[go: up one dir, main page]

TW202500249A - Cleaning of co2-containing feed gases - Google Patents

Cleaning of co2-containing feed gases Download PDF

Info

Publication number
TW202500249A
TW202500249A TW113118592A TW113118592A TW202500249A TW 202500249 A TW202500249 A TW 202500249A TW 113118592 A TW113118592 A TW 113118592A TW 113118592 A TW113118592 A TW 113118592A TW 202500249 A TW202500249 A TW 202500249A
Authority
TW
Taiwan
Prior art keywords
carbon dioxide
gas stream
rich gas
ppm
stream
Prior art date
Application number
TW113118592A
Other languages
Chinese (zh)
Inventor
馬丁 奧斯特貝格
湯瑪士 桑達爾 克里斯坦森
Original Assignee
丹麥商托普索公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹麥商托普索公司 filed Critical 丹麥商托普索公司
Publication of TW202500249A publication Critical patent/TW202500249A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)

Abstract

A process is provided for cleaning a CO 2-rich gas stream from one or more impurities selected from sulfur-containing compounds, higher hydrocarbons and aromatic hydrocarbons. The process comprises the step of passing the CO 2-rich gas stream together with a steam feed over a guard material, comprising a catalyst active in the conversion of higher hydrocarbons into methane in the presence of said steam feed (i.e. a pre-reforming catalyst).

Description

淨化含二氧化碳之饋料氣體Purification of feed gas containing carbon dioxide

本發明關於淨化富含二氧化碳的氣流的方法,特別是用於在加氫脫硫(HDS)階段後去除諸如烴及殘留的含硫雜質等雜質。The present invention relates to a process for purifying a gas stream rich in carbon dioxide, in particular for removing impurities such as hydrocarbons and residual sulfur-containing impurities after a hydrodesulphurization (HDS) stage.

二氧化碳在商業上有不同等級的產品。通常,「食品級」或「飲料級」的二氧化碳具有99.9%的純度。然而,在涉及將二氧化碳催化轉化為其他化學產品(例如Power-to-X技術)的過程中,即使二氧化碳流中含有濃度為50-100 ppbV(0.000005 – 0.00001%)的雜質,諸如含硫化合物及氧氣,也可能使合成催化劑中毒。烴特別是C 2+的含量也可能與氮物質的含量一起導致二氧化碳轉化催化劑上發生不欲的反應。 CO2 is commercially available in different grades. Typically, "food grade" or "beverage grade" CO2 has a purity of 99.9%. However, in processes involving the catalytic conversion of CO2 to other chemical products (e.g. Power-to-X technologies), impurities such as sulfur compounds and oxygen in the CO2 stream at concentrations of even 50-100 ppbV (0.000005 – 0.00001%) can poison the synthesis catalyst. The content of hydrocarbons, especially C2 +, can also lead to undesirable reactions on the CO2 conversion catalyst together with the content of nitrogen species.

儘管某些二氧化碳源純度高,已發現需要進一步純化以避免下游合成催化劑的催化劑中毒。如果可以在單一方法中去除不同類型的多種雜質(例如含硫化合物、高級烴及芳香烴)而不添加氧氣或空氣,將是有利的,因為氧氣或空氣會導致下游氫氣損失。Although some carbon dioxide sources are of high purity, further purification has been found to be necessary to avoid catalyst poisoning of downstream synthesis catalysts. It would be advantageous if multiple impurities of different types (e.g., sulfur compounds, higher hydrocarbons, and aromatics) could be removed in a single process without the addition of oxygen or air, which would result in downstream hydrogen losses.

用於純化二氧化碳流的系統及方法例如在EP2457636、CN112999843及CN112957872中係已知的。Systems and methods for purifying carbon dioxide streams are known, for example, from EP2457636, CN112999843 and CN112957872.

本發明人發現,在HDS階段之後引入催化防護,可以保護下游合成/二氧化碳轉化催化劑免受可能限制催化劑壽命的雜質及不欲的副反應的影響。該防護是鎳基催化劑、貴金屬或其組合,能夠在與蒸氣流混合後轉化經過HDS階段的二氧化碳流中所含烴諸如石蠟、芳香烴及含氧化合物。分子氮以外的氮物質,諸如氮氧化物及氨,也會參與反應,並且催化防護會將硫吸附在鎳表面上,從而減少防護的活性位點,防止催化劑活性損失並防止縮短防護下游催化劑的壽命。The inventors have discovered that the introduction of a catalytic protector after the HDS stage can protect the downstream synthesis/CO2 conversion catalyst from impurities and unwanted side reactions that may limit the catalyst life. The protector is a nickel-based catalyst, a noble metal, or a combination thereof, which is capable of converting hydrocarbons such as wax, aromatic hydrocarbons, and oxygen-containing compounds contained in the CO2 stream passing through the HDS stage after mixing with the steam stream. Nitrogen species other than molecular nitrogen, such as nitrogen oxides and ammonia, also participate in the reaction, and the catalytic protector adsorbs sulfur on the nickel surface, thereby reducing the active sites of the protector, preventing catalyst activity loss and shortening the life of the protector downstream catalyst.

本發明人發現,預重整催化劑可用作二氧化碳饋料的防護。這將確保捕捉上游硫淨化過程中的硫逸出,並能夠去除烴並將其轉化為甲烷。The inventors have discovered that a pre-reforming catalyst can be used as a shield for the carbon dioxide feed. This will ensure that sulfur slip from the upstream sulfur purification process is captured and can remove hydrocarbons and convert them to methane.

因此,本發明的第一態樣關於一種用於淨化富含二氧化碳的氣流的方法,該富含二氧化碳的氣流包含至少80重量%二氧化碳及選自以下的一種或多種雜質: -    含硫化合物; -    高級烴;及 -    芳香烴, -    氮物質, 其中該方法包含以下步驟: -    使富含二氧化碳的氣流與蒸氣饋料一起經過防護材料,該防護材料包含在該蒸氣饋料存在下具有將高級烴轉化成甲烷的活性的催化劑,並且將一種或多種該雜質吸附在該防護材料上,以提供經淨化的富含二氧化碳的氣流。 Thus, a first aspect of the invention relates to a method for purifying a gas stream rich in carbon dioxide, the gas stream rich in carbon dioxide comprising at least 80% by weight of carbon dioxide and one or more impurities selected from: -   sulfur compounds; -   higher hydrocarbons; and -   aromatic hydrocarbons, -   nitrogen substances, wherein the method comprises the following steps: -   passing the gas stream rich in carbon dioxide together with a steam feed through a protective material, the protective material comprising a catalyst having an activity of converting higher hydrocarbons to methane in the presence of the steam feed, and adsorbing one or more of the impurities on the protective material to provide a purified gas stream rich in carbon dioxide.

這提供額外的硫防護,以處理二氧化碳饋料中可能存在的低濃度(ppm級別)烴內容物。This provides additional sulfur protection to handle low concentrations (ppm levels) of hydrocarbon content that may be present in the CO2 feed.

本發明也關於一種用於製造化學品或燃料流的方法,該方法包含在本文所述的方法中淨化富含二氧化碳的氣流,然後將經淨化的富含二氧化碳的氣流饋料至合成階段,視需要的與氫氣饋料混合,並從該合成階段輸出化學品或燃料流。藉由此種方法製造的化學品及燃料包括但不限於H 2、CO、MeOH、甲醛、DME、FT基燃料、汽油、合成航空燃料。 The invention also relates to a method for producing a chemical or fuel stream, the method comprising purifying a carbon dioxide-rich gas stream in the method described herein, then feeding the purified carbon dioxide-rich gas stream to a synthesis stage, optionally mixing with a hydrogen feed, and outputting a chemical or fuel stream from the synthesis stage. Chemicals and fuels produced by this method include but are not limited to H2 , CO, MeOH, formaldehyde, DME, FT-based fuels, gasoline, and synthetic aviation fuels.

額外態樣在以下描述文本、圖式及申請專利範圍中詳細說明。Additional aspects are described in detail in the following description, drawings, and claims.

除非另有說明,任何給定的氣體含量百分比皆為體積%。所有饋料皆視需要預熱。除非特別說明,濃度將以乾基計算,即不考慮其中所含的水分。Unless otherwise stated, any given percentage of gas content is by volume. All feeds are preheated as necessary. Unless otherwise stated, concentrations are calculated on a dry basis, i.e. without regard to the water content.

高級烴是指所有分子中含有多於一個碳原子的烴,這意味著幾乎所有烴,甲烷除外。Higher hydrocarbons are all hydrocarbons that have more than one carbon atom in their molecule, which means almost all hydrocarbons except methane.

合成氣作為合成氣體的參考,是一種包含氫氣、一氧化碳、二氧化碳以及通常呈蒸氣的水及甲烷的氣體混合物。之所以稱為合成氣/合成氣體,是因為它是下游催化合成所需的饋料,最終產生所需產物。在某些應用中,經過上述純化處理後的下游饋料可以與氫氣混合,並作為例如用於其他應用中甲醇合成的合成氣使用,經過純化的氣體在與氫氣及視需要的蒸氣混合後,可能需要在逆水煤氣轉化反應器(RWGS)或結合RWGS及甲烷化反應器中進行轉化,以形成用於最終產物合成的最終合成氣。Synthesis gas, as a reference to synthesis gas, is a gaseous mixture containing hydrogen, carbon monoxide, carbon dioxide, and water and methane, usually in the form of steam. It is called synthesis gas/synthesis gas because it is the feed required for downstream catalytic synthesis, which ultimately produces the desired products. In some applications, the downstream feed after the above-mentioned purification treatment can be mixed with hydrogen and used as synthesis gas, for example, for methanol synthesis in other applications. The purified gas, after mixing with hydrogen and optionally steam, may need to be converted in a reverse water gas shift reactor (RWGS) or a combined RWGS and methanation reactor to form the final synthesis gas for the synthesis of the final product.

經淨化的二氧化碳流定義為來自二氧化碳淨化方法的出口流,該方法中饋料中最小95%的含硫雜質被去除,或者淨化二氧化碳流中含硫雜質的總和低於50 ppbV (每十億體積比),較佳低於1 ppbV。A purified CO2 stream is defined as an outlet stream from a CO2 purification process in which a minimum of 95% of the sulfur-containing impurities in the feed are removed, or the sum of the sulfur-containing impurities in the purified CO2 stream is less than 50 ppbV (parts per billion by volume), preferably less than 1 ppbV.

含硫雜質的總和應理解為硫當量,即10 ppbV SO 2對應於10 ppbV硫,10 ppbV CS 2對應於20 ppbV硫。 The sum of sulfur-containing impurities is to be understood as sulfur equivalent, i.e. 10 ppbV SO2 corresponds to 10 ppbV sulfur and 10 ppbV CS2 corresponds to 20 ppbV sulfur.

建議的二氧化碳淨化解決方案確保任何用於下游轉化為合成氣以及合成MeOH(甲醇)、DME(二甲醚)、FT(費托)、合成燃料等化學品的饋料氣不會因高級烴的副產物而引起問題,並且可以在避免下游合成催化劑因硫而中毒的情況下進行製備。這樣將確保可以長期操作,並使催化劑的使用壽命符合工業催化劑的預期。The proposed CO2 purification solution ensures that any feed gas used for downstream conversion to syngas and synthesis of chemicals such as MeOH (methanol), DME (dimethyl ether), FT (Fischer-Tropsch), synthetic fuels, etc. will not cause problems due to the by-products of higher hydrocarbons and can be prepared without poisoning the downstream synthesis catalysts with sulfur. This will ensure long-term operation and catalyst life in line with the expectations of industrial catalysts.

因此,第一態樣提供一種淨化富含二氧化碳的氣流的方法。合適的,進入此方法的該富含二氧化碳的氣流已在HDS階段中經處理,除去大部分硫並與可能含量的氧氣發生反應。Thus, a first aspect provides a method for purifying a gas stream rich in carbon dioxide. Suitably, the gas stream rich in carbon dioxide entering the method has been treated in a HDS stage to remove a substantial portion of the sulphur and react with any oxygen content.

提供給該方法的富含二氧化碳的氣流包含至少80重量%,諸如至少90重量%二氧化碳,諸如至少95重量%二氧化碳,諸如至少99.0重量%二氧化碳,較佳至少99.5重量%二氧化碳,更佳為至少99.9重量%二氧化碳。因此,在本發明的方法之前,富含二氧化碳的氣流已經具有高純度。The carbon dioxide-rich gas stream provided to the process comprises at least 80 wt. %, such as at least 90 wt. % carbon dioxide, such as at least 95 wt. % carbon dioxide, such as at least 99.0 wt. % carbon dioxide, preferably at least 99.5 wt. % carbon dioxide, more preferably at least 99.9 wt. % carbon dioxide. Thus, before the process of the invention, the carbon dioxide-rich gas stream already has a high purity.

適當地,富含二氧化碳的氣流源自可再生源,諸如: -    木質纖維素生質諸如木製品、藻類、草、林業廢棄物及/或農業殘留物的燃燒或氣化; -    城市廢棄物的燃燒或氣化,特別是其中的有機部分,其中城市廢棄物被定義為含有公眾丟棄物品材料的原料,諸如歐盟指令2018/2001 (RED II),附件九,A部分中規定的混合城市廢棄物; -    富含氮的可再生原料(諸如糞便或污水污泥)的微生物轉化; -    富含烴(糖)的饋料流如玉米、甘蔗及甜菜的發酵; -    化學品生產中的二氧化碳回收單元,例如氫氣或氨生產工廠,其中二氧化碳從產品氣體中去除。 Suitably, the CO2-rich gas stream originates from a renewable source, such as: -   The combustion or gasification of woody cellulosic biomass such as wood products, algae, grasses, forestry waste and/or agricultural residues; -   The combustion or gasification of municipal waste, in particular the organic fraction thereof, wherein municipal waste is defined as feedstock containing public waste material, such as mixed municipal waste as defined in EU Directive 2018/2001 (RED II), Annex IX, Part A; -   The microbial conversion of nitrogen-rich renewable feedstocks such as faeces or sewage sludge; -   The fermentation of hydrocarbon (sugar)-rich feed streams such as corn, sugar cane and sugar beet; -  Carbon dioxide recovery units in chemical production, such as hydrogen or ammonia production plants, where carbon dioxide is removed from the product gases.

富含二氧化碳的氣流也可以從直接空氣捕獲方法、冶金方法、水泥生產或化石燃料燃燒獲得。Carbon dioxide-rich gas streams can also be obtained from direct air capture processes, metallurgical processes, cement production or fossil fuel combustion.

上述一些氣流中的二氧化碳濃度通常對於進一步的化學處理而言可能太低,並且可能需要濃縮步驟將二氧化碳濃度增加到如上所述的所欲值。The carbon dioxide concentration in some of the above-mentioned gas streams may generally be too low for further chemical processing and a concentration step may be required to increase the carbon dioxide concentration to the desired value as described above.

富含二氧化碳的氣流包含一種或多種選自含硫化合物、高級烴、芳香烴及氮物質的雜質。The carbon dioxide-rich gas stream contains one or more impurities selected from sulfur compounds, higher hydrocarbons, aromatic hydrocarbons and nitrogen species.

富含二氧化碳的氣體與蒸氣流混合並被引導至催化防護反應器。添加到富含二氧化碳的氣體的蒸氣量取決於應轉化的烴含量以及HDS階段之後的富含二氧化碳的氣體中的氫氣的含量。添加的蒸氣總莫耳量不應高於隨富含二氧化碳的氣體而來的氫氣莫耳流量的100倍,較佳不高於氫氣莫耳流量的40倍。如果此蒸氣量的不足以確保高級烴的轉化,則應將額外的氫氣添加到富含二氧化碳的氣體。高級烴的量可以藉由在催化合成再循環所獲得的產物氣體的輕沸物(light end)之後,添加來自下游所獲得的產物氣體的分離的再循環流來增加。此再循環流的組成取決於下游合成。The CO2-rich gas is mixed with a steam stream and directed to the catalytic guard reactor. The amount of steam added to the CO2-rich gas depends on the hydrocarbon content to be converted and the hydrogen content in the CO2-rich gas after the HDS stage. The total molar amount of steam added should not be higher than 100 times the molar flow of hydrogen coming with the CO2-rich gas, preferably not higher than 40 times the molar flow of hydrogen. If this amount of steam is not sufficient to ensure the conversion of higher hydrocarbons, additional hydrogen should be added to the CO2-rich gas. The amount of higher hydrocarbons can be increased by adding a separate recycle stream from the product gas obtained downstream after the light end of the product gas obtained by catalytic synthesis recycle. The composition of this recycle stream depends on the downstream synthesis.

然而,所添加的氫氣量受到不希望由於當與大量氫氣混合的富含二氧化碳的氣體在鎳或貴金屬催化劑上反應時發生的甲烷化放熱反應而獲得顯著的溫度升高的期望所限制。實際上,催化防護反應器的出口溫度可以藉由在富含二氧化碳的氣體中添加額外的氫氣來控制。However, the amount of hydrogen added is limited by the desire not to obtain a significant temperature increase due to the exothermic methanation reaction that occurs when a carbon dioxide-rich gas mixed with a large amount of hydrogen reacts over a nickel or noble metal catalyst. In practice, the outlet temperature of the catalytic guard reactor can be controlled by adding additional hydrogen to the carbon dioxide-rich gas.

含有蒸氣(可能還有氫氣)的富含二氧化碳的氣體通過防護材料,該材料包含在該蒸氣饋料存在下具有將高級烴轉化成甲烷的活性的催化劑。「具有將高級烴轉化成甲烷的活性的催化劑」通常是預重整催化劑。The carbon dioxide-rich gas containing steam (and possibly hydrogen) is passed through a guard material comprising a catalyst active in the presence of the steam feed for the conversion of higher hydrocarbons to methane. The "catalyst active in the conversion of higher hydrocarbons to methane" is typically a pre-reforming catalyst.

此催化劑可為鎳基催化劑、貴金屬基催化劑或鎳及貴金屬的組合催化劑。此可為具有氧化鋁、鋁酸鈣、鋁酸鎂、助催化氧化鋁或尖晶石載體材料的催化劑,其中助催化金屬可為Ti、La、Ce、Zr或Y。鎳的含量可為15-60重量%,較佳為25-55重量%。貴金屬的含量將低於0.5 – 10重量%,當與鎳結合時含量為0.1 – 2重量%。催化劑可為浸漬催化劑或共沉澱催化劑。催化劑可以在安置前進行預還原,或者可以根據還原需求在活化反應器中還原,由各自的氧化物形成活性金屬鎳或貴金屬相。The catalyst may be a nickel-based catalyst, a noble metal-based catalyst or a combination of nickel and a noble metal. This may be a catalyst having an alumina, calcium aluminate, magnesium aluminate, a promoter alumina or a spinel carrier material, wherein the promoter metal may be Ti, La, Ce, Zr or Y. The nickel content may be 15-60% by weight, preferably 25-55% by weight. The noble metal content will be less than 0.5 – 10% by weight, and when combined with nickel the content is 0.1 – 2% by weight. The catalyst may be an impregnated catalyst or a co-precipitated catalyst. The catalyst may be pre-reduced before placement, or may be reduced in an activation reactor according to the reduction requirements to form an active metallic nickel or noble metal phase from the respective oxides.

催化劑能夠經由以下也涉及二氧化碳反應將高級烴轉化為甲烷、一氧化碳、氫氣及水。首先為重整反應: C xH y+  x H 2O  =>  x CO  +  (y/2+x) H 2接著為甲烷化: CO  +  3 H 2<=>  CH 4+  H 2O 高含量二氧化碳也會導致逆水氣轉化,以平衡CO 2、CO、H 2及H 2O的濃度: CO 2+  H 2<=>  CO  +  H 2O The catalyst is able to convert higher hydrocarbons into methane, carbon monoxide, hydrogen and water via the following reactions which also involve carbon dioxide. First the reforming reaction: C x H y + x H 2 O => x CO + (y/2+x) H 2 followed by methanation: CO + 3 H 2 <=> CH 4 + H 2 O High levels of carbon dioxide also lead to a reverse water gas shift to balance the concentrations of CO 2 , CO, H 2 and H 2 O: CO 2 + H 2 <=> CO + H 2 O

除甲烷外,這些產物都是合成氣中的正常成分。With the exception of methane, these products are normal components of syngas.

鎳催化劑的另一個特徵為能夠在鎳表面吸附硫。在低溫(低於500°C)下,幾乎所有硫都會被吸附,從而預防硫逸出至下游催化劑。經吸附的硫消除上述催化反應的催化活性,因此有必要確保催化防護劑在其使用壽命期間具有足夠的吸附能力及催化活性。Another characteristic of nickel catalysts is the ability to adsorb sulfur on the nickel surface. At low temperatures (less than 500°C), almost all sulfur will be adsorbed, thus preventing sulfur from escaping to downstream catalysts. The adsorbed sulfur eliminates the catalytic activity of the above catalytic reactions, so it is necessary to ensure that the catalyst protectant has sufficient adsorption capacity and catalytic activity during its service life.

催化劑還具有轉化氮物質諸如氮氧化物及氨的能力。氮氧化物將被還原為氨,並且氨將根據以下催化反應達到平衡: 2 NH 3ó  N 2+  3 H 2 The catalyst also has the ability to convert nitrogen species such as nitrogen oxides and ammonia. Nitrogen oxides will be reduced to ammonia, and ammonia will reach equilibrium according to the following catalytic reaction: 2 NH 3 ó N 2 + 3 H 2

離開催化防護反應器的氨含量將視富含二氧化碳的氣體中的氮含量、氫氣濃度、壓力及溫度而定。此種氨分解反應生成氮氣及氫氣,並且隨著溫度升高及壓力降低,平衡會朝向產物方向移動,如果下游催化劑對氨敏感,富含二氧化碳的氣體中氮(N 2)濃度較低,並且在高溫及低壓下進行防護可以獲得低氨逸出。 The ammonia content leaving the catalytic guard reactor will depend on the nitrogen content of the CO2-rich gas, the hydrogen concentration, the pressure and the temperature. This ammonia decomposition reaction produces nitrogen and hydrogen, and the equilibrium will shift towards the products as the temperature increases and the pressure decreases. If the downstream catalyst is sensitive to ammonia, the nitrogen ( N2 ) concentration in the CO2-rich gas is lower, and guarding at high temperature and low pressure can achieve low ammonia slip.

防護反應器將是絕熱的,入口溫度在250–500°C之間。應注意反應器不要有顯著的溫差,特別是溫度上升。基於此理由,應限制添加的氫氣量以防止發生顯著的甲烷化。The guard reactor will be insulated with an inlet temperature between 250–500°C. Care should be taken not to allow significant temperature differences in the reactor, especially temperature rise. For this reason, the amount of hydrogen added should be limited to prevent significant methanation from occurring.

適當地,富含二氧化碳的氣流包含選自H 2S、DMS (二甲硫醚)及COS的一種或多種雜質。例如在該反應器容器入口處的富含二氧化碳的氣流中的SO 2總含量為0.1-100 ppm SO 2,諸如1-50 ppm SO 2Suitably, the CO2-rich gas stream comprises one or more impurities selected from H2S , DMS (dimethyl sulfide) and COS. For example, the total SO2 content in the CO2-rich gas stream at the reactor vessel inlet is 0.1-100 ppm SO2 , such as 1-50 ppm SO2 .

因此,一般而言,該方法包含以下步驟:使富含二氧化碳的氣流與蒸氣饋料一起通過防護材料,該防護材料包含在該蒸氣饋料存在下具有將高級烴轉化成甲烷的活性的催化劑(即,預重整催化劑),並將一種或多種該雜質吸附在該防護材料上,以提供經淨化的富含二氧化碳的氣流。Thus, in general, the method comprises the steps of passing a carbon dioxide-rich gas stream together with a steam feed through a guard material comprising a catalyst active in converting higher hydrocarbons to methane in the presence of the steam feed (i.e., a pre-reforming catalyst), and adsorbing one or more of the impurities on the guard material to provide a purified carbon dioxide-rich gas stream.

蒸氣饋料通常為高純度蒸氣饋料,即其包含至少99重量%的H 2O,諸如至少99.5重量%的H 2O。 The steam feed is typically a high purity steam feed, ie it comprises at least 99 wt % H 2 O, such as at least 99.5 wt % H 2 O.

催化劑及吸附系統的操作壓力將在1至90 barg範圍內,視二氧化碳及其他饋料氣體的饋料壓力以及下游合成裝置的壓力而定。一般而言,較低壓力更有利於使不必要的副產物的形成最小化,但隨之而來的是較大型設備的成本。The operating pressure of the catalyst and adsorption system will be in the range of 1 to 90 barg, depending on the feed pressures of CO2 and other feed gases and the pressure of the downstream synthesis unit. Generally speaking, lower pressures are more favorable to minimize the formation of unwanted by-products, but with the attendant cost of larger equipment.

在本發明的一個態樣中,富含二氧化碳的氣流與第一富含氫氣的饋料一起(例如與其混合)經過防護材料,以確保有足夠的氫用於高級烴的轉化。In one aspect of the invention, the carbon dioxide rich gas stream is passed through a guard material along with (e.g., mixed with) the first hydrogen rich feed to ensure that sufficient hydrogen is available for conversion of higher hydrocarbons.

在本發明的方法中除去的高級烴可以選自C2-C6烷烴、C2-C6含氧化合物(即含有一個或多個氧原子的烴)及其組合。The higher hydrocarbons removed in the process of the present invention may be selected from C2-C6 alkanes, C2-C6 oxygenates (i.e. hydrocarbons containing one or more oxygen atoms) and combinations thereof.

高級芳香烴可選自C6-C8芳香烴、C9-C12芳香烴及其組合。The higher aromatic hydrocarbons may be selected from C6-C8 aromatic hydrocarbons, C9-C12 aromatic hydrocarbons and combinations thereof.

在該方法中,富含二氧化碳的氣流在經過防護材料之前可以經過一個或多個脫硫步驟,較佳兩個或多個脫硫步驟。脫硫可以經由共同申請的DK專利申請案PA202300339及PA202300340中描述的方法進行,這些專利申請案以引用方式併入本文。In the method, the carbon dioxide-rich gas stream can be subjected to one or more desulfurization steps, preferably two or more desulfurization steps, before passing through the protective material. Desulfurization can be performed by the methods described in the co-applied DK patent applications PA202300339 and PA202300340, which are incorporated herein by reference.

根據一個態樣,脫硫可為二步驟方法。根據此態樣,該方法包含: -    使該富含二氧化碳的氣流經過第一硫防護材料,然後 -    在該富含二氧化碳的氣流經過該防護材料之前,使該富含二氧化碳的氣流經過第二硫防護材料,並且將一種或多種含硫化合物吸附在該第一及該第二硫防護材料上。 According to one aspect, desulfurization can be a two-step process. According to this aspect, the method comprises: -    passing the carbon dioxide-rich gas stream through a first sulfur protective material, and then -    passing the carbon dioxide-rich gas stream through a second sulfur protective material before the carbon dioxide-rich gas stream passes through the protective material, and adsorbing one or more sulfur-containing compounds on the first and second sulfur protective materials.

較佳的,第一硫防護材料的特徵在於易於發生H 2S逸出,而第二硫防護材料的特徵在於不表現H 2S逸出。視需要的,可以在第一防護材料及第二防護材料之間從富含二氧化碳的氣流中除去水。 Preferably, the first sulfur barrier material is characterized by being susceptible to H 2 S evolution and the second sulfur barrier material is characterized by not exhibiting H 2 S evolution. Optionally, water may be removed from the carbon dioxide rich gas stream between the first barrier material and the second barrier material.

第一硫防護材料及第二硫防護材料可具有相同組成,其中第二硫防護材料處於允許無H 2S逸出操作的不同方法條件。這可以藉由在第一及第二硫防護材料之間安裝除水單元及/或藉由安裝熱交換單元來降低第一及第二硫防護材料之間的溫度來實現。 The first and second sulfur guard materials may have the same composition, with the second sulfur guard material being at a different process condition that allows for operation without H2S evolution. This may be accomplished by installing a water removal unit between the first and second sulfur guard materials and/or by installing a heat exchange unit to reduce the temperature between the first and second sulfur guard materials.

第二硫防護材料可具有與第一硫防護材料不同的化學組成,例如,ZnO基第一防護材料及Cu-Zn-Al基第二硫防護材料。即便如此,如上所述,在不同的方法條件下操作該兩種防護材料可能有益。The second sulfur barrier material may have a different chemical composition than the first sulfur barrier material, for example, a ZnO-based first barrier material and a Cu-Zn-Al-based second sulfur barrier material. Even so, as described above, it may be beneficial to operate the two barrier materials under different process conditions.

一個態樣中,富含二氧化碳的氣流在經過該防護材料之前經歷預熱步驟。In one aspect, the carbon dioxide-rich gas stream undergoes a preheating step prior to passing through the protective material.

一個態樣中,經淨化的富含二氧化碳的氣流包含小於50 ppbV、較佳小於10 ppbV且最佳小於5 ppbV的硫。另一個態樣中,經淨化的富含二氧化碳的氣流包含小於100 ppm、較佳小於50 ppm、更佳小於10 ppm的高級烴。另一個態樣中,經淨化的富含二氧化碳的氣流包含小於10 ppm、較佳小於5 ppm且最佳小於1 ppm的芳香烴。另一個態樣中,經淨化的富含二氧化碳的氣流包含小於10 ppm、較佳小於1 ppm、最佳小於0.1 ppm的醇。In one embodiment, the purified carbon dioxide-rich gas stream contains less than 50 ppbV, preferably less than 10 ppbV, and most preferably less than 5 ppbV of sulfur. In another embodiment, the purified carbon dioxide-rich gas stream contains less than 100 ppm, preferably less than 50 ppm, and more preferably less than 10 ppm of higher hydrocarbons. In another embodiment, the purified carbon dioxide-rich gas stream contains less than 10 ppm, preferably less than 5 ppm, and most preferably less than 1 ppm of aromatic hydrocarbons. In another embodiment, the purified carbon dioxide-rich gas stream contains less than 10 ppm, preferably less than 1 ppm, and most preferably less than 0.1 ppm of alcohol.

在本文所述的方法中,使富含二氧化碳的氣流與蒸氣饋料一起通過防護材料的步驟可以在250°C至550°C之間、較佳300°C至400°C之間的溫度下進行。操作壓力可根據整體方法的最佳化設計從5 barg至80 barg變化。In the process described herein, the step of passing the carbon dioxide-rich gas stream together with the steam feed through the barrier material can be carried out at a temperature between 250° C. and 550° C., preferably between 300° C. and 400° C. The operating pressure can vary from 5 barg to 80 barg depending on the optimal design of the overall process.

催化劑的量也可以變化,富含二氧化碳與蒸氣的饋料流量通常在1,000 Nm 3/h/m 3催化劑至10,000 Nm 3/h/m 3催化劑之間。 The amount of catalyst can also vary, with feed rates of CO2- and steam-rich gas typically ranging from 1,000 Nm3 /h/ m3catalyst to 10,000 Nm3 /h/ m3catalyst .

也提供用於生產化學品或燃料流的方法,該方法包含在本文所述的方法中淨化的富含二氧化碳的氣流,隨後將經淨化的富含二氧化碳的氣流饋料至合成階段,視需要的以與氫氣饋料的混合物形式,並且從該合成階段輸出化學品或燃料流。Also provided is a process for producing a chemical or fuel stream comprising purifying a carbon dioxide-rich gas stream in the process described herein, subsequently feeding the purified carbon dioxide-rich gas stream to a synthesis stage, optionally in admixture with a hydrogen feed, and outputting a chemical or fuel stream from the synthesis stage.

本發明特定的具體實例Specific embodiments of the present invention

圖1:富含二氧化碳的氣流(1) (例如來自HDS階段)可以視需要在與蒸氣流(3)混合之前與氫氣流(2)混合。將富含二氧化碳的氣流饋料至包含防護材料(10)的催化防護反應器(11)。離開催化防護反應器(11)的經淨化的富含二氧化碳的氣流(50)將被送往下游轉化。Figure 1: A CO2-rich gas stream (1) (e.g. from a HDS stage) can optionally be mixed with a hydrogen stream (2) before being mixed with a steam stream (3). The CO2-rich gas stream is fed to a catalytic guard reactor (11) containing a guard material (10). The purified CO2-rich gas stream (50) leaving the catalytic guard reactor (11) is sent to downstream conversion.

圖2:富含二氧化碳的氣體(1)與氫氣流(2)混合,並經由加氫脫硫階段,該階段由含有加氫催化劑的第一反應器(20)及隨後的含有硫吸附劑或硫吸附/化學吸附防護的第二反應器(30)組成。然後,加氫脫硫的富含二氧化碳的氣體可以視需要的與第二氫氣流(5)及/或視需要的再循環來自下游合成的未轉化合成氣或輕沸物烴的再循環流(R)混合。再循環流(R)通常是輕烴、CO、CO 2及H 2的混合物。 Figure 2: CO2-rich gas (1) is mixed with a hydrogen stream (2) and passed through a hydrodesulfurization stage consisting of a first reactor (20) containing a hydrogenation catalyst and a subsequent second reactor (30) containing a sulfur adsorbent or a sulfur adsorption/chemisorption guard. The hydrodesulfurized CO2-rich gas can then be mixed with a second hydrogen stream (5) as required and/or a recycle stream (R) of unconverted synthesis gas or light-boiling hydrocarbons from downstream synthesis as required. The recycle stream (R) is typically a mixture of light hydrocarbons, CO, CO2 and H2 .

與氫氣及蒸氣混合或僅與蒸氣(3)混合的富含二氧化碳的氣體可在預熱器(10)中預熱至所欲的入口溫度。加熱器(40)可用於在與第二氫氣流(5)或(2)及/或再循環流(再循環)混合之前或之後加熱富含二氧化碳的氣體。在進入催化防護反應器(50)之前,蒸氣流(3)與此流混合。經淨化的富含二氧化碳的氣體(50)離開化學防護反應器(10)並被送往下游催化方法。視需要的第二氫氣流(5)或(2)將是生產用於下游催化方法的合成氣所需要的氫氣。此氫氣流也可視需要的在催化防護反應器(10)之後混合到經淨化的富含二氧化碳的氣體(50)。The carbon dioxide rich gas mixed with hydrogen and steam or mixed with steam (3) alone can be preheated in the preheater (10) to the desired inlet temperature. The heater (40) can be used to heat the carbon dioxide rich gas before or after mixing with the second hydrogen stream (5) or (2) and/or the recycle stream (recycle). The steam stream (3) is mixed with this stream before entering the catalytic guard reactor (50). The purified carbon dioxide rich gas (50) leaves the chemical guard reactor (10) and is sent to the downstream catalytic process. The second hydrogen stream (5) or (2) as required will be the hydrogen required to produce synthesis gas for the downstream catalytic process. This hydrogen stream can also be mixed with the purified carbon dioxide rich gas (50) after the catalytic guard reactor (10) as required.

已經參考數個態樣及圖式描述本發明。然而,技術人員能夠在所附申請專利範圍定義的本發明範圍內選擇及組合各個態樣。本文引用的所有文獻皆以引用方式併入。The present invention has been described with reference to several aspects and drawings. However, a skilled person is able to select and combine various aspects within the scope of the invention as defined by the appended patent claims. All documents cited herein are incorporated by reference.

1:富含二氧化碳的氣體/流 2:氫氣流/第一富含氫氣的饋料 3:蒸氣饋料/流 5:第二氫氣流 10:預熱器/防護材料 11:催化防護反應器 20:第一反應器 30:第二反應器 40:加熱器 50:經淨化富含二氧化碳的氣流 R:再循環流 1: CO2-rich gas/stream 2: Hydrogen stream/first hydrogen-rich feed 3: Steam feed/stream 5: Second hydrogen stream 10: Preheater/protective material 11: Catalytic protective reactor 20: First reactor 30: Second reactor 40: Heater 50: Purified CO2-rich gas stream R: Recycle stream

[圖1]顯示本發明方法的一個具體實例的簡單佈局。 [圖2]顯示本發明的方法的具體實例的更先進佈局。 [Figure 1] shows a simple layout of a specific example of the method of the present invention. [Figure 2] shows a more advanced layout of a specific example of the method of the present invention.

1:富含二氧化碳的氣流 1: Carbon dioxide-rich airflow

2:第一富含氫氣的饋料 2: The first hydrogen-rich feed

3:蒸氣饋料 3: Steam feeding

10:防護材料 10: Protective materials

11:催化防護反應器 11: Catalytic protection reactor

50:經淨化富含二氧化碳的氣流 50: Purification of carbon dioxide-rich airflow

Claims (15)

一種用於淨化富含二氧化碳的氣流(1)的方法,該富含二氧化碳的氣流(1)包含至少80重量%二氧化碳及選自以下的一種或多種雜質: -    含硫化合物; -    高級烴;及 -    芳香烴, -    氮物質, 其中該方法包含以下步驟: -    使該富含二氧化碳的氣流(1)與蒸氣饋料(3)一起經過防護材料(10),該防護材料(10)包含在該蒸氣饋料(3)存在下具有將高級烴轉化成甲烷的活性的催化劑,並且將一種或多種該雜質吸附在該防護材料(10)上,以提供經淨化的富含二氧化碳的氣流(50)。 A method for purifying a carbon dioxide-rich gas stream (1), the carbon dioxide-rich gas stream (1) comprising at least 80% by weight of carbon dioxide and one or more impurities selected from the following: -    sulfur compounds; -    higher hydrocarbons; and -    aromatic hydrocarbons, -    nitrogen substances, wherein the method comprises the following steps: -    passing the carbon dioxide-rich gas stream (1) together with a steam feed (3) through a protective material (10), the protective material (10) comprising a catalyst having an activity of converting higher hydrocarbons into methane in the presence of the steam feed (3), and adsorbing one or more of the impurities on the protective material (10) to provide a purified carbon dioxide-rich gas stream (50). 如請求項1之方法,其中該富含二氧化碳的氣流(1)包含至少90重量%二氧化碳,諸如至少95.0重量%二氧化碳,較佳至少99重量%二氧化碳,更佳至少99.5重量%二氧化碳。The method of claim 1, wherein the carbon dioxide-rich gas stream (1) comprises at least 90 wt% carbon dioxide, such as at least 95.0 wt% carbon dioxide, preferably at least 99 wt% carbon dioxide, and more preferably at least 99.5 wt% carbon dioxide. 如前述請求項中任一項之方法,其中該富含二氧化碳的氣流(1)與第一富含氫氣的饋料(2)一起經過該防護材料(10)。A method as claimed in any preceding claim, wherein the carbon dioxide rich gas stream (1) passes through the protective material (10) together with a first hydrogen rich feed (2). 如前述請求項中任一項之方法,其中該催化劑是預重整催化劑,特別是負載鎳的催化劑,諸如鎳負載在氧化鋁載體或尖晶石載體上,例如鎳負載在活化的鎂鋁尖晶石載體上。A method as claimed in any of the preceding claims, wherein the catalyst is a pre-reforming catalyst, in particular a nickel-supported catalyst, such as nickel supported on an alumina support or a spinel support, for example nickel supported on an activated magnesium-aluminium spinel support. 如前述請求項中任一項之方法,其中該含硫化合物為一種或多種選自COS、DMS及H 2S的化合物,較佳H 2S。 The method of any of the preceding claims, wherein the sulfur-containing compound is one or more compounds selected from COS, DMS and H 2 S, preferably H 2 S. 如前述請求項中任一項之方法,其中該高級烴選自C2-C6烷烴、C2-C6烯烴、C2-C6炔烴及其組合。The method of any of the preceding claims, wherein the higher hydrocarbon is selected from C2-C6 alkanes, C2-C6 alkenes, C2-C6 alkynes and combinations thereof. 如前述請求項中任一項之方法,其中該高級芳香烴選自C6-C8芳香烴、C9-C12芳香烴及其組合。The method of any of the preceding claims, wherein the higher aromatic hydrocarbon is selected from C6-C8 aromatic hydrocarbons, C9-C12 aromatic hydrocarbons, and combinations thereof. 如前述請求項中任一項之方法,其中該富含二氧化碳的氣流(1)在經過該防護材料(10)之前經歷一個或多個脫硫步驟(20、30),較佳經歷兩個或多個脫硫步驟。A method as claimed in any of the preceding claims, wherein the carbon dioxide-rich gas stream (1) undergoes one or more desulfurization steps (20, 30), preferably two or more desulfurization steps, before passing through the protective material (10). 如前述請求項中任一項之方法,其中該富含二氧化碳的氣流(1)在經過該防護材料(10)之前經歷預熱步驟。A method as claimed in any of the preceding claims, wherein the carbon dioxide-enriched gas stream (1) undergoes a preheating step before passing through the protective material (10). 如前述請求項中任一項之方法,其中該經淨化的富含二氧化碳的氣流(50)包含小於50 ppbV,較佳小於10 ppbV及最佳小於5 ppbV硫。A method as claimed in any of the preceding claims, wherein the purified carbon dioxide-rich gas stream (50) comprises less than 50 ppbV, preferably less than 10 ppbV and most preferably less than 5 ppbV sulfur. 如前述請求項中任一項之方法,其中該經淨化的富含二氧化碳的氣流(50)包含小於100 ppm,較佳小於50 ppm,更佳小於10 ppm高級烴。A method as claimed in any of the preceding claims, wherein the purified carbon dioxide-rich gas stream (50) contains less than 100 ppm, preferably less than 50 ppm, more preferably less than 10 ppm of higher hydrocarbons. 如前述請求項中任一項之方法,其中該經淨化的富含二氧化碳的氣流(50)包含小於10 ppm,較佳小於5 ppm及最佳小於1 ppm芳香烴。A method as claimed in any of the preceding claims, wherein the purified carbon dioxide-rich gas stream (50) contains less than 10 ppm, preferably less than 5 ppm and most preferably less than 1 ppm aromatic hydrocarbons. 如前述請求項中任一項之方法,其中該經淨化的富含二氧化碳的氣流(50)包含小於10 ppm,較佳小於1 ppm及最佳小於0.1 ppm醇。A method as claimed in any of the preceding claims, wherein the purified carbon dioxide-rich gas stream (50) contains less than 10 ppm, preferably less than 1 ppm and most preferably less than 0.1 ppm alcohol. 如前述請求項中任一項之方法,其中使該富含二氧化碳的氣流(1)與該蒸氣饋料(3)一起經過防護材料(10)的步驟在250與550°C之間,較佳在300與400°C之間的溫度進行。A method as claimed in any of the preceding claims, wherein the step of passing the carbon dioxide enriched gas stream (1) together with the steam feed (3) through a protective material (10) is carried out at a temperature between 250 and 550°C, preferably between 300 and 400°C. 一種用於生產化學品或燃料流的方法,該方法包含在如請求項1至14中任一項之方法中淨化富含二氧化碳的氣流(1),隨後將該經淨化的富含二氧化碳的氣流(50)饋料至合成階段,視需要的以與氫氣饋料的混合物形式,並且從該合成階段輸出化學品或燃料流。A method for producing a chemical or fuel stream, the method comprising purifying a carbon dioxide rich gas stream (1) in a method as claimed in any one of claims 1 to 14, subsequently feeding the purified carbon dioxide rich gas stream (50) to a synthesis stage, optionally in admixture with a hydrogen feed, and outputting the chemical or fuel stream from the synthesis stage.
TW113118592A 2023-05-24 2024-05-20 Cleaning of co2-containing feed gases TW202500249A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA202330042 2023-05-24
DKPA202330042 2023-05-24

Publications (1)

Publication Number Publication Date
TW202500249A true TW202500249A (en) 2025-01-01

Family

ID=91302501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113118592A TW202500249A (en) 2023-05-24 2024-05-20 Cleaning of co2-containing feed gases

Country Status (2)

Country Link
TW (1) TW202500249A (en)
WO (1) WO2024240857A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945496B2 (en) 2010-11-30 2015-02-03 General Electric Company Carbon capture systems and methods with selective sulfur removal
US11492254B2 (en) * 2020-06-18 2022-11-08 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US20230356177A1 (en) * 2020-10-14 2023-11-09 Haldor Topsøe A/S Conversion of co2 and h2 to synfuels
CN112999843A (en) 2021-01-05 2021-06-22 西南化工研究设计院有限公司 Purification process of exhaust gas containing hydrogen sulfide and organic sulfur
CN112957872B (en) 2021-03-17 2022-04-22 西北大学 A kind of device and method for purifying CO2 and removing SO2

Also Published As

Publication number Publication date
WO2024240857A1 (en) 2024-11-28

Similar Documents

Publication Publication Date Title
AU2006257650B2 (en) Process for the preparation and conversion of synthesis gas
KR101650602B1 (en) Carbon dioxide emission reduction method
US7879919B2 (en) Production of hydrocarbons from natural gas
JP4248143B2 (en) Gas conversion using hydrogen derived from synthesis gas and hydrogen conversion tail gas
US8753427B2 (en) Systems and processes for processing hydrogen and carbon monoxide
US8772361B2 (en) Process for producing a purified synthesis gas stream
JP5011127B2 (en) Management of hydrogen in hydrogen-containing streams from hydrogen sources
EP3853171A1 (en) Processes and catalysts for reforming of impure methane-containing feeds
CN101980951A (en) Process for producing liquid hydrocarbons from natural gas
CN101970344A (en) Process for producing liquid hydrocarbons from natural gas
AU2011327937B2 (en) Process
CA2846936C (en) Method of reforming gasification gas
CN101250080B (en) Olefin purification technique for methanol production
JP2010514853A (en) Integration of sulfur recovery process with LNG and / or GTL process
CA2862050A1 (en) Process for preparing a paraffin product
WO2012130450A1 (en) Method for the purification of raw gas
TW202500249A (en) Cleaning of co2-containing feed gases
WO2018019512A1 (en) Syngas production
KR20240145504A (en) Method for producing liquid hydrocarbons from synthesis gas
US20140066527A1 (en) Synthesis Gas Reaction and Processing System
US20240390852A1 (en) Use of off-gases rich in carbon monoxide as feedstocks in steam reformers
GB2633449A (en) Method of producing liquid hydrocarbons from a syngas
TW202504673A (en) Cleaning of co containing feed gases
GB2618890A (en) Method of producing liquid hydrocarbons from a syngas