TW202126848A - Metal organic chemical vapor deposition reactor reducing the complexity of the reactor and increasing the luminous intensity of light-emitting diodes - Google Patents
Metal organic chemical vapor deposition reactor reducing the complexity of the reactor and increasing the luminous intensity of light-emitting diodes Download PDFInfo
- Publication number
- TW202126848A TW202126848A TW109140106A TW109140106A TW202126848A TW 202126848 A TW202126848 A TW 202126848A TW 109140106 A TW109140106 A TW 109140106A TW 109140106 A TW109140106 A TW 109140106A TW 202126848 A TW202126848 A TW 202126848A
- Authority
- TW
- Taiwan
- Prior art keywords
- precursor
- pipeline
- vapor deposition
- input port
- chemical vapor
- Prior art date
Links
- 238000005229 chemical vapour deposition Methods 0.000 title claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 25
- 239000002184 metal Substances 0.000 title claims abstract description 25
- 239000002243 precursor Substances 0.000 claims abstract description 157
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 56
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 56
- 239000011777 magnesium Substances 0.000 claims abstract description 56
- 239000007789 gas Substances 0.000 claims abstract description 52
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 14
- 238000009792 diffusion process Methods 0.000 claims description 24
- 238000002347 injection Methods 0.000 claims description 23
- 239000007924 injection Substances 0.000 claims description 23
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 17
- 229910052733 gallium Inorganic materials 0.000 claims description 17
- 229910052738 indium Inorganic materials 0.000 claims description 17
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 17
- 239000012686 silicon precursor Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 7
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- 229910001425 magnesium ion Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910002601 GaN Inorganic materials 0.000 description 4
- 230000007704 transition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- -1 silicon ions Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Formation Of Insulating Films (AREA)
Abstract
本發明係一種金屬有機物化學氣相沉積反應器,包括:反應腔,頂部包括氣體噴淋頭,氣體噴淋頭包括第一輸入端口、第二輸入端口和第三輸入端口;前驅物輸送管道組,與多種前驅物源連接;前驅物匯合輸入管道,與前驅物輸送管道組連通,用於匯合多種前驅物,連通第一輸入端口;鎂前驅物輸入管道,與鎂前驅物源連接,且連通第二輸入端口;氮前驅物輸送管道,與氮前驅物源連接,且連通氣體噴淋頭的第三輸入端口。利用所述金屬有機物化學氣相沉積反應器能夠降低反應器的複雜度,且提高發光二極體的發光强度。The present invention is a metal-organic chemical vapor deposition reactor, comprising: a reaction chamber, the top includes a gas shower head, the gas shower head includes a first input port, a second input port, and a third input port; a precursor transport pipeline group , Connected to a variety of precursor sources; precursor confluence input pipeline, connected to the precursor transport pipeline group, used to converge multiple precursors, and connected to the first input port; magnesium precursor input pipeline, connected to and connected to the magnesium precursor source The second input port; the nitrogen precursor conveying pipeline, which is connected with the nitrogen precursor source, and is connected to the third input port of the gas shower head. The use of the metal organic chemical vapor deposition reactor can reduce the complexity of the reactor and increase the luminous intensity of the light-emitting diode.
Description
本發明涉及半導體領域,尤其涉及一種金屬有機物化學氣相沉積反應器。The invention relates to the field of semiconductors, in particular to a metal organic chemical vapor deposition reactor.
目前LED(Light Emitting Diode,發光二極體)是一種固體照明,體積小、耗電量低、使用壽命長、亮度高、環保、堅固耐用等優點受到廣大消費者認可,國內外生産LED的規模不斷地擴大。At present, LED (Light Emitting Diode, light-emitting diode) is a kind of solid-state lighting. Its advantages such as small size, low power consumption, long service life, high brightness, environmental protection, and durability are recognized by consumers. The scale of LED production at home and abroad Keep expanding.
近年來,半導體材料氮化鎵(GaN)被廣泛應用於發光二極體,而氮化鎵(GaN)在金屬有機化學氣相沉積反應器(金屬有機化學氣相沉積反應器)內進行。通常在氮化鎵(GaN)內摻雜鎂離子作爲發光二極體的正極,然而,習知的金屬有機物化學氣相沉積反應器通常使鎂源與鎵源匯合後通入反應腔內,使得鎂源易殘留在匯合後的管道內,那麽,殘留的鎂源對後續外延結構層造成影響,使得二極體的發光强度降低。In recent years, the semiconductor material gallium nitride (GaN) has been widely used in light-emitting diodes, and gallium nitride (GaN) is carried out in a metal organic chemical vapor deposition reactor (metal organic chemical vapor deposition reactor). Magnesium ions are usually doped in gallium nitride (GaN) as the positive electrode of the light emitting diode. However, the conventional metal-organic chemical vapor deposition reactor usually combines the magnesium source and the gallium source into the reaction chamber, so that Magnesium source is easy to remain in the merged pipe. Then, the remaining magnesium source affects the subsequent epitaxial structure layer, which reduces the luminous intensity of the diode.
本發明解决的技術問題是提供一種金屬有機物化學氣相沉積反應器,以降低鎂離子對後續塗層的影響,提高發光强度。The technical problem solved by the present invention is to provide a metal organic chemical vapor deposition reactor to reduce the influence of magnesium ions on subsequent coatings and improve the luminous intensity.
爲解决上述技術問題,本發明提供一種金屬有機物化學氣相沉積反應器,包括:反應腔,其頂部包括氣體噴淋頭,所述氣體噴淋頭包括第一輸入端口、第二輸入端口和第三輸入端口;前驅物輸送管道組,與多種前驅物源連接;前驅物匯合輸入管道,與前驅物輸送管道組連通,用於匯合多種前驅物,連通所述氣體噴淋頭的第一輸入端口;鎂前驅物輸入管道,與鎂前驅物源連接,且連通所述氣體噴淋頭的第二輸入端口;氮前驅物輸送管道,與氮前驅物源連接,且連通所述氣體噴淋頭的第三輸入端口。In order to solve the above technical problems, the present invention provides a metal-organic chemical vapor deposition reactor, comprising: a reaction chamber, the top of which includes a gas shower head, the gas shower head includes a first input port, a second input port, and a second input port. Three input ports; precursor delivery pipeline group, connected with multiple precursor sources; precursor confluence input pipeline, connected with the precursor delivery pipeline group, used to converge multiple precursors, and connected to the first input port of the gas shower head The magnesium precursor input pipeline is connected to the magnesium precursor source and connected to the second input port of the gas shower head; the nitrogen precursor delivery pipeline is connected to the nitrogen precursor source and communicates with the gas shower head The third input port.
可選的,所述氣體噴淋頭包括第一擴散空間、與第一擴散空間連接的第一輸送管道、第二擴散空間以及與第二擴散空間連通的第二輸送管道,所述第一擴散空間具有第一輸入端口和第二輸入端口,所述第二擴散空間具有第三輸入端口。Optionally, the gas shower head includes a first diffusion space, a first delivery pipe connected to the first diffusion space, a second diffusion space, and a second delivery pipe connected to the second diffusion space. The space has a first input port and a second input port, and the second diffusion space has a third input port.
可選的,所述前驅物輸送管道組與前驅物匯合輸入管道之間還設置有第一注入閥導,所述第一注入閥導包括第一通道和第二通道,第一通道和第二通道均與前驅物輸送管道組連通,當第二通道開啓時,第二通道與前驅物匯合管道連通。Optionally, a first injection valve guide is further provided between the precursor transport pipeline group and the precursor merged input pipeline, and the first injection valve guide includes a first channel and a second channel, the first channel and the second channel The channels are all connected with the precursor conveying pipeline group, and when the second channel is opened, the second channel is connected with the precursor confluence pipeline.
可選的,還包括:鎂前驅物傳輸管道、以及位於所述鎂前驅物傳輸管道與鎂前驅物輸入管道之間的第二注入閥導,所述第二注入閥導包括第三通道和第四通道,第三通道和第四通道均與鎂前驅物傳輸管道連通,當第四通道開啓時,第四通道與鎂前驅物輸入管道連通。Optionally, it further includes: a magnesium precursor transmission pipeline, and a second injection valve guide located between the magnesium precursor transmission pipeline and the magnesium precursor input pipeline, and the second injection valve guide includes a third channel and a second injection valve guide. Four channels, the third channel and the fourth channel are all connected with the magnesium precursor transmission pipeline, and when the fourth channel is opened, the fourth channel is connected with the magnesium precursor input pipeline.
可選的,所述前驅物輸送管道組包括鎵前驅物輸送管道、銦前驅物輸送管道和矽前驅物輸送管道,所述多種前驅物源包括鎵前驅物源、銦前驅物源和矽前驅物源,所述鎵前驅物輸送管道與鎵前驅物源連接,所述銦前驅物輸送管道與銦前驅物源連接,所述矽前驅物輸送管道與矽前驅物源連接。Optionally, the precursor delivery pipeline group includes a gallium precursor delivery pipeline, an indium precursor delivery pipeline, and a silicon precursor delivery pipeline, and the multiple precursor sources include a gallium precursor source, an indium precursor source, and a silicon precursor. Source, the gallium precursor delivery pipeline is connected to the gallium precursor source, the indium precursor delivery pipeline is connected to the indium precursor source, and the silicon precursor delivery pipeline is connected to the silicon precursor source.
可選的,還包括:與第一注入閥導連接的第一排尾氣管道,當第一通道開啓時,使第一通道與第一排尾氣管道連通,用於排出多種前驅物源。Optionally, it further includes: a first row of tail gas pipes connected to the first injection valve, when the first passage is opened, the first passage is connected with the first row of tail gas pipes for discharging a variety of precursor sources.
可選的,還包括:與第二注入閥導連接的第二排尾氣管道,當第三通道開啓時,使所述第三通道與第二排尾氣管道連通,用於排出鎂前驅物源。Optionally, it further includes: a second row of tail gas pipes connected to the second injection valve, when the third passage is opened, the third passage is connected with the second row of tail gas pipes for discharging the magnesium precursor source.
與習知技術相比,本發明實施例的技術手段具有以下有益效果:Compared with the conventional technology, the technical means of the embodiments of the present invention have the following beneficial effects:
本發明技術手段提供的金屬有機物化學氣相沉積反應器中,前驅物輸送管道組用於輸送多種前驅物源,爲了降低金屬有機物化學氣相沉積反應器的複雜度,將所述多種前驅物源進行匯合後通過前驅物匯合輸入管道輸送至氣體噴淋頭第一輸入端口。而鎂前驅物源通過鎂前驅物輸入管道連通所述氣體噴淋頭第二輸入端口,即:多種前驅物源和鎂前驅物源在進入反應腔之前未進行混合而是分別通過不同的管道被輸送至氣體噴淋頭的不同端口,使得鎂離子不會殘留在匯合的管道內,那麽後續在對多種待處理基片進行外延形成不需要摻雜鎂的外延結構層時,不會因匯合的管道內殘留鎂而帶來的鎂污染,因此,有利於降低鎂的影響,提高發光二極體的發光强度。綜上,利用所述金屬有機物化學氣相沉積反應器能夠降低金屬有機物化學氣相沉積反應器的複雜度,且提高發光二極體的發光强度。In the metal-organic chemical vapor deposition reactor provided by the technical means of the present invention, the precursor delivery pipeline group is used to transport multiple precursor sources. In order to reduce the complexity of the metal-organic chemical vapor deposition reactor, the multiple precursor sources After the merging is carried out, it is transported to the first input port of the gas shower head through the precursor merging input pipeline. The magnesium precursor source is connected to the second input port of the gas shower head through a magnesium precursor input pipeline, that is, a variety of precursor sources and magnesium precursor sources are not mixed before entering the reaction chamber, but are passed through different pipelines. Transported to different ports of the gas shower head, so that magnesium ions will not remain in the converging pipeline. Then, when a variety of substrates to be processed are epitaxially formed to form an epitaxial structure layer that does not need to be doped with magnesium, it will not be caused by confluence. Magnesium pollution caused by residual magnesium in the pipeline, therefore, is beneficial to reduce the influence of magnesium and increase the luminous intensity of the light-emitting diode. In summary, the use of the metal organic chemical vapor deposition reactor can reduce the complexity of the metal organic chemical vapor deposition reactor and increase the luminous intensity of the light-emitting diode.
正如背景技術所述,利用習知金屬有機化學氣相沉積反應器形成光電二極體的發光强度較弱。As mentioned in the background art, the luminous intensity of the photodiode formed by the conventional metal organic chemical vapor deposition reactor is relatively weak.
爲了解决上述技術問題,本發明技術手段提供一種金屬有機化學氣相沉積反應器,包括:反應腔,其頂部包括氣體噴淋頭,所述氣體噴淋頭包括第一輸入端口、第二輸入端口和第三輸入端口;前驅物輸送管道組,與多種前驅物源連接;前驅物匯合輸入管道,與前驅物輸送管道組連通,用於匯合多種前驅物,連通所述氣體噴淋頭的第一輸入端口;鎂前驅物輸入管道,與鎂前驅物源連接,且連通所述氣體噴淋頭的第二輸入端口;氮前驅物輸送管道,與氮前驅物源連接,且連通所述氣體噴淋頭的第三輸入端口。利用所述金屬有機物化學氣相沉積反應器能夠降低金屬有機物化學氣相沉積反應器的複雜度,且提高發光二極體的發光强度。In order to solve the above technical problems, the technical means of the present invention provides a metal organic chemical vapor deposition reactor, including: a reaction chamber, the top of which includes a gas shower head, the gas shower head includes a first input port, a second input port And the third input port; the precursor conveying pipeline group, connected with a variety of precursor sources; the precursor confluence input pipeline, connected with the precursor conveying pipeline group, used to converge a variety of precursors, connected to the first gas shower head Input port; a magnesium precursor input pipeline connected to the magnesium precursor source and connected to the second input port of the gas shower head; a nitrogen precursor delivery pipeline connected to the nitrogen precursor source and connected to the gas spray The third input port of the head. The use of the metal organic chemical vapor deposition reactor can reduce the complexity of the metal organic chemical vapor deposition reactor and increase the luminous intensity of the light-emitting diode.
爲使本發明的上述目的、特徵和有益效果能夠更爲明顯易懂,下面結合附圖對本發明的具體實施例做詳細的說明。In order to make the above objectives, features and beneficial effects of the present invention more obvious and understandable, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
第1圖是本發明一種金屬有機化學氣相沉積反應器的結構示意圖。Figure 1 is a schematic diagram of the structure of a metal organic chemical vapor deposition reactor of the present invention.
請參考第1圖,反應腔100,其頂部包括一氣體噴淋頭101,所述第一氣體噴淋頭101包括第一輸入端口A、第二輸入端口B和第三輸入端口C;前驅物輸送管道組102,與多種前驅物源109連接;前驅物匯合輸入管道103,與前驅物輸送管道組102連通,用於匯合多種前驅物源,連通所述氣體噴淋頭101的第一輸入端口A;鎂前驅物輸入管道105,與鎂前驅物源110連接,且連通所述氣體噴淋頭101的第二輸入端口B;氮前驅物輸送管道113,與氮前驅物源114連接,且連通所述氣體噴淋頭101的第三輸入端口C;旋轉基座106,位於所述反應腔100內底部,與氣體噴淋頭101相對設置,用於支撑並驅動設置在旋轉基座106上的基片托盤旋轉,所述基片托盤用於固定一片或多片待處理基片。Please refer to Figure 1, the top of the
所述反應腔100內用於在待處理基片上形成光電二極體所需的外延結構層,所述外延結構層自待處理基片表面向上依次包括過渡層、位於所述過渡層上的負極層、位於所述負極層上的發光層和位於發光層上的正極層,其中,所述正極層用於形成光電二極體的正極,所述負極層用於形成光電二極體的負極。The
在本實施例中,所述過渡層的材料爲未摻雜離子的氮化鎵;所述負極層的材料爲摻雜矽離子的氮化鎵;所述發光層的材料爲銦鎵氮化合物;所述正極層的材料爲摻雜鎂離子的P型氮化鎵。In this embodiment, the material of the transition layer is gallium nitride that is not doped with ions; the material of the negative electrode layer is gallium nitride that is doped with silicon ions; the material of the light-emitting layer is indium gallium nitride; The material of the positive electrode layer is P-type gallium nitride doped with magnesium ions.
所述前驅物輸送管道組102包括鎵前驅物輸送管道102a、銦前驅物輸送管道102b和矽前驅物輸送管道102c,所述多種前驅物源109包括鎵前驅物源109a、銦前驅物源109b和矽前驅物源109c,所述鎵前驅物輸送管道102a與鎵前驅物源109a連接,所述銦前驅物輸送管道102b與銦前驅物源109b連接,所述矽前驅物輸送管道102c與矽前驅物源109c連接。The precursor
所述氣體噴淋頭101包括第一擴散空間101a、與第一擴散空間101a連接的第一輸送管道101b、第二擴散空間101c以及與第二擴散空間101c連通的第二輸送管道101d,所述第一擴散空間101a具有第一輸入端口A和第二輸入端口B,所述第二擴散空間101c具有第三輸入端口C。The
爲了降低金屬有機化學氣相沉積反應器的複雜度,通常將所述多種前驅物源109進入反應腔100之前進行匯合,即:通過前驅物匯合輸入管道103輸入氣體噴淋頭101的第一輸入端口A。In order to reduce the complexity of the metal organic chemical vapor deposition reactor, the
所述前驅物輸送管道組102與前驅物匯合輸入管道103之間還設置有第一注入閥導104,所述第一注入閥導104包括第一通道(圖中未示出)和第二通道(圖中未示出),第一通道和第二通道均與前驅物輸送管道組102連通,當第二通道開啓時,第二通道與前驅物匯合管道103連通,使所述多種前驅物被輸送至反應腔100內。A first
將所述多種前驅物輸送至反應腔100之前,通常需將多種前驅物源109的流量特性調節平穩,因此,還設置有與第一注入閥導104連接的第一排尾氣管道111,所述第一排尾氣管道111用於排出多種前驅物源,使所述多種前驅物源的流量達到預定要求時,再將所述多種前驅物源輸送至反應腔100內。Before delivering the various precursors to the
所述鎂前驅物輸入管道105連通所述氣體噴淋頭101第二輸入端口B,即:多種前驅物源和鎂前驅物源在進入反應腔100之前未進行混合而是分別通過不同的管道被輸送至氣體噴淋頭的不同端口,使得鎂離子不會殘留在匯合的管道內,那麽後續在對多種待處理基片進行外延形成不需要摻雜鎂的外延結構層時,不會因匯合的管道內殘留鎂而帶來的鎂污染,因此,有利於降低鎂的影響,提高發光二極體的發光强度。綜上,利用所述金屬有機物化學氣相沉積反應器能夠降低金屬有機物化學氣相沉積反應器的複雜度,且提高發光二極體的發光强度。The magnesium
金屬有機化學氣相沉積反應器還包括:鎂前驅物傳輸管道108、以及位於所述鎂前驅物傳輸管道108與鎂前驅物輸入管道105之間的第二注入閥導107,所述第二注入閥導107包括第三通道(圖中未示出)和第四通道(圖中未示出),第三通道和第四通道均與鎂前驅物傳輸管道108連通,當第四通道開啓時,第四通道與鎂前驅物輸入管道105連通。The metal organic chemical vapor deposition reactor further includes: a magnesium
金屬有機化學氣相沉積反應器還包括:與第二注入閥導107連接的第二排尾氣管道112,當第三通道開啓時,使所述第三通道與第二排尾氣管道112連通,用於排出鎂前驅物源,以使鎂前驅物源流量的穩定。The metal-organic chemical vapor deposition reactor also includes a second exhaust gas pipe 112 connected to the second
另外,即使所述第一氣體擴散空間101a內殘留部分鎂前驅物,由於第一氣體擴散空間101a的容積較大,使得後續將新的鎂前驅體源輸送至第一氣體擴散空間101a後的速度較慢,使得新的鎂前驅物源難以帶走殘留的鎂前驅物源,使得進入反應腔100內鎂前驅物源的量與預定值的差異較小,有利於提高光電二極體的可控性。In addition, even if a portion of the magnesium precursor remains in the first
在本實施例中,金屬有機化學氣相沉積反應器還包括:托盤106,位於所述反應腔100內,與所述氣體噴淋頭101相對設置,所述托盤106內設置若干個基片槽(圖中未示出),各個所述基片槽用於容納待處理基片;旋轉裝置150,用於驅動所述托盤106旋轉;加熱裝置(圖中未示出),用於對所述托盤106進行加熱。In this embodiment, the metal organic chemical vapor deposition reactor further includes: a
雖然本發明披露如上,但本發明並非限定於此。任何本領域技術人員,在不脫離本發明的精神和範圍內,均可作各種更動與修改,因此本發明的保護範圍應當以申請專利範圍所限定的範圍爲準。Although the present invention is disclosed as above, the present invention is not limited to this. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be subject to the scope defined by the patent application.
100:反應腔
101:氣體噴淋頭
101a:第一擴散空間
101b:第一輸送管道
101c:第二擴散空間
101d:第二輸送管道
102:前驅物輸送管道組
102a:鎵前驅物輸送管道
102b:銦前驅物輸送管道
102c:矽前驅物輸送管道
103:前驅物匯合輸入管道
104:第一注入閥導
105:鎂前驅物輸入管道
106:旋轉基座
107:第二注入閥導
108:鎂前驅物傳輸管道
109:多種前驅物源
109a:鎵前驅物源
109b:銦前驅物源
109c:矽前驅物源
110:鎂前驅物源
111:第一排尾氣管道
112:第二排尾氣管道
113:氮前驅物輸送管道
114:氮前驅物源
150:旋轉裝置
A:第一輸入端口
B:第二輸入端口
C:第三輸入端口100: reaction chamber
101:
第1圖是本發明一種金屬有機化學氣相沉積反應器的結構示意圖。Figure 1 is a schematic diagram of the structure of a metal organic chemical vapor deposition reactor of the present invention.
100:反應腔100: reaction chamber
101:氣體噴淋頭101: Gas sprinkler
101a:第一擴散空間101a: The first diffusion space
101b:第一輸送管道101b: The first delivery pipeline
101c:第二擴散空間101c: second diffusion space
101d:第二輸送管道101d: The second conveying pipeline
102:前驅物輸送管道組102: Precursor transport pipeline group
102a:鎵前驅物輸送管道102a: Gallium precursor delivery pipeline
102b:銦前驅物輸送管道102b: Indium precursor delivery pipeline
102c:矽前驅物輸送管道102c: Silicon precursor transportation pipeline
103:前驅物匯合輸入管道103: Precursor confluence input pipeline
104:第一注入閥導104: The first injection valve guide
105:鎂前驅物輸入管道105: Magnesium precursor input pipeline
106:旋轉基座106: Rotating base
107:第二注入閥導107: Second injection valve guide
108:鎂前驅物傳輸管道108: Magnesium precursor transmission pipeline
109:多種前驅物源109: Multiple precursor sources
109a:鎵前驅物源109a: Gallium precursor source
109b:銦前驅物源109b: Indium precursor source
109c:矽前驅物源109c: silicon precursor source
110:鎂前驅物源110: Magnesium precursor source
111:第一排尾氣管道111: First row of exhaust pipes
112:第二排尾氣管道112: The second row of exhaust pipes
113:氮前驅物輸送管道113: Nitrogen precursor delivery pipeline
114:氮前驅物源114: Nitrogen precursor source
150:旋轉裝置150: Rotating device
A:第一輸入端口A: The first input port
B:第二輸入端口B: Second input port
C:第三輸入端口C: Third input port
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911411224.0A CN113122823B (en) | 2019-12-31 | 2019-12-31 | Metal Organic Chemical Vapor Deposition Reactor |
CN201911411224.0 | 2019-12-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202126848A true TW202126848A (en) | 2021-07-16 |
TWI777297B TWI777297B (en) | 2022-09-11 |
Family
ID=76770132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109140106A TWI777297B (en) | 2019-12-31 | 2020-11-17 | metal organic chemical vapor deposition reactor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113122823B (en) |
TW (1) | TWI777297B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113502460B (en) * | 2021-09-09 | 2021-12-03 | 苏州长光华芯光电技术股份有限公司 | Preparation method of semiconductor structure and semiconductor growth equipment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7976631B2 (en) * | 2007-10-16 | 2011-07-12 | Applied Materials, Inc. | Multi-gas straight channel showerhead |
WO2011159690A2 (en) * | 2010-06-15 | 2011-12-22 | Applied Materials, Inc. | Multiple precursor showerhead with by-pass ports |
CN202090055U (en) * | 2011-04-29 | 2011-12-28 | 中微半导体设备(上海)有限公司 | Gas delivery device and reactor employing same |
CN103952685B (en) * | 2014-04-14 | 2016-01-20 | 南昌大学 | The MOCVD of indium-gallium-aluminum-nitrogen material component and doping energy independent assortment grows gas circuit and method |
CN108677167B (en) * | 2018-06-27 | 2020-07-03 | 沈阳拓荆科技有限公司 | Spraying device of semiconductor coating equipment, chemical vapor deposition equipment and operation method thereof |
-
2019
- 2019-12-31 CN CN201911411224.0A patent/CN113122823B/en active Active
-
2020
- 2020-11-17 TW TW109140106A patent/TWI777297B/en active
Also Published As
Publication number | Publication date |
---|---|
CN113122823A (en) | 2021-07-16 |
TWI777297B (en) | 2022-09-11 |
CN113122823B (en) | 2023-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8642368B2 (en) | Enhancement of LED light extraction with in-situ surface roughening | |
TWI499085B (en) | Growth of group iii-v material layers by spatially confined epitaxy | |
US20070256635A1 (en) | UV activation of NH3 for III-N deposition | |
US20070254100A1 (en) | MOCVD reactor without metalorganic-source temperature control | |
WO2010129292A4 (en) | Cluster tool for leds | |
US20110244663A1 (en) | Forming a compound-nitride structure that includes a nucleation layer | |
US20070254093A1 (en) | MOCVD reactor with concentration-monitor feedback | |
CN106784210A (en) | Epitaxial wafer of light emitting diode and manufacturing method thereof | |
KR20130043399A (en) | Chemical vapor deposition apparatus | |
TW201300564A (en) | Enhanced magnesium incorporation into gallium nitride films through high pressure or ALD-type processing | |
US20080017108A1 (en) | Gas combustion apparatus | |
CN102465280A (en) | Double-sided growth type MOCVD reactor | |
TWI777297B (en) | metal organic chemical vapor deposition reactor | |
CN107507891B (en) | LED Epitaxial Growth Method for Improving Internal Quantum Efficiency | |
CN109755362A (en) | A kind of iii-nitride light emitting devices of high-luminous-efficiency | |
CN113652667B (en) | Graphite substrate for improving wavelength uniformity of epitaxial wafer | |
CN103972332B (en) | A kind of method that p-type gallium nitride material hole is activated | |
US20120015502A1 (en) | p-GaN Fabrication Process Utilizing a Dedicated Chamber and Method of Minimizing Magnesium Redistribution for Sharper Decay Profile | |
TW201500577A (en) | Reaction device and manufacture method for chemical vapor deposition | |
US20120258580A1 (en) | Plasma-assisted mocvd fabrication of p-type group iii-nitride materials | |
CN101314845B (en) | Independent MO source pipeline and application of semiconductor material growth equipment | |
TWI671431B (en) | Showerhead for thin-film deposition and thin-film deposition apparatus comprising the same | |
CN118335764A (en) | Luminous structure | |
TWI498449B (en) | Metal-organic chemical vapor deposition apparatus with multiple inlets for controlling film thickness and uniformity | |
CN113652742B (en) | Graphite substrate for improving wavelength uniformity of epitaxial wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |