[go: up one dir, main page]

TW202316679A - Optoelectronic product and manufacture method thereof - Google Patents

Optoelectronic product and manufacture method thereof Download PDF

Info

Publication number
TW202316679A
TW202316679A TW111122324A TW111122324A TW202316679A TW 202316679 A TW202316679 A TW 202316679A TW 111122324 A TW111122324 A TW 111122324A TW 111122324 A TW111122324 A TW 111122324A TW 202316679 A TW202316679 A TW 202316679A
Authority
TW
Taiwan
Prior art keywords
led
carrier
block
blocks
sorting
Prior art date
Application number
TW111122324A
Other languages
Chinese (zh)
Inventor
謝明勳
劉欣茂
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to CN202211201277.1A priority Critical patent/CN115939268A/en
Priority to US17/957,431 priority patent/US20230105078A1/en
Priority to DE102022125488.7A priority patent/DE102022125488A1/en
Priority to KR1020220126145A priority patent/KR20230049033A/en
Publication of TW202316679A publication Critical patent/TW202316679A/en

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Embodiments of the invention provide a category carrier, on which LED sections are arranged to form an array with rows and columns. Each LED section is assigned to one of categories. Each row has two or more LED sections belonging to two or more different categories. Each column has two or more LED sections belonging to two or more different categories. The category carrier can be used to manufacture an LED display.

Description

光電產品以及其製造方法Optoelectronic product and its manufacturing method

本發明主要是有關於一種光電產品以及相關的製造方法,且特別是有關於一種用來製造LED顯示器的光電產品以及其製造方法。The present invention mainly relates to an optoelectronic product and a related manufacturing method, and in particular relates to an optoelectronic product for manufacturing an LED display and a manufacturing method thereof.

發光二極體(Light-Emitting Diode,LED)為一種光電半導體元件,具有耗能低、低發熱、操作壽命長、防震、體積小、以及反應速度快等良好特性,因此適用於各種照明及顯示用途。Light-emitting diode (Light-Emitting Diode, LED) is an optoelectronic semiconductor element with good characteristics such as low energy consumption, low heat generation, long operating life, shockproof, small size, and fast response, so it is suitable for various lighting and display use.

當半導體製程技術不斷地突破,LED 晶粒(chip)的尺寸低於肉眼可辨的地步之後,例如:小於100μm、50μm、或是30μm,其用途就不再只侷限於LCD顯示器的背光源。R、G、B 三種顏色的LED晶粒,可以直接組成一個像素點(pixel)來使用,許多的像素點則可以組成一個LED顯示器。此意味不再需要一般液晶面板中的濾光片和液晶層。且因為LED晶粒本身就會發光,所以也不用額外的背光模組。When the semiconductor process technology continues to break through, the size of the LED chip (chip) is lower than the naked eye, for example: less than 100μm, 50μm, or 30μm, and its use is no longer limited to the backlight of the LCD display. LED grains of R, G, and B colors can be used directly to form a pixel, and many pixels can form an LED display. This means that the filter and liquid crystal layer in a typical liquid crystal panel are no longer needed. And because the LED grain itself will emit light, there is no need for an additional backlight module.

但是,以一塊4K解析度的LED顯示器來說,需要安裝約2,400萬顆LED晶粒。要將數百萬乃至數千萬顆LED晶粒,從載板或是基板上,轉移放置在顯示器的面板上,且需要排列整齊,就是所謂的巨量轉移(mass transfer)。如何有效率的巨量轉移,使得轉移的結果有高精度、高良率、低成本,就是業界所努力的目標。However, for a 4K resolution LED display, about 24 million LED dies need to be installed. To transfer millions or even tens of millions of LED chips from the carrier or substrate to the panel of the display, and arrange them neatly, this is the so-called mass transfer. How to efficiently transfer large quantities so that the transfer result has high precision, high yield, and low cost is the goal that the industry is striving for.

本發明係揭露一種光電產品之製造方法,包括:提供至少一成長基板,其上形成有複數發光元件區塊,每一發光元件區塊包含有複數發光元件;指定每一發光元件區塊為數個分類其中之一;以及,轉移至少該等發光元件區塊之數個,從每個成長基板至一分類載板上,排列為複數行與複數列。每一行至少有二發光元件區塊,分別屬於該等分類中之不同的第一與第二分類。每一列至少有二發光元件區塊,分別屬於該第一與第二分類。The invention discloses a manufacturing method of optoelectronic products, including: providing at least one growth substrate on which a plurality of light-emitting element blocks are formed, each light-emitting element block includes a plurality of light-emitting elements; designating each light-emitting element block as several sorting one of them; and, transferring at least a few of the light-emitting element blocks from each growth substrate to a sorting carrier, arranged in a plurality of rows and a plurality of columns. Each row has at least two light-emitting element blocks, respectively belonging to different first and second categories among the categories. Each column has at least two light-emitting element blocks, which respectively belong to the first and second categories.

本發明係揭露一種光電產品,包含有一分類載板以及複數發光元件區塊。該等發光元件區塊放置於該分類載板上,排列為複數行與複數列。每個發光元件區塊包含有複數發光元件。每個發光元件區塊具有一光電特性類別,該分類載板上的該等光電特性類別,符合預設非平整之一區塊特性圖案。The invention discloses an optoelectronic product, which includes a classification carrier board and a plurality of light-emitting element blocks. The light-emitting element blocks are placed on the classification carrier board and arranged in a plurality of rows and a plurality of columns. Each light-emitting element block includes a plurality of light-emitting elements. Each light-emitting element block has a photoelectric characteristic type, and the photoelectric characteristic type on the sorting carrier conforms to a predetermined non-flat block characteristic pattern.

下文中,將參照圖示詳細地描述本發明之示例性實施例,已使得本發明領域技術人員能夠充分地理解本發明之精神。本發明並不限於以下之實施例,而是可以以其他形式實施。在本說明書中,有一些相同的符號,其表示具有相同或是類似之結構、功能、原理的元件,且為業界具有一般知識能力者可以依據本說明書之教導而推知。為說明書之簡潔度考量,相同之符號的元件將不再重述。Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to drawings so that those skilled in the art of the present invention can fully understand the spirit of the present invention. The present invention is not limited to the following embodiments, but can be implemented in other forms. In this specification, there are some same symbols, which represent elements with the same or similar structure, function, and principle, and can be inferred by those with general knowledge in the industry based on the teaching of this specification. For the sake of brevity in the description, elements with the same symbols will not be repeated.

在本發明的實施例中,提供一分類載板,分類載板上有排列成數行與數列的LED區塊,每個LED區塊具有排列成一矩陣的LED晶粒。每個LED區塊依據一檢測結果被指定至一個分類。分類載板的每一行,都具有被指定為至少兩種不同分類的數個LED區塊;分類載板的每一列,都具有被指定為至少兩種不同分類的數個LED區塊。該分類載板是一光電產品,可以用來製造一LED顯示器。In an embodiment of the present invention, a sorting carrier is provided, and the sorting carrier has LED blocks arranged in rows and columns, and each LED block has LED dies arranged in a matrix. Each LED block is assigned to a category according to a detection result. Each row of the classification carrier has a plurality of LED blocks assigned to at least two different classifications; each column of the classification carrier has a plurality of LED blocks assigned to at least two different classifications. The classification carrier is an optoelectronic product and can be used to manufacture an LED display.

分類載板可以增加LED晶粒的產能利用率,而且也可以提高分類載板上LED。另一方面,使用本發明的方法,也可以提升LED晶粒移轉的速度,進而提升量產一LED顯示器的速度。The sorting carrier board can increase the capacity utilization rate of LED grains, and can also improve the LEDs on the sorting carrier board. On the other hand, using the method of the present invention can also increase the speed of LED die transfer, thereby increasing the speed of mass production of an LED display.

請同時參閱圖1與圖2。圖1顯示依據本發明所實施的製造方法100;圖2顯示依據本發明所實施的成長基板(growth substrate)110、以及成長基板110中用來舉例說明的6個鄰近的LED區塊(section)S1-S6。儘管本發明的實施例以LED晶粒實施,但本發明並不限於此。在其他實施例中,可以採用其他的半導體元件,例如:光電二極體(Photo Diode)、或是集成電路元件(integrated circuit component)來實施。Please refer to Figure 1 and Figure 2 together. FIG. 1 shows a manufacturing method 100 implemented according to the present invention; FIG. 2 shows a growth substrate 110 implemented according to the present invention, and six adjacent LED sections in the growth substrate 110 for illustration. S1-S6. Although embodiments of the invention are implemented with LED dies, the invention is not limited thereto. In other embodiments, other semiconductor components such as photodiodes or integrated circuit components may be used for implementation.

圖1之製造方法100中,步驟S02提供圖2之成長基板110,其上形成有數個LED區塊112,每個LED區塊112中有數個大致相同光電特性、大小相同的LED晶粒114。舉例來說, LED區塊S1-S6中,每個LED區塊都有4×4個LED晶粒 114,排列成一個矩陣,形成在一成長基板110上。儘管本發明的實施例的數量以4x4實施,但本發明並不限於此數量。在一實施例中,一區塊的大小小於10×10mm 2,例如介於2×2mm 2~6×6mm 2、或介於5×5mm 2~8×8mm 2In the manufacturing method 100 of FIG. 1 , step S02 provides the growth substrate 110 of FIG. 2 on which several LED blocks 112 are formed, and each LED block 112 has several LED dies 114 with approximately the same photoelectric characteristics and the same size. For example, among the LED blocks S1-S6, each LED block has 4×4 LED dies 114 arranged in a matrix and formed on a growth substrate 110 . Although the number of embodiments of the invention is implemented in 4x4, the invention is not limited to this number. In one embodiment, the size of a block is less than 10×10mm 2 , for example, between 2×2mm 2˜6 ×6mm 2 , or between 5×5mm 2˜8 ×8mm 2 .

LED晶粒114的材料包含第一半導體層(未顯示)、活性層(未顯示)、以及第二半導體層(未顯示)。第一半導體層及第二半導體層,可分別提供電子、電洞,使電子、電洞於活性層中復合(Recombination)以發出光線。第一半導體層、活性層、及第二半導體層可包含Ⅲ-Ⅴ族半導體材料,例如AlxInyGa(1-x-y)N或AlxInyGa(1-x-y)P,其中0≦x、 y≦1;(x+y)≦1。依據活性層之材料,LED晶粒可發出一峰值介於610 nm及650 nm之間的紅光、峰值介於530 nm及570 nm之間的綠光、峰值介於500nm及485 nm之間的青光(cyan)、峰值介於450 nm及490 nm之間的藍光、峰值介於400nm及450 nm之間的紫光、或是峰值介於280 nm及400 nm之間的紫外光。The material of the LED die 114 includes a first semiconductor layer (not shown), an active layer (not shown), and a second semiconductor layer (not shown). The first semiconductor layer and the second semiconductor layer can provide electrons and holes respectively, so that electrons and holes can recombine in the active layer to emit light. The first semiconductor layer, the active layer, and the second semiconductor layer may comprise III-V group semiconductor materials, such as AlxInyGa(1-x-y)N or AlxInyGa(1-x-y)P, wherein 0≦x, y≦1; (x +y)≦1. Depending on the material of the active layer, the LED die can emit a red light with a peak between 610 nm and 650 nm, a green light with a peak between 530 nm and 570 nm, and a green light with a peak between 500 nm and 485 nm. Cyan, blue light with a peak between 450 nm and 490 nm, violet light with a peak between 400 nm and 450 nm, or ultraviolet light with a peak between 280 nm and 400 nm.

成長基板110的材料可以是鍺(Ge)、砷化鎵(GaAs)、銦化磷(InP)、矽(Si)、玻璃、藍寶石(Sapphire)、碳化矽(SiC)、鋁酸鋰(LiAlO 2)、氧化鋅(ZnO)、氮化鎵(GaN)、氮化鋁(AlN)等等。LED區塊112與LED區塊112之間有水平切割道(或稱為水平邊界線)116H與垂直切割道(或稱為垂直邊界線)116V。水平切割道116H具有切割道寬度117V。垂直切割道116V具有切割道寬度117H。 The material of the growth substrate 110 can be germanium (Ge), gallium arsenide (GaAs), indium phosphorus (InP), silicon (Si), glass, sapphire (Sapphire), silicon carbide (SiC), lithium aluminate (LiAlO 2 ), zinc oxide (ZnO), gallium nitride (GaN), aluminum nitride (AlN), etc. There are horizontal cutting lines (or called horizontal boundary lines) 116H and vertical cutting lines (or called vertical boundary lines) 116V between the LED blocks 112 and the LED blocks 112 . The horizontal scribe line 116H has a scribe line width 117V. The vertical scribe line 116V has a scribe line width 117H.

成長基板100有區塊垂直線距(vertical section pitch)118V與區塊水平線距(horizontal section pitch)118H。區塊垂直線距(vertical section pitch)118V是一個LED區塊112的縱向長度,如同圖2所示。舉例來說,區塊垂直線距118V可以是從LED區塊112的中心水平線,到上下鄰接的另一個LED區塊112的中心水平線,兩者之間的距離。區塊垂直線距118V也可以是一個LED區塊112的最左上角,到上下鄰接的另一個LED區塊112的最左上角,兩者之間的距離;也可以是圖2中,相鄰兩個水平切割道116H的中心線之間的間距。類似地,區塊水平線距118H指的是一LED區塊112的橫向寬度,可以是相鄰兩個垂直切割道116V的中心線之間的間距。The growth substrate 100 has a vertical section pitch 118V and a horizontal section pitch 118H. The block vertical line pitch (vertical section pitch) 118V is the longitudinal length of one LED block 112 , as shown in FIG. 2 . For example, the block vertical line distance 118V may be the distance between the center horizontal line of the LED block 112 and the center horizontal line of another adjacent LED block 112 above and below. Block vertical line distance 118V can also be the upper left corner of one LED block 112, to the upper left corner of another LED block 112 adjacent up and down, the distance between the two; The spacing between the centerlines of two horizontal scribe lines 116H. Similarly, the block horizontal pitch 118H refers to the lateral width of an LED block 112 , which may be the distance between the centerlines of two adjacent vertical cutting lines 116V.

圖1之步驟S04對這些LED區塊112進行分類(binning),指定每個LED區塊112為數個分類其中之一。舉例來說,對每個LED區塊112中的所有的LED晶粒 114進行自動光學檢測(automatic optical inspection,AOI)、發光測試(Photoluminescence,PL)、及/或電致發光測試(Electroluminescence,EL)。在另一實施例中,為了提升測試效率,對每個LED區塊112中的LED晶粒 114抽樣進行電致發光測試(Electroluminescence, EL),例如:僅取一LED區塊112中5%、10%、或是30%的LED晶粒114進行EL測試。依據測試的結果,對受測試LED區塊112指定一個分類。分類的依據,可以是一LED區塊112中,LED晶粒 114的平均光電特性其中之一。舉例來說,光電特性可以是,但不限於放射波長(peak or/dominant wavelength)、發光強度(illuminance intensity level)、及/或色度大小(chromaticity scale)。圖3舉例說明了成長基板110上之LED區塊112的分類結果,其中3個分類‶B1″、‶B2″、‶B3″,分別表示一LED區塊112中全部或部分LED晶粒 114的放射波長的中位數或平均值大約為W1、W2、W3。另有一個分類‶X″則表示一LED區塊的光電特性標準或是外觀不符合製造標準,應該剔除。光電特性標準有可能為順向電壓(forward voltage)、逆向電壓(reverse voltage)、發光強度、或是放射波長。舉例來說,LED區塊112A指定為分類‶B3″,表示LED區塊112A其中的LED晶粒 114,他們個別的放射波長,大約會落在W1附近,且平均值大約為W1。LED區塊112B指定為分類‶X″,表示其測試的光電特性標準或是外觀不符合製造標準。例如,其中有過多的LED晶粒 114其AOI、PL、EL測試的結果不符合生產的標準而被視為無效或缺陷,或是其中過多的LED晶粒 114波長都沒有落於分類的範圍之內。在一LED區塊112A,也許因為製程上的變異,會出現一個或是兩個特異的LED晶粒 114,其放射波長跟其他位於同一個LED區塊112的其他LED晶粒 114之放射波長相當地不同,但這並不會影響此LED區塊112的放射波長類別,因為放射波長類別為LED區塊112中所有LED晶粒 114放射波長的平均值。Step S04 of FIG. 1 performs binning on these LED blocks 112 , and designates each LED block 112 as one of several binnings. For example, automatic optical inspection (automatic optical inspection, AOI), luminescence test (Photoluminescence, PL), and/or electroluminescence test (Electroluminescence, EL) are performed on all LED dies 114 in each LED block 112. ). In another embodiment, in order to improve the test efficiency, the LED die 114 in each LED block 112 is sampled for electroluminescence test (Electroluminescence, EL), for example: only 5% of one LED block 112, 10%, or 30% of the LED dies 114 are tested for EL. Based on the results of the test, a classification is assigned to the tested LED block 112 . The classification basis can be one of the average photoelectric characteristics of the LED die 114 in an LED block 112 . For example, the optoelectronic characteristic may be, but not limited to, peak or/dominant wavelength, luminance intensity level, and/or chromaticity scale. FIG. 3 illustrates the classification results of the LED block 112 on the growth substrate 110, wherein three classifications ‶B1 ″, ‶B2 ″, and ‶B3 ″ respectively represent all or part of the LED crystal grains 114 in an LED block 112. The median or average of the emitted wavelengths is approximately W1, W2, and W3. Another category‶X" indicates that the photoelectric characteristic standard or appearance of an LED block does not meet the manufacturing standard and should be rejected. The optoelectronic characteristic standard may be forward voltage, reverse voltage, luminous intensity, or emission wavelength. For example, the LED block 112A is designated as a category‶B3", which means that the LED dies 114 in the LED block 112A, their individual emission wavelengths will fall around W1, and the average value is about W1. The LED block 112B is designated as category ‶X″, which means that the photoelectric characteristic standard or appearance of the test does not meet the manufacturing standard. For example, the results of the AOI, PL, and EL tests of too many LED dies 114 do not meet the production standards and are considered invalid or defective, or the wavelengths of too many LED dies 114 do not fall within the scope of classification Inside. In an LED block 112A, perhaps due to process variation, there will be one or two specific LED dies 114 whose emission wavelength is comparable to that of other LED dies 114 located in the same LED block 112 The ground is different, but this will not affect the emission wavelength category of the LED block 112, because the emission wavelength category is the average value of the emission wavelengths of all LED chips 114 in the LED block 112.

請參閱圖1與圖4。圖1之步驟S06將這些LED區塊112,依據他們個別的分類,轉移到數個輔助分類載板(auxiliary bin carrier)120,形成一區塊陣列。一區塊陣列包含多個LED區塊112以陣列的形式排列於輔助分類載板120上。每個輔助分類載板120上,都只有相同分類的多個LED區塊112。舉例來說,位於成長基板110上,分類為‶B1″、‶B2″、與‶B3″的LED區塊112,分別轉移至三個不同的輔助分類載板120上。步驟S06可以一次轉移一個LED區塊112,也可以一次轉移多個相同分類的LED區塊112。圖4舉例顯示輔助分類載板120,其上放置有多個分類為‶B1″的LED區塊112,以陣列的形式排列於輔助分類載板120形成一區塊矩陣。輔助分類載板120的材料可以是矽、玻璃、藍寶石、碳化矽、熱移除膠帶(thermal release tape)、光解膠膜(UV release tape)、化學移除膠帶(Chemical release tape)、耐熱膠帶、藍膜(Blue Tape)、或是具有動力釋放層(DRL)的膠帶。轉移的工具可以包含取放拾取頭(pick-and-place head)、壓印機(stamp)、滾壓機(roller)、真空吸嘴(vacuum head)、磁性移轉頭(magnetic head)、雷射剝離(laser lift-off)、雷射剝蝕(laser ablation)、及/或前述方法之組合。Please refer to Figure 1 and Figure 4. In step S06 of FIG. 1 , these LED blocks 112 are transferred to several auxiliary bin carriers 120 according to their individual classification to form a block array. A block array includes a plurality of LED blocks 112 arranged in an array on the auxiliary sorting carrier 120 . There are only a plurality of LED blocks 112 of the same classification on each auxiliary classification carrier board 120 . For example, on the growth substrate 110, the LED blocks 112 classified into -B1", -B2", and -B3" are respectively transferred to three different auxiliary sorting carriers 120. Step S06 can transfer one at a time The LED block 112 can also transfer multiple LED blocks 112 of the same classification at one time. Figure 4 shows an example of an auxiliary sorting carrier 120, on which a plurality of LED blocks 112 classified as "B1" are placed in the form of an array Arranged on the auxiliary sorting carrier 120 to form a block matrix. The material of the auxiliary sorting carrier 120 can be silicon, glass, sapphire, silicon carbide, thermal release tape, UV release tape, chemical release tape, heat-resistant tape , blue film (Blue Tape), or tape with a power release layer (DRL). Transfer tools can include pick-and-place head, stamp, roller, vacuum head, magnetic head, laser Laser lift-off, laser ablation, and/or a combination of the aforementioned methods.

圖4也顯示輔助分類載板120上的區塊垂直線距122V與區塊水平線距122H。區塊垂直線距122V為輔助分類載板120上,從LED區塊112的中心水平線,到上下鄰接的另一個LED區塊112的中心水平線,兩者之間的距離。區塊水平線距122H為輔助分類載板120上,從LED區塊112的中心垂直線,到左右鄰接的另一個LED區塊112的中心垂直線,兩者之間的距離。圖4中的區塊垂直線距122V,可以相等,也可以不等於圖2中的區塊垂直線距118V。類似的,圖4中的區塊水平線距122H,可以相等,也可以不等於圖2中的區塊水平線距118H。FIG. 4 also shows the block vertical pitch 122V and the block horizontal pitch 122H on the auxiliary sorting carrier 120 . The block vertical distance 122V is the distance between the center horizontal line of the LED block 112 and the center horizontal line of another adjacent LED block 112 on the auxiliary sorting carrier 120 . The block horizontal distance 122H is the distance between the center vertical line of the LED block 112 and the center vertical line of another adjacent LED block 112 on the auxiliary sorting carrier 120 . The block vertical line spacing 122V in FIG. 4 may be equal to or not equal to the block vertical line spacing 118V in FIG. 2 . Similarly, the block horizontal line spacing 122H in FIG. 4 may be equal to or not equal to the block horizontal line spacing 118H in FIG. 2 .

請參閱圖1、圖5與圖6。圖5顯示一實施例中的具有預設分類圖案(category pattern)130的區塊陣列;圖6顯示依據分類圖案130所產生的分類載板140。圖1之步驟S08依據圖5的預設分類圖案130,把不同分類的LED區塊112,自數個輔助分類載板120轉移到一分類載板140上。圖5之分類圖案130舉例顯示一實施例中一固定排列規則的區塊陣列,其為一3x3陣列,每一行與每一列都各有一個B1、B2、與B3的LED區塊。此實施例中分類圖案的數量以及排列僅為例示,本發明並不限於此數量與排列。圖6之分類載板140依據圖5的分類圖案130所產生的區塊陣列,其上的LED區塊112排列數個列Y1、Y2…,以及數個行X1、X2…。分類圖案130在分類載板140重複出現,譬如左上角的區域142中的9個LED區塊112,就重現圖5的分類圖案130。圖6之分類載板140的每行與每列都有兩種以上分類的LED區塊112。各行皆包含屬於B1分類的LED區塊及屬於B2分類的LED區塊。各列皆包含屬於B1分類的LED區塊及屬於B2分類的LED區塊。分類載板140的材料可以是一矽、玻璃、藍寶石、碳化矽、熱移除膠帶(thermal release tape)、光解膠膜(UV release tape)、化學移除膠帶(Chemical release tape)、耐熱膠帶、或是具有動力釋放層(DRL)的膠帶、或藍膜(Blue Tape)。Please refer to Figure 1, Figure 5 and Figure 6. FIG. 5 shows a block array with a predetermined category pattern 130 in one embodiment; FIG. 6 shows a category carrier 140 produced according to the category pattern 130 . Step S08 of FIG. 1 transfers the differently classified LED blocks 112 from several auxiliary sorting carriers 120 to a sorting carrier 140 according to the preset sorting pattern 130 in FIG. 5 . The sorting pattern 130 in FIG. 5 shows an example of a block array with a fixed arrangement in one embodiment, which is a 3x3 array, and each row and each column has a B1, B2, and B3 LED block. The quantity and arrangement of the sorting patterns in this embodiment are only examples, and the present invention is not limited to the quantity and arrangement. The sorting carrier 140 in FIG. 6 is a block array produced according to the sorting pattern 130 in FIG. 5 , and the LED blocks 112 thereon are arranged in several columns Y1, Y2 . . . and several rows X1, X2 . . . The sorting pattern 130 appears repeatedly on the sorting carrier 140 , for example, the nine LED blocks 112 in the upper left area 142 reproduce the sorting pattern 130 in FIG. 5 . Each row and each column of the classification carrier 140 in FIG. 6 has more than two types of LED blocks 112 . Each row contains LED blocks belonging to category B1 and LED blocks belonging to category B2. Each column contains LED blocks belonging to category B1 and LED blocks belonging to category B2. The material of the sorting carrier 140 can be silicon, glass, sapphire, silicon carbide, thermal release tape, UV release tape, chemical release tape, heat-resistant tape , or tape with a dynamic release layer (DRL), or blue film (Blue Tape).

分類圖案130只有給予LED區塊112之間的排列規則,並沒有限定LED區塊112之間的距離。換言之,圖6之分類載板140上LED區塊112之間的距離,不必然需要跟分類圖案130中LED區塊之間的距離相等。圖6也顯示分類載板140上的區塊垂直線距144V與區塊水平線距144H。The sorting pattern 130 only gives arrangement rules between the LED blocks 112 , but does not limit the distance between the LED blocks 112 . In other words, the distance between the LED blocks 112 on the sorting carrier 140 in FIG. 6 does not necessarily need to be equal to the distance between the LED blocks in the sorting pattern 130 . FIG. 6 also shows the block vertical pitch 144V and the block horizontal pitch 144H on the sorting carrier 140 .

從圖5之分類圖案130可知,圖6之分類載板140之區塊陣列的每一行與每一列中,分類B1的LED區塊112數量:分類B2的LED區塊112數量:分類B3的LED區塊112數量,大約都相同,為1:1:1。此實施例中不同分類間的比例僅為例示,本發明並不限於此比例,惟比例中的數字必然為正整數。例如,分類B1的LED區塊112數量:分類B2的LED區塊112數量:分類B3的LED區塊112數量可以為1:2:3、1:3:5、1:5:7或其他實務上合理的比例。It can be seen from the classification pattern 130 of FIG. 5 that in each row and each column of the block array of the classification carrier 140 of FIG. The number of blocks 112 is about the same, 1:1:1. The ratio between different categories in this embodiment is only an example, and the present invention is not limited to this ratio, but the numbers in the ratio must be positive integers. For example, the number of LED blocks 112 in category B1: the number of LED blocks 112 in category B2: the number of LED blocks 112 in category B3 can be 1:2:3, 1:3:5, 1:5:7 or other practices a reasonable ratio.

步驟S08可以一次轉移一個LED區塊112,也可以一次轉移多個相同分類的LED區塊112。Step S08 may transfer one LED block 112 at a time, or transfer multiple LED blocks 112 of the same classification at a time.

在一實施例中,圖1之步驟S08接續步驟S06,也就是圖6分類載板140上的每個LED區塊112,都是從單一個輔助分類載板120轉移過來。舉例來說,圖6中分類為B1的LED區塊112,都是從僅具有分類為B1之LED區塊112的一個輔助分類載板120轉移過來。類似地,圖6中分類為B2的LED區塊112,都是從僅具有分類為B2之LED區塊112的一個輔助分類載板120轉移過來。在另一個實施例中,步驟S06可以省略,步驟S08接續步驟S04,也就是圖6上的每個LED區塊112,都是從成長基板110直接轉移過來,並沒有先轉移至輔助分類載板120上。In one embodiment, step S08 in FIG. 1 is followed by step S06 , that is, each LED block 112 on the sorting carrier 140 in FIG. 6 is transferred from a single auxiliary sorting carrier 120 . For example, the LED blocks 112 classified as B1 in FIG. 6 are all transferred from an auxiliary sorting carrier 120 that only has the LED blocks 112 classified as B1. Similarly, the LED blocks 112 classified as B2 in FIG. 6 are all transferred from an auxiliary sorting carrier 120 having only LED blocks 112 classified as B2. In another embodiment, step S06 can be omitted, and step S08 continues step S04, that is, each LED block 112 in FIG. 6 is directly transferred from the growth substrate 110 without first being transferred to the auxiliary classification carrier 120 on.

在一實施例中,在圖6的分類載板140可以接著進行檢測與修補,來提高分類載板140上每個LED區塊112的良率。舉例來說,對分類載板140上的所有LED晶粒 114進行電致發光測試,並把不合乎預定規格的LED晶粒 114進行修補或是替換,使得分類載板140上面,大致上每個LED區塊112中的LED晶粒 114都是合乎規格的產品。In one embodiment, the sorting carrier 140 in FIG. 6 can then be inspected and repaired to improve the yield of each LED block 112 on the sorting carrier 140 . For example, electroluminescent tests are performed on all LED dies 114 on the classification carrier 140, and the LED dies 114 that do not meet the predetermined specifications are repaired or replaced, so that on the classification carrier 140, roughly each The LED dies 114 in the LED blocks 112 are all qualified products.

請參閱圖1、7A與7B。圖1之步驟S10接續步驟S08,選取部分的LED晶粒 114,從分類載板140上,轉移到輔助畫素載板150上。圖7A與7B顯示一實施中,LED晶粒 114如何從分類載板140轉移到輔助畫素載板150上的步驟。圖7A顯示拾取頭146,一次拿起第一群LED晶粒(包含數個LED晶粒 114),放置到輔助畫素載板150上,且每個LED晶粒114都是在一相對應之LED區塊112的第m列第n行,m、n皆屬於正整數,例如,第1列第1行。換言之,拾取頭146可以從數個LED區塊112中,拾取起每個LED區塊112中的一預定位置的LED晶粒 114。Please refer to Figures 1, 7A and 7B. Step S10 in FIG. 1 is continued with step S08, select a portion of LED chips 114, and transfer them from the sorting carrier 140 to the auxiliary pixel carrier 150. 7A and 7B show the steps of how the LED die 114 is transferred from the sorting carrier 140 to the auxiliary pixel carrier 150 in one implementation. Fig. 7A shows that the pick-up head 146 picks up the first group of LED dies (including several LED dies 114) at a time and places them on the auxiliary pixel carrier 150, and each LED die 114 is in a corresponding position. The mth column and the nth row of the LED block 112 are both positive integers, for example, the first column and the first row. In other words, the pick-up head 146 can pick up the LED die 114 at a predetermined position in each LED block 112 from several LED blocks 112 .

圖7B中的分類載板140顯示第一群LED晶粒 114已經被轉移,而拾取頭146拿起另一群LED晶粒包含數個LED區塊112中相同位置(例如:第1列第2行)的LED晶粒 114,放置於輔助畫素載板150上,鄰接於先前放置好的第一群LED晶粒 114旁邊。圖7B也顯示數批LED晶粒 114依照一預定的方向排列在輔助畫素載板150上。換言之,第一批LED晶粒 114被放置於輔助畫素載板150上後,下一批LED晶粒 114在相對於第一批LED晶粒 114位移一既定距離後再被放置於輔助畫素載板150上。如圖7B所示,數批LED晶粒 114是由左向右排列於輔助畫素載板150上,但本發明不限於此。在其他實施例中,數批LED晶粒 114是由右向左、由上到下或由下到上排列於輔助畫素載板150上,最後在輔助畫素載板150形成排列成一矩陣的LED晶粒 114,如同圖8所示,且相鄰的LED晶粒的間距較分類載板140的間距大。輔助畫素載板150可以是矽、玻璃、藍寶石、碳化矽、熱移除膠帶(thermal release tape)、光解膠膜(UV release tape)、化學移除膠帶(Chemical release tape)、耐熱膠帶、或是具有動力釋放層(DRL)的膠帶、或藍膜(Blue Tape)。每個LED晶粒 114對應顯示器中一個子畫素點(sub-pixel)。The sorting carrier 140 in FIG. 7B shows that the first group of LED dies 114 has been transferred, and the pickup head 146 picks up another group of LED dies containing the same position in several LED blocks 112 (for example: column 1 row 2 ) LED dies 114 are placed on the auxiliary pixel carrier 150 adjacent to the first group of LED dies 114 placed previously. FIG. 7B also shows that several batches of LED dies 114 are arranged on the auxiliary pixel carrier 150 according to a predetermined direction. In other words, after the first batch of LED dies 114 are placed on the auxiliary pixel carrier 150, the next batch of LED dies 114 are displaced by a predetermined distance relative to the first batch of LED dies 114 and then placed on the auxiliary pixel on the carrier board 150. As shown in FIG. 7B , several batches of LED chips 114 are arranged on the auxiliary pixel carrier 150 from left to right, but the invention is not limited thereto. In other embodiments, several batches of LED chips 114 are arranged on the auxiliary pixel carrier 150 from right to left, from top to bottom or from bottom to top, and finally form a matrix on the auxiliary pixel carrier 150 The LED die 114 is shown in FIG. 8 , and the distance between adjacent LED dies is larger than the distance between the sorting carrier 140 . The auxiliary pixel carrier 150 can be made of silicon, glass, sapphire, silicon carbide, thermal release tape, UV release tape, chemical release tape, heat-resistant tape, Or a tape with a dynamic release layer (DRL), or a blue film (Blue Tape). Each LED die 114 corresponds to a sub-pixel in the display.

圖8顯示具有單一顏色的LED晶粒114的輔助畫素載板150,其中的矩陣具有畫素垂直線距154V與畫素水平線距154H。圖8中的畫素垂直線距154V等於圖6中的區塊垂直線距144V。在一些實施例中,畫素垂直線距154V不等於圖4中的區塊垂直線距122V。類似地,圖8中的畫素水平線距154H等於圖6中的區塊水平線距144H。在一些實施例中,畫素水平線距154H不等於圖4中的區塊水平線距122H。畫素垂直線距154V與畫素水平線距154H等於顯示器上畫素的線距。FIG. 8 shows an auxiliary pixel carrier 150 with LED die 114 of a single color, in which the matrix has a pixel vertical pitch 154V and a pixel horizontal pitch 154H. The pixel vertical pitch 154V in FIG. 8 is equal to the block vertical pitch 144V in FIG. 6 . In some embodiments, the pixel vertical pitch 154V is not equal to the block vertical pitch 122V in FIG. 4 . Similarly, the pixel horizontal pitch 154H in FIG. 8 is equal to the block horizontal pitch 144H in FIG. 6 . In some embodiments, the pixel horizontal pitch 154H is not equal to the block horizontal pitch 122H in FIG. 4 . The vertical pixel spacing 154V and the horizontal pixel spacing 154H are equal to the pixel spacing on the display.

請參閱圖1與圖9A。圖1之步驟S12接續步驟S10,選取部分的LED晶粒 114,從輔助畫素載板150上,轉移到畫素載板160上。圖9A顯示依據本發明一實施例所實施的畫素載板160。畫素載板160具有複數個像素點構成的矩陣,每個像素點具有藍光LED晶粒 114B、紅光LED晶粒 114R、以及綠光LED晶粒 114G。其中,藍光LED晶粒114B可以批次轉移自僅具有藍色LED晶粒114B的輔助畫素載板150,且畫素垂直線距164V與畫素水平線距164H與輔助畫素載板150的畫素垂直線距154V與畫素水平線距154H一樣。綠光LED晶粒114G可以批次轉移自僅具有綠色LED晶粒114G的輔助畫素載板150,且畫素垂直線距164V與畫素水平線距164H與輔助畫素載板150的畫素垂直線距154V與畫素水平線距154H一樣。紅光LED晶粒114R可以批次轉移自僅具有紅色LED晶粒114R的輔助畫素載板150,且畫素垂直線距164V與畫素水平線距164H與輔助畫素載板150的畫素垂直線距154V與畫素水平線距154H一樣。畫素載板160也可以依據圖1之製造方法100,跳過 S10,S12接續S08來製作。舉例來說,如同先前所說明的,藍光LED晶粒114B可以批次轉移自僅具有藍色LED晶粒114B的分類載板140,綠光LED晶粒114G可以批次轉移自僅具有綠色LED晶粒114G的分類載板140,紅光LED晶粒114R可以批次轉移自僅具有紅色LED晶粒114R的分類載板140。圖9A中的畫素垂直線距164V與畫素水平線距164H,會分別等於圖6中的區塊垂直線距144V與區塊水平線距144H。畫素垂直線距164V與畫素水平線距164H等於顯示器上畫素的線距。畫素載板160可以是矽、玻璃、藍寶石、碳化矽、熱移除膠帶(thermal release tape)、光解膠膜(UV release tape)、化學移除膠帶(Chemical release tape)、耐熱膠帶、或是具有動力釋放層(DRL)的膠帶、或藍膜(Blue Tape)。在另一實施例中,畫素載板160可以是一個應用於顯示器中具有導電線的電路板、TFT基板、具有重佈線路層(redistribution layer;RDL)基板、或是畫素封裝體的基板。每個LED晶粒 114對應顯示器中一個子畫素點(sub-pixel)。在一顯示器應用中,一顯示器係利用數個畫素載板160拼湊組合而成,每一畫素載板160上的晶粒有可能來自不同的成長基板。儘管圖8中單一個畫素載板160之LED晶粒 114具有不同的分類分佈其上,當多個畫素載板160拼湊成一顯示器時,透過前述的步驟,不同的畫素載板160之LED晶粒 114的組合比例及/或排列方式皆相同。例如,與分類圖案130相同。如此,在視覺上,不同畫素載板160的顯示效果彼此一致或接近。在畫素載板160的連接處,不會有顏色或是亮度的差異。可以使顯示器具有均勻顯示的優點。Please refer to Figure 1 and Figure 9A. Step S12 in FIG. 1 is continued with step S10, select a portion of LED chips 114, and transfer them from the auxiliary pixel carrier 150 to the pixel carrier 160. FIG. 9A shows a pixel carrier 160 implemented according to an embodiment of the present invention. The pixel carrier 160 has a matrix composed of a plurality of pixels, and each pixel has a blue LED die 114B, a red LED die 114R, and a green LED die 114G. Wherein, the blue LED die 114B can be transferred in batches from the auxiliary pixel carrier 150 having only the blue LED die 114B, and the pixel vertical distance 164V and the pixel horizontal distance 164H are the same as those of the auxiliary pixel carrier 150. The pixel vertical pitch 154V is the same as the pixel horizontal pitch 154H. The green LED chips 114G can be transferred in batches from the auxiliary pixel carrier 150 with only the green LED chips 114G, and the vertical pixel spacing 164V and the horizontal pixel spacing 164H are perpendicular to the pixels on the auxiliary pixel carrier 150 The pitch 154V is the same as the pixel horizontal pitch 154H. The red LED chips 114R can be transferred in batches from the auxiliary pixel carrier 150 that only has the red LED chips 114R, and the pixel vertical distance 164V and the pixel horizontal distance 164H are perpendicular to the pixels on the auxiliary pixel carrier 150 The pitch 154V is the same as the pixel horizontal pitch 154H. The pixel carrier 160 can also be manufactured according to the manufacturing method 100 in FIG. 1 , skipping S10, and continuing S08 from S12. For example, as previously explained, blue LED die 114B can be batch transferred from sorting carrier 140 having only blue LED die 114B, and green LED die 114G can be batch transferred from a sorting carrier 140 having only green LED die. The sorting carrier 140 of the die 114G, the red LED die 114R can be batch transferred from the sorting carrier 140 having only the red LED die 114R. The vertical pixel pitch 164V and the horizontal pixel pitch 164H in FIG. 9A are respectively equal to the block vertical pitch 144V and the block horizontal pitch 144H in FIG. 6 . The pixel vertical pitch 164V and the pixel horizontal pitch 164H are equal to the pixel pitch on the display. The pixel carrier 160 can be made of silicon, glass, sapphire, silicon carbide, thermal release tape, UV release tape, chemical release tape, heat-resistant tape, or It is a tape with a dynamic release layer (DRL), or a blue film (Blue Tape). In another embodiment, the pixel carrier 160 may be a circuit board with conductive lines, a TFT substrate, a redistribution layer (redistribution layer; RDL) substrate, or a pixel package substrate used in a display. . Each LED die 114 corresponds to a sub-pixel in the display. In a display application, a display is assembled by using several pixel carriers 160 , and the crystal grains on each pixel carrier 160 may come from different growth substrates. Although the LED crystal grains 114 of a single pixel carrier 160 in FIG. The combination ratio and/or arrangement of the LED dies 114 are the same. For example, it is the same as the classification pattern 130 . In this way, visually, the display effects of different pixel carriers 160 are consistent or close to each other. At the junction of the pixel carrier 160, there is no difference in color or brightness. It is possible to make the display have the advantage of uniform display.

圖9A的每個像素點中,藍光LED晶粒114B、紅光LED晶粒114R、與綠色LED晶粒114G排列成一斜線,例如,由左上到右下(或反向),藍光LED晶粒114B、紅光LED晶粒114R、與綠色LED晶粒114G依序排列,但本發明不限於此。圖9B與9C舉例兩畫素載板160,其中的藍光LED晶粒114B、紅光LED晶粒114R、與綠色LED晶粒114G分別排列成一水平線與一垂直線,例如,由左到右(或反向),藍光LED晶粒114B、紅光LED晶粒114R、與綠色LED晶粒114G依序排列;由上到下(或反向),藍光LED晶粒114B、紅光LED晶粒114R、與綠色LED晶粒114G依序排列。In each pixel of FIG. 9A , the blue LED grain 114B, the red LED grain 114R, and the green LED grain 114G are arranged in an oblique line, for example, from the upper left to the lower right (or reverse), the blue LED grain 114B , the red LED die 114R, and the green LED die 114G are arranged in sequence, but the present invention is not limited thereto. 9B and 9C illustrate a two-pixel carrier board 160, in which blue LED chips 114B, red LED chips 114R, and green LED chips 114G are respectively arranged in a horizontal line and a vertical line, for example, from left to right (or Reverse), blue LED grain 114B, red LED grain 114R, and green LED grain 114G are arranged in sequence; from top to bottom (or reverse), blue LED grain 114B, red LED grain 114R, It is arranged in sequence with the green LED die 114G.

在一實施例中,每一個LED晶粒114上的電極113上具有一焊接材料,焊接材料可以為低溫焊接材料,包含錫(Sn)、及/或鉍(Bi)。當後續LED晶粒固接於顯示器或是封裝體內的電極墊上時,可以採用低溫接合。如此,可以避免高溫接合,因為LED晶粒與顯示器、或是封裝體的熱膨脹係數(coefficient of thermal expansion;CTE)不匹配,造成接合不良。In one embodiment, there is a solder material on the electrode 113 on each LED die 114 , and the solder material may be a low-temperature solder material, including tin (Sn) and/or bismuth (Bi). Low-temperature bonding can be used when subsequent LED dies are bonded to electrode pads in displays or packages. In this way, high-temperature bonding can be avoided, because the thermal expansion coefficient (coefficient of thermal expansion; CTE) of the LED die and the display or the package body does not match, resulting in poor bonding.

圖1的製造方法100與圖6的分類載板140可以增加LED晶粒的產能利用率。分類載板140可以把不同分類之LED區塊112組合在一起,且應用於顯示器上。避免採用單一分類時,沒有被選取到使用於顯示器上的分類可能被丟棄或是產生製造商的庫存量。換言之,除了少數例外(例如,不合規、故障等),分散在各種分類中的LED晶粒都可以被應用顯示器上。例如,如圖3之成長基板110上,數量最多的分類B1 LED區塊112主要都分佈在成長基板110的中間區域。如果一個畫素載板僅容許採用B1 LED區塊112內的LED晶粒 114,那分類B2與B3的LED區塊112就不能使用,而降低了整體的產能利用率。The manufacturing method 100 of FIG. 1 and the sorting carrier 140 of FIG. 6 can increase the capacity utilization of LED dies. The sorting carrier 140 can combine LED blocks 112 of different sorts together and apply them on a display. When avoiding a single class, classes not selected for use on the display may be discarded or create manufacturer's inventory. In other words, with a few exceptions (eg, non-compliance, failure, etc.), LED die scattered in various categories can be used in displays. For example, on the growth substrate 110 as shown in FIG. 3 , the largest number of category B1 LED blocks 112 are mainly distributed in the middle area of the growth substrate 110 . If a pixel carrier is only allowed to use the LED dies 114 in the B1 LED block 112, then the LED blocks 112 classified into B2 and B3 cannot be used, thereby reducing the overall capacity utilization.

圖1的製造方法100可以高效率的產生具有高良率的分類載板140。在步驟S04中,經過粗略測試檢驗,不符合規格的LED區塊112,也就是分類X的LED區塊112,就已經被剔除,因此,移轉至分類載板140的LED區塊112將會有比較少缺陷的LED晶粒 114。而這些少量具有缺陷的LED晶粒 114,可以選擇性地在步驟S08中,逐一檢測後被修補,來產生更高良率的分類載板140。分類X的LED區塊112理論上可能會具有大量有缺陷的LED晶粒 114,如果不在移轉至分類載板前初步剔除,轉移至分類載板後,每個LED區塊112的LED晶粒114都需要檢測與修補,將會耗費可觀的修補時間,使得畫素載板160生產速度低下。The manufacturing method 100 of FIG. 1 can efficiently produce the classification carrier 140 with a high yield. In step S04, through a rough test and inspection, the LED blocks 112 that do not meet the specifications, that is, the LED blocks 112 of the category X, have been rejected. Therefore, the LED blocks 112 transferred to the classification carrier 140 will be There are fewer defective LED dies 114 . And these small amount of defective LED dies 114 can be optionally repaired one by one in step S08 to produce sorting carrier 140 with higher yield. The LED blocks 112 of classification X may theoretically have a large number of defective LED dies 114. If they are not initially eliminated before being transferred to the classification carrier, after being transferred to the classification carrier, the LED dies 114 of each LED block 112 Both need to be inspected and repaired, which will consume a considerable amount of repair time, making the production speed of the pixel carrier 160 slow.

分類載板140可以讓輔助畫素載板150或畫素載板160快速地被生產出來。如同圖7A、7B、與圖9A所舉例的,分類載板140上的LED晶粒 114可以批次轉移到輔助畫素載板150或是畫素載板160。只要圖7A與7B中拾取頭146一次可拾取足量的LED晶粒 114,輔助畫素載板150或畫素載板160就可以快速的產出。The sorting carrier 140 allows the auxiliary pixel carrier 150 or the pixel carrier 160 to be produced quickly. As exemplified in FIGS. 7A, 7B, and 9A, the LED die 114 on the classification carrier 140 can be transferred to the auxiliary pixel carrier 150 or the pixel carrier 160 in batches. As long as the pick-up head 146 in FIGS. 7A and 7B can pick up a sufficient amount of LED chips 114 at one time, the auxiliary pixel carrier 150 or pixel carrier 160 can be produced quickly.

圖10與11分別顯示圖6中LED區塊列Y9中之一子列中的LED晶粒 114的特性分佈曲線,與LED區塊行X3中的一子行中的LED晶粒 114的特性分佈曲線。在一實施例中,此特性分佈曲線為放射波長與位置的關係。以下以區塊BL(YA、XA)來表示在圖6分類載板140之區塊列YA與區塊行XA的LED區塊112。如同圖6所示,各個LED區塊112(中的LED晶粒 114)依據其放射波長類別被歸類。在此所稱之放射波長類別可以是一個LED區塊112中所有或是部分LED晶粒 114的放射波長的中位數或是平均值。圖6中區塊BL(Y9、X1)的分類是‶B1″,表示區塊BL(Y9、X1)中所有或部分LED晶粒 114的放射波長的中位數或是平均值為W1,也就是區塊BL(Y9、X1)的放射波長類別為W1。類似地,圖6中區塊BL(Y9、X2)的放射波長類別為W2,依此類推。圖10顯示圖6中分類載板140的區塊列Y9之一種放射波長與LED晶粒位置的分佈關係。圖中的黑點表示一顆LED晶粒114,分佈關係所呈現的圖形與LED晶粒114的數量僅惟例示或為簡化說明,並非用以限制本申請案的範圍。圖6中一個LED區塊112內具有複數個由LED晶粒114組成的子列與子行,例如,參考圖2,區塊S1包含4個子行與4個子列,每個子行包含4個LED晶粒114,每個子列包含4個LED晶粒114。如圖10所示,圖6中區塊列Y9中特定子列中LED晶粒 114的放射波長,將會隨著LED晶粒 114所屬LED區塊112的物理位置呈現規律的變化,且此規律變化可在視覺上表現為重複的階梯狀圖案,此階梯狀圖案的最小單元圖案可以上行階梯(由左下朝右上)、下行階梯(由左上朝右下)或上下行階梯的組合。舉例來說,圖10顯示一包含重複下行階梯圖案的階梯圖案,其表示區塊行X1中的LED晶粒114屬於同一放射波長類別W1,類似地,區塊行X2~X10的LED晶粒114也分別屬於同一放射波長類別。單一個放射波長類別中LED晶粒114的波長變動範圍約為±A%,例如,A=5、10、或15。區塊BL(Y9、X1)與區塊BL(Y9、X2)之間、區塊BL(Y9、X2)與區塊BL(Y9、X3)之間會有不連續的波長變化,此不連續的波長變化範圍約為±B%,B約莫為 A的2、3、4、5、6倍。此處的波長變動範圍係指相鄰兩個LED晶粒114波長差異的絕對值與第一個LED晶粒的波長百分比(Percentage)。10 and 11 respectively show the characteristic distribution curve of the LED die 114 in a sub-row of the LED block row Y9 in FIG. 6 and the characteristic distribution of the LED die 114 in a sub-row of the LED block row X3. curve. In one embodiment, the characteristic distribution curve is the relationship between emission wavelength and position. The LED blocks 112 in the block column YA and the block row XA of the classification carrier 140 in FIG. 6 are represented by block BL (YA, XA) below. As shown in FIG. 6, each LED block 112 (LED die 114 in it) is classified according to its emission wavelength category. The emission wavelength category referred to herein may be the median or average value of the emission wavelengths of all or part of the LED dies 114 in an LED block 112 . The classification of the block BL (Y9, X1) in Fig. 6 is ‶B1", which means that the median or average value of the emission wavelengths of all or part of the LED crystal grains 114 in the block BL (Y9, X1) is W1, also That is, the emission wavelength category of the block BL (Y9, X1) is W1. Similarly, the emission wavelength category of the block BL (Y9, X2) in Fig. 6 is W2, and so on. Fig. 10 shows the classified carrier board in Fig. 6 The distribution relationship between the radiation wavelength of one of the block columns Y9 and the position of the LED crystal grain in 140. The black dot in the figure represents an LED crystal grain 114, and the figure presented by the distribution relationship and the number of LED crystal grains 114 are only examples or for example Simplified description, not in order to limit the scope of the present application.There are a plurality of sub-columns and sub-rows made up of LED grains 114 in an LED block 112 in Fig. 6, for example, with reference to Fig. 2, block S1 comprises 4 sub-rows Rows and 4 sub-columns, each sub-row contains 4 LED crystal grains 114, and each sub-column contains 4 LED crystal grains 114. As shown in Figure 10, the LED crystal grains 114 in the specific sub-column in block column Y9 in Figure 6 The emitted wavelength will change regularly with the physical position of the LED block 112 to which the LED grain 114 belongs, and this regular change can be visually expressed as a repeated stepped pattern. The smallest unit pattern of this stepped pattern can be Up stairs (from bottom left to top right), down stairs (from top left to bottom right), or a combination of up and down stairs. For example, Figure 10 shows a staircase pattern that includes a repeated descending staircase pattern, which represents the block row X1 The LED crystal grains 114 belong to the same emission wavelength category W1, and similarly, the LED crystal grains 114 of block rows X2~X10 also belong to the same emission wavelength category respectively. The wavelength fluctuation range of the LED crystal grains 114 in a single emission wavelength category is about ± A%, for example, A=5, 10, or 15. Between block BL (Y9, X1) and block BL (Y9, X2), between block BL (Y9, X2) and block BL (Y9, X3) ) There will be a discontinuous wavelength change, the discontinuous wavelength change range is about ± B%, and B is about 2, 3, 4, 5, 6 times of A. The wavelength change range here refers to adjacent The absolute value of the wavelength difference between the two LED crystal grains 114 and the wavelength percentage (Percentage) of the first LED crystal grain.

BL(Y9、X1)、BL(Y9、X2)、BL(Y9、X3)共同表示第一波長分佈區塊183a。類似地,BL(Y9、X4)、BL(Y9、X5)、BL(Y9、X6)共同顯示第二波長分佈區塊183b,其分佈圖案與第一波長分佈區塊183a相似。BL(Y9、X7)、BL(Y9、X8)、BL(Y9、X9)共同顯示第三波長分佈區塊183c,其分佈圖案與第一波長分佈區塊183a、第二波長分佈區塊183b相似。以圖10為例,不同波長分佈區塊的交接處,即BL(Y9、X3)與區塊BL(Y9、X4)、BL(Y9、X6)與區塊BL(Y9、X7)、BL(Y9、X9)與區塊BL(Y9、X10)之間會有比較明顯不連續波長變化182a、182b、182c。換句話說,LED晶粒在分類載板140上任一子列的波長分佈,具有多個相似波長分佈區塊,且單一個波長分佈區塊中具有多個不連續波長分佈處(即不同放射波長類別的過渡區域)。BL(Y9, X1), BL(Y9, X2), and BL(Y9, X3) collectively represent the first wavelength distribution block 183a. Similarly, BL(Y9, X4), BL(Y9, X5), and BL(Y9, X6) collectively display a second wavelength distribution block 183b whose distribution pattern is similar to that of the first wavelength distribution block 183a. BL(Y9, X7), BL(Y9, X8), and BL(Y9, X9) jointly display the third wavelength distribution block 183c, whose distribution pattern is similar to that of the first wavelength distribution block 183a and the second wavelength distribution block 183b . Taking Figure 10 as an example, the intersection of different wavelength distribution blocks, that is, BL (Y9, X3) and blocks BL (Y9, X4), BL (Y9, X6) and blocks BL (Y9, X7), BL ( There are relatively obvious discrete wavelength changes 182a, 182b, 182c between Y9, X9) and the block BL (Y9, X10). In other words, the wavelength distribution of LED crystal grains in any sub-column on the classification carrier 140 has multiple similar wavelength distribution blocks, and a single wavelength distribution block has multiple discontinuous wavelength distributions (that is, different emission wavelengths). category transition region).

圖11顯示圖6中分類載板140的區塊行X3之一種放射波長與LED晶粒位置的分佈關係。圖11顯示區塊列Y1中的LED晶粒114屬於單一個放射波長類別W1,類似地,區塊列Y2~Y9的LED晶粒114分別屬於單一個放射波長類別。單一個放射波長類別中LED晶粒114的波長變動範圍約為±A%之間,例如A=5、10、或15。區塊BL(Y1、X3)與區塊BL(Y2、X3)之間、區塊BL(Y2、X3)與區塊BL(Y3、X3)之間會有不連續的波長變化,不連續的波長變化約為±B%,B為 A的2、3、4、5、6倍。BL(Y1、X3)、BL(Y2、X3)、BL(Y3、X3)共同顯示第四波長分佈區塊183d。類似地,BL(Y4、X3)、BL(Y5、X3)、BL(Y6、X3)共同顯示第五波長分佈區塊183e,其分佈圖案與與第四波長分佈區塊183d相似。BL(Y7、X3)、BL(Y8、X3)、BL(Y9、X3)共同顯示第六波長分佈區塊183f,其分佈圖案與與第四波長分佈區塊183d、第五波長分佈區塊183e相似。以圖11為例,不同波長分佈區塊的交接處,即BL(Y3、X3)與區塊BL(Y4、X3)、BL(Y6、X3)與區塊BL(Y7、X3)之間會有比較明顯不連續波長變化182d、182e。換句話說,LED晶粒在分類載板140上任一行的波長分佈,具有多個相似波長分佈區塊,且單一個波長分佈區塊中具有多個不連續波長分佈處。FIG. 11 shows the distribution relationship between one emission wavelength and the position of the LED die in the block row X3 of the sorting carrier 140 in FIG. 6 . FIG. 11 shows that the LED dies 114 in the block row Y1 belong to a single emission wavelength category W1 , and similarly, the LED chips 114 in the block rows Y2 - Y9 respectively belong to a single emission wavelength category. The variation range of the wavelength of the LED die 114 in a single emission wavelength category is about ±A%, for example, A=5, 10, or 15. There will be discontinuous wavelength changes between block BL (Y1, X3) and block BL (Y2, X3), between block BL (Y2, X3) and block BL (Y3, X3), discontinuous The wavelength change is about ±B%, and B is 2, 3, 4, 5, 6 times of A. BL(Y1, X3), BL(Y2, X3), and BL(Y3, X3) collectively display the fourth wavelength distribution block 183d. Similarly, BL(Y4, X3), BL(Y5, X3), and BL(Y6, X3) collectively display a fifth wavelength distribution block 183e whose distribution pattern is similar to that of the fourth wavelength distribution block 183d. BL (Y7, X3), BL (Y8, X3), BL (Y9, X3) jointly display the sixth wavelength distribution block 183f, and its distribution pattern is the same as that of the fourth wavelength distribution block 183d and the fifth wavelength distribution block 183e resemblance. Taking Figure 11 as an example, the junctions of different wavelength distribution blocks, that is, between BL (Y3, X3) and block BL (Y4, X3), BL (Y6, X3) and block BL (Y7, X3) will be There are relatively distinct discrete wavelength changes 182d, 182e. In other words, the wavelength distribution of any row of LED dies on the sorting carrier 140 has multiple similar wavelength distribution blocks, and a single wavelength distribution block has multiple discontinuous wavelength distribution locations.

如圖6所示,分類載板140中任一列或是任一行LED晶粒 114的放射波長與其所在位置的關係圖,分類載板140的每一行跟每一列會具有重複出現的不連續波長變化,如同圖10與11中的波長變化182a~182e所示,此顯示分類載板140中LED晶粒 11是依據類似圖5的預設分類圖案130所構成,也表示分類載板140的每行每列都至少有兩種分類的LED區塊112。As shown in FIG. 6 , the relationship between the emission wavelength of any column or any row of LED crystal grains 114 in the classification carrier 140 and its position, each row and each column of the classification carrier 140 will have repeated discontinuous wavelength changes. , as shown by the wavelength changes 182a~182e in FIGS. Each column has at least two types of LED blocks 112 .

請參閱圖2與12。圖12為沿著圖2中線AA-AA的剖面示意圖,其中顯示4個屬於LED區塊S1的LED晶粒 114 ,與另外4個屬於LED區塊S4的LED晶粒 114,都形成在成長基板110上。圖12顯示從水平切割道116H的中線到鄰近另一水平切割道116H的中線之間的區塊垂直線距118V。水平切割道116H具有切割道寬度117V。晶片垂直間距(vertical die gap)115V為圖12中,一個LED區塊內,二鄰近LED晶粒 114彼此的距離。Please refer to Figures 2 and 12. 12 is a schematic cross-sectional view along the line AA-AA in FIG. 2 , which shows that 4 LED crystal grains 114 belonging to LED block S1 and the other 4 LED crystal grains 114 belonging to LED block S4 are formed in the growth process. on the substrate 110. FIG. 12 shows block vertical spacing 118V from the centerline of one horizontal scribe 116H to the centerline of another adjacent horizontal scribe 116H. The horizontal scribe line 116H has a scribe line width 117V. The vertical die gap 115V is the distance between two adjacent LED dies 114 in one LED block in FIG. 12 .

圖13A~13E顯示依據本發明一實施例,LED晶粒 114從成長基板110轉移到輔助畫素載板150之步驟示意圖。13A-13E show schematic diagrams of the steps of transferring the LED die 114 from the growth substrate 110 to the auxiliary pixel carrier 150 according to an embodiment of the present invention.

圖13A顯示切割工具126從水平切割道116H,將成長基板110切開,使得LED區塊112彼此分離。分離後,每個LED區塊112內的LED晶粒114仍共同附著於單一個部分的成長基板110。此時,每個LED區塊112被指定至數個分類的其中之一。FIG. 13A shows dicing tool 126 cutting through growth substrate 110 from horizontal dicing lanes 116H such that LED blocks 112 are separated from each other. After separation, the LED dies 114 within each LED block 112 are still co-attached to a single portion of the growth substrate 110 . At this point, each LED block 112 is assigned to one of several categories.

圖13B顯示圖13A之LED區塊112,上下翻轉後,根據LED區塊112的類別,透過黏著層128,黏著於輔助分類載板120上。此時,LED區塊112依然帶有單一個部分的成長基板110,且單一個部分的成長基板110不與黏著層128接觸,使LED晶粒114以電極113朝下(face down)的方式與黏著層128接觸固定於輔助分類載板120。如同圖13B所示。每個輔助分類載板120上只有一種分類的LED區塊112。FIG. 13B shows the LED block 112 in FIG. 13A . After being turned upside down, the LED block 112 is adhered to the auxiliary sorting carrier 120 through the adhesive layer 128 according to the category of the LED block 112 . At this time, the LED block 112 still has a single part of the growth substrate 110, and the single part of the growth substrate 110 is not in contact with the adhesive layer 128, so that the LED die 114 is connected to the electrode 113 with the electrode 113 facing down. The adhesive layer 128 is contacted and fixed on the auxiliary sorting carrier 120 . As shown in Figure 13B. There is only one sort of LED block 112 on each auxiliary sorting carrier 120 .

圖13C顯示成長基板110被移除。舉例來說,可以採用雷射剝離(laser lift-off),使得圖13B中LED區塊112僅具有LED晶粒114,且沒有成長基板110。圖13C顯示區塊垂直間距(vertical section gap)123V,大約是圖13C中分屬兩LED區塊112且相鄰的LED晶粒114之間的距離。因為切割後的部分成長基板110的最外側邊仍會超出最外側LED晶粒的最外側邊,因此當LED區塊112如圖13B設置在輔助分類載板120時,需要有一區塊垂直間距(vertical section gap)123V避免相鄰LED區塊112的成長基板110互相碰撞。在圖13C中,區塊垂直間距123V大於晶片垂直間距115V,例如:當晶片垂直間距115V<60μm時,區塊垂直間距必須要大於60μm才能避免相鄰LED區塊112移轉時,成長基板110之間的碰撞。但本發明不限於此,在一些實施例中,區塊垂直間距123V可以小於或等於晶片垂直間距115V,例如:當晶片垂直間距115V>60μm時,區塊垂直間距123V可以等於晶片垂直間距115V。Figure 13C shows the growth substrate 110 removed. For example, laser lift-off can be used, so that the LED block 112 in FIG. 13B only has the LED die 114 without the growth substrate 110 . FIG. 13C shows a block vertical section gap (vertical section gap) 123V, which is approximately the distance between adjacent LED dies 114 belonging to two LED blocks 112 in FIG. 13C . Because the outermost edge of the part of the growth substrate 110 after cutting will still exceed the outermost edge of the outermost LED crystal grain, when the LED block 112 is arranged on the auxiliary sorting carrier 120 as shown in FIG. The vertical section gap 123V prevents the growth substrates 110 of adjacent LED blocks 112 from colliding with each other. In FIG. 13C , the block vertical pitch 123V is greater than the chip vertical pitch 115V. For example, when the chip vertical pitch 115V<60 μm, the block vertical pitch must be greater than 60 μm to avoid the growth of the substrate 110 when the adjacent LED blocks 112 are shifted. collision between. But the present invention is not limited thereto. In some embodiments, the block vertical spacing 123V may be less than or equal to the wafer vertical spacing 115V. For example, when the wafer vertical spacing 115V>60 μm, the block vertical spacing 123V may be equal to the wafer vertical spacing 115V.

圖13D顯示分類載板140,其上具有不同分類的LED區塊112,依據圖5的分類圖案130,分別從不同的輔助分類載板120轉移過來。相較於圖13C,圖13D中的LED區塊112上下翻轉,使LED晶粒114以電極113朝上(face up),LED晶粒114相對於電極113的一側透過黏著層148,放置黏著於分類載板140上。圖13D也顯示區塊垂直間距143V與區塊垂直線距144V。區塊垂直間距143V是圖13D中分屬兩相鄰LED區塊112且相鄰的LED晶粒114之間的距離。區塊垂直線距144V大約等於相鄰兩個LED區塊112之中心線彼此的距離。在一些實施例中,圖13D中區塊垂直間距143V大於等於圖13C中的區塊垂直間距123V。FIG. 13D shows a sorting carrier 140 on which LED blocks 112 of different sorts are transferred from different auxiliary sorting carriers 120 according to the sorting pattern 130 in FIG. 5 . Compared with FIG. 13C , the LED block 112 in FIG. 13D is turned upside down, so that the LED die 114 faces up with the electrode 113 (face up), and the side of the LED die 114 opposite to the electrode 113 passes through the adhesive layer 148 , and the adhesive layer 114 is placed on the sorting carrier 140 . FIG. 13D also shows block vertical pitch 143V and block vertical line pitch 144V. The block vertical spacing 143V is the distance between adjacent LED dies 114 belonging to two adjacent LED blocks 112 in FIG. 13D . The block vertical distance 144V is approximately equal to the distance between the center lines of two adjacent LED blocks 112 . In some embodiments, the block vertical spacing 143V in FIG. 13D is greater than or equal to the block vertical spacing 123V in FIG. 13C .

圖13D的移轉步驟,舉例來說,可以用一切割工具切開圖13C中的輔助分類載板120,使得一個LED區塊112中的所有LED晶粒114位於單一個部分的輔助分類載板120上;接著將部分的輔助分類載板120與其上的LED區塊112一起翻轉,透過黏著層148,黏著於分類載板140上;之後再移除輔助分類載板120使其脫離LED區塊112,結果如圖13D所示。The transfer step of FIG. 13D, for example, can use a cutting tool to cut the auxiliary sorting carrier 120 in FIG. above; then part of the auxiliary sorting carrier 120 and the LED blocks 112 on it are turned over together, and adhered to the sorting carrier 140 through the adhesive layer 148; and then the auxiliary sorting carrier 120 is removed to separate it from the LED block 112 , the result is shown in Figure 13D.

圖13E顯示輔助畫素載板150的兩個LED晶粒 114,可以分別從圖13D中相鄰的兩個LED區塊112轉移過來,透過黏著層158,放置黏著於輔助畫素載板150上。在一實施例中,圖13E中相鄰兩個LED晶粒 114之中線彼此的距離,也就是畫素垂直線距154V,等於圖13D中的區塊垂直線距144V。在另一實施例中,輔助畫素載板150可以置換為前述的畫素載板160。也就是說,LED晶粒 114可以直接從分類載板140轉移至畫素載板160上。FIG. 13E shows that the two LED chips 114 of the auxiliary pixel carrier 150 can be respectively transferred from the two adjacent LED blocks 112 in FIG. 13D , and placed on the auxiliary pixel carrier 150 through the adhesive layer 158. . In one embodiment, the distance between the midlines of two adjacent LED dies 114 in FIG. 13E , that is, the pixel vertical pitch 154V, is equal to the block vertical pitch 144V in FIG. 13D . In another embodiment, the auxiliary pixel carrier 150 can be replaced by the aforementioned pixel carrier 160 . That is, the LED die 114 can be directly transferred from the sorting carrier 140 to the pixel carrier 160 .

圖13A到13E所表示的轉移過程,只是本發明的一種例子,並不用於限制本發明。圖14A到14D舉例顯示LED晶粒 114從成長基板110轉移到輔助畫素載板150另一種過程。The transfer process shown in FIGS. 13A to 13E is just an example of the present invention and is not intended to limit the present invention. 14A to 14D illustrate another process of transferring the LED die 114 from the growth substrate 110 to the auxiliary pixel carrier 150.

圖14A接續圖13A,把劈開分離後的LED區塊112,依據個別的類別,使LED晶粒114以電極113朝上(face up),單一個部分的成長基板110與黏著層128接觸固定於輔助分類載板120。舉例來說,圖13A中的一個LED區塊112被拾起,放置黏著於輔助分類載板120的黏著層128上。每個輔助分類載板120上只有一種分類的LED區塊112。位於輔助分類載板120上的區塊垂直間距與晶片垂直間距的關係與前述圖13B與圖13C相似,在此不再重複說明。FIG. 14A is a continuation of FIG. 13A . After splitting and separating the LED blocks 112, according to individual categories, the LED crystal grains 114 face up with the electrodes 113, and a single part of the growth substrate 110 is fixed in contact with the adhesive layer 128. Auxiliary sorting carrier 120 . For example, an LED block 112 in FIG. 13A is picked up and placed on the adhesive layer 128 of the auxiliary sorting carrier 120 . There is only one sort of LED block 112 on each auxiliary sorting carrier 120 . The relationship between the block vertical pitch and the wafer vertical pitch on the auxiliary sorting carrier 120 is similar to that of FIG. 13B and FIG. 13C , and will not be repeated here.

圖14B接續圖14A,依據圖5的分類圖案130,分別從不同分類的輔助分類載板120,轉移LED區塊112到分類載板140上。相較於圖14A,圖14B中的LED區塊112依然附著於成長基板110上,但上下翻轉。LED區塊112透過黏著層148,設置於分類載板140上。FIG. 14B is a continuation of FIG. 14A , according to the sorting pattern 130 in FIG. 5 , the LED blocks 112 are transferred from the auxiliary sorting carriers 120 of different sorts to the sorting carrier 140 . Compared with FIG. 14A , the LED block 112 in FIG. 14B is still attached to the growth substrate 110 , but turned upside down. The LED blocks 112 are disposed on the classification carrier 140 through the adhesive layer 148 .

圖14C顯示圖14B中的成長基板110被移除,僅僅留下LED晶粒114於分類載板140上。舉例來說,移除成長基板110的方法採用雷射剝離,使得圖14B中的成長基板110自LED晶粒114被移除。位於分類載板140上的區塊垂直間距與晶片垂直間距的關係與前述圖13D相似,在此不再重複說明。FIG. 14C shows that the growth substrate 110 in FIG. 14B is removed, leaving only the LED die 114 on the classification carrier 140 . For example, the method of removing the growth substrate 110 adopts laser lift-off, so that the growth substrate 110 in FIG. 14B is removed from the LED die 114 . The relationship between the block vertical pitch and the wafer vertical pitch on the sorting carrier 140 is similar to that shown in FIG. 13D , and will not be repeated here.

圖14D顯示輔助畫素載板150的兩個LED晶粒 114,可以分別從圖14C中相鄰的兩個LED區塊112轉移過來,設置於黏著層158上。在一實施例中,圖14D中的畫素垂直線距154V,等於圖14C中的區塊垂直線距144V。在另一實施例中,輔助畫素載板150可以置換為前述的畫素載板160。也就是說,LED晶粒 114可以直接從分類載板140轉移至畫素載板160上。FIG. 14D shows that the two LED dies 114 of the auxiliary pixel carrier 150 can be respectively transferred from the two adjacent LED blocks 112 in FIG. 14C and placed on the adhesive layer 158 . In one embodiment, the pixel vertical pitch 154V in FIG. 14D is equal to the block vertical pitch 144V in FIG. 14C . In another embodiment, the auxiliary pixel carrier 150 can be replaced by the aforementioned pixel carrier 160 . That is, the LED die 114 can be directly transferred from the sorting carrier 140 to the pixel carrier 160 .

圖13B與14A都顯示成長基板110先被切割,使LED區塊112彼此分離,然後才轉移到輔助分類載板120上,但是本發明不限於此。在一些本發明之實施例中,不需要切割成長基板110,而是將所有的LED區塊112先行轉移到另一暫時基板(未顯示)上,再接續前述S04的步驟、圖13A、或是圖14A的步驟,進行LED區塊移轉至分類載板140、或是畫素載板的步驟。如此,成長基板110可以循環使用。需特別注意的是,在此實施例中,有關剝離單一個部分的成長基板110的步驟需改成移除單一個部分的暫時基板。Both FIGS. 13B and 14A show that the growth substrate 110 is first cut to separate the LED blocks 112 from each other, and then transferred to the auxiliary sorting carrier 120 , but the invention is not limited thereto. In some embodiments of the present invention, there is no need to cut the growth substrate 110, but all the LED blocks 112 are first transferred to another temporary substrate (not shown), and then the above steps of S04, FIG. 13A, or In the step of FIG. 14A , the step of transferring the LED block to the classification carrier 140 or the pixel carrier is carried out. In this way, the growth substrate 110 can be recycled. It should be noted that in this embodiment, the step of peeling off a single portion of the growth substrate 110 needs to be changed to removing a single portion of the temporary substrate.

舉例來說,具有LED區塊112的成長基板110可以先翻轉黏著於第一暫時基板(未顯示)上。接著使成長基板110脫離,遺留下所有的LED區塊112在第一暫時基板上。帶有LED區塊112的第一暫時基板可以切割,使得LED區塊112彼此分離,然後才轉移到輔助分類載板120或是分類載板140上。簡單的說,在一些實施例中,圖13B-13E以及圖14A-14D中的成長基板110可以用第一暫時基板取代,而且所有的LED晶粒 114都上下翻轉。For example, the growth substrate 110 with the LED blocks 112 can be turned upside down and adhered to a first temporary substrate (not shown). The growth substrate 110 is then detached, leaving all LED blocks 112 on the first temporary substrate. The first temporary substrate with the LED blocks 112 can be cut so that the LED blocks 112 are separated from each other, and then transferred to the auxiliary sorting carrier 120 or the sorting carrier 140 . Briefly, in some embodiments, the growth substrate 110 in FIGS. 13B-13E and FIGS. 14A-14D can be replaced with a first temporary substrate, and all LED dies 114 are flipped upside down.

在另一個實施例中,成長基板110上的所有LED區塊112可以先翻轉轉移到第一暫時基板(未顯示),然後再翻轉轉移一次到第二暫時基板(未顯示),之後才進行切割,使得LED區塊112彼此分離。簡單的說,在一實施例中,圖13B-13E以及圖14A-14D中的成長基板110用第二暫時基板取代,但所有的LED晶粒 114方向保持不變。In another embodiment, all the LED blocks 112 on the growth substrate 110 can be flipped and transferred to the first temporary substrate (not shown), and then flipped and transferred to the second temporary substrate (not shown) before being cut. , so that the LED blocks 112 are separated from each other. Briefly, in one embodiment, the growth substrate 110 in FIGS. 13B-13E and FIGS. 14A-14D is replaced with a second temporary substrate, but the orientation of all LED dies 114 remains unchanged.

圖15A~15D顯示依據本發明一實施例LED區塊112b自基板110´轉移至載板170上之步驟示意圖,而LED區塊112a留在基板110´的過程。基板110´可以為前述成長基板110、第一暫時基板、或是第二暫時基板。載板170可以為前述輔助分類載板120、分類載板140、輔助畫素載板150、或是畫素載板160。第一暫時基板、或是第二暫時基板包含一支撐基板(未顯示)以及一黏著材料(未顯示)用於固定LED晶粒於支撐基板上。支撐基板可以為玻璃、或藍寶石(Sapphire)。黏著材料可以為聚醯亞胺(polyimide;PI)、苯並環丁烯 (butylcyclobutene;BCB)、聚對二甲苯(parylene)、碳氟化合物(fluorocarbons)、 或丙烯酸酯(acrylates)。15A-15D are schematic diagrams showing the steps of transferring the LED block 112b from the substrate 110′ to the carrier 170 according to an embodiment of the present invention, while the LED block 112a remains on the substrate 110′. The substrate 110′ can be the aforementioned growth substrate 110, the first temporary substrate, or the second temporary substrate. The carrier 170 can be the aforementioned auxiliary classification carrier 120 , classification carrier 140 , auxiliary pixel carrier 150 , or pixel carrier 160 . The first temporary substrate or the second temporary substrate includes a supporting substrate (not shown) and an adhesive material (not shown) for fixing the LED die on the supporting substrate. The supporting substrate can be glass or sapphire. The adhesive material may be polyimide (PI), butylcyclobutene (BCB), parylene, fluorocarbons, or acrylates.

圖15A類似圖12,顯示基板110´上有LED區塊112a與112b,每個LED區塊有數個LED晶粒 114。FIG. 15A is similar to FIG. 12 , showing LED blocks 112 a and 112 b on a substrate 110 ′, and each LED block has several LED dies 114 .

圖15B將圖15A中的基板110´翻轉,透過黏著層178,貼附於載板170上。In FIG. 15B , the substrate 110′ in FIG. 15A is turned over, and attached to the carrier 170 through the adhesive layer 178 .

圖15C顯示在圖15B之基板110´上形成圖案化的阻光層172。阻光層172大致覆蓋LED區塊112a,但是曝露LED區塊112b。圖15C也顯示雷射174照射載板170,選擇性的對LED區塊112b中的LED晶粒 114進行雷射剝離(laser lift-off)或是雷射剝蝕(laser ablation)。舉例來說,基板110´為藍寶石基板,雷射174可以穿透基板110´,使得以GaN為基礎之LED晶粒 114跟基板110´接觸的GaN氣化,讓LED晶粒 114可以在稍微施加應力的狀況下,就得以脫離基板110´。阻光層172會阻擋雷射174照射到LED區塊112a中的LED晶粒 114。因此,LED區塊112a將會繼續附著於基板110´。FIG. 15C shows a patterned light blocking layer 172 formed on the substrate 110' of FIG. 15B. The light blocking layer 172 substantially covers the LED blocks 112a, but exposes the LED blocks 112b. FIG. 15C also shows that the laser 174 irradiates the carrier 170 to selectively perform laser lift-off (laser lift-off) or laser ablation (laser ablation) on the LED die 114 in the LED block 112b. For example, the substrate 110' is a sapphire substrate, and the laser 174 can penetrate the substrate 110', so that the GaN that is in contact with the GaN-based LED die 114 and the substrate 110' is vaporized, so that the LED die 114 can be slightly applied. Under the condition of stress, it can be separated from the substrate 110´. The light blocking layer 172 blocks the laser 174 from irradiating the LED die 114 in the LED block 112a. Therefore, the LED block 112a will remain attached to the substrate 110'.

圖15D顯示基板110´與載板170分離。此時,因為先前雷射174的照射,LED區塊112b中的LED晶粒 114與基板110´之間的結合力量降低且小於LED晶粒 114與黏著層178之間的結合力量,所以LED晶粒 114得以與基板110´分離,而固定於載板170的黏著層178上。LED區塊112a中的LED晶粒 114則依然附著於基板110´,如同圖15D所示。如此,LED區塊112b轉移至載板170上,而LED區塊112a留在基板110´上。FIG. 15D shows the substrate 110′ separated from the carrier plate 170. At this time, due to the previous irradiation of the laser 174, the bonding force between the LED die 114 in the LED block 112b and the substrate 110´ is reduced and is smaller than the bonding force between the LED die 114 and the adhesive layer 178, so the LED die The particles 114 are separated from the substrate 110′ and fixed on the adhesive layer 178 of the carrier 170 . The LED dies 114 in the LED block 112a are still attached to the substrate 110', as shown in FIG. 15D. In this way, the LED blocks 112b are transferred to the carrier 170, while the LED blocks 112a remain on the substrate 110′.

在另一實施例中,圖15B中,LED區塊112a、112b與黏著層178不直接接觸,而是間隔一大於零的距離,例如:5~25μm,後續圖15C、15D的雷射剝離(laser lift-off)或是雷射剝蝕(laser ablation)步驟後,LED區塊112b即靠著重力落下,透過黏著層178固定在載板170上。隨後,如基板110´的黏著材料有殘留,可以利用蝕刻、或是電漿轟擊的方式進行清除。In another embodiment, in FIG. 15B, the LED blocks 112a, 112b are not in direct contact with the adhesive layer 178, but are separated by a distance greater than zero, for example: 5-25 μm, and the subsequent laser peeling in FIG. 15C, 15D ( After the laser lift-off or laser ablation step, the LED block 112 b falls down by gravity and is fixed on the carrier 170 through the adhesive layer 178 . Subsequently, if the adhesive material on the substrate 110′ remains, it can be removed by etching or plasma bombardment.

圖16A~16D舉例說明如何從輔助分類載板120a、120b與120c,批次地轉移LED區塊112到分類載板140上。FIGS. 16A-16D illustrate how to transfer the LED blocks 112 to the sorting carrier 140 in batches from the auxiliary sorting carriers 120a, 120b, and 120c.

圖16A採用拾取頭190,一次拾取18個LED區塊112(如同圖中有黑點標示的區塊),從輔助分類載板120a,批次轉移到分類載板140上。輔助分類載板120a上只有分類‶B1″的LED區塊112。圖16A中有採用箭頭,說明兩個LED區塊112在輔助分類載板120a與分類載板140的位置。換言之,圖16A依據一拾取規則,將18個LED區塊112,從輔助分類載板120a,批次轉移到分類載板140。這個拾取規則呈現於例如圖16A中的分類載板140之LED區塊112的排列方式。FIG. 16A uses a pick-up head 190 to pick up 18 LED blocks 112 at a time (like the blocks marked with black dots in the figure), and transfer them from the auxiliary sorting carrier 120a to the sorting carrier 140 in batches. On the auxiliary sorting carrier 120a, there are only LED blocks 112 of classification‶B1 ". Arrows are used in Fig. 16A to illustrate the positions of the two LED blocks 112 on the auxiliary sorting carrier 120a and the sorting carrier 140. In other words, Fig. 16A is based on A picking rule, 18 LED blocks 112 are transferred from the auxiliary sorting carrier 120a to the sorting carrier 140 in batches. This picking rule is presented, for example, in the arrangement of the LED blocks 112 of the sorting carrier 140 in FIG. 16A .

圖16B採用一樣的拾取頭190,也就是以一樣的拾取規則,一次拾取18個LED區塊112,從輔助分類載板120a,批次轉移到分類載板140上。圖16B中的箭頭說明兩個LED區塊112在輔助分類載板120a與分類載板140的位置移動。圖16B顯示這次所拾取的18個LED區塊112,放置於先前圖16A所拾取的LED區塊112旁。FIG. 16B adopts the same pick-up head 190 , that is, picks up 18 LED blocks 112 at a time with the same pick-up rule, and transfers batches from the auxiliary sorting carrier 120 a to the sorting carrier 140 . The arrows in FIG. 16B illustrate the movement of the two LED blocks 112 at the positions of the auxiliary sorting carrier 120 a and the sorting carrier 140 . FIG. 16B shows the 18 LED blocks 112 picked up this time, placed next to the LED blocks 112 picked up previously in FIG. 16A .

重複圖16A與16B中的拾取頭190的批次轉移方法,就可以把輔助分類載板120a中的分類‶B1″的LED區塊112,有效率地、快速地轉移至分類載板140上,並依據圖5的分類圖案130放置在分類載板140上。By repeating the batch transfer method of the pick-up head 190 in FIGS. 16A and 16B , the LED blocks 112 of the classification "B1" in the auxiliary sorting carrier 120a can be efficiently and quickly transferred to the sorting carrier 140, And place it on the sorting carrier 140 according to the sorting pattern 130 shown in FIG. 5 .

使用不同的拾取頭,並採用類似圖16A與16B中的方法,就可以把分類‶B2″與‶B3″的LED區塊112,快速有效率地從所屬的輔助分類載板移轉並放置於分類載板140上。圖16C採用拾取頭192,一次拾取18個分類‶B2″的LED區塊112,從輔助分類載板120b,轉移到分類載板140上。輔助分類載板120b上只有分類‶B2″的LED區塊112。圖16D採用拾取頭194,一次拾取18個分類‶B3″的LED區塊112,從輔助分類載板120c,轉移到分類載板140上。輔助分類載板120c上只有分類‶B3″的LED區塊112。從圖16D的分類載板140可見一部分的分類載板140中已經放置分類‶B1″、‶B2″與‶B3″的LED區塊112。最後就可以完成圖6的分類載板140,其具有圖5的分類圖案130。Using different pick-up heads, and using a method similar to that shown in Figures 16A and 16B, the LED blocks 112 of the categories ‶B2" and ‶B3" can be quickly and efficiently transferred from the auxiliary sorting carrier to which they belong and placed on On the sorting carrier 140. Fig. 16C adopts pick-up head 192 to pick up 18 LED blocks 112 of classification‶B2″ at a time, and transfer them from auxiliary sorting carrier 120b to sorting carrier 140. There are only LED areas of classification‶B2″ on auxiliary sorting carrier 120b Block 112. Fig. 16D adopts the pick-up head 194 to pick up 18 LED blocks 112 of classification‶B3″ at a time, and transfer them from the auxiliary sorting carrier 120c to the sorting carrier 140. There are only LED areas classified‶B3″ on the auxiliary sorting carrier 120c Block 112. It can be seen from the sorting carrier 140 of FIG. 16D that the LED blocks 112 of classification ‶B1 ″, ‶B2 ″ and ‶B3 ″ have been placed in a part of the sorting carrier 140. Finally, the classification carrier 140 of FIG. 6 can be completed, which has Classification pattern 130 of FIG. 5 .

本發明並不限於圖5中的分類圖案130與圖6之分類載板140。圖17顯示另一分類圖案230,以及圖18顯示依據分類圖案230所形成的分類載板240。The present invention is not limited to the sorting pattern 130 in FIG. 5 and the sorting carrier 140 in FIG. 6 . FIG. 17 shows another sorting pattern 230 , and FIG. 18 shows a sorting carrier 240 formed according to the sorting pattern 230 .

在另一個實施例中,並不需要一個預設的分類圖案,也可以形成一分類載板。這分類載板上並沒有重複的分類圖案。這個分類載板上有數個LED區塊,每個LED區塊具有多個LED晶粒排列成一矩陣。每個LED區塊依據一檢測結果,都被指定一個分類。而每個分類的LED區塊的數量,在該分類載板中,具有一個預設固定的分類比例。舉例來說,B1分類比例是分類B1的LED區塊的數量,除以分類載板上所有LED區塊數量。在依據發明所實施的一種分類載板中,B1分類比例是1/3,B2分類比例是1/3,B3分類比例也是1/3。當然的,同分類的LED區塊應該要盡量的分散在分類載板上,避免同分類的LED區塊過度集中可能發生亮度不均或是顏色不均之情形發生。In another embodiment, a sorting carrier can also be formed without a preset sorting pattern. There is no repeating sorting pattern on this sorting carrier. There are several LED blocks on the sorting carrier, and each LED block has a plurality of LED chips arranged in a matrix. Each LED block is assigned a classification according to a detection result. The number of LED blocks for each classification has a preset and fixed classification ratio in the classification carrier board. For example, the B1 bin ratio is the number of LED blocks in class B1 divided by the number of all LED bins on the class carrier. In a sorting carrier board implemented according to the invention, the proportion of B1 sorting is 1/3, the proportion of B2 sorting is 1/3, and the proportion of B3 sorting is also 1/3. Of course, LED blocks of the same classification should be scattered on the classification carrier board as much as possible to avoid uneven brightness or uneven color that may occur due to excessive concentration of LED blocks of the same classification.

圖20顯示顯示器200以及變異性σ的關係。如圖20所示,在一實施例中,顯示器200係由多個畫素載板160組合而成,每個畫素載板160的LED晶粒來自多個具有相同分類比例的分類載板。因此,顯示器200中,不同位置的矩形區塊A1與A2之間,單色LED晶粒光電特性分佈曲線的變異性σ會較小,例如:σ<30%、25%、15%、10%、或8%,如此人眼的視覺感受較不易感受到不同畫素載板160間的色彩不連續或不均勻。於一實施例中,在顯示器200中,矩形區塊A1與A2中至少包含10000個相同顏色的 LED晶粒。光電特性分佈曲線可以量測任一列、任一行、或是全部單色LED晶粒的光電特性。變異性的計算舉例如下,矩形區塊A1具有光電特性分佈曲線CV1,矩形區塊A2具有光電特性分佈曲線CV2。光電特性分佈曲線CV1為不同分類波長W1、W2、W3…Wn與LED晶粒個數C1(W1)、C1(W2)、C1(W3)…、C1(Wn)的關係圖。光電特性分佈曲線CV2為不同分類波長W1、W2、W3…Wn與LED晶粒個數C2(W1)、C2(W2)、C2(W3)…、C2(Wn)的關係圖。變異性σ=

Figure 02_image001
。變異性σ越小,表示光電特性分佈曲線CV1與CV2彼此越靠近,矩形區塊A1跟A2在光電特性上越相似。 Figure 20 shows the relationship of the display 200 and the variability σ. As shown in FIG. 20 , in one embodiment, the display 200 is composed of multiple pixel substrates 160 , and the LED dies of each pixel substrate 160 come from multiple sorted substrates with the same classification ratio. Therefore, in the display 200, between the rectangular blocks A1 and A2 at different positions, the variability σ of the photoelectric characteristic distribution curve of the single-color LED grain will be small, for example: σ<30%, 25%, 15%, 10% . In one embodiment, in the display 200 , the rectangular blocks A1 and A2 include at least 10,000 LED dies of the same color. The photoelectric characteristic distribution curve can measure the photoelectric characteristics of any column, any row, or all single-color LED dies. The calculation example of the variability is as follows, the rectangular block A1 has a photoelectric characteristic distribution curve CV1, and the rectangular block A2 has a photoelectric characteristic distribution curve CV2. The photoelectric characteristic distribution curve CV1 is a graph of the relationship between different classification wavelengths W1, W2, W3...Wn and the number of LED grains C1(W1), C1(W2), C1(W3)..., C1(Wn). The photoelectric characteristic distribution curve CV2 is a graph of the relationship between different classification wavelengths W1, W2, W3...Wn and the number of LED grains C2(W1), C2(W2), C2(W3)..., C2(Wn). Variability σ =
Figure 02_image001
. The smaller the variability σ, the closer the photoelectric characteristic distribution curves CV1 and CV2 are to each other, and the more similar the photoelectric characteristics of the rectangular blocks A1 and A2 are.

依據本發明所實施,沒有預設的分類圖案的一分類載板,如果繪製類似圖10或11之LED晶粒放射波長與位置的關係,將一樣會發現有許多明顯不連續波長變化,但是可能不具有隨著位置改變的重複性變化。圖19A與19B顯示一分類載板上兩列LED晶粒的放射波長與位置的關係,可以發現大致歸屬於同一LED區塊內的LED晶粒具有相近的放射波長,而屬於不同LED區塊的LED晶粒彼此之間可能有較大放射波長差異。According to the implementation of the present invention, if there is no preset sorting pattern on a sorting carrier board, if the relationship between the emission wavelength and the position of the LED crystal grain is drawn similarly to Figure 10 or 11, it will be found that there are many obvious discontinuous wavelength changes, but it is possible Has no repeatability variation with position. 19A and 19B show the relationship between the emission wavelength and the position of two rows of LED crystal grains on a classification substrate. It can be found that the LED grains roughly belonging to the same LED block have similar emission wavelengths, while the LED grains belonging to different LED blocks have similar emission wavelengths. There may be a large difference in emission wavelength between LED dies.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

100:製造方法 110:成長基板 110´:基板 112、112a、112b、112A、112B:LED區塊 113:電極 114、114B、114G、114R:LED晶粒 115V:晶片垂直間距 116H:水平切割道 116V:垂直切割道 117H、117V:切割道寬度 118H、122H、144H:區塊水平線距 118V、122V、144V:區塊垂直線距 120、120a、120b、120c:輔助分類載板 123V、143V:區塊垂直間距 126:切割工具 128:黏著層 130、230:分類圖案 140、240:分類載板 142:區域 146:拾取頭 148:黏著層 150:輔助畫素載板 154H、164H:畫素水平線距 154V、164V:畫素垂直線距 158:黏著層 160:畫素載板 170:載板 172:阻光層 174:雷射 178:黏著層 182a、182b、182c、182d、182e:波長變化 183a、183b、183c、183d、183e、183f:波長分佈區塊 190、192、194:拾取頭 200:顯示器 A1、A2:矩形區塊 AA-AA:線 B1、B2、B3、X:分類 CV1、CV2:光電特性分佈曲線 C1(W1)-C1(W9)、C2(W1)-C2(W9):LED晶粒個數 S1、S2、S3、S4、S5、S6:LED區塊 S02、S04、S06、S08、S10、S12:步驟 W1、W2、W3:波長 X1、X2、X3、X4、X5、X6、X7、X8、X9、X10:列 Y1、Y2、Y3、Y4、Y5、Y6、Y7、Y8、Y9:行 100: Manufacturing method 110: Growth substrate 110´: Substrate 112, 112a, 112b, 112A, 112B: LED blocks 113: electrode 114, 114B, 114G, 114R: LED die 115V: chip vertical spacing 116H: Horizontal cutting road 116V: vertical cutting track 117H, 117V: width of cutting track 118H, 122H, 144H: block horizontal line distance 118V, 122V, 144V: block vertical line spacing 120, 120a, 120b, 120c: auxiliary classification carrier 123V, 143V: block vertical spacing 126: Cutting tool 128: Adhesive layer 130, 230: classification pattern 140, 240: classification carrier board 142: area 146: pick up head 148: Adhesive layer 150: Auxiliary pixel carrier board 154H, 164H: pixel horizontal line spacing 154V, 164V: pixel vertical line spacing 158: Adhesive layer 160:Pixel carrier board 170: carrier board 172: light blocking layer 174: laser 178: Adhesive layer 182a, 182b, 182c, 182d, 182e: wavelength change 183a, 183b, 183c, 183d, 183e, 183f: wavelength distribution blocks 190, 192, 194: pick-up head 200: display A1, A2: rectangular block AA-AA: line B1, B2, B3, X: classification CV1, CV2: Photoelectric characteristic distribution curve C1(W1)-C1(W9), C2(W1)-C2(W9): Number of LED grains S1, S2, S3, S4, S5, S6: LED blocks S02, S04, S06, S08, S10, S12: steps W1, W2, W3: wavelength X1, X2, X3, X4, X5, X6, X7, X8, X9, X10: columns Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9: row

圖1顯示依據本發明一實施例的製造方法100。FIG. 1 shows a manufacturing method 100 according to an embodiment of the invention.

圖2顯示依據本發明一實施例的成長基板110以及例示的LED區塊S1-S6。FIG. 2 shows a growth substrate 110 and exemplary LED blocks S1 - S6 according to an embodiment of the present invention.

圖3顯示依據本發明一實施例的成長基板110上之LED區塊112的排列圖案。FIG. 3 shows an arrangement pattern of LED blocks 112 on a growth substrate 110 according to an embodiment of the present invention.

圖4顯示依據本發明一實施例的輔助分類載板120。FIG. 4 shows an auxiliary sorting carrier 120 according to an embodiment of the present invention.

圖5顯示依據本發明一實施例的預設分類圖案130。FIG. 5 shows a preset classification pattern 130 according to an embodiment of the present invention.

圖6顯示依據本發明一實施例的依據分類圖案130所產生的分類載板140。FIG. 6 shows a sorting carrier 140 generated according to the sorting pattern 130 according to an embodiment of the present invention.

圖7A與7B顯示依據本發明一實施例的轉移方式,例示LED晶粒 114從分類載板140轉移到輔助畫素載板150上。7A and 7B show a transfer method according to an embodiment of the present invention, illustrating that the LED die 114 is transferred from the sorting carrier 140 to the auxiliary pixel carrier 150.

圖8顯示依據本發明一實施例的輔助畫素載板150。FIG. 8 shows an auxiliary pixel carrier 150 according to an embodiment of the present invention.

圖9A-9C顯示依據本發明一實施例的具有三種顏色LED的畫素載板160。9A-9C show a pixel carrier 160 with three color LEDs according to an embodiment of the present invention.

圖10與11分別顯示圖6中列Y9中之一列LED晶粒與行X3中的一行LED晶粒的放射波長與位置的關係。10 and 11 respectively show the relationship between the emission wavelength and the position of a row of LED dies in column Y9 and a row of LED dies in row X3 in FIG. 6 .

圖12為沿著圖2中線AA-AA的剖面示意圖。FIG. 12 is a schematic cross-sectional view along the line AA-AA in FIG. 2 .

圖13A~13E顯示依據本發明一實施例的轉移步驟,例示LED晶粒 114轉移到輔助畫素載板150的過程。13A-13E show the transfer steps according to an embodiment of the present invention, illustrating the process of transferring the LED die 114 to the auxiliary pixel carrier 150.

圖14A~14D舉例顯示依據本發明另一實施例的轉移步驟,例示LED晶粒 114轉移到輔助畫素載板150的過程。14A-14D illustrate the transfer steps according to another embodiment of the present invention, illustrating the process of transferring the LED die 114 to the auxiliary pixel carrier 150.

圖15A~15D顯示依據本發明一實施例處理步驟,例示LED區塊轉移至載板170的過程。15A-15D show processing steps according to an embodiment of the present invention, exemplifying the process of transferring LED blocks to the carrier 170 .

圖16A~16D顯示依據本發明一實施例的轉移步驟,例示批次轉移LED區塊到分類載板140上的過程。FIGS. 16A-16D show transfer steps according to an embodiment of the present invention, exemplifying the process of transferring LED blocks onto the sorting carrier 140 in batches.

圖17顯示依據本發明另一實施例的分類圖案230。FIG. 17 shows a classification pattern 230 according to another embodiment of the present invention.

圖18顯示依據本發明一實施例根據分類圖案所形成的分類載板。FIG. 18 shows a sorting carrier formed according to a sorting pattern according to an embodiment of the present invention.

圖19A與19B顯示依據本發明一實施例一分類載板上兩列LED晶粒的放射波長與位置的關係。19A and 19B show the relationship between the emission wavelength and the position of two rows of LED dies on a classification carrier according to an embodiment of the present invention.

圖20顯示一顯示器以及變異性σ的關係。Figure 20 shows a display and the relationship of variability σ.

S02、S04、S06、S08、S10、S12:步驟 S02, S04, S06, S08, S10, S12: steps

Claims (10)

一種LED的排列方法,包含: 提供共同地位於一基板上之複數第一LED區塊及複數第二LED區塊;及 移轉該複數第一LED區塊及該複數第二LED區塊至一分類載板上成一區塊陣列,該區塊陣列包含複數行及複數列; 其中,該複數第一LED區塊中之各個區塊皆包含複數第一LED晶粒,且該複數第一LED晶粒整體上屬於一第一分類, 其中,該複數第二LED區塊中之各個區塊皆包含複數第二LED晶粒,且該複數第二LED晶粒整體上屬於一第二分類, 其中,該複數行中之各行皆包含該複數第一LED區塊中至少其一及該複數第二LED區塊中至少其一, 其中,該複數列中之各列皆包含該複數第一LED區塊中至少其一及該複數第二LED區塊中至少其一。 A method for arranging LEDs, comprising: providing a plurality of first LED blocks and a plurality of second LED blocks co-located on a substrate; and transferring the plurality of first LED blocks and the plurality of second LED blocks to a classification carrier to form a block array, the block array includes a plurality of rows and a plurality of columns; Wherein, each block in the plurality of first LED blocks includes a plurality of first LED dies, and the plurality of first LED dies as a whole belong to a first category, Wherein, each block in the plurality of second LED blocks includes a plurality of second LED dies, and the plurality of second LED dies as a whole belongs to a second category, Wherein, each row in the plurality of rows includes at least one of the plurality of first LED blocks and at least one of the plurality of second LED blocks, Wherein, each row in the plurality of rows includes at least one of the plurality of first LED blocks and at least one of the plurality of second LED blocks. 如請求項1所述之方法,其中,該第一分類係取決於該複數第一LED晶粒整體之一光電特性,該光電特性包含放射波長、發光強度以及色度。The method as claimed in claim 1, wherein the first classification depends on an optoelectronic characteristic of the plurality of first LED dies as a whole, and the optoelectronic characteristic includes emission wavelength, luminous intensity and chromaticity. 如請求項1所述之方法,其中,該複數第一LED區塊及該複數第二LED區塊係依照一預設分類圖案排列成該區塊陣列。The method according to claim 1, wherein the plurality of first LED blocks and the plurality of second LED blocks are arranged in the block array according to a preset sorting pattern. 如請求項1所述之方法,其中,該複數第一LED區塊及該複數第二LED區塊之數量比例在該複數行中之任二行或該複數列中之任二列皆大致上相同。The method as described in claim 1, wherein, the number ratio of the plurality of first LED blocks and the plurality of second LED blocks is substantially equal to any two rows in the plurality of rows or any two columns in the plurality of columns same. 如請求項1所述之方法,其中,該移轉步驟包含: 轉移該複數第一LED區塊至一第一輔助分類載板;及 轉移該複數第二LED區塊至一第二輔助分類載板。 The method as described in Claim 1, wherein the transferring step includes: transferring the plurality of first LED blocks to a first auxiliary sorting carrier; and Transferring the plurality of second LED blocks to a second auxiliary sorting carrier. 如請求項5所述方法,其中,該移轉步驟包含轉移該第一輔助分類載板上的該複數個第一LED區塊與該第二輔助分類載板上的該複數個第二LED區塊至該分類載板形成該區塊陣列。The method according to claim 5, wherein the transferring step includes transferring the plurality of first LED blocks on the first auxiliary sorting carrier and the plurality of second LED blocks on the second auxiliary sorting carrier block to the classification carrier to form the block array. 如請求項1所述之方法,其中,該移轉步驟係使用取放拾取頭、雷射剝離、雷射剝蝕、或前述方法之組合。The method according to claim 1, wherein the transferring step uses a pick-and-place pickup, laser lift-off, laser ablation, or a combination of the foregoing methods. 如請求項1所述之方法,其中,該複數第一LED晶粒及該複數第二LED晶粒在該區塊陣列中排列成複數子行及複數子列,沿著該複數子行其中之一或該複數子列其中之一可測得LED晶粒之一光電特性曲線,該光電特性曲線有至少一個不連續變化,該不連續變化大體上位在該區塊陣列中之兩相鄰區塊之交界處。The method as claimed in item 1, wherein, the plurality of first LED dies and the plurality of second LED dies are arranged in a plurality of sub-rows and a plurality of sub-columns in the block array, along the plurality of sub-rows One or one of the plurality of sub-rows can measure a photoelectric characteristic curve of LED crystal grains, the photoelectric characteristic curve has at least one discontinuous change, and the discontinuous change is generally located in two adjacent blocks in the block array of the junction. 如請求項1所述之方法,其中,該基板包含一支撐基板以及一黏著材料位於該支撐基板上。The method as claimed in claim 1, wherein the substrate comprises a supporting substrate and an adhesive material is located on the supporting substrate. 如請求項1所述之方法,其中,該移轉步驟包含形成一圖案化阻光層位於該基板相對於LED區塊的一側。The method according to claim 1, wherein the transferring step includes forming a patterned light-blocking layer on the side of the substrate opposite to the LED block.
TW111122324A 2021-10-05 2022-06-16 Optoelectronic product and manufacture method thereof TW202316679A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202211201277.1A CN115939268A (en) 2021-10-05 2022-09-29 Photoelectric product and manufacturing method thereof
US17/957,431 US20230105078A1 (en) 2021-10-05 2022-09-30 Optoelectronic product and manufacturing method thereof
DE102022125488.7A DE102022125488A1 (en) 2021-10-05 2022-10-04 OPTOELECTRONIC PRODUCT AND MANUFACTURING METHOD THEREOF
KR1020220126145A KR20230049033A (en) 2021-10-05 2022-10-04 Optoelectronic product and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163252563P 2021-10-05 2021-10-05
US63/252,563 2021-10-05

Publications (1)

Publication Number Publication Date
TW202316679A true TW202316679A (en) 2023-04-16

Family

ID=86943235

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111122324A TW202316679A (en) 2021-10-05 2022-06-16 Optoelectronic product and manufacture method thereof

Country Status (1)

Country Link
TW (1) TW202316679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI888923B (en) 2023-09-19 2025-07-01 東捷科技股份有限公司 Method for sorting and transferring light emitting diode chips

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI888923B (en) 2023-09-19 2025-07-01 東捷科技股份有限公司 Method for sorting and transferring light emitting diode chips

Similar Documents

Publication Publication Date Title
US11894507B2 (en) Light-emitting device and manufacturing method thereof
US10580825B2 (en) Method of manufacturing display device Including Photoluminescence measurement
KR102579645B1 (en) Method of transferring semiconductor device, semiconductor device carrier, and method of fabricating display panel
TWI805564B (en) Chip transferring method and the apparatus thereof
TWI811680B (en) Light-emitting diode micro display device
KR102078643B1 (en) Display appartus using one chip type led and fabrication method of the same
CN111785751A (en) Micro LED wafer and transfer method capable of block electrical measurement
CN110038811B (en) Semiconductor element classification method
US20210376188A1 (en) Method for transferring a light emitting device for display
US20240322072A1 (en) Method for transferring a light emitting device for display
TW202316679A (en) Optoelectronic product and manufacture method thereof
CN112864146A (en) Semiconductor structure, display panel and manufacturing method of electronic element module
CN115939268A (en) Photoelectric product and manufacturing method thereof
US20240097067A1 (en) Manufacturing method of electronic element module
US20230106834A1 (en) Method of manufacturing optoelectronic products and apparatus thereof
TW202109914A (en) Light-emitting device, manufacturing method thereof and display module using the same
CN108288629A (en) Display panel
US10784238B2 (en) Display device including sub-pixel units of the same color type and different luminous areas
US20240405002A1 (en) Semiconductor device arrangement and method of manufacturing the same
JP2013511146A (en) Light emitting diode repair method and apparatus using quantum dot coating
US20240153924A1 (en) Manufacturing method of electronic device
TW202520960A (en) Semiconductor device arrangement and method of manufacturing the same
TW202316620A (en) Method of manufacturing optoelectronic products, manufacturing apparatus thereof, and method of manufacturing led devices
CN119997704A (en) MicroLED chip batch transfer method and application
WO2020223481A1 (en) Integration and mass transfer of micro-leds