[go: up one dir, main page]

TW202312121A - Display panel and pixel circuit thereof - Google Patents

Display panel and pixel circuit thereof Download PDF

Info

Publication number
TW202312121A
TW202312121A TW110132819A TW110132819A TW202312121A TW 202312121 A TW202312121 A TW 202312121A TW 110132819 A TW110132819 A TW 110132819A TW 110132819 A TW110132819 A TW 110132819A TW 202312121 A TW202312121 A TW 202312121A
Authority
TW
Taiwan
Prior art keywords
transistor
pixel circuit
signal line
time
signal
Prior art date
Application number
TW110132819A
Other languages
Chinese (zh)
Other versions
TWI778775B (en
Inventor
奚鵬博
林振祺
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW110132819A priority Critical patent/TWI778775B/en
Priority to CN202111360967.7A priority patent/CN114120885B/en
Application granted granted Critical
Publication of TWI778775B publication Critical patent/TWI778775B/en
Publication of TW202312121A publication Critical patent/TW202312121A/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

The present invention discloses a pixel circuit and a display panel. The pixel circuit includes: a driving unit, an emitting element and an emitting control circuit serial connected between a voltage source and a reference voltage source; a first driving block, coupled to a control terminal of the driving unit and a vertical signal line, configured to output a control signal according to a PAM signal and a PWM signal, and configured to receive a reference voltage from the vertical signal line during an emitting period, and receive the PWM signal during a data writing period; and a second driving block, connected to the vertical signal line, and configured to output the reference voltage to the first driving block via the vertical signal line during the emitting period. A frame is compose of the emitting period and the data writing period.

Description

顯示面板及其畫素電路Display panel and its pixel circuit

本發明是有關於一種顯示面板及其畫素電路。The invention relates to a display panel and a pixel circuit thereof.

顯示裝置的解析度日漸提高。解析度的提高意味著掃描線(scan line)的增加。對於高解析度的顯示裝置來說,循序式(progressive)掃描的驅動方式實務上仍存在一些問題。例如,電流分割影響光學效果、訊號電壓轉換載入(loading)等問題。因此,有必要針對高解析度的顯示裝置及其驅動方法進行改良。The resolution of display devices is increasing day by day. An increase in resolution means an increase in scan lines. For high-resolution display devices, there are still some practical problems in the progressive scanning driving method. For example, current division affects optical effects, signal voltage conversion loading and other issues. Therefore, it is necessary to improve the high-resolution display device and its driving method.

本發明的一方面係揭露一種畫素電路,包括:一驅動單元、一發光元件及一發光控制電路串聯連接於一電源電壓及一參考電源之間;一第一驅動區塊,耦接至該驅動單元的一控制端及一垂直信號線,用以根據一脈寬調變信號及一振幅調變信號輸出一控制信號至該驅動單元,以及於一發光時間自該垂直信號線皆收一參考電壓,於一資料寫入時間自該垂直信號線接收該脈寬調變信號;以及一第二驅動區塊,連接至該垂直信號線,用以於該發光時間通過該垂直信號線輸出該參考電壓至該第一驅動區塊。該資料寫入時間及該發光時間組成一個幀。One aspect of the present invention discloses a pixel circuit, comprising: a driving unit, a light-emitting element and a light-emitting control circuit connected in series between a power supply voltage and a reference power supply; a first driving block coupled to the A control terminal and a vertical signal line of the drive unit are used to output a control signal to the drive unit according to a pulse width modulation signal and an amplitude modulation signal, and to receive a reference from the vertical signal line at a light emitting time voltage, receiving the pulse width modulation signal from the vertical signal line at a data writing time; and a second driving block, connected to the vertical signal line, for outputting the reference through the vertical signal line at the light emitting time voltage to the first drive block. The data writing time and the lighting time constitute a frame.

本發明的另一方面係揭露一種顯示面板,包括複數個畫素電路。該些畫素電路係被配置為複數組。各該畫素電路包括一驅動單元、一發光元件及一發光控制電路串聯連接於一電源電壓及一參考電源之間;一第一驅動區塊,耦接至該驅動單元的一控制端及一垂直信號線,用以根據一脈寬調變信號及一振幅調變信號輸出一控制信號至該驅動單元,以及於一發光時間自該垂直信號線皆收一參考電壓,於一資料寫入時間自該垂直信號線接收該脈寬調變信號;以及一第二驅動區塊,連接至該垂直信號線,用以於該發光時間通過該垂直信號線輸出該參考電壓至該第一驅動區塊。該資料寫入時間及該發光時間組成一個幀。該些畫素電路使用的信號時序係根據所屬的組別而定。Another aspect of the present invention discloses a display panel including a plurality of pixel circuits. The pixel circuits are configured as complex groups. Each pixel circuit includes a driving unit, a light emitting element and a light emitting control circuit connected in series between a power supply voltage and a reference power supply; a first driving block, coupled to a control terminal of the driving unit and a The vertical signal line is used to output a control signal to the drive unit according to a pulse width modulation signal and an amplitude modulation signal, and to receive a reference voltage from the vertical signal line at a light emitting time, and to receive a reference voltage at a data writing time receiving the pulse width modulation signal from the vertical signal line; and a second driving block connected to the vertical signal line for outputting the reference voltage to the first driving block through the vertical signal line at the light emitting time . The data writing time and the lighting time constitute a frame. The signal timings used by these pixel circuits are determined according to the group they belong to.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific examples are given in detail with the accompanying drawings as follows:

請參照第1圖,第1圖繪示根據本發明一實施例的畫素單元的方塊圖。畫素單元100包括一驅動單元120、一發光控制器130、一發光元件LED、一第一驅動區塊150以及一第二驅動區塊160。Please refer to FIG. 1 , which is a block diagram of a pixel unit according to an embodiment of the present invention. The pixel unit 100 includes a driving unit 120 , a light emitting controller 130 , a light emitting element LED, a first driving block 150 and a second driving block 160 .

驅動單元120包括驅動電晶體TD。驅動電晶體TD具有控制端,用以接收控制信號CS,其中控制信號CS可包括脈寬控制信號及振幅控制信號。驅動電晶體TD根據控制信號CS產生驅動信號,以驅動發光元件LED發光。在本實施例中,發光元件LED可以為任意形式的發光二極體。The driving unit 120 includes a driving transistor TD. The driving transistor TD has a control terminal for receiving a control signal CS, wherein the control signal CS may include a pulse width control signal and an amplitude control signal. The driving transistor TD generates a driving signal according to the control signal CS to drive the light emitting element LED to emit light. In this embodiment, the light emitting element LED may be any form of light emitting diode.

發光控制器130中的電路130-1、130-2與驅動電晶體TD以及發光元件LED串聯耦接。驅動電晶體TD耦接在電路130-1、130-2之間。在本實施例中,電路130-1、130-2分別包括電晶體T1、T2,並耦接在驅動電晶體TD、電源電壓VDD以及發光元件LED間。電晶體T1、T2的控制端分別接收一第一發光控制信號EM1及一第二發光控制訊號EM2,並分別依據第一發光控制信號EM1及第二發光控制信號EM2而被導通或關閉。需要注意的是,在替代的實施例中,發光控制器130中的電路130-1、130-2可以擇一來實施,不必要同時設置電路130-1、130-2。The circuits 130-1, 130-2 in the lighting controller 130 are coupled in series with the driving transistor TD and the light emitting element LED. The driving transistor TD is coupled between the circuits 130-1, 130-2. In this embodiment, the circuits 130-1 and 130-2 include transistors T1 and T2 respectively, and are coupled between the driving transistor TD, the power supply voltage VDD and the light emitting element LED. The control terminals of the transistors T1 and T2 receive a first light emission control signal EM1 and a second light emission control signal EM2 respectively, and are turned on or off according to the first light emission control signal EM1 and the second light emission control signal EM2 respectively. It should be noted that in an alternative embodiment, the circuits 130-1 and 130-2 in the lighting controller 130 can be implemented alternatively, and it is not necessary to configure the circuits 130-1 and 130-2 at the same time.

第一驅動區塊150用以依據脈寬調變信號D_PWM及振幅調變信號D_PAM產生控制信號CS。第一驅動區塊150耦接一垂直信號線VL。在一幀(frame)的一資料寫入時間(data writing period)期間,第一驅動區塊150通過垂直信號線VL接收脈寬調變信號D_PWM;在幀的一發光時間(emitting period)期間,第一驅動區塊150通過垂直信號線VL接收一參考電壓PPO。The first driving block 150 is used for generating the control signal CS according to the pulse width modulation signal D_PWM and the amplitude modulation signal D_PAM. The first driving block 150 is coupled to a vertical signal line VL. During a data writing period of a frame, the first driving block 150 receives the pulse width modulation signal D_PWM through the vertical signal line VL; during an emitting period of a frame, The first driving block 150 receives a reference voltage PPO through the vertical signal line VL.

第二驅動區塊160通過垂直信號線耦接至第一驅動區塊。在發光時間期間,第二驅動區塊160輸出參考電壓PPO。The second driving block 160 is coupled to the first driving block through vertical signal lines. During the light emitting time, the second driving block 160 outputs the reference voltage PPO.

在一實施例中,發光控制器130控制發光元件LED在發光時間期間間歇性發光至少二次。In one embodiment, the light emitting controller 130 controls the light emitting element LED to emit light intermittently at least twice during the light emitting time.

請參照第2圖,第2圖繪示根據本發明一實施例的顯示面板的方塊圖。顯示面板200包括多個畫素電路P11~Pxy、多條水平信號線HL1~HLx、多條垂直信號線VL1~VLy以及一控制晶片210。畫素電路P11~Pxy可應用畫素電路100來實現。此些畫素電路P11~Pxy被配置為x行及y列,其中x、y為正整數。每一行畫素電路通過對應的水平信號線耦接至控制晶片210。每一列的畫素電路通過對應的垂直信號線耦接至控制晶片210。畫素電路還被劃分為至少二組,本實施例以二組為例。第一組及第二組的畫素電路分別包括多行畫素電路,其中屬於第一組的畫素電路行稱為第一畫素電路行,屬於第二組的畫素電路行稱為第二畫素電路行。在一實施例中,第一畫素電路行與第二畫素電路行交錯配置。例如,奇數行的畫素電路被分配給第一組,偶數行的畫素電路被分配給第二組。第一組畫素電路係操作於一第一時序,第二組畫素電路係操作於一第二時序,其中第一時序的起始與第二時序的起始具有一時間差。Please refer to FIG. 2 , which is a block diagram of a display panel according to an embodiment of the present invention. The display panel 200 includes a plurality of pixel circuits P11 -Pxy, a plurality of horizontal signal lines HL1 -HLx, a plurality of vertical signal lines VL1 -VLy and a control chip 210 . The pixel circuits P11 ˜ Pxy can be realized by using the pixel circuit 100 . The pixel circuits P11 ˜ Pxy are configured as x rows and y columns, where x and y are positive integers. Each row of pixel circuits is coupled to the control chip 210 through a corresponding horizontal signal line. The pixel circuits of each column are coupled to the control chip 210 through corresponding vertical signal lines. The pixel circuits are further divided into at least two groups, and this embodiment takes two groups as an example. The pixel circuits of the first group and the second group respectively include multiple rows of pixel circuits, wherein the pixel circuit row belonging to the first group is called the first pixel circuit row, and the pixel circuit row belonging to the second group is called the second pixel circuit row. Two-pixel circuit row. In one embodiment, the first pixel circuit row and the second pixel circuit row are arranged alternately. For example, pixel circuits of odd rows are assigned to the first group, and pixel circuits of even rows are assigned to the second group. The first group of pixel circuits operates at a first timing, and the second group of pixel circuits operates at a second timing, wherein there is a time difference between the start of the first timing and the start of the second timing.

以下搭配第3圖繪示的根據本發明一實施例的畫素電路的電路圖對本發明的細節進行說明。The details of the present invention will be described below with the circuit diagram of the pixel circuit according to an embodiment of the present invention shown in FIG. 3 .

畫素電路300包括一驅動電晶體TD、電晶體T1~T8、發光元件LED及電容C1、C2。畫素電路300係屬於顯示面板200中第n行及第m列畫素電路,其中n為不大於x的正整數,m為不大於y的正整數。在本實施例中,電晶體TD、T1~T8皆為PMOS。The pixel circuit 300 includes a driving transistor TD, transistors T1-T8, light emitting elements LED and capacitors C1 and C2. The pixel circuit 300 belongs to the pixel circuit in the nth row and the mth column of the display panel 200 , where n is a positive integer not greater than x, and m is a positive integer not greater than y. In this embodiment, the transistors TD, T1-T8 are all PMOS.

電晶體T1的第一端接收電源電壓VDD。電晶體T1的控制端接收第一發光控制信號EM1[n]。驅動電晶體TD的第一端耦接電晶體T1的第二端。電晶體T2的第一端耦接驅動電晶體TD的第二端。電晶體T2的控制端接收第二發光控制信號EM2[n]。發光元件LED的第一端耦接電晶體T2的第二端。發光元件LED的第二端接收參考電源VSS。電晶體T3的第一端耦接驅動電晶體TD的第一端。電晶體T3的控制端接收一第一閘極驅動信號G1[n]。電晶體T3的第二端接收振幅調變信號D_PAM[m]。電晶體T4的第一端耦接驅動電晶體TD的控制端。電晶體T4的控制端接收第一閘極驅動信號G1[n]。電晶體T5的第一端耦接電晶體T4的第一端。電晶體T5的控制端耦接電晶體T4的控制端。電晶體T5的第二端連接對應的垂直信號線VLm。電晶體T6的第一端耦接驅動電晶體TD的第二端。電晶體T6的第二端連接電晶體T4的第一端。電晶體T6的控制端接收一第二閘極驅動信號G2[n]。電晶體T7的第一端耦接電晶體T6的第二端。電晶體T7的第二端接收一重置電壓RES。電晶體T7的控制端接收一重置控制信號RES[n]。電晶體T8的第一端連接對應的垂直信號線VLm。電晶體T8的第二端接收參考電壓PPO。電晶體T8的控制端接收的信號根據畫素電路300隸屬的組別而定,其中當畫素電路300屬於第一組,該信號為第一切換信號IF1,當畫素電路300屬於第二組,該信號為第二切換信號IF2。第一切換信號IF1與第二切換信號IF2被配置以使得對應於第一組畫素電路的資料寫入時間及發光時間與對應於第二組畫素電路的資料寫入時間及發光時間之間具有該時間差。電容C1的第一端接收電源電壓VDD。電容C2的第二端耦接電晶體T4的第一端。電容C2的第一端耦接電晶體T4的第二端。電容C2的第二端接收依時間控制信號SWEEP[n]。The first end of the transistor T1 receives the power voltage VDD. The control terminal of the transistor T1 receives the first light emission control signal EM1[n]. The first terminal of the driving transistor TD is coupled to the second terminal of the transistor T1. The first terminal of the transistor T2 is coupled to the second terminal of the driving transistor TD. The control terminal of the transistor T2 receives the second light emission control signal EM2[n]. A first terminal of the light emitting element LED is coupled to a second terminal of the transistor T2. The second end of the light emitting element LED receives the reference power VSS. The first end of the transistor T3 is coupled to the first end of the driving transistor TD. The control terminal of the transistor T3 receives a first gate driving signal G1 [n]. The second end of the transistor T3 receives the amplitude modulation signal D_PAM[m]. The first terminal of the transistor T4 is coupled to the control terminal of the driving transistor TD. The control terminal of the transistor T4 receives the first gate driving signal G1 [n]. The first end of the transistor T5 is coupled to the first end of the transistor T4. The control terminal of the transistor T5 is coupled to the control terminal of the transistor T4. The second end of the transistor T5 is connected to the corresponding vertical signal line VLm. The first terminal of the transistor T6 is coupled to the second terminal of the driving transistor TD. The second end of the transistor T6 is connected to the first end of the transistor T4. The control terminal of the transistor T6 receives a second gate driving signal G2 [n]. The first end of the transistor T7 is coupled to the second end of the transistor T6. The second end of the transistor T7 receives a reset voltage RES. The control terminal of the transistor T7 receives a reset control signal RES[n]. The first end of the transistor T8 is connected to the corresponding vertical signal line VLm. The second end of the transistor T8 receives the reference voltage PPO. The signal received by the control terminal of the transistor T8 depends on the group to which the pixel circuit 300 belongs. When the pixel circuit 300 belongs to the first group, the signal is the first switching signal IF1; when the pixel circuit 300 belongs to the second group , the signal is the second switching signal IF2. The first switching signal IF1 and the second switching signal IF2 are configured so that the data writing time and light emitting time corresponding to the first group of pixel circuits are between the data writing time and light emitting time corresponding to the second group of pixel circuits with this time difference. The first terminal of the capacitor C1 receives the power voltage VDD. The second end of the capacitor C2 is coupled to the first end of the transistor T4. A first terminal of the capacitor C2 is coupled to a second terminal of the transistor T4. The second terminal of the capacitor C2 receives the time-dependent control signal SWEEP[n].

在本實施例中,發光控制器包括電晶體T1、T2。第一驅動區塊包括電晶體T1~T7及電容C1、C2。第二驅動區塊包括電晶體T8。In this embodiment, the lighting controller includes transistors T1 and T2. The first driving block includes transistors T1-T7 and capacitors C1 and C2. The second driving block includes a transistor T8.

第一閘極驅動信號G1[n]、第二閘極驅動信號G2[n]、第一發光控制信號EM1[n]、第二發光控制信號EM2[n]、重置信號RES[n]、時間控制信號SWEEP[n]皆為對應於第n行畫素電路的信號,可由一閘極驅動電路陣列(gate on array,GOA)產生,其中GOA電路可整合於控制晶片或者部整合於控制晶片而額外設置。第一切換信號IF1及第二切換信號IF2可由控制晶片產生。脈寬調驗信號D_PWM[m]及振幅調變信號D_PAM[m]為對應於第m列畫素電路的資料,可由控制晶片產生。在一實施例中,第m條垂直信號線可通過一多工電路MXm耦接至控制晶片。多工電路MXm根據第一切換信號IF1(或者第二切換信號IF2,取決於n為奇數或偶數)及多工控制信號MXCS選擇性輸出參考電壓PPO及脈寬調變信號D_PWM。在一實施例中,多工電路MXm可包括電晶體T9及T10。電晶體T9的第一端接收參考電壓PPO。電晶體T9的第二端連接垂直信號線VLm。電晶體T9的控制端接收第一切換信號IF1(或第二切換信號IF2)。電晶體T10的第一端接收脈寬調變信號D_PWM[m]。電晶體T10的第二端連接垂直信號線VLm。電晶體T10接收多工控制信號MXCS。The first gate drive signal G1[n], the second gate drive signal G2[n], the first light emission control signal EM1[n], the second light emission control signal EM2[n], the reset signal RES[n], The time control signal SWEEP[n] is a signal corresponding to the pixel circuit of the nth row, which can be generated by a gate drive circuit array (gate on array, GOA), wherein the GOA circuit can be integrated in the control chip or partially integrated in the control chip And additional settings. The first switching signal IF1 and the second switching signal IF2 can be generated by the control chip. The pulse width modulation signal D_PWM[m] and the amplitude modulation signal D_PAM[m] are data corresponding to the pixel circuit in the mth column, and can be generated by the control chip. In one embodiment, the mth vertical signal line can be coupled to the control chip through a multiplexing circuit MXm. The multiplexing circuit MXm selectively outputs the reference voltage PPO and the pulse width modulation signal D_PWM according to the first switching signal IF1 (or the second switching signal IF2, depending on whether n is odd or even) and the multiplexing control signal MXCS. In an embodiment, the multiplexing circuit MXm may include transistors T9 and T10. The first end of the transistor T9 receives the reference voltage PPO. The second end of the transistor T9 is connected to the vertical signal line VLm. The control terminal of the transistor T9 receives the first switching signal IF1 (or the second switching signal IF2 ). The first end of the transistor T10 receives the pulse width modulation signal D_PWM[m]. The second end of the transistor T10 is connected to the vertical signal line VLm. The transistor T10 receives the multiplexing control signal MXCS.

具體來說,在資料寫入時間期間,第一切換信號IF1及第二切換信號IF2致使電晶體T8及T9關閉,多工控制信號MXCS致使電晶體T10導通;在發光時間期間,第一切換信號IF1及第二切換信號IF2致使電晶體T8及T9導通,多工控制信號MXCS致使電晶體T10關閉。Specifically, during the data writing time period, the first switching signal IF1 and the second switching signal IF2 cause the transistors T8 and T9 to be turned off, and the multiplexing control signal MXCS causes the transistor T10 to be turned on; during the light-emitting time period, the first switching signal IF1 and the second switching signal IF2 turn on the transistors T8 and T9 , and the multiplexing control signal MXCS turns off the transistor T10 .

請參照第4圖,第4圖繪示的是顯示面板的操作與信號時序的示意圖。400是第一組畫素電路的操作示意圖,410是第一組畫素電路所使用的信號時序示意圖。在400中,橫軸為時間,縱軸為第一畫素電路行的編號,例如由下而上為1、3、5、…。一個幀FR1係被劃分為資料寫入時間t1及發光時間t2。在資料寫入時間t1,第一切換信號IF1維持高準位,在清除畫素電路中的舊畫素資料後根據脈寬調變信號及振幅調變信號寫入新的畫素資料。在發光時間t2,第一切換信號IF1為低準位,第一畫素電路行逐行間歇性地發光。本實施例中,間歇性發光的間隔為幀FR1的長度的四分之一,即(t1+t2)/4。420是第二組畫素電路的操作示意圖,430是第一組畫素電路所使用的信號時序示意圖。在420中,橫軸為時間,縱軸為第二畫素電路行的編號,例如由下而上為2、4、6、…。相似地,一個幀FR2係被劃分為資料寫入時間t1及發光時間t2。在資料寫入時間t1,第二切換信號IF2維持高準位,在清除畫素電路中的舊畫素資料後根據脈寬調變信號及振幅調變信號寫入新的畫素資料。在發光時間t2,第二切換信號IF2為低準位,第二畫素電路行逐行間歇性地發光。本實施例中,間歇性發光的間隔為幀FR2的長度的四分之一,即(t1+t2)/4。需要注意的是,幀FR2的開始時間與幀FR1的開始時間之間有一時間差t3。本實施例中幀FR1與FR2的長度是相同的,皆為t1+t2,且時間差t3為幀FR1/FR2的長度的二分之一,即t3=(t1+t2)/2。Please refer to FIG. 4 , which is a schematic diagram of the operation and signal timing of the display panel. 400 is a schematic diagram of the operation of the first group of pixel circuits, and 410 is a schematic diagram of signal timing used by the first group of pixel circuits. In 400, the horizontal axis is time, and the vertical axis is the number of the first pixel circuit row, for example, 1, 3, 5, . . . from bottom to top. A frame FR1 is divided into a data writing time t1 and a light emitting time t2. At the data writing time t1, the first switching signal IF1 maintains a high level, and writes new pixel data according to the PWM signal and the amplitude modulation signal after clearing the old pixel data in the pixel circuit. At the light-emitting time t2, the first switching signal IF1 is at a low level, and the first pixel circuit intermittently emits light row by row. In this embodiment, the intermittent lighting interval is a quarter of the length of the frame FR1, that is, (t1+t2)/4. 420 is a schematic diagram of the operation of the second group of pixel circuits, and 430 is a schematic diagram of the first group of pixel circuits Schematic diagram of the signal timing used. In 420, the horizontal axis is time, and the vertical axis is the number of the second pixel circuit row, for example, 2, 4, 6, . . . from bottom to top. Similarly, a frame FR2 is divided into a data writing time t1 and a light emitting time t2. At the data writing time t1, the second switching signal IF2 maintains a high level, and writes new pixel data according to the PWM signal and the amplitude modulation signal after clearing the old pixel data in the pixel circuit. At the lighting time t2, the second switching signal IF2 is at a low level, and the second pixel circuit intermittently emits light row by row. In this embodiment, the interval of the intermittent light emission is a quarter of the length of the frame FR2, that is, (t1+t2)/4. It should be noted that there is a time difference t3 between the start time of the frame FR2 and the start time of the frame FR1. In this embodiment, the lengths of the frames FR1 and FR2 are the same, t1+t2, and the time difference t3 is half of the lengths of the frames FR1/FR2, ie t3=(t1+t2)/2.

詳而言之,各組畫素電路內各自採循序式掃描發光,多組畫素電路之間則採交錯式(interlace)發光。將400與420重疊可看出,第一組及第二組畫素電路等同於在一個幀的時間內總共發光四次。且此四次發光均勻地分割一個幀的時間。若一個幀的長度為16.6ms,則可以達到60Hz的更新率。也就是說,藉由適當的配置畫素電路分組的組數、每一組畫素電路在一個幀的時間內發光的次數,可以決定出想要的更新率。舉例來說,畫素電路可分為三組,每組畫素電路在發光時間內發光三次,如此等同於在一個幀的時間內均勻發光九次。In detail, each group of pixel circuits adopts sequential scanning to emit light, and multiple groups of pixel circuits adopt interlaced light emission. By overlapping 400 and 420 , it can be seen that the first group and the second group of pixel circuits are equivalent to emitting light four times in one frame. And the four times of lighting evenly divide the time of one frame. If the length of a frame is 16.6ms, the update rate of 60Hz can be achieved. That is to say, the desired update rate can be determined by properly configuring the number of groups of pixel circuits and the number of times each group of pixel circuits emits light within a frame time. For example, the pixel circuits can be divided into three groups, and each group of pixel circuits emits light three times during the light-emitting time, which is equivalent to uniformly emitting nine times in one frame time.

請參照第5圖,第5圖繪示根據本發明另一實施例的畫素電路的電路圖。畫素電路500包括驅動電晶體TD、電晶體T1~T15、發光元件LED以及電容C1~C3。Please refer to FIG. 5 , which shows a circuit diagram of a pixel circuit according to another embodiment of the present invention. The pixel circuit 500 includes a driving transistor TD, transistors T1-T15, light-emitting elements LED and capacitors C1-C3.

電晶體T1的第一端耦接驅動電晶體TD的第一端。電晶體T2的第一端耦接驅動電晶體TD的第二端。電晶體T2的控制端接收發光控制信號EM_PAM[n]。發光元件LED的第一端耦接電晶體T2的第二端。發光元件LED的第二端接收參考電源VSS。電晶體T3接收振幅調變信號D_PAM[m]。電晶體T3的第二端耦接電晶體T1的第二端。電晶體T3的控制端接收閘極驅動信號G2[n]。電晶體T4的第一端耦接電晶體T3的第二端。電晶體T4的控制端接收發光控制信號EM_PWM[n]。電晶體T4的第二端耦接電源電壓VDD。電晶體T5的第一端耦接電晶體T4的第二端。電晶體T5的控制端耦接電晶體T4的控制端。電晶體T6的第一端耦接電晶體T5的第二端。電晶體T6的控制端接收設置信號VST[n]。電晶體T6的第二端接收參考電壓PPO。電晶體T7的第一端耦接電晶體T5的第二端。電晶體T7的第二端耦接電晶體T6的第二端。電晶體T7的控制端接收閘極驅動信號GATE[n]。電晶體T8的第一端耦接電晶體T1的第一端。電晶體T8的第二端耦接電晶體T1的控制端。電晶體T8的控制端耦接電晶體T3的控制端。電晶體T9的第一端耦接電經体T8的第二端。電晶體T9的控制端接收信號VST[n]。電晶體T9的第二端耦接電晶體T9的控制端。電晶體T10的第一端耦接驅動電晶體TD的控制端。\電晶體T10的控制端接收發光控制信號EM_PWM[n]。電晶體T11的第一端耦接電晶體T10的第二端。電晶體T11的控制端接收設置信號SET[n]。電晶體T11的第二端接收設置電壓VSET。電晶體T12的第一端耦接電晶體T11的第一端。電晶體T12的控制端耦接電晶體T7的控制端。電晶體T13的第一端耦接電晶體T12的第二端。電晶體T13的第二端及控制端耦接電晶體T9的第二端。電晶體T14的第一端耦接電晶體T12的第一端。電晶體T14的第二端連接垂直信號線VLm,並通過垂直信號線VLm在資料寫入時間接收脈寬調變信號D_PWM[m]。電晶體T14的控制端耦接電晶體T12的第二端。電晶體T15的第一端連接垂直信號線VLm。電晶體T15的第二端接收參考電壓PPO。電晶體T15的控制端接收切換信號IF。電容C1的第一端耦接電晶體T12的第二端。電容C1的第二端接收時間控制信號SWEEP[n]。電容C2的第一端耦接電晶體T1的控制端。電容C2的第二端耦接電晶體T5的第二端。電容C3的第一端耦接電晶體T10的第一端。電容C3的第二端耦接電晶體T11的第二端。The first end of the transistor T1 is coupled to the first end of the driving transistor TD. The first terminal of the transistor T2 is coupled to the second terminal of the driving transistor TD. The control terminal of the transistor T2 receives the light emission control signal EM_PAM[n]. A first terminal of the light emitting element LED is coupled to a second terminal of the transistor T2. The second end of the light emitting element LED receives the reference power VSS. The transistor T3 receives the amplitude modulation signal D_PAM[m]. The second end of the transistor T3 is coupled to the second end of the transistor T1. The control terminal of the transistor T3 receives the gate driving signal G2[n]. The first end of the transistor T4 is coupled to the second end of the transistor T3. The control terminal of the transistor T4 receives the light emission control signal EM_PWM[n]. The second end of the transistor T4 is coupled to the power voltage VDD. The first end of the transistor T5 is coupled to the second end of the transistor T4. The control terminal of the transistor T5 is coupled to the control terminal of the transistor T4. The first end of the transistor T6 is coupled to the second end of the transistor T5. The control terminal of the transistor T6 receives the setting signal VST[n]. The second end of the transistor T6 receives the reference voltage PPO. The first end of the transistor T7 is coupled to the second end of the transistor T5. The second end of the transistor T7 is coupled to the second end of the transistor T6. The control terminal of the transistor T7 receives the gate drive signal GATE[n]. The first end of the transistor T8 is coupled to the first end of the transistor T1. The second terminal of the transistor T8 is coupled to the control terminal of the transistor T1. The control terminal of the transistor T8 is coupled to the control terminal of the transistor T3. The first end of the transistor T9 is coupled to the second end of the transistor T8. The control terminal of the transistor T9 receives the signal VST[n]. The second terminal of the transistor T9 is coupled to the control terminal of the transistor T9. The first terminal of the transistor T10 is coupled to the control terminal of the driving transistor TD. \The control terminal of the transistor T10 receives the light emission control signal EM_PWM[n]. A first terminal of the transistor T11 is coupled to a second terminal of the transistor T10 . The control terminal of the transistor T11 receives the setting signal SET[n]. The second end of the transistor T11 receives the setting voltage VSET. The first end of the transistor T12 is coupled to the first end of the transistor T11. The control terminal of the transistor T12 is coupled to the control terminal of the transistor T7. A first terminal of the transistor T13 is coupled to a second terminal of the transistor T12. The second terminal and the control terminal of the transistor T13 are coupled to the second terminal of the transistor T9. A first terminal of the transistor T14 is coupled to a first terminal of the transistor T12. The second end of the transistor T14 is connected to the vertical signal line VLm, and receives the pulse width modulation signal D_PWM[m] through the vertical signal line VLm at the data writing time. The control terminal of the transistor T14 is coupled to the second terminal of the transistor T12. The first end of the transistor T15 is connected to the vertical signal line VLm. The second end of the transistor T15 receives the reference voltage PPO. The control terminal of the transistor T15 receives the switching signal IF. A first terminal of the capacitor C1 is coupled to a second terminal of the transistor T12. The second end of the capacitor C1 receives the time control signal SWEEP[n]. The first end of the capacitor C2 is coupled to the control end of the transistor T1. The second end of the capacitor C2 is coupled to the second end of the transistor T5. The first end of the capacitor C3 is coupled to the first end of the transistor T10. The second end of the capacitor C3 is coupled to the second end of the transistor T11.

在此實施例中,電晶體T1也被配置為用以驅動發光元件LED的電晶體。驅動電晶體TD的控制端接收的是根據脈寬調變信號D_PWM[m]產生的脈寬控制信號。電晶體T1的控制端接收的是根據振幅調變信號D_PAM[m]產生的振幅控制信號。也就是說,在本實施例中,驅動單元是包括驅動電晶體TD及電晶體T1,第一驅動區塊包括用以產生脈寬控制信號並輸出至驅動電晶體TD的控制端的電路以及用以產生振幅控制信號並輸出至電晶體T1的控制端的電路。第二驅動區塊則是電晶體T15。In this embodiment, the transistor T1 is also configured as a transistor for driving the light emitting element LED. The control terminal of the driving transistor TD receives the pulse width control signal generated according to the pulse width modulation signal D_PWM[m]. The control terminal of the transistor T1 receives the amplitude control signal generated according to the amplitude modulation signal D_PAM[m]. That is to say, in this embodiment, the driving unit includes the driving transistor TD and the transistor T1, and the first driving block includes a circuit for generating a pulse width control signal and outputting it to the control terminal of the driving transistor TD and for A circuit that generates an amplitude control signal and outputs it to the control terminal of transistor T1. The second driving block is the transistor T15.

需要注意的是,第3圖的8T2C(八電晶體二電容)架構與第5圖的16T3C(十六電晶體三電容)架構皆為示例而已,任何適用的PWM/PAM驅動電路架構皆可應用於本發明。It should be noted that the 8T2C (eight transistors and two capacitors) architecture in Figure 3 and the 16T3C (sixteen transistors and three capacitors) architecture in Figure 5 are just examples, and any applicable PWM/PAM drive circuit architecture can be applied in the present invention.

本發明的優點在於,在發光時間內垂直信號線及第二驅動區塊會提供穩定的參考電壓PPO至第一驅動區塊(PAM/PWM驅動電路),而不用從電源電壓抽載。這種方式可以避免發光時因電流分流而造成亮度不穩定而產生視覺上的閃爍感。The advantage of the present invention is that the vertical signal line and the second driving block will provide a stable reference voltage PPO to the first driving block (PAM/PWM driving circuit) during the lighting time without drawing from the power supply voltage. This method can avoid visual flickering caused by unstable brightness caused by current shunting when emitting light.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

100、300、500:畫素電路 200:顯示面板 120:驅動單元 130:發光控制電路 130-1、130-2:電路 TD:驅動電晶體 T1~T15:電晶體 C1~C3:電容 150:第一驅動區塊 160:第二驅動區塊 VL、VL1~VLy:垂直信號線 HL1~HLx:水平信號線 210:控制晶片 PPO:參考電壓 CS:控制信號 D_PWM:脈寬調變信號 100, 300, 500: pixel circuit 200: display panel 120: drive unit 130: Lighting control circuit 130-1, 130-2: circuit TD: drive transistor T1~T15: Transistor C1~C3: capacitance 150: The first drive block 160: Second drive block VL, VL1~VLy: vertical signal lines HL1~HLx: horizontal signal lines 210: control chip PPO: reference voltage CS: control signal D_PWM: pulse width modulation signal

第1圖繪示根據本發明一實施例的畫素電路的方塊圖。 第2圖繪示根據本發明一實施例的顯示面板的方塊圖。 第3圖繪示根據本發明一實施例的畫素電路的電路圖。 第4圖繪示根據本發明一實施例的顯示面板的操作及信號時序示意圖。 第5圖繪示根據本發明另一實施例的畫素電路的電路圖。 FIG. 1 is a block diagram of a pixel circuit according to an embodiment of the present invention. FIG. 2 is a block diagram of a display panel according to an embodiment of the invention. FIG. 3 is a circuit diagram of a pixel circuit according to an embodiment of the present invention. FIG. 4 is a schematic diagram illustrating the operation and signal timing of the display panel according to an embodiment of the present invention. FIG. 5 is a circuit diagram of a pixel circuit according to another embodiment of the present invention.

100:畫素電路 100:Pixel circuit

130:發光控制電路 130: Lighting control circuit

130-1、130-2:電路 130-1, 130-2: circuit

TD:驅動電晶體 TD: drive transistor

T1、T2:電晶體 T1, T2: Transistor

150:第一驅動區塊 150: The first drive block

160:第二驅動區塊 160: Second drive block

VL:垂直信號線 VL: vertical signal line

PPO:參考電壓 PPO: reference voltage

CS:控制信號 CS: control signal

D_PWM:脈寬調變信號 D_PWM: pulse width modulation signal

Claims (12)

一種畫素電路,包括: 一驅動單元、一發光元件及一發光控制電路串聯連接於一電源電壓及一參考電源之間; 一第一驅動區塊,耦接至該驅動單元的一控制端及一垂直信號線,用以根據一脈寬調變信號及一振幅調變信號輸出一控制信號至該驅動單元,以及於一發光時間自該垂直信號線接收一參考電壓,於一資料寫入時間自該垂直信號線接收該脈寬調變信號;以及 一第二驅動區塊,連接至該垂直信號線,用以於該發光時間通過該垂直信號線輸出該參考電壓至該第一驅動區塊, 其中該資料寫入時間及該發光時間組成一個幀。 A pixel circuit, comprising: A drive unit, a light-emitting element and a light-emitting control circuit are connected in series between a power supply voltage and a reference power supply; A first drive block, coupled to a control terminal of the drive unit and a vertical signal line, is used to output a control signal to the drive unit according to a pulse width modulation signal and an amplitude modulation signal, and in a receiving a reference voltage from the vertical signal line during a light emitting time, and receiving the pulse width modulation signal from the vertical signal line during a data writing time; and a second driving block, connected to the vertical signal line, for outputting the reference voltage to the first driving block through the vertical signal line during the light emitting time, The data writing time and the light emitting time constitute a frame. 如請求項1所述之畫素電路,其中該第二驅動區塊根據一切換信號選擇性地輸出該參考電壓,該切換信號的一時序係取決於該畫素電路屬於一顯示面板的複數組畫素電路中的組別。The pixel circuit as described in claim 1, wherein the second driving block selectively outputs the reference voltage according to a switching signal, and a timing of the switching signal depends on the plurality of groups that the pixel circuit belongs to a display panel Groups in the pixel circuit. 如請求項2所述之畫素電路,其中該第二驅動區塊包括一電晶體,該電晶體的一第一端連接該垂直信號線,該電晶體的一控制端接收該切換信號,該電晶體的一第二端接收該參考電壓。The pixel circuit as described in claim 2, wherein the second driving block includes a transistor, a first end of the transistor is connected to the vertical signal line, a control end of the transistor receives the switching signal, the A second terminal of the transistor receives the reference voltage. 如請求項1所述之畫素電路,其中該第一驅動區塊、該驅動單元及該發光控制電路被配置以致使該發光元件於該發光時間期間間歇性發光二次以上。The pixel circuit according to claim 1, wherein the first driving block, the driving unit and the light emission control circuit are configured to cause the light emitting element to emit light intermittently more than twice during the light emitting time. 如請求項4所述之畫素電路,其中間歇性發光的次數為二次,且兩次發光之間間隔的時間為四分之一幀的時間。The pixel circuit according to Claim 4, wherein the number of intermittent light emission is twice, and the interval between two light emission is a quarter of a frame time. 一種顯示面板,包括: 複數個畫素電路,該些畫素電路係被配置為複數組,各該畫素電路包括: 一驅動單元、一發光元件及一發光控制電路串聯連接於一電源電壓及一參考電源之間; 一第一驅動區塊,耦接至該驅動單元的一控制端及一垂直信號線,用以根據一脈寬調變信號及一振幅調變信號輸出一控制信號至該驅動單元,以及於一發光時間自該垂直信號線接收一參考電壓,於一資料寫入時間自該垂直信號線接收該脈寬調變信號;以及 一第二驅動區塊,連接至該垂直信號線,用以於該發光時間通過該垂直信號線輸出該參考電壓至該第一驅動區塊, 其中該資料寫入時間及該發光時間組成一個幀,且該些畫素電路使用的信號時序係根據所屬的組別而定。 A display panel, comprising: A plurality of pixel circuits, the pixel circuits are configured as a complex array, each of the pixel circuits includes: A drive unit, a light-emitting element and a light-emitting control circuit are connected in series between a power supply voltage and a reference power supply; A first drive block, coupled to a control terminal of the drive unit and a vertical signal line, is used to output a control signal to the drive unit according to a pulse width modulation signal and an amplitude modulation signal, and in a receiving a reference voltage from the vertical signal line during a light emitting time, and receiving the pulse width modulation signal from the vertical signal line during a data writing time; and a second driving block, connected to the vertical signal line, for outputting the reference voltage to the first driving block through the vertical signal line during the light emitting time, The data writing time and the lighting time constitute a frame, and the signal timings used by the pixel circuits are determined according to the groups they belong to. 如請求項6所述之顯示面板,其中該第二驅動區塊根據一切換信號選擇性地輸出該參考電壓,該切換信號的一時序係取決於該畫素電路所屬的組別。The display panel as claimed in claim 6, wherein the second driving block selectively outputs the reference voltage according to a switching signal, and a timing of the switching signal depends on the group to which the pixel circuit belongs. 如請求項7所述之顯示面板,其中該第二驅動區塊包括一電晶體,該電晶體的一第一端連接該垂直信號線,該電晶體的一控制端接收該切換信號,該電晶體的一第二端接收該參考電壓。The display panel as described in claim 7, wherein the second driving block includes a transistor, a first end of the transistor is connected to the vertical signal line, a control end of the transistor receives the switching signal, and the transistor A second terminal of the crystal receives the reference voltage. 如請求項6所述之顯示面板,其中該第一驅動區塊、該驅動單元及該發光控制電路被配置以致使該發光元件於該發光時間期間間歇性發光二次以上。The display panel according to claim 6, wherein the first driving block, the driving unit and the light emission control circuit are configured to cause the light emitting element to emit light intermittently more than twice during the light emitting time. 如請求項9所述之畫素電路,其中間歇性發光的次數為二次,且兩次發光之間間隔的時間為四分之一幀的時間。The pixel circuit according to Claim 9, wherein the number of intermittent light emission is twice, and the interval between two light emission is a quarter of a frame time. 如請求項10所述之畫素電路,其中該些畫素電路係被配置為一第一組及一第二組,該第一組的畫素電路所使用的信號時序與該第二組的畫素電路所使用的信號時序之間具有一時間差,且該時間差為二分之一幀。The pixel circuit as described in claim 10, wherein the pixel circuits are configured as a first group and a second group, and the signal timing used by the pixel circuits of the first group is the same as that of the second group There is a time difference between the signal timings used by the pixel circuit, and the time difference is half a frame. 如請求項6所述之畫素電路,其中各組畫素電路內的該些畫素電路於該發光時間期間逐行發光。The pixel circuit as claimed in claim 6, wherein the pixel circuits in each group of pixel circuits emit light row by row during the lighting time.
TW110132819A 2021-09-03 2021-09-03 Display panel and pixel circuit thereof TWI778775B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110132819A TWI778775B (en) 2021-09-03 2021-09-03 Display panel and pixel circuit thereof
CN202111360967.7A CN114120885B (en) 2021-09-03 2021-11-17 Display panel and pixel circuit thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110132819A TWI778775B (en) 2021-09-03 2021-09-03 Display panel and pixel circuit thereof

Publications (2)

Publication Number Publication Date
TWI778775B TWI778775B (en) 2022-09-21
TW202312121A true TW202312121A (en) 2023-03-16

Family

ID=80397173

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110132819A TWI778775B (en) 2021-09-03 2021-09-03 Display panel and pixel circuit thereof

Country Status (2)

Country Link
CN (1) CN114120885B (en)
TW (1) TWI778775B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446251B (en) * 2022-03-09 2023-10-31 Tcl华星光电技术有限公司 Driving circuit, backlight module and display panel
TWI824698B (en) * 2022-09-06 2023-12-01 友達光電股份有限公司 Pixel circuit and micro-led panel using the same
CN115588402B (en) * 2022-09-30 2024-03-22 深圳市华星光电半导体显示技术有限公司 Driving circuit and display panel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100530308C (en) * 1999-06-17 2009-08-19 索尼公司 Method for driving image display apparatus
CN1983365B (en) * 2002-04-26 2011-05-18 东芝松下显示技术有限公司 Drive circuit for electroluminescence display screen
US8159771B2 (en) * 2007-06-01 2012-04-17 Seagate Technology Llc Controlling a heat resistive element with a pulse modulated signal
KR102117889B1 (en) * 2013-12-11 2020-06-02 엘지디스플레이 주식회사 Pixel circuit of display device, organic light emitting display device and method for driving thereof
KR102477486B1 (en) * 2016-04-19 2022-12-14 삼성디스플레이 주식회사 Emission control driver and display device having the same
JP2020109450A (en) * 2019-01-07 2020-07-16 ソニー株式会社 Spatial optical modulation system, spatial optical modulation device, and display unit
CN110600544A (en) * 2019-09-04 2019-12-20 山东奥天电子科技有限公司 High-performance, wide-safe-working-area and high-reliability transistor
US11132941B2 (en) * 2019-12-24 2021-09-28 Au Optronics Corporation Display panel and pixel circuit thereof
CN111369935B (en) * 2020-04-09 2021-03-16 深圳市华星光电半导体显示技术有限公司 Pixel driving circuit and driving method thereof
CN111477164B (en) * 2020-05-13 2022-04-05 深圳市华星光电半导体显示技术有限公司 Driving circuit of display
CN111462685B (en) * 2020-05-29 2021-08-31 上海天马有机发光显示技术有限公司 Pixel driving circuit and driving method thereof, display panel and display device
CN113096589B (en) * 2021-04-08 2022-05-06 中国科学院微电子研究所 A pixel circuit, a driving method of the pixel circuit, and a display device

Also Published As

Publication number Publication date
TWI778775B (en) 2022-09-21
CN114120885A (en) 2022-03-01
CN114120885B (en) 2023-10-27

Similar Documents

Publication Publication Date Title
TWI778775B (en) Display panel and pixel circuit thereof
US9019191B2 (en) Stage circuit and emission control driver using the same
KR101056213B1 (en) Driver and organic light emitting display device using the same
CN112289255B (en) Display panel and its pixel circuit
US8542225B2 (en) Emission control line drivers, organic light emitting display devices using the same and methods of controlling a width of an emission control signal
KR102816079B1 (en) Display device
CN113674678A (en) Display device and driving method
CN105096819A (en) Display apparatus and pixel circuit thereof
US11955058B2 (en) Display panel and driving method for the same, and display device
KR20130143318A (en) Stage circuit and organic light emitting display device using the same
KR20100087871A (en) Emission driver and organic light emitting display using the same
CN103366678A (en) Organic light emitting diode display and its driving method
KR101813215B1 (en) Stage Circuit and Scan Driver Using The Same
CN104575379A (en) Display device and driving method thereof
WO2024250393A1 (en) Gate driving unit and display device
US11978377B2 (en) Driving circuit and driving device for display panel
CN101996574A (en) Display device and driving method thereof
TWI759067B (en) Display device and driving method
US20230178027A1 (en) Gate driver and display device including the same
WO2019140946A1 (en) Light emitting control circuit, light emitting control driver and display device
US20130002307A1 (en) Stage circuit and scan driver using the same
TWI786853B (en) Display panel and operation method thereof
US20250191524A1 (en) Driving method of display device
CN117153085A (en) Display panel, driving method thereof and display device
CN119763472A (en) Display panel and display device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent