低充電系統的整體效率。 因此,有必要提供一種改進的充電器和充電系統,以解決先前技術的這些限制。 In the world of electronic devices, charging efficiency and safety are critical. Traditional charging systems often use the standard power delivery (PD) protocol with a USB Type-C connector. In these systems, the VBUS pin of the Type C connector is often used for charging. However, this approach has several limitations. First, using a single VBUS pin for charging can result in uneven current distribution, which can overload the pin and reduce the life of the connector. This can also limit the charging speed because the current capacity of a single pin is limited. Second, traditional charging systems often lack flexibility in charging modes. They typically operate in a single fixed output voltage mode, regardless of the specific requirements or capabilities of the electronic device being charged. This can result in inefficiencies in energy usage and can damage electronic devices if the charging mode is not suitable for the device's requirements. However, some electronic devices, such as high-capacity batteries or motors, need to be charged in a constant current mode. In this case, the typical fixed output voltage cannot meet the charging requirements of the electronic device. In addition, conventional charging systems often have no mechanism to minimize standby and no-load power consumption when the charger is disconnected from the electronic device or the charger exits its operating mode. This can result in unnecessary energy waste and reduce the overall efficiency of the charging system. Therefore, it is necessary to provide an improved charger and charging system to address these limitations of the prior art.

本發明提供了一種改良的電子裝置用充電器及充電系統,解決了先前技術的限制。充電器包含一個電源傳輸控制器,設定用以確定USB Type-C連接器的哪些針腳用於充電。電源傳輸控制器能夠指定除VBUS針腳之外的其他針腳進行充電,從而更有效地分配用於充電電子裝置的電流。 充電器包括一條第一電源線,將所述充電器的電源線連接至所指定的針腳。第一電源線可能包括一個能夠開啟以斷開第一電源線的開關。當電子裝置支持此模式時,充電器運作在增強充電模式下。而且,電子裝置包括一第二電源線,將所指定的針腳連接至電子裝置的電源線。 當電子裝置不支持此增強充電模式時,增強充電模式被停用。充電器與電子裝置之間的資訊交換協議決定電子裝置是否支持增強充電模式。當電子裝置支持增強充電模式時,第一電源線上的開關被導通,允許電力流經第一電源線和第二電源線並開始充電。 充電器還可能包括安裝在第一電源線和充電器的電源線上的電阻,以實現電流平衡。充電器支持多階段充電模式,包括使用最低恆定電流的滴充階段、使用更高恆定電流的預充階段、使用更高恆定電流的快速充電階段,以及在恆壓充電階段電壓保持恆定,但由於接近充滿而電流逐漸降低。 當充電器與電子裝置斷開連接或退出其運作模式時,電源轉換器的輸出電壓被降低至最低允許工作值,使電源傳輸控制器進入睡眠模式,以最小化待機功耗。 為讓本專利案之上述特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The present invention provides an improved charger and charging system for electronic devices, which solves the limitations of previous technologies. The charger includes a power transfer controller configured to determine which pins of the USB Type-C connector are used for charging. The power transfer controller can designate other pins other than the VBUS pin for charging, thereby more efficiently allocating the current used to charge the electronic device. The charger includes a first power line that connects the power line of the charger to the designated pin. The first power line may include a switch that can be turned on to disconnect the first power line. When the electronic device supports this mode, the charger operates in an enhanced charging mode. Furthermore, the electronic device includes a second power line that connects the designated pin to the power line of the electronic device. When the electronic device does not support this enhanced charging mode, the enhanced charging mode is disabled. The information exchange protocol between the charger and the electronic device determines whether the electronic device supports the enhanced charging mode. When the electronic device supports the enhanced charging mode, the switch on the first power line is turned on, allowing power to flow through the first power line and the second power line and start charging. The charger may also include resistors mounted on the first power line and the power line of the charger to achieve current balancing. The charger supports a multi-stage charging mode, including a trickle charging stage using a minimum constant current, a pre-charging stage using a higher constant current, a fast charging stage using a higher constant current, and a constant voltage charging stage in which the voltage remains constant but the current gradually decreases as it approaches full charge. When the charger is disconnected from the electronic device or exits its operating mode, the output voltage of the power converter is reduced to the minimum allowable operating value, so that the power transmission controller enters the sleep mode to minimize the standby power consumption. In order to make the above features and advantages of this patent more obvious and easy to understand, the following is a preferred embodiment and a detailed description with the attached drawings as follows.

參照本文闡述的詳細內容和附圖說明是最好理解本發明的方式。下面會參照附圖以討論各種實施例。然而,本領域技術人員將容易理解,這裡關於附圖給出的詳細描述僅僅是為了解釋的目的,因為這些方法和裝置可超出所描述的實施例。例如,所給出的教導和特定應用的需求可能產生多種可選的和合適的方法來實現在此描述的任何細節的功能。因此,任何方法可延伸超出所描述和示出的以下實施例中的特定實施選擇範圍。 USB Type-C連接器,亦稱為USB-C,是一種USB(通用串列匯流排)連接器,近年來由於其可翻轉插頭方向而變得流行。它設計得足夠小,可以適合智慧手機的充電端口,但又足夠堅固,可以連接到更大的設備,如筆記型電腦和桌面電腦。 請參考圖1。圖1展示了USB Type-C連接器的針腳布局。USB Type-C連接器擁有24針設計,每側12針,鏡像對稱以確保插頭的可翻轉性。在圖1中,指出了每個針腳的指定名稱和功能。針腳的指定如下: Type-C插座A針腳布局: • A1:GND(接地回路) • A2:SSTXp1(超高速差分對#1,TX1+,正極) • A3:SSTXn1(超高速差分對#1,TX1-,負極) • A4:VBUS(匯流排電源) • A5:CC1(配置通道) • A6:Dp1(USB 2.0差分對,位置1,D+,正極) • A7:Dn1(USB 2.0差分對,位置1,D-,負極) • A8:SBU1(側邊帶使用) • A9:VBUS(匯流排電源) • A10:SSRXn2(超高速差分對#4,RX2-,負極) • A11:SSRXp2(超高速差分對#4,RX2+,正極) • A12:GND(接地回路) Type-C插座B針腳布局: • B1:GND(接地回路) • B2:SSTXp2(超高速差分對#3,TX2,正極) • B3:SSTXn2(超高速差分對#3,TX2,負極) • B4:VBUS(匯流排電源) • B5:CC2(配置通道) • B6:Dp2(USB 2.0差分對,位置2,D,正極) • B7:Dn2(USB 2.0差分對,位置2,D,負極) • B8:SBU2(側邊帶使用) • B9:VBUS(匯流排電源) • B10:SSRXn1(超高速差分對#2,RX1,負極) • B11:SSRXp1(超高速差分對#2,RX1,正極) • B12:GND(接地回路) 每個針腳在USB Type-C連接器中扮演特定的功能。例如,VBUS針腳(A4和A9,B4和B9)攜帶匯流排的電力,GND針腳(A1和A12,B1和B12)提供接地回路,而SSTX和SSRX針腳用於超高速數據傳輸。CC針腳(A5和B5)用於偵測線纜方向和功能配置,而SBU針腳(A8和B8)保留供未來使用。 在本實施例中,充電器中的電源傳輸控制器可以指定除VBUS針腳之外的其他針腳用於充電,例如TX1和RX1針腳。這些指定的針腳可以包括TX1和TX2針腳(+/-針腳),以及用於回流電流的GND針腳,如TX2和RX2(+/-針腳)。這使充電器能夠在增強充電模式下運作,並透過指定的針腳為電子裝置分配充電電流。 參考圖1和圖2,展示了本發明第一實施例的充電系統,該充電系統100包括一個充電器110和一個電子裝置120。充電器110包括一個電源傳輸控制器111、一條第一電源線112、一個USB Type-C連接器113,以及一個電源轉換器115。電子裝置120包括一條第二電源線121,該第二電源線121連接至USB Type-C連接器123上的指定針腳,該USB Type-C連接器123通過一條USB Type-C電纜(未顯示)連接至充電器110的USB Type-C連接器113。此外,第二電源線121將USB Type-C連接器123的指定針腳連接至電子裝置120的電源線122。 電源傳輸控制器111是充電器110的關鍵組件,它配置用以確定USB Type-C連接器113的哪些針腳用於充電。傳統上,USB Type-C連接器113的VBUS針腳用於充電。然而,在本發明中,電源傳輸控制器111具有指定除VBUS針腳之外的其他針腳用於充電的能力。此功能允許分配電流並安排更多針腳用於充電電子裝置120,從而運作在增強充電模式下。指定的針腳可以包括但不限於TX1針腳和TX2針腳。 第一電源線112將充電器110的電源線114連接至USB Type-C連接器113上的指定針腳。電源線114作為電流從電源轉換器115流向USB Type-C連接器113的通道。第一電源線112與指定針腳(TX1+/-針腳和TX2+/-針腳)之間的連接通過USB Type-C連接器113內的一系列電氣接點建立。這些接點確保了從第一電源線112到指定針腳的電流傳輸安全且高效。 在此實施例中,電源轉換器115是一個DC-DC轉換器,它是充電器110的組件之一,負責將AC-DC轉換器(未顯示)的直流輸出轉換成適合充電電子裝置120的較低或較高電壓的直流電。電源轉換器115可以設計為在廣泛的輸入電壓範圍內高效運作,提供充電過程的靈活性。換句話說,電源轉換器115可以根據負載條件提供不同的輸出電壓,這些負載條件包括電子裝置或各種電池包,如3.3V、5V、9V、12V、15V、19V、20V、24V、28V、32V、36V、42V、48V、52V、56V和58.8V。在某些實施例中,電源轉換器115也可以是一個直接連接到主電源的AC-DC轉換器。它將進來的交流電轉換成所需的直流輸出定電壓源(CV)或定電流源(CC)。 因此,本發明的充電系統100透過使用電源傳輸控制器111和第一電源線112,可以利用USB Type-C連接器113上除VBUS針腳之外的其他針腳來為電子裝置120充電。這允許一種增強充電模式,可以提供改善的充電性能。 請參考圖3A,充電系統200包括一個充電器210和一個電子裝置220。充電器210包括一個電源傳輸控制器211、一條帶有第一開關213的第一電源線212、以及一USB Type-C連接器214。電子裝置220包括一條帶有第二開關222的第二電源線221。上述這些開關可以使用各種類型的電子開關實現,如MOSFET、晶體管、繼電器或其他適合的組件。 第一電源線212上的第一開關213在充電器210的運作中起著關鍵作用。它能夠開啟以斷開第一電源線212,從而控制從充電器210到電子裝置220的電流流動。同樣地,第二電源線221上的第二開關222可以開啟以斷開第二電源線221,控制電子裝置220內的電流流動。 第一開關213和第二開關222的操作透過充電器210的電源傳輸控制器211和電子裝置220的電源傳輸控制器223之間的資訊交換協議(handshake mechanism)來協調。此資訊交換協議確認電子裝置220是否支持增強充電模式。如果電子裝置220支持增強充電模式,則第一電源線212上的第一開關213和電源線216上的第五開關216b被關閉,允許電力通過第一電源線212和第二電源線221流動並開始充電。 另一方面,如果電子裝置220不支持增強充電模式,則第一電源線212上的第一開關213被打開,斷開第一電源線212。在這種情況下,充電器210和電子裝置220恢復到標準PD充電。在標準PD充電期間,充電器210中的電源轉換器115的電源輸出通過電源線216導向USB Type-C連接器214的VBUS針腳。此資訊交換協議確保充電系統200能夠適應電子裝置220的能力,提供增強充電模式,並在必要時恢復到標準PD充電。 因此,本發明的充電系統200透過在第一電源線212上使用開關和資訊交換協議,可以根據電子裝置220的能力適應性地控制充電過程。這允許在電子裝置220支持時提供一種增強充電模式,從而提供改進的充電性能,以及當電子裝置220不支持時則提供標準充電模式。 在上述實施例中,重要的是要注意充電器210和電子裝置220都配備了信號線,具體來說分別是信號線219和信號線227。這些信號線連接到USB Type-C連接器214和Type-C連接器226,接觸到各種針腳,如CC1/CC2、DAT/CLK、RX/TX(UART)、CANBUS等。這些信號線的一部分,即:信號線219和信號線227,負責從電源傳輸控制器211和電源傳輸控制器223傳輸指令到開關。此外,在電子裝置220內部,信號線227還用於將信息傳輸給負載電路228。負載電路228代表消耗功率的裝置部分,如電腦處理器。另外,如果負載電路228是電池包,則信號線227主要是傳送電池資訊,包括電池電壓、充電電流與溫度等資訊。 值得一提的是,圖3A中對信號線219和信號線227的描述純粹是為了說明。業內專家會明白,在實際應用中信號線的實際布局會比圖中顯示的要複雜得多。這種簡化的表示法用於使圖式更清晰易懂。 在第二個實施例中,可選地在充電器210的電源線216上安裝第五開關216b。這種設計的目的是為了防止消費者錯誤地將充電器210連接到其他充電器。因此,第五開關216b確保它僅在充電器210連接到可充電裝置時導通。此外,還可以在電子裝置220的電源線224上可選地安裝第六開關225。這種設計確保第六開關225僅在充電器210提供的電壓與電子裝置220所需的電壓匹配時導通。 此外,電源傳輸控制器211能夠重新指定USB Type-C連接器214上各個針腳的功能,允許超越僅僅是電力傳輸的增強功能並同時兼顧資訊傳輸的需要。例如,D+/D-(Dp/Dn)針腳可以被重新指定為I2C(SDA/SCL)針腳或CANBUS(CANH/CANL) 針腳。SDA(串列數據)和SCL(串列時鐘)用於I2C通訊,一種串列通訊協定。通過重新指定這些針腳,充電器210和電子裝置220可以使用I2C協定進行通訊。這允許更複雜的通訊和電力要求的協商,增強了充電系統200的適應性。 同樣地,SBU1/SBU2針腳可以被重新指定為RX/TX(UART)或DAT/CLK針腳。RX和TX通常用於串列通訊,RX用於接收和TX則用於發送,而DAT/CLK可能指串列通訊協定中的數據和時鐘。這種重新指定可以用於更新充電器210的電源傳輸控制器211的韌體,使其能夠支援新的電力傳輸配置檔案或更好地為特定裝置優化電力傳輸。此外,通常用於以超高速接收數據的USB(通用串列匯流排)信號RX1+/-、RX2+/-針腳,可以被重新用作接地連接(GND)。這種重新指定可以增強充電系統200的穩定性。 總之,本發明的充電系統200通過電源傳輸控制器211和電源傳輸控制器223重新指定針腳功能,可以提供超越僅僅是電力傳輸的增強功能。這包括充電器210和電子裝置220之間更複雜的通訊,更新充電器210的韌體以優化電力傳輸的能力,以及通過將接收數據的針腳重新用作接地連接來增強系統穩定性。這些功能共同貢獻於一個更具適應性、效率和穩健的充電系統。 在某些實施例中,電流均衡(或電流共享)是確保電子裝置220有效且安全充電的關鍵方面。這是通過在第一電源線212上安裝一個電阻212a和在電源線216上安裝一個電阻216a來實現的。電阻212a和電阻216a分別策略性地放置在第一電源線212和電源線216上。當電源傳輸控制器211指定多個針腳用於充電時,這一點尤其重要,因為它確保沒有單一針腳承受過多電流,以免導致過熱或損壞。電阻212a和電阻216a的作用是限制通過第一電源線212和電源線216的電流量,從而確保兩條線路中的電流盡可能相等。此外,有一個電路(圖中未顯示)能夠檢測電流均衡的狀態,並在增強充電模式中發生意外不平衡電流時,立即或逐漸將充電電流降低到安全額定值(如低於3A或5A),以保護充電器210和電子裝置220。換句話說,它保持其中一條路徑的充電電流最高達到5A或3A。Type C電纜通常在具有e-mark IC時能夠承受5A,在沒有e-mark IC時能夠承受3A。此外,還有一個電路(圖中未顯示)能夠檢測第一電源線212對type C連接器的輸出電壓狀態,若在不該出現電壓時RX或TX pairs便出現電壓,那代表此路徑第一開關213發生異常,則應該停止電源的運作。比如剛開始開機,控制器尚未對第一開關213下達導通的指令然而卻出現輸出電壓5V,此時控制器便會強制關機,停止供電。 必要的訊號針腳也可以選擇性地增設防水、防高壓的保護機制。 因此,本發明的充電器210通過在第一電源線212和電源線216上策略性地放置電阻212a和電阻216a,實現了電流均衡,從而確保電子裝置220的充電過程安全、高效且穩健。請注意,放置電阻,亦即:採用下垂方法(droop method),並不是實現第二電源線216和第一電源線213兩條路徑之間電流共享的唯一方法。此應用的另一種方法是使用電流鏡像電路。 在某些實施例中,充電系統100, 200採用多階段充電模式作為其增強充電模式的一部分。這種多階段充電模式旨在優化充電過程,確保電子裝置120, 220被高效且安全地充電。請參考圖4,該圖說明了多階段充電模式的階段。該圖展示了充電系統200根據電子裝置220的充電狀態在各階段之間過渡,確保充電過程高效且安全。 多階段充電模式包含四個主要階段:滴充、預充、恆定電流的快速充電(以下簡稱CC快速充電)、以及恆壓充電。每個階段都有特定的電流和電壓參數,且充電系統100、200根據電子裝置220的充電狀態在這些階段之間過渡。 在滴充階段,充電器210向電子裝置220提供最低的恆定電流。這個階段通常用於電子裝置220的電池深度放電時。低電流確保電池被溫和地提升到更安全的充電水平。一旦電池達到一定的充電水平,充電系統200過渡到預充階段。在這個階段,充電器210向電子裝置220提供更高的恆定電流。這有助於進一步提高電池的充電水平。 CC快速充電階段跟隨預充階段。在這個階段,充電器210向電子裝置220提供更高的恆定電流。這個階段旨在快速將電池充至其容量的相當大的百分比。一旦電子裝置220達到一定的充電水平,充電系統200從CC快充階段過渡到恆壓充電階段。在恆壓充電階段,充電器210提供的電壓保持恆定,但電流繼續減少。這個階段確保電池充滿電而不會過充,過充可能導致損壞。 除了這四個階段外,在某些實施例中,多階段充電模式還包括一個安全計時器階段,如圖4所示。這個階段旨在防止過充,過充可能損害電子裝置220或降低充電過程的效率。當充電電流低於某一特定值時,安全計時器階段被觸發。如果發生這種情況,充電過程將被終止以防止任何潛在問題,並在觸發恆壓充電階段之前經過特定時間。 總之,本發明的充電系統100、200通過實施多階段充電模式,確保電子裝置120、220被高效且安全地充電。這種方法優化了充電過程,延長了電池的壽命,並增強了整體用戶體驗。 在圖3B中,負載電路為電池包(Battery Pack)228’,電池包228’的內部電路可以拆分為電池管理系統2281、電量計電路2282、及電池組2283。換言之,電池包228’就是圖3A之負載電路228的一種型態。本設計透過電源傳輸控制器 223向電池包228’溝通,取得電池組2283的電池狀態資訊,這些電池狀態資訊例如為:目標充電電壓與電流、當下的充電電壓與電流、剩餘電量、溫度、老化程度等。接著,電源傳輸控制器 223會根據電池規格與當下的電池狀態,將這些訊息經過運算後,回傳「汲電需求」或直接回傳到電源傳輸控制器211,由電源傳輸控制器211決定「供電能力」。而本質上這些互動的結果便是圖4所展示的充電曲線,意即電源傳輸控制器 223是根據電池組2283當下的狀態來決定充電條件。比如剩餘電量非常低的時候,適切的充電條件應當設定為滴充。又比如電池狀態非常好的時候,也可以按使用者需求設定為短時間的快速充電或標準充電;然而,當當電池溫度偏高時,充電條件也會降低為慢充。慢充雖未顯示在圖4中,但其實就是充電的電流大小比快速充電還低,例如為電流大小為快速充電時的0.5倍或更低。因此,電源傳輸控制器223是不斷地跟電池包228’溝通,並根據電池組2283狀態回傳適切的充電命令到電源傳輸控制器211,讓充電器210提供符合需求的充電條件。 電源傳輸控制器211收到來自電源傳輸控制器 223的充電命令後,便會根據目標充電電壓透過訊號線219提高電源轉換器115的輸出電壓。而電源傳輸控制器211在提高電源轉換器115的輸出電壓的同時,也會同時不斷地偵測流過電阻212a和電阻216a的電流,使電阻212a和電阻216a加總的充電電流與目標充電電流可以吻合。當充電電流不大時,比如低於5A的條件,電源線213和電源線216可以選擇性地只有導通一臂,也可以都導通。萬一加總的電流超過目標充電電流,便會進一步的減少充電電流或關閉,使其能維持一定的充電安全。 另外一種更簡單的做法,可以在電源傳輸控制器223設定好各種充電模式,並且給予各個充電模式一個專屬的ID。而電池包也儲存著適合自己的充電模式ID。電源傳輸控制器223透過讀取以及比對電池包的ID,便能回傳訊息給電源傳輸控制器211,請電源轉換器115提供電池包正確的充電模式。 在圖3B中,必須使用像圖3A所示的充電器210才能對電池包228’進行充電。為了能讓一般符合PD的標準規範的充電器也能對電池包228’進行充電,可如圖3C所示,在USB type-C 連接器226與電池包228’加入一個第三開關229與DC/DC轉換電路230,其是與第二開關222相並聯。當插入USB type-C 連接器226的充電器是標準的PD充電器時,則可以透過第三開關229的導通,然後經由DC/DC轉換電路230將USB type-C標準充電器的輸出電壓轉為電池組2283所需要的充電電壓,並按照該USB type-C標準充電器的額定功率選擇性地作為對該電池組2283充電的功率上限(但仍要按照電池容量可接受的充電功率上限為依據)。當插入USB type-C 連接器226的外接裝置是用電設備時,本裝置也可以選擇性地扮演行動電源的角色,意即可透過第三開關229的導通,然後經由DC/DC轉換電路230將電池組2283的電壓轉為用電設備所需要的充電電壓,進而對外接裝置充電。 在某些實施例中,本發明的充電系統100、200納入了睡眠模式,以最小化當充電器210與電子裝置110、220斷開連接或退出其運作模式時的功耗。這一功能旨在節省能源並提高充電系統100、200的整體效率。 當充電器210與電子裝置220斷開連接,或當充電器210退出其運作模式時,電源轉換器115的輸出電壓將降低到最低允許工作值。輸出電壓的降低觸發電源傳輸控制器211進入睡眠模式。在此模式下,電源傳輸控制器211最小化其活動,從而降低了充電器210的功耗。輸出電壓的最低允許工作值在該實施例中為3.3V。這個值被選擇以確保電源傳輸控制器211在睡眠模式下仍然可以維持其基本功能,但不會消耗過多電力。 充電器210的運作模式由效率水平定義。具體來說,當充電器210維持在90%~91%的效率水平以上並有一定的滯後時,認為它處於其運作模式。這高效率水平確保充電器210有效地將電力轉換給電子裝置220,同時最小化能量浪費。 因此,本發明的充電系統100、200通過實施睡眠模式和高效率運作模式,確保最佳的電力使用。這種方法不僅節省能源,還提高了充電器210的整體性能和壽命。 充電器210與輸出功率相關的效率進一步在圖5中說明。圖5以輸出功率為x軸,效率為y軸,展示了兩條曲線,分別代表充電器210插入115V插座和230V插座時的效率-輸出功率關係。圖表清楚地顯示,隨著輸出功率的增加,充電器210的效率也增加。值得注意的是,一旦輸出功率超過45W,效率超過90%閾值,表明充電器210已進入其運作模式。這種高效率運作模式確保充電器210在最小化能量浪費的同時有效地向電子裝置220提供電力。 當輸出功率低於45W時,效率迅速降至90%以下,且充電器210退出其運作模式。此時,電源轉換器115的輸出電壓降至最低允許工作值3.3V,電源傳輸控制器211進入睡眠模式以最小化功耗。不同的輸出電壓水平可以基於效率有不同的觸發點進入睡眠模式。例如,當輸出電壓為5V時,效率的觸發點可以設定為80%。 總之,圖5提供了一個視覺表示,展示了充電器210的效率如何隨輸出功率變化,以及這種關係如何影響充電器210的運作模式和睡眠模式。這個圖進一步強調了本發明充電系統200的節能好處。 因此,充電器在圖3A到圖3C系列這些實施例提供了一種靈活且可適應的充電解決方案,可以滿足不同系統裝置的特定需求,無論是最大化充電電流還是保留某些針腳的數據傳輸功能。 應該注意的是,圖4中描繪的多階段充電模式不僅限於前面實施例中描述的充電器。任何配備USB Type-C連接器的充電器都可以實施多階段充電模式。換句話說,多階段充電模式適用於廣泛的使用USB Type-C連接器的充電器。此外,如圖6所示,CC快充階段可以進一步包含多個分層階段。每個分層階段以階梯式方式從更高的恆定電流過渡到更低的恆定電流。例如,在CC快充階段期間,分層階段可以按照1C、0.5C和0.3C的順序逐步減少。所謂1C代表以1小時充飽電池的充電電流倍率。在CC快速充電階段,這種階梯式的電流減少可以減少整體充電時間。 在上述實施例的實際實施中,可以利用來自不同製造商的現有產品,從而消除了從頭開始設計新IC的需要。例如,充電器中的電源傳輸控制器可以是Weltrend的產品,如WT6676或WT6677,或是Infineon的產品,如EZ-PD™ PMG1-S3,或是Leadtrend的產品,如LT6617。同樣,電子裝置中的電源傳輸控制器可以是Infineon的產品,如EZ-PD™ CCG8、Etron EJ899。這些產品可以通過韌體更新來實現開關的控制,設定不同的充電模式以及為針腳設置新功能,如指定某些針腳用於電力傳輸。此外,電源轉換器可以是德州儀器(TI)的產品,如LM5145或LM5146。應強調的是,這些僅僅是示例,本發明的實施不限於這些特定產品。其他具有類似功能的產品也可以根據特定應用的要求使用。 在這些實施例中提到的電子裝置,可以包括廣泛的裝置範圍,包括但不限於筆記型電腦、智慧手機、電動自行車、電動滑板車、家用電器和電動工具等。這些電子裝置每一個都有其獨特的電力需求,而本發明的充電器旨在滿足這些不同的需求。特別是對於需要大量電力的電子裝置,如電動自行車和電動工具,充電器可以提供顯著的優勢。通過利用增強充電模式和指定額外針腳進行電力傳輸,充電器可以提供比使用USB Type-C連接器的典型充電器更高的充電電流。這允許更快和更高效地為高功率裝置充電,改善用戶體驗和裝置性能。 此外,充電器在指定針腳進行電力傳輸或數據傳輸方面的靈活性,以及其在不同充電模式下運作的能力,使其成為一種多功能的充電解決方案。它可以適應其正在充電的電子裝置的特定需求,無論該電子裝置是需要數據傳輸功能的筆記型電腦,還是需要高充電電流的電動滑板車。 總之,本發明的充電器相較於傳統的USB Type-C充電器提供了顯著的改進,提供了增強的充電能力和靈活性,能夠滿足廣泛的電子裝置需求。 雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The invention is best understood with reference to the detailed description and accompanying drawings set forth herein. Various embodiments are discussed below with reference to the accompanying drawings. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to the accompanying drawings is for illustrative purposes only, as the methods and apparatus may extend beyond the described embodiments. For example, the teachings given and the requirements of a particular application may yield a variety of optional and suitable methods to implement the functionality of any detail described herein. Therefore, any method may extend beyond the specific implementation options described and illustrated in the following embodiments. The USB Type-C connector, also known as USB-C, is a type of USB (Universal Serial Bus) connector that has become popular in recent years due to its reversible plug orientation. It is designed to be small enough to fit in the charging port of a smartphone, but rugged enough to connect to larger devices such as laptops and desktop computers. Refer to Figure 1. Figure 1 shows the pin layout of the USB Type-C connector. The USB Type-C connector has a 24-pin design, 12 pins on each side, mirrored to ensure reversibility of the plug. In Figure 1, the designated name and function of each pin is indicated. The pin assignments are as follows: Type-C Receptacle A Pinout: A1: GND (Ground Return) A2: SSTXp1 (SuperSpeed Differential Pair #1, TX1+, Positive) A3: SSTXn1 (SuperSpeed Differential Pair #1, TX1-, Negative) A4: VBUS (Bus Power) A5: CC1 (Configuration Channel) A6: Dp1 (USB 2.0 Differential Pair, Position 1, D+, Positive) A7: Dn1 (USB 2.0 differential pair, position 1, D-, negative) A8: SBU1 (for sideband use) A9: VBUS (bus power) A10: SSRXn2 (SuperSpeed differential pair #4, RX2-, negative) A11: SSRXp2 (SuperSpeed differential pair #4, RX2+, positive) A12: GND (ground return) Type-C socket B pin layout: B1: GND (ground return) B2: SSTXp2 (SuperSpeed differential pair #3, TX2, positive) B3: SSTXn2 (SuperSpeed differential pair #3, TX2, negative) B4: VBUS (bus power) B5: CC2 (configuration channel) B6: Dp2 (USB 2.0 differential pair, position 2, D, positive) B7: Dn2 (USB 2.0 differential pair, position 2, D, negative) B8: SBU2 (sideband use) B9: VBUS (bus power) B10: SSRXn1 (SuperSpeed differential pair #2, RX1, negative) B11: SSRXp1 (SuperSpeed differential pair #2, RX1, positive) B12: GND (ground return) Each pin plays a specific function in the USB Type-C connector. For example, the VBUS pins (A4 and A9, B4 and B9) carry power to the bus, the GND pins (A1 and A12, B1 and B12) provide a ground return, and the SSTX and SSRX pins are used for SuperSpeed data transmission. The CC pins (A5 and B5) are used to detect cable direction and functional configuration, while the SBU pins (A8 and B8) are reserved for future use. In this embodiment, the power transfer controller in the charger can designate other pins other than the VBUS pin for charging, such as the TX1 and RX1 pins. These designated pins may include TX1 and TX2 pins (+/- pins), as well as GND pins for return current, such as TX2 and RX2 (+/- pins). This enables the charger to operate in enhanced charging mode and distribute charging current to the electronic device through designated pins. Referring to Figures 1 and 2, a charging system of a first embodiment of the present invention is shown, and the charging system 100 includes a charger 110 and an electronic device 120. The charger 110 includes a power delivery controller 111, a first power line 112, a USB Type-C connector 113, and a power converter 115. The electronic device 120 includes a second power line 121, which is connected to a designated pin on a USB Type-C connector 123, which is connected to the USB Type-C connector 113 of the charger 110 through a USB Type-C cable (not shown). In addition, the second power line 121 connects the designated pin of the USB Type-C connector 123 to the power line 122 of the electronic device 120. The power delivery controller 111 is a key component of the charger 110, and is configured to determine which pins of the USB Type-C connector 113 are used for charging. Traditionally, the VBUS pin of the USB Type-C connector 113 is used for charging. However, in the present invention, the power transfer controller 111 has the ability to designate other pins other than the VBUS pin for charging. This function allows the current to be distributed and more pins to be arranged for charging the electronic device 120, thereby operating in an enhanced charging mode. The designated pins may include but are not limited to the TX1 pin and the TX2 pin. The first power cord 112 connects the power cord 114 of the charger 110 to the designated pin on the USB Type-C connector 113. The power cord 114 serves as a channel for current to flow from the power converter 115 to the USB Type-C connector 113. The connection between the first power line 112 and the designated pins (TX1+/- pins and TX2+/- pins) is established through a series of electrical contacts within the USB Type-C connector 113. These contacts ensure that the current transmission from the first power line 112 to the designated pins is safe and efficient. In this embodiment, the power converter 115 is a DC-DC converter, which is one of the components of the charger 110 and is responsible for converting the DC output of the AC-DC converter (not shown) into a lower or higher voltage DC power suitable for charging the electronic device 120. The power converter 115 can be designed to operate efficiently over a wide range of input voltages, providing flexibility in the charging process. In other words, the power converter 115 can provide different output voltages according to load conditions, such as 3.3V, 5V, 9V, 12V, 15V, 19V, 20V, 24V, 28V, 32V, 36V, 42V, 48V, 52V, 56V, and 58.8V. In some embodiments, the power converter 115 can also be an AC-DC converter directly connected to the main power source. It converts the incoming AC power into the required DC output constant voltage source (CV) or constant current source (CC). Therefore, the charging system 100 of the present invention can charge the electronic device 120 using other pins on the USB Type-C connector 113 except the VBUS pin by using the power transfer controller 111 and the first power line 112. This allows an enhanced charging mode that can provide improved charging performance. Referring to Figure 3A, the charging system 200 includes a charger 210 and an electronic device 220. The charger 210 includes a power transfer controller 211, a first power line 212 with a first switch 213, and a USB Type-C connector 214. The electronic device 220 includes a second power line 221 with a second switch 222. The above switches can be implemented using various types of electronic switches, such as MOSFETs, transistors, relays or other suitable components. The first switch 213 on the first power line 212 plays a key role in the operation of the charger 210. It can be turned on to disconnect the first power line 212, thereby controlling the flow of current from the charger 210 to the electronic device 220. Similarly, the second switch 222 on the second power line 221 can be turned on to disconnect the second power line 221, controlling the flow of current within the electronic device 220. The operation of the first switch 213 and the second switch 222 is coordinated through a handshake mechanism between the power transfer controller 211 of the charger 210 and the power transfer controller 223 of the electronic device 220. This handshake mechanism confirms whether the electronic device 220 supports the enhanced charging mode. If the electronic device 220 supports the enhanced charging mode, the first switch 213 on the first power line 212 and the fifth switch 216b on the power line 216 are closed, allowing power to flow through the first power line 212 and the second power line 221 and start charging. On the other hand, if the electronic device 220 does not support the enhanced charging mode, the first switch 213 on the first power line 212 is opened, disconnecting the first power line 212. In this case, the charger 210 and the electronic device 220 revert to standard PD charging. During standard PD charging, the power output of the power converter 115 in the charger 210 is directed to the VBUS pin of the USB Type-C connector 214 through the power line 216. This information exchange protocol ensures that the charging system 200 can adapt to the capabilities of the electronic device 220, provide an enhanced charging mode, and revert to standard PD charging when necessary. Therefore, the charging system 200 of the present invention can adaptively control the charging process according to the capabilities of the electronic device 220 by using switches and an information exchange protocol on the first power line 212. This allows an enhanced charging mode to be provided when the electronic device 220 supports it, thereby providing improved charging performance, and a standard charging mode to be provided when the electronic device 220 does not support it. In the above-mentioned embodiments, it is important to note that both the charger 210 and the electronic device 220 are equipped with signal lines, specifically signal line 219 and signal line 227, respectively. These signal lines are connected to the USB Type-C connector 214 and the Type-C connector 226, and contact various pins, such as CC1/CC2, DAT/CLK, RX/TX (UART), CANBUS, etc. A portion of these signal lines, namely, signal line 219 and signal line 227, are responsible for transmitting instructions from the power transfer controller 211 and the power transfer controller 223 to the switch. In addition, inside the electronic device 220, the signal line 227 is also used to transmit information to the load circuit 228. The load circuit 228 represents the part of the device that consumes power, such as a computer processor. In addition, if the load circuit 228 is a battery pack, the signal line 227 mainly transmits battery information, including information such as battery voltage, charging current, and temperature. It is worth mentioning that the description of signal line 219 and signal line 227 in FIG. 3A is purely for illustration. Industry experts will understand that the actual layout of the signal lines in actual applications will be much more complicated than shown in the figure. This simplified representation is used to make the diagram clearer and easier to understand. In a second embodiment, a fifth switch 216b is optionally installed on the power cord 216 of the charger 210. The purpose of this design is to prevent consumers from mistakenly connecting the charger 210 to other chargers. Therefore, the fifth switch 216b ensures that it is only turned on when the charger 210 is connected to a rechargeable device. In addition, a sixth switch 225 can be optionally installed on the power cord 224 of the electronic device 220. This design ensures that the sixth switch 225 is turned on only when the voltage provided by the charger 210 matches the voltage required by the electronic device 220. In addition, the power transfer controller 211 is able to reassign the functions of various pins on the USB Type-C connector 214, allowing enhanced functions beyond just power transfer while taking into account the needs of information transfer. For example, the D+/D- (Dp/Dn) pins can be reassigned as I2C (SDA/SCL) pins or CANBUS (CANH/CANL) pins. SDA (serial data) and SCL (serial clock) are used for I2C communication, a serial communication protocol. By reassigning these pins, the charger 210 and the electronic device 220 can communicate using the I2C protocol. This allows for more complex communication and negotiation of power requirements, enhancing the adaptability of the charging system 200. Similarly, the SBU1/SBU2 pins can be reassigned as RX/TX (UART) or DAT/CLK pins. RX and TX are typically used for serial communications, with RX used for receiving and TX used for transmitting, and DAT/CLK may refer to data and clock in a serial communication protocol. This reassignment can be used to update the firmware of the power transfer controller 211 of the charger 210 so that it can support new power transfer profiles or better optimize power transfer for a particular device. In addition, the USB (Universal Serial Bus) signal RX1+/-, RX2+/- pins, which are typically used to receive data at super speed, can be re-used as ground connections (GND). This reassignment can enhance the stability of the charging system 200. In summary, the charging system 200 of the present invention can provide enhanced functionality beyond just power transfer by reassigning pin functionality through the power transfer controller 211 and the power transfer controller 223. This includes more complex communication between the charger 210 and the electronic device 220, the ability to update the firmware of the charger 210 to optimize power transfer, and enhanced system stability by reusing pins that receive data as ground connections. These features collectively contribute to a more adaptable, efficient, and robust charging system. In some embodiments, current balancing (or current sharing) is a key aspect of ensuring that the electronic device 220 is charged efficiently and safely. This is accomplished by installing a resistor 212a on the first power line 212 and a resistor 216a on the power line 216. Resistor 212a and resistor 216a are strategically placed on the first power line 212 and power line 216, respectively. This is particularly important when the power transfer controller 211 designates multiple pins for charging, as it ensures that no single pin is subjected to too much current to avoid overheating or damage. The role of resistor 212a and resistor 216a is to limit the amount of current passing through the first power line 212 and power line 216, thereby ensuring that the current in the two lines is as equal as possible. In addition, there is a circuit (not shown) that can detect the state of current balance and immediately or gradually reduce the charging current to a safe rated value (such as less than 3A or 5A) when an unexpected unbalanced current occurs in the enhanced charging mode to protect the charger 210 and the electronic device 220. In other words, it keeps the charging current of one path up to 5A or 3A. The Type C cable can usually withstand 5A when there is an e-mark IC and 3A when there is no e-mark IC. In addition, there is a circuit (not shown in the figure) that can detect the output voltage status of the first power line 212 to the type C connector. If the voltage appears in the RX or TX pairs when it should not appear, it means that the first switch 213 of this path is abnormal, and the power supply should be stopped. For example, when the machine is just started, the controller has not yet issued a command to turn on the first switch 213, but the output voltage appears to be 5V. At this time, the controller will force the machine to shut down and stop supplying power. The necessary signal pins can also be optionally equipped with waterproof and high-voltage protection mechanisms. Therefore, the charger 210 of the present invention achieves current balancing by strategically placing resistors 212a and 216a on the first power line 212 and the power line 216, thereby ensuring that the charging process of the electronic device 220 is safe, efficient and stable. Please note that placing resistors, that is, adopting the droop method, is not the only way to achieve current sharing between the two paths of the second power line 216 and the first power line 213. Another method of this application is to use a current mirror circuit. In some embodiments, the charging system 100, 200 adopts a multi-stage charging mode as part of its enhanced charging mode. This multi-stage charging mode is intended to optimize the charging process and ensure that the electronic devices 120, 220 are charged efficiently and safely. Please refer to Figure 4, which illustrates the stages of the multi-stage charging mode. The figure shows that the charging system 200 transitions between the stages according to the charging status of the electronic device 220 to ensure that the charging process is efficient and safe. The multi-stage charging mode includes four main stages: trickle charging, pre-charging, constant current fast charging (hereinafter referred to as CC fast charging), and constant voltage charging. Each stage has specific current and voltage parameters, and the charging systems 100, 200 transition between these stages according to the charging status of the electronic device 220. In the trickle charging stage, the charger 210 provides the lowest constant current to the electronic device 220. This stage is usually used when the battery of the electronic device 220 is deeply discharged. The low current ensures that the battery is gently brought to a safer charge level. Once the battery reaches a certain charge level, the charging system 200 transitions to the pre-charge phase. In this phase, the charger 210 provides a higher constant current to the electronic device 220. This helps to further increase the battery's charge level. The CC fast charge phase follows the pre-charge phase. In this phase, the charger 210 provides a higher constant current to the electronic device 220. This phase is intended to quickly charge the battery to a significant percentage of its capacity. Once the electronic device 220 reaches a certain charge level, the charging system 200 transitions from the CC fast charge phase to the constant voltage charge phase. During the constant voltage charging phase, the voltage provided by the charger 210 remains constant, but the current continues to decrease. This phase ensures that the battery is fully charged without overcharging, which may cause damage. In addition to these four phases, in some embodiments, the multi-stage charging mode also includes a safety timer phase, as shown in Figure 4. This phase is intended to prevent overcharging, which may damage the electronic device 220 or reduce the efficiency of the charging process. The safety timer phase is triggered when the charging current falls below a certain value. If this happens, the charging process will be terminated to prevent any potential problems, and a specific time will pass before the constant voltage charging phase is triggered. In summary, the charging systems 100, 200 of the present invention ensure that the electronic devices 120, 220 are charged efficiently and safely by implementing a multi-stage charging mode. This method optimizes the charging process, extends the life of the battery, and enhances the overall user experience. In Figure 3B, the load circuit is a battery pack (Battery Pack) 228', and the internal circuit of the battery pack 228' can be divided into a battery management system 2281, a fuel meter circuit 2282, and a battery pack 2283. In other words, the battery pack 228' is a type of the load circuit 228 of Figure 3A. This design communicates with the battery pack 228' through the power transmission controller 223 to obtain the battery status information of the battery pack 2283. Such battery status information includes, for example, the target charging voltage and current, the current charging voltage and current, the remaining power, the temperature, the aging degree, etc. Then, the power transmission controller 223 will calculate these information according to the battery specifications and the current battery status, and return the "power draw requirement" or directly return it to the power transmission controller 211, and the power transmission controller 211 will determine the "power supply capability". In essence, the result of these interactions is the charging curve shown in FIG. 4, which means that the power transmission controller 223 determines the charging conditions according to the current status of the battery pack 2283. For example, when the remaining power is very low, the appropriate charging condition should be set to trickle charging. For example, when the battery condition is very good, it can also be set to short-term fast charging or standard charging according to user needs; however, when the battery temperature is high, the charging condition will be reduced to slow charging. Although slow charging is not shown in FIG. 4 , it is actually a charging current lower than that of fast charging, for example, 0.5 times or less of the current of fast charging. Therefore, the power transmission controller 223 continuously communicates with the battery pack 228′ and returns appropriate charging commands to the power transmission controller 211 according to the status of the battery pack 2283, so that the charger 210 provides charging conditions that meet the requirements. After receiving the charging command from the power transmission controller 223, the power transmission controller 211 will increase the output voltage of the power converter 115 through the signal line 219 according to the target charging voltage. While the power transmission controller 211 increases the output voltage of the power converter 115, it will also continuously detect the current flowing through the resistor 212a and the resistor 216a, so that the total charging current of the resistor 212a and the resistor 216a can match the target charging current. When the charging current is not large, such as less than 5A, the power line 213 and the power line 216 can selectively have only one arm turned on, or both arms can be turned on. In the event that the total current exceeds the target charging current, the charging current will be further reduced or turned off so that a certain charging safety can be maintained. Another simpler approach is to set various charging modes in the power transmission controller 223 and give each charging mode a unique ID. The battery pack also stores the charging mode ID that suits it. The power transmission controller 223 can send back information to the power transmission controller 211 by reading and comparing the ID of the battery pack, asking the power converter 115 to provide the battery pack with the correct charging mode. In FIG. 3B , the charger 210 shown in FIG. 3A must be used to charge the battery pack 228 ′. In order to allow a charger that generally complies with the PD standard to charge the battery pack 228 ′, a third switch 229 and a DC/DC conversion circuit 230 can be added between the USB type-C connector 226 and the battery pack 228 ′, as shown in FIG. 3C , which is connected in parallel with the second switch 222 . When the charger inserted into the USB type-C connector 226 is a standard PD charger, the output voltage of the USB type-C standard charger can be converted into the charging voltage required by the battery pack 2283 through the DC/DC conversion circuit 230 by turning on the third switch 229, and the rated power of the USB type-C standard charger can be selectively used as the upper limit of the power for charging the battery pack 2283 (but still based on the upper limit of the charging power acceptable to the battery capacity). When the external device inserted into the USB type-C connector 226 is a power-consuming device, the present device can also selectively play the role of a mobile power source, that is, the voltage of the battery pack 2283 can be converted into the charging voltage required by the power-consuming device through the DC/DC conversion circuit 230 by turning on the third switch 229, thereby charging the external device. In certain embodiments, the charging system 100, 200 of the present invention incorporates a sleep mode to minimize power consumption when the charger 210 is disconnected from the electronic device 110, 220 or exits its operating mode. This feature is intended to save energy and improve the overall efficiency of the charging system 100, 200. When the charger 210 is disconnected from the electronic device 220, or when the charger 210 exits its operating mode, the output voltage of the power converter 115 will be reduced to the minimum allowable operating value. The reduction in output voltage triggers the power transfer controller 211 to enter sleep mode. In this mode, the power transfer controller 211 minimizes its activity, thereby reducing the power consumption of the charger 210. The minimum allowable operating value of the output voltage is 3.3V in this embodiment. This value is selected to ensure that the power transfer controller 211 can still maintain its basic functions in sleep mode but does not consume too much power. The operating mode of the charger 210 is defined by the efficiency level. Specifically, when the charger 210 maintains an efficiency level above 90%~91% with a certain hysteresis, it is considered to be in its operating mode. This high efficiency level ensures that the charger 210 effectively converts power to the electronic device 220 while minimizing energy waste. Therefore, the charging system 100, 200 of the present invention ensures optimal power usage by implementing a sleep mode and a high-efficiency operating mode. This approach not only saves energy, but also improves the overall performance and life of the charger 210. The efficiency of the charger 210 related to the output power is further illustrated in Figure 5. FIG5 shows two curves with output power as the x-axis and efficiency as the y-axis, representing the efficiency-output power relationship when the charger 210 is plugged into a 115V socket and a 230V socket, respectively. The graph clearly shows that as the output power increases, the efficiency of the charger 210 also increases. It is worth noting that once the output power exceeds 45W, the efficiency exceeds the 90% threshold, indicating that the charger 210 has entered its operating mode. This high-efficiency operating mode ensures that the charger 210 effectively provides power to the electronic device 220 while minimizing energy waste. When the output power is less than 45W, the efficiency quickly drops below 90%, and the charger 210 exits its operating mode. At this time, the output voltage of the power converter 115 drops to the minimum allowable operating value of 3.3V, and the power transmission controller 211 enters sleep mode to minimize power consumption. Different output voltage levels can have different trigger points for entering sleep mode based on efficiency. For example, when the output voltage is 5V, the trigger point for efficiency can be set to 80%. In summary, Figure 5 provides a visual representation of how the efficiency of the charger 210 varies with the output power and how this relationship affects the operating mode and sleep mode of the charger 210. This figure further emphasizes the energy saving benefits of the charging system 200 of the present invention. Therefore, the charger in the series of embodiments of Figures 3A to 3C provides a flexible and adaptable charging solution that can meet the specific needs of different system devices, whether it is maximizing the charging current or retaining data transmission capabilities of certain pins. It should be noted that the multi-stage charging mode depicted in Figure 4 is not limited to the chargers described in the previous embodiments. Any charger equipped with a USB Type-C connector can implement the multi-stage charging mode. In other words, the multi-stage charging mode is applicable to a wide range of chargers that use USB Type-C connectors. In addition, as shown in Figure 6, the CC fast charging stage can further include multiple hierarchical stages. Each hierarchical stage transitions from a higher constant current to a lower constant current in a stepped manner. For example, during the CC fast charging stage, the hierarchical stages can be gradually reduced in the order of 1C, 0.5C, and 0.3C. The so-called 1C represents the charging current rate that fully charges the battery in 1 hour. In the CC fast charging stage, this stepped current reduction can reduce the overall charging time. In the actual implementation of the above embodiment, existing products from different manufacturers can be utilized, thereby eliminating the need to design new ICs from scratch. For example, the power transfer controller in the charger can be a Weltrend product, such as WT6676 or WT6677, or an Infineon product, such as EZ-PD™ PMG1-S3, or a Leadtrend product, such as LT6617. Similarly, the power transfer controller in the electronic device can be an Infineon product, such as EZ-PD™ CCG8, Etron EJ899. These products can be updated with firmware to achieve control of switches, set different charging modes, and set new functions for pins, such as specifying certain pins for power transfer. In addition, the power converter can be a Texas Instruments (TI) product, such as LM5145 or LM5146. It should be emphasized that these are merely examples, and the implementation of the present invention is not limited to these specific products. Other products with similar functions may also be used depending on the requirements of a particular application. The electronic devices mentioned in these embodiments may include a wide range of devices, including but not limited to laptops, smart phones, electric bicycles, electric scooters, household appliances, and power tools, etc. Each of these electronic devices has its own unique power requirements, and the charger of the present invention is intended to meet these different needs. In particular, for electronic devices that require a lot of power, such as electric bicycles and power tools, the charger can provide significant advantages. By utilizing the enhanced charging mode and designating additional pins for power transmission, the charger can provide a higher charging current than a typical charger using a USB Type-C connector. This allows for faster and more efficient charging of high-power devices, improving user experience and device performance. Additionally, the charger's flexibility in designating pins for power transfer or data transfer, as well as its ability to operate in different charging modes, makes it a versatile charging solution. It can adapt to the specific needs of the electronic device it is charging, whether that electronic device is a laptop that requires data transfer capabilities or an electric scooter that requires a high charging current. In summary, the charger of the present invention provides a significant improvement over traditional USB Type-C chargers, providing enhanced charging capabilities and flexibility to meet a wide range of electronic device needs. Although the present invention has been disclosed as above with preferred embodiments, they are not intended to limit the present invention. Any person with ordinary knowledge in the relevant technical field may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the attached patent application.

100:充電系統 110:充電器 111:電源傳輸控制器 112:第一電源線 113:USB Type-C連接器 114:電源線 115:電源轉換器 120:電子裝置 121:第二電源線 122:電源線 123:USB Type-C連接器 200:充電系統 210:充電器 211:電源傳輸控制器 212:第一電源線 213:第一開關 214:USB Type-C連接器 216:電源線 216a:電阻 216b:第五開關 219:信號線 220:電子裝置 221:第二電源線 222:第二開關 223:電源傳輸控制器 224:電源線 225:第六開關 226:Type-C連接器 227:信號線 228:負載電路 228’:電池包 2281:電池管理系統 2282:電量計電路 2283:電池組 229:第三開關 230:DC/DC轉換電路 310:充電器 410:充電器 100: Charging system 110: Charger 111: Power transmission controller 112: First power line 113: USB Type-C connector 114: Power line 115: Power converter 120: Electronic device 121: Second power line 122: Power line 123: USB Type-C connector 200: Charging system 210: Charger 211: Power transmission controller 212: First power line 213: First switch 214: USB Type-C connector 216: Power line 216a: Resistor 216b: Fifth switch 219: Signal line 220: Electronic device 221: Second power line 222: Second switch 223: Power transmission controller 224: Power cord 225: Sixth switch 226: Type-C connector 227: Signal line 228: Load circuit 228’: Battery pack 2281: Battery management system 2282: Fuel meter circuit 2283: Battery pack 229: Third switch 230: DC/DC conversion circuit 310: Charger 410: Charger

下文將根據附圖來描述各種實施例,所述附圖是用來說明而不是用以任何方式來限制範圍,其中相似的標號表示相似的元件,且圖式簡單說明如下: 圖1顯示USB Type-C連接器的針腳布局。 圖2展示本發明第一實施例的充電系統。 圖3A展示本發明第二實施例的充電系統。 圖3B展示本發明第二實施例的充電系統之電子裝置的變形。 圖3C展示本發明第二實施例的充電系統之電子裝置的另一變形。 圖4說明多階段充電模式的階段。 圖5提供一個視覺表現,展示充電器的效率如何隨輸出功率變化。 圖6說明另一個多階段充電模式的階段。 Various embodiments will be described below with reference to the accompanying drawings, which are for illustration and not intended to limit the scope in any way, wherein like reference numerals represent like elements, and the drawings are briefly described as follows: FIG. 1 shows the pin layout of the USB Type-C connector. FIG. 2 shows the charging system of the first embodiment of the present invention. FIG. 3A shows the charging system of the second embodiment of the present invention. FIG. 3B shows a variation of the electronic device of the charging system of the second embodiment of the present invention. FIG. 3C shows another variation of the electronic device of the charging system of the second embodiment of the present invention. FIG. 4 illustrates the stages of a multi-stage charging mode. FIG. 5 provides a visual representation showing how the efficiency of the charger varies with the output power. FIG. 6 illustrates the stages of another multi-stage charging mode.

200:充電系統 200: Charging system

210:充電器 210: Charger

211:電源傳輸控制器 211: Power transfer controller

212:第一電源線 212: First power line

213:第一開關 213: First switch

214:USB Type-C連接器 214: USB Type-C connector

215:第四開關 215: The fourth switch

216:電源線 216: Power cord

216a:電阻 216a:Resistance

216b:第五開關 216b: The fifth switch

219:信號線 219:Signal line

220:電子裝置 220: Electronic devices

221:第二電源線 221: Second power line

222:第二開關 222: Second switch

223:電源傳輸控制器 223: Power transfer controller

224:電源線 224: Power cord

225:第六開關 225:Sixth switch

226:Type-C連接器 226: Type-C connector

227:信號線 227:Signal line

228:負載電路 228: Load circuit

Claims (19)

一種電子裝置用充電器,該充電器包括: 一電源傳輸控制器,設定用以確定一USB Type-C連接器的哪些針腳用於充電,其中所述電源傳輸控制器能夠指定除VBUS針腳之外的其他針腳進行充電,且所指定的針腳被用來分配電流以充電一電子裝置,從而在一增強充電模式下運作;以及 一第一電源線,將所述充電器的一電源線連接至所指定的針腳。 A charger for an electronic device, the charger comprising: a power transfer controller configured to determine which pins of a USB Type-C connector are used for charging, wherein the power transfer controller can designate other pins except the VBUS pin for charging, and the designated pins are used to distribute current to charge an electronic device, thereby operating in an enhanced charging mode; and a first power line, connecting a power line of the charger to the designated pin. 如請求項1所述的充電器,其中所指定的針腳包括用於傳輸匯流排電壓的TX1/TX2針腳和用於接地的RX1/RX2針腳。A charger as described in claim 1, wherein the designated pins include TX1/TX2 pins for transmitting bus voltage and RX1/RX2 pins for grounding. 如請求項1所述的充電器,其中所述第一電源線包括一個能夠開啟以斷開第一電源線的開關。A charger as described in claim 1, wherein the first power line includes a switch that can be turned on to disconnect the first power line. 如請求項3所述的充電器,其中當所述電子裝置支持所述增強充電模式時,所述增強充電模式被觸發,且所述電子裝置包括一第二電源線,將所指定的針腳連接至所述電子裝置的一電源線。A charger as described in claim 3, wherein the enhanced charging mode is triggered when the electronic device supports the enhanced charging mode, and the electronic device includes a second power cord, and the designated pin is connected to a power cord of the electronic device. 如請求項4所述的充電器,所述一個充電器與所述電子裝置之間的一資訊交換協議決定了所述電子裝置是否支持所述增強充電模式,且當電子裝置支持所述增強充電模式時,第一電源線上的開關被關閉,允許電力流經第一電源線和第二電源線並開始充電,而當所述電子裝置不支持增強充電模式時,所述充電器上的第一電源線上的開關被打開,斷開所述第一電源線,所述充電器和所述電子裝置恢復標準PD充電。In the charger as described in claim 4, an information exchange protocol between the charger and the electronic device determines whether the electronic device supports the enhanced charging mode, and when the electronic device supports the enhanced charging mode, the switch on the first power line is turned off, allowing power to flow through the first power line and the second power line and start charging, and when the electronic device does not support the enhanced charging mode, the switch on the first power line on the charger is turned on, disconnecting the first power line, and the charger and the electronic device resume standard PD charging. 如請求項1所述的充電器,進一步包括多個電阻,分別安裝在所述第一電源線上和所述充電器的電源線上,以實現電流平衡。The charger as described in claim 1 further includes multiple resistors, which are respectively installed on the first power line and the power line of the charger to achieve current balance. 如請求項1所述的充電器,其中所述增強充電模式包括一多階段充電模式,所述多階段充電模式包括使用最低恆定電流的一滴充階段、使用更高恆定電壓的一預充階段、使用更高恆定電流的一快速充電階段,以及電壓保持恆定但電流根據負載狀態逐漸降低的一恆壓充電階段。A charger as described in claim 1, wherein the enhanced charging mode includes a multi-stage charging mode, the multi-stage charging mode including a trickle charging stage using a minimum constant current, a pre-charging stage using a higher constant voltage, a fast charging stage using a higher constant current, and a constant voltage charging stage in which the voltage remains constant but the current gradually decreases according to the load state. 如請求項7所述的充電器,其中一旦電子裝置達到一定的電壓充電水平後,所述多階段充電模式從所述快速充電階段切換到所述恆壓充電階段。A charger as described in claim 7, wherein once the electronic device reaches a certain voltage charging level, the multi-stage charging mode switches from the fast charging stage to the constant voltage charging stage. 如請求項1所述的充電器,其中當所述充電器與所述電子裝置斷開連接或退出其運作模式時,輸出電壓被降低至最低允許工作值,使所述電源傳輸控制器進入睡眠模式,以最小化功耗。A charger as described in claim 1, wherein when the charger is disconnected from the electronic device or exits its operating mode, the output voltage is reduced to a minimum allowable operating value, causing the power transfer controller to enter a sleep mode to minimize power consumption. 一種電子裝置的充電系統,該充電系統包括: 一充電器,包括: 一電源傳輸控制器,設定用以確定一USB Type-C連接器的哪些針腳用於充電,其中所述電源傳輸控制器能夠指定除VBUS針腳之外的其他針腳進行充電,從而在一增強充電模式下運作;以及 一條第一電源線,將所述充電器的一電源線連接至所指定的針腳;以及 一個電子裝置,包括一條第二電源線,將所指定的針腳連接至所述電子裝置的所述電源線; 其中,所指定的針腳被用來分配電流以充電所述電子裝置。 A charging system for an electronic device, the charging system comprising: A charger, comprising: A power transfer controller, configured to determine which pins of a USB Type-C connector are used for charging, wherein the power transfer controller can designate other pins except the VBUS pin for charging, thereby operating in an enhanced charging mode; and A first power line, connecting a power line of the charger to the designated pin; and An electronic device, comprising a second power line, connecting the designated pin to the power line of the electronic device; wherein the designated pin is used to distribute current to charge the electronic device. 如請求項10所述的充電系統,其中所指定的針腳包括用於傳輸匯流排電壓的TX1/TX2針腳和用於接地的RX1/RX2針腳。A charging system as described in claim 10, wherein the designated pins include TX1/TX2 pins for transmitting bus voltage and RX1/RX2 pins for grounding. 如請求項10所述的充電系統,其中所述第一電源線包括一個能夠開啟以斷開第一電源線的第一開關,且所述第二電源線包括一個能夠開啟以斷開第二電源線的第二開關。A charging system as described in claim 10, wherein the first power line includes a first switch that can be opened to disconnect the first power line, and the second power line includes a second switch that can be opened to disconnect the second power line. 如請求項12的充電系統,其中所述充電器與所述電子裝置之間的一資訊交換協議決定了所述電子裝置是否支持增強充電模式,且當所述電子裝置支持所述增強充電模式時,第一電源線上的第一開關被關閉,允許電力流經第一和第二電源線並開始充電。A charging system as claimed in claim 12, wherein an information exchange protocol between the charger and the electronic device determines whether the electronic device supports an enhanced charging mode, and when the electronic device supports the enhanced charging mode, the first switch on the first power line is closed, allowing power to flow through the first and second power lines and start charging. 如請求項10所述的充電系統,進一步包括分別安裝在第一電源線和第二電源線上的一第一電阻和一第二電阻,以實現電流平衡。The charging system as described in claim 10 further includes a first resistor and a second resistor respectively installed on the first power line and the second power line to achieve current balance. 如請求項10所述的充電系統,其中所述增強充電模式包括一多階段充電模式,所述多階段充電模式包括使用最低恆定電流的一滴充階段、使用更高恆定電壓的一預充階段、使用更高恆定電流的一快速充電階段,以及電壓保持恆定但電流根據負載狀態逐漸降低的一恆壓充電階段。A charging system as described in claim 10, wherein the enhanced charging mode includes a multi-stage charging mode, the multi-stage charging mode including a trickle charging stage using a minimum constant current, a pre-charging stage using a higher constant voltage, a fast charging stage using a higher constant current, and a constant voltage charging stage in which the voltage remains constant but the current gradually decreases according to the load state. 如請求項10所述的充電系統,其中當所述充電器與所述電子裝置斷開連接或退出其運作模式時,所述充電器的輸出電壓被降低至最低允許工作值,使所述電源傳輸控制器進入睡眠模式,以最小化功耗。A charging system as described in claim 10, wherein when the charger is disconnected from the electronic device or exits its operating mode, the output voltage of the charger is reduced to a minimum allowable operating value, causing the power transfer controller to enter a sleep mode to minimize power consumption. 如請求項12所述的充電系統,其中所述電子裝置進一步包括一電池包,該電池包包括一電池管理系統和一電量計電路; 其中,所述電源傳輸控制器設定用以與所述電池包通訊以獲得一電池狀態資訊;以及 所述電源傳輸控制器進一步設定用以根據電池狀態資訊調整充電條件。 A charging system as claimed in claim 12, wherein the electronic device further comprises a battery pack, the battery pack comprising a battery management system and a fuel gauge circuit; wherein the power transmission controller is configured to communicate with the battery pack to obtain battery status information; and the power transmission controller is further configured to adjust charging conditions according to the battery status information. 如請求項12所述的充電系統,其中所述電子裝置進一步包括一電池包,且所述電源傳輸控制器設定用以預設各種充電模式,每個充電模式有一個獨特的ID,而所述電池包儲存著與其最佳充電模式對應的ID,允許根據電池包的ID與預設充電模式之間的匹配過程選擇適當的充電模式。A charging system as described in claim 12, wherein the electronic device further includes a battery pack, and the power transfer controller is configured to preset various charging modes, each charging mode has a unique ID, and the battery pack stores the ID corresponding to its optimal charging mode, allowing the appropriate charging mode to be selected based on a matching process between the battery pack's ID and the preset charging mode. 如請求項17或請求項18所述的充電系統,其中所述電子裝置進一步包括: 一第三開關,與該第二開關相並聯;以及 一DC/DC轉換電路,與該第三開關相串聯且與該第二開關相並聯; 其中,該第三開關與該DC/DC轉換電路是電性連接到該電池包。 A charging system as described in claim 17 or claim 18, wherein the electronic device further comprises: a third switch connected in parallel with the second switch; and a DC/DC conversion circuit connected in series with the third switch and in parallel with the second switch; wherein the third switch and the DC/DC conversion circuit are electrically connected to the battery pack.
TW113124740A 2023-07-14 2024-07-02 Charger and charging system TW202503481A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18/221,888 2023-07-14
US18/221,888 US20230361592A1 (en) 2020-11-26 2023-07-14 Charger and charging system

Publications (1)

Publication Number Publication Date
TW202503481A true TW202503481A (en) 2025-01-16

Family

ID=95152520

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113124740A TW202503481A (en) 2023-07-14 2024-07-02 Charger and charging system

Country Status (1)

Country Link
TW (1) TW202503481A (en)

Similar Documents

Publication Publication Date Title
CN108365469B (en) Concentrator with combined power supply
US20250015606A1 (en) Systems and methods for universal serial bus (usb) power delivery with multiple charging ports
EP2985856B1 (en) Usb charging system with variable charging voltage, charger, and intelligent terminal
US12119701B2 (en) Systems and methods for universal serial bus (USB) power delivery with multiple charging ports
US9997939B2 (en) Hub
US8653789B2 (en) Method and apparatus for recharging batteries in a more efficient manner
CN208174340U (en) The power supply circuit and electronic product of portable electronic product with OTG function
EP3806274B1 (en) Charging integrated circuit and operating method
WO2011068671A2 (en) Power converter with reduced power consumption when toggling between sleep and normal modes during device charging
KR102674738B1 (en) Power delivery system for smartphones and add-on devices
JP2008211966A (en) Circuit and method of operation for electrical power supply
CN111525349B (en) Charging cable, charging device and charging cable protection system
CN211480942U (en) Power adapter
TWI559125B (en) Power bank apparatus and power control method thereof
WO2014006619A1 (en) Method and system of charging a mobile device
WO2004097958A2 (en) Electrical energy systems, power supply apparatuses and electrical energy supply methods
TW202503481A (en) Charger and charging system
US20230361592A1 (en) Charger and charging system
CN112383125B (en) Active overcharge prevention device and method
WO2022177548A1 (en) Systems and methods for universal serial bus (usb) power delivery with multiple charging ports
CN101685934A (en) Pluggable adapter and portable system
CN109375758B (en) Charging device for computer host configuration
CN221305188U (en) One-to-many data cable and charger
CN106532790B (en) Mobile power supply device and power supply control method thereof
WO2017166265A1 (en) Reducing idle-time energy consumption in universal serial bus power delivery circuitry of power adapters