TW202015876A - Mold and flow disturbing stack - Google Patents
Mold and flow disturbing stack Download PDFInfo
- Publication number
- TW202015876A TW202015876A TW107137485A TW107137485A TW202015876A TW 202015876 A TW202015876 A TW 202015876A TW 107137485 A TW107137485 A TW 107137485A TW 107137485 A TW107137485 A TW 107137485A TW 202015876 A TW202015876 A TW 202015876A
- Authority
- TW
- Taiwan
- Prior art keywords
- spoiler
- mother
- spoilers
- mold
- stack structure
- Prior art date
Links
Images
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
本發明係關於一種模具及擾流結構,特別是一種設有擾流堆疊結構的模具及擾流堆疊結構。The invention relates to a mold and a spoiler structure, in particular to a mold and a spoiler stack structure provided with a spoiler stack structure.
目前塑膠射出光學透鏡或光學鏡片是在模具中利用上模仁及下模仁形成模穴。接著,在模穴中以高壓高溫方式注入熔融塑料,而在模穴形成所需的透鏡形狀。當光學透鏡或光學鏡片體積較大或厚度較厚時,代表注入的塑料量較多且累積較多熱量。最後,塑料在長時間冷卻固化後,即可將光學鏡片自上模仁或下模仁頂出,而得到所需的光學透鏡或光學鏡片。At present, plastic injection optical lenses or optical lenses use the upper mold core and the lower mold core to form mold cavities in the mold. Next, molten plastic is injected into the cavity at high pressure and high temperature to form the desired lens shape in the cavity. When the optical lens or optical lens is larger in volume or thicker, it means that more plastic is injected and more heat is accumulated. Finally, after the plastic is cooled and solidified for a long time, the optical lens can be ejected from the upper mold core or the lower mold core to obtain the desired optical lens or optical lens.
目前光學鏡片之冷卻方式係在上模仁或下模仁設置散熱水路,以藉由散熱水路內之散熱流體來對模穴中的光學鏡片進行散熱。不過,目前散熱水路一般為直通式之設計,而既有直通式散熱水路,因傳統加工方式限制而不易靠近模穴進行冷卻。如此一來,將有可能導致處於高溫的光學成品與模具之間的溫差過大,進而讓光學鏡片有可能產生收縮率不一、翹曲與應力殘留等缺陷。此外,散熱流體於直通式散熱水路中受到較少的擾動,使得直通式散熱水路內之散熱流體往往因停留於模仁的時間較短而難以發揮出對光學鏡片的散熱效果。如此將拉長光學鏡片的冷卻時間,進而大幅降低光學鏡片的生產效率。At present, the cooling method of the optical lens is to set a heat dissipation water channel in the upper mold core or the lower mold core to dissipate the optical lens in the mold cavity by the heat dissipation fluid in the heat dissipation water channel. However, the current heat dissipation water channel is generally a straight-through design, while the existing straight-through heat dissipation water channel is not easy to approach the mold cavity for cooling due to the limitations of traditional processing methods. As a result, the temperature difference between the high-temperature optical product and the mold may be too large, which may cause defects such as uneven shrinkage, warpage and residual stress. In addition, the heat dissipation fluid is less disturbed in the straight-through heat dissipation water channel, so that the heat dissipation fluid in the straight-through heat dissipation water channel is often difficult to exert the heat dissipation effect on the optical lens due to the short stay in the mold core. In this way, the cooling time of the optical lens will be lengthened, and the production efficiency of the optical lens will be greatly reduced.
再者,目前既有的直通式散熱水路係直接對模具鑽孔或銑削加工而成,若要製造不同外形的光學鏡片時,則需對應不同光學鏡片的外形重新加工模具而形成專屬的直通式散熱水路。也就是說,在製造不同外形的光學鏡片時,需針對光學鏡片的外形重新提供具有專屬散熱水路設計的模具,進而增加模具與光學鏡片的製造成本。Furthermore, the existing straight-through cooling water system is directly drilled or milled on the mold. If you want to manufacture optical lenses with different shapes, you need to re-process the mold according to the shape of the different optical lenses to form an exclusive straight-through. Cooling waterway. That is to say, when manufacturing optical lenses with different shapes, it is necessary to provide a mold with a dedicated cooling water channel design for the shape of the optical lens, thereby increasing the manufacturing cost of the mold and the optical lens.
本發明在於提供一種模具及擾流堆疊結構,以解決透過既有模具製造光學鏡片時,散熱流體難以有效協助模仁散熱的問題及既有模具須為不同的光學鏡片重新加工出專屬的散熱水路,而增加光學成品製造成本之問題。The present invention is to provide a mold and a turbulence stacking structure to solve the problem that it is difficult for the heat dissipation fluid to effectively assist the heat dissipation of the mold core when manufacturing the optical lens through the existing mold and the existing mold must re-process a dedicated cooling water channel for different optical lenses , And increase the manufacturing cost of optical products.
本發明之一實施例所揭露之一種模具,包含一母模仁以及一母擾流堆疊結構。母模仁具有一第一冷卻流道。母擾流堆疊結構位於第一冷卻流道中,且包含相互堆疊的多個母擾流板。至少二母擾流板各包含至少一第一分流件。其中,定義一基準面。基準面的法線方向平行於母擾流堆疊結構的一堆疊方向。二第一分流件於基準面上的投影不完全重疊,而令母擾流板共同形成一第一擾流道。A mold disclosed in an embodiment of the present invention includes a female mold core and a female spoiler stack structure. The female mold core has a first cooling channel. The mother spoiler stack structure is located in the first cooling flow channel, and includes a plurality of mother spoiler plates stacked on each other. Each of the at least two mother spoilers includes at least one first diverter. Among them, a datum is defined. The normal direction of the reference plane is parallel to a stacking direction of the mother spoiler stack structure. The projections of the two first diverter pieces on the reference surface do not completely overlap, so that the mother spoiler forms a first spoiler channel together.
本發明另一實施例所揭露之擾流堆疊結構,適於位於一冷卻流道中。擾流堆疊結構包含多個擾流板。擾流板相互堆疊。至少二擾流板各包含至少一第一分流件。定義一基準面。基準面的法線方向平行於擾流堆疊結構的一堆疊方向。二第一分流件於基準面上的投影不完全重疊,而令擾流板共同形成一擾流道。The turbulence stack structure disclosed in another embodiment of the present invention is suitable for being located in a cooling channel. The spoiler stack structure includes multiple spoilers. The spoilers are stacked on top of each other. Each of the at least two spoilers includes at least one first diverter. Define a datum. The normal direction of the reference plane is parallel to a stacking direction of the spoiler stack structure. The projections of the two first diverters on the reference surface do not completely overlap, so that the spoiler forms a spoiler channel together.
根據上述實施例所揭露的模具及擾流堆疊結構,由於擾流堆疊結構位於冷卻流道中,且擾流堆疊結構之至少二第一分流件於基準面上的投影不完全重疊。因此,當散熱流體通過冷卻流道時,便會於擾流道中形成紊流,而延長散熱流體停留於擾流堆疊結構中的時間。如此一來,便能增加與擾流堆疊結構的熱交換效率,而提升散熱流體之散熱效果。另一方面,當擾流堆疊結構位於母模仁的第一冷卻流道中而為母擾流堆疊結構時,不完全重疊的至少二第一分流件便能使散熱流體於第一擾流道中形成紊流,進而提升散熱流體協助母模仁散熱的效果。According to the mold and the spoiler stack structure disclosed in the above embodiments, since the spoiler stack structure is located in the cooling flow channel, and the projections of the at least two first diverters on the reference plane of the spoiler stack structure do not completely overlap. Therefore, when the heat-dissipating fluid passes through the cooling flow channel, turbulent flow is formed in the spoiler channel, and the time for the heat-dissipating fluid to stay in the spoiler stack structure is extended. In this way, the heat exchange efficiency with the turbulence stack structure can be increased, and the heat dissipation effect of the heat dissipation fluid can be improved. On the other hand, when the spoiler stack structure is located in the first cooling flow channel of the female mold core and is a mother spoiler stack structure, at least two first splitters that do not completely overlap can form a heat dissipating fluid in the first spoiler channel Turbulent flow, which in turn enhances the effect of the heat dissipation fluid to assist the heat dissipation of the female mold core.
此外,由於第一擾流道係由這些母擾流板所拼湊而成。因此,使用者能依照不同光學成品的溫度分佈重新排列母擾流板,而拼湊出對應不同溫度分佈的第一擾流道。如此一來,便無需藉由重新切削的方式提供具有專屬冷卻流道設計的模具,而降低製造光學成品的成本。In addition, since the first spoiler is made up of these mother spoilers. Therefore, the user can rearrange the mother spoiler according to the temperature distribution of different optical products, and piece together the first spoiler corresponding to the different temperature distribution. In this way, there is no need to provide a mold with a dedicated cooling channel design by re-cutting, which reduces the cost of manufacturing optical finished products.
以上關於本發明內容的說明及以下實施方式的說明係用以示範與解釋本發明的原理,並且提供本發明的專利申請範圍更進一步的解釋。The above description of the content of the present invention and the description of the following embodiments are used to demonstrate and explain the principles of the present invention, and provide a further explanation of the scope of the patent application of the present invention.
請參閱圖1至圖2。圖1為根據本發明第一實施例之模具的立體圖。圖2為圖1之模具的剖面示意圖。Please refer to Figure 1 to Figure 2. FIG. 1 is a perspective view of a mold according to a first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the mold of FIG. 1.
本實施例之模具10例如用以製造光學成品15且包含一母模仁20、一公模仁30、多個冷卻管40、一母擾流堆疊結構50及一公擾流堆疊結構60。The
母模仁20具有一第一冷卻流道21。公模仁30設置於母模仁20的一側,且具有一第二冷卻流道31。這些冷卻管40例如分別設置於母模仁20及公模仁30而分別連接於第一冷卻流道21以及第二冷卻流道31,進而用以導引一散熱流體(未繪示)至第一冷卻流道21及第二冷卻流道31內。The
請參閱圖2至圖5。圖3為圖1之母擾流堆疊結構的立體圖,其外形為四方形。圖4為圖3之母擾流堆疊結構的分解示意圖。圖5為圖3之母擾流堆疊結構的其中二母擾流板的立體示意圖。Please refer to Figure 2 to Figure 5. FIG. 3 is a perspective view of the mother spoiler stack structure of FIG. 1, which has a square shape. 4 is an exploded schematic view of the mother spoiler stack structure of FIG. 3. FIG. 5 is a perspective schematic view of two mother spoilers in the mother spoiler stack structure of FIG. 3.
母擾流堆疊結構50位於第一冷卻流道21中,且包含多個母擾流板。這些母擾流板即分別為圖4中之各片具鏤空結構的板材。這些母擾流板沿一堆疊方向A相互堆疊,且例如以擴散焊接相互固定。相互固定的母擾流板具有一流入面5000、一流出面5001以及一環形側面5002。流入面5000背對於流出面5001。環形側面5002介於流入面5000以及流出面5001之間。The mother
由於這些母擾流板的外形變化繁多,因此僅針對部分母擾流板進行說明。這些母擾流板之部分包含一第一母擾流板501、一第二母擾流板502及二分區隔流板503。Since the shape of these mother spoilers varies widely, only some of the mother spoilers will be described. Part of these mother spoilers includes a
如圖4所示,第一母擾流板501包含二側邊條5010、一頂邊條5011、一底邊條5012、多個第一分流件5013及多個第二分流件5014。頂邊條5011、底邊條5012、這些第一分流件5013及這些第二分流件5014介於二側邊條5010之間。詳細來說,頂邊條5011的相對兩側分別連接於二側邊條5010,且底邊條5012的相對兩側分別連接於二側邊條5010。因此,二側邊條5010、頂邊條5011及底邊條5012例如呈現口形的外觀。這些第一分流件5013及這些第二分流件5014例如相互垂直與相交。每一第一分流件5013的相對兩側分別連接於二側邊條5010,且每一第二分流件5014的相對兩側分別連接於頂邊條5011及底邊條5012。As shown in FIG. 4, the
第二母擾流板502包含二側邊條5020、多個第一分流件5021及多個第二分流件5022。這些第一分流件5021及這些第二分流件5022介於二側邊條5020之間。詳細來說,這些第一分流件5021及這些第二分流件5022例如彼此垂直與相交,且每一第一分流件5021的相對兩側分別連接於二側邊條5020。The
本發明並不以第一母擾流板501及第二母擾流板502的結構為限,於其他實施例中,第一母擾流板或第二母擾流板的結構亦可依據實際需求而改變。詳細來說,於其他實施例中,這些第一分流件及這些第二分流件之間亦可夾一銳角、於其他實施例中,這些母擾流板中亦可僅有第一母擾流板及第二母擾流板各包含一個第一分流件,且僅有第一母擾流板及第二母擾流板各包含一個第二分流件,或者於其他實施例中,第一母擾流板及第二母擾流板亦可無須包含第二分流件而僅包含第一分流件。The present invention is not limited to the structures of the
另外,二分區隔流板503可設置於第一母擾流板501之前端。舉例來說,流入面5000位於外側的分區隔流板503上,且外側的分區隔流板503的第二分流件5031將流入面5000分隔成一中央區域B1及二側區域B2、B3。中央區域B1介於二側區域B2、B3之間,且中央區域B1之面積較二側區域B2、B3各自的面積大。而其餘之母擾流板各具有位置上分別對應分區隔流板503之中央區域B1及二側區域B2、B3的一中央區域B1及二側區域B2、B3。如此一來,光學成品之中央厚度較大的區域便能因各個中央區域B1具有較大的面積,而流通有更多的散熱流體,進而增加散熱流體之散熱量。In addition, the two-
如圖5所示,定義一基準面S以說明第一及第二母擾流板501、502的重疊關係。基準面S的法線方向N平行於堆疊方向A。這些第一分流件5013於基準面S上的投影P1及這些第一分流件5021於基準面S上的投影P2(繪示有斑點的部分)實質上不完全重疊。本實施例中,投影的實質上不完全重疊包含較小的投影位於較大的投影之範圍內、其中一投影部分位於另一投影的範圍中,及其中一投影不位於另一投影的範圍中。藉此透過這些第一分流件5013、5021令第一及第二母擾流板501、502共同形成一第一擾流道5003(如圖2所示)之局部。第一擾流道5003(如圖2所示)其餘之部分以類似的方式形成故不再贅述。如圖2所示,第一擾流道5003的相對兩側分別連通於流入面5000以及流出面5001。As shown in FIG. 5, a reference plane S is defined to explain the overlapping relationship between the first and
當散熱流體於第一擾流道5003中流經第一母擾流板501時,散熱流體會受到這些第一分流件5013的阻擋而分流。接著當散熱流體由第一母擾流板501流至第二母擾流板502時,散熱流體便會受第一分流件5021的阻擋而分流。而由於第一母擾流板501的第一分流件5013與第二母擾流板502的第一分流件5021不完全重疊,使得散熱流體在不同位置上分別受第一分流件5013及第一分流件5021阻擋而分流,進而使散熱流體於第一擾流道5003中受到強烈的擾動並形成紊流。如此一來,便能延長散熱流體於第一擾流道5003中所停留的時間,藉以提高散熱流體的熱交換效率。When the heat-dissipating fluid flows through the
此外,如圖2及圖4所示,第二母擾流板502靠近公擾流堆疊結構60的一側更具有多個開孔5023。如此一來,這些開孔5023便能令更多的散熱流體流至母模仁20靠近公模仁30的一側,進而加強散熱流體對母模仁20靠近公模仁30的一側之散熱效果。然,本發明並不以開孔5023的設置為限,於其他實施例中,第二母擾流板亦可無須具有開孔。In addition, as shown in FIGS. 2 and 4, the side of the
此外,如圖2所示,母模仁20具有能用以容納光學成品15的模穴22。母擾流堆疊結構50具有匹配於模穴22的一凹陷結構5004。凹陷結構5004具有一中心軸C,凹陷結構5004於中心軸C處的深度E1較凹陷結構5004邊緣處的深度E2深。進一步來說,凹陷結構5004較深的區域匹配於母模仁20之模穴22中較深的區域,且模穴22中較深的區域係用以容納光學成品15較厚的區域。凹陷結構5004的設置並非用以限定本發明,於其他實施例中,母擾流堆疊結構亦可視光學成品的外形而無須具有該凹陷結構5004。In addition, as shown in FIG. 2, the
請參閱圖6,圖6為圖3之母擾流堆疊結構的側面示意圖。為了滿足母擾流堆疊結構50中不同區域的不同散熱需求,可調整各區域之孔隙率的設計值。孔隙率為該區域總面積除以該區域中之開口面積所得到的值。舉例來說,在基準面S上,母擾流堆疊結構50中較靠近中心軸C的區域具有較大的孔隙率。舉例來說,圖6之區域ab中之孔隙率為0.4,區域ac中之孔隙率為0.5,區域ad之孔隙率為0.6且區域ae之孔隙率為0.7。也就是說,由於區域ae與中心軸C的距離最小,因此對應於光學成品較厚的區域而具有較高的散熱需求,進而需要在單位面積下令開口佔有較大的面積。而在具有較高孔隙率的區域中,便能令較多的散熱流體流過而協助光學成品較厚的區域散熱。Please refer to FIG. 6, which is a schematic side view of the mother spoiler stack structure of FIG. 3. In order to meet the different heat dissipation requirements of different regions in the mother
請再次參閱圖2,為了提高母擾流堆疊結構50的耐用度,可令階梯狀的凹陷結構5004之多個轉折處530具有較小的孔隙率,以增加這些轉折處530的結構強度,進而降低這些母擾流板的損毀速率。Please refer to FIG. 2 again, in order to improve the durability of the mother spoiler stacked
請參閱圖2、圖7及圖8。圖7為圖1之公擾流堆疊結構的立體圖。圖8為圖7之公擾流堆疊結構的分解示意圖。公擾流堆疊結構60包含多個公擾流板。這些公擾流板相互堆疊而共同形成一第二擾流道6000。舉例來說,第一公擾流板601包含一第三分流件6010,且第二公擾流板602包含一第三分流件6020。第三分流件6010及第三分流件6020不完全重疊而使第一公擾流板601及第二公擾流板602共同形成局部的第二擾流道6000。不完全重疊的說明已於第一實施例中詳細說明,故不再贅述。此外,公擾流板形成第二擾流道6000的方式與母擾流板形成第一擾流道5003(如圖2所示)的方式相似,因此不再贅述。Please refer to Figure 2, Figure 7 and Figure 8. 7 is a perspective view of the public disturbance stack structure of FIG. 1. FIG. 8 is an exploded schematic view of the public disturbance stack structure of FIG. 7. The public
再者,本實施例中第一公擾流板601僅包含一第三分流件6010,且第二公擾流板602僅包含一第三分流件6020,但本發明並不以此為限,於其他實施例中,第一公擾流板亦可更包含與第三分流件垂直的一第四分流件,且第二公擾流板更包含與第三分流件垂直的一第四分流件。而第一公擾流板的第四分流件與第二公擾流板的第四分流件不完全重疊。Furthermore, in this embodiment, the first
此外,本實施例之母模仁20與公模仁30分別設有母擾流堆疊結構50及公擾流堆疊結構60,但本發明並不以此為限,於其他實施例中,亦可將公擾流堆疊結構省略。再者,於其他實施例中,母擾流堆疊結構或公擾流堆疊結構亦可當作擾流堆疊結構設置於其他散熱裝置的冷卻流道中。In addition, the
請參閱圖9及圖10。圖9為根據本發明第二實施例之模具之母擾流堆疊結構的立體圖。圖10為圖9之母擾流堆疊結構的分解示意圖。Please refer to Figure 9 and Figure 10. 9 is a perspective view of a mother spoiler stack structure of a mold according to a second embodiment of the present invention. FIG. 10 is an exploded schematic view of the mother spoiler stack structure of FIG. 9.
本實施例之母擾流堆疊結構50a包含多個母擾流板。這些母擾流板相互堆疊而共同形成一第一擾流道。由於本實施例之這些母擾流板形成第一擾流道的方式與第一實施例之這些母擾流板形成第一擾流道5003(如圖2所示)的方式相似,故不再贅述。The mother
舉例來說,母擾流板包含一第一母擾流板501a及一分區隔流板503a。第一母擾流板501a包含二側邊條5010a、一第一分流件5011a、多個第二分流件5012a及一遮擋結構5013a。第一分流件5011a、這些第二分流件5012a及遮擋結構5013a介於二側邊條5010a之間。第一分流件5011a與第二分流件5012a垂直且相交。第一分流件5011a及這些第二分流件5012a連接於遮擋結構5013a。For example, the mother spoiler includes a
分區隔流板503a包含二側邊條5030a、二第二分流件5031a及一遮擋結構5032a。二第二分流件5031a及遮擋結構5032a介於二側邊條5030a之間。二第二分流件5031a連接於遮擋結構5032a。The
相較於第一實施例之第一母擾流板及分區隔流板,本實施例之第一母擾流板501a及分區隔流板503a分別額外包含有遮擋結構5013a及遮擋結構5032a。而第一母擾流板501a的遮擋結構5013a之遮擋區域與分區隔流板503a的遮擋結構5032a之遮擋區域不同。而二遮擋結構5013a、5032a不同的遮擋區域係根據光學成品的外形而被調整。Compared with the first mother spoiler and the partitioned spoiler of the first embodiment, the
本實施例之分區隔流板503a亦由第二分流件5020a將流入面5000a分隔成一中央區域B1a及二側區域B2a、B3a。中央區域B1a介於二側區域B2a、B3a之間。而其餘之母擾流板各具有位置上分別對應分區隔流板503a之中央區域B1a及二側區域B2a、B3a的一中央區域B1a及二側區域B2a、B3a。The
再者,第一實施例中,這些母擾流板皆具有相同的厚度,但本發明並不以此為限,本實施例中,至少二個母擾流板具有不同的厚度。舉例來說,圖10中之分區隔流板503a的厚度T1大於第一母擾流板501a的厚度T2。本實施例僅係為了方便圖式呈現而以上述態樣呈現分區隔流板503a的厚度T1及第一母擾流板501a的厚度T2。而至少二個母擾流板具有不同的厚度的用意是在於可在散熱需求較高的區域中設置較薄的母擾流板。如此一來,便能於散熱需求較高的區域中更密集地堆疊母擾流板而加強母擾流板對散熱流體的擾動效果,進而延長散熱流體於散熱需求較高之區域的停留時間。Furthermore, in the first embodiment, the mother spoilers all have the same thickness, but the invention is not limited to this. In this embodiment, at least two mother spoilers have different thicknesses. For example, the thickness T1 of the partitioned
請參閱圖11及圖12。圖11為根據本發明第二實施例之模具之公擾流堆疊結構的立體圖。圖12為圖11之公擾流堆疊結構的分解示意圖。Please refer to FIG. 11 and FIG. 12. 11 is a perspective view of a public disturbance stack structure of a mold according to a second embodiment of the present invention. FIG. 12 is an exploded schematic view of the public disturbance stack structure of FIG. 11.
本實施例中,公擾流堆疊結構60a包含一中央部610a、一第一側部620a以及一第二側部630a,也就是說,本實施例之公擾流堆疊結構60a可視為將第一實施例中的公擾流堆疊結構分割成三個區塊。第一側部620a以及第二側部630a分別位於中央部610a相對兩側,並分別與中央部610a保持一間隙G1。中央部610a內側的寬度W1大於中央部610a外側的寬度W2。在第一側部620a以及第二側部630a與中央部610a保持間隙G1的情況下,模具設置之頂針(未繪示)便能穿過間隙G1而協助光學成品脫模。此外,間隙G1的設置也能減少製造公擾流堆疊結構60a所需的材料而降低製造成本。In this embodiment, the public
第一實施例及第二實施例中,母擾流板的外形與公擾流板的外形皆為長方體形,但並不以此為限,請參閱圖13及圖14。圖13為根據本發明第三實施例之擾流模組之母擾流堆疊結構的立體圖。圖14為圖13之母擾流堆疊結構的分解示意圖。In the first embodiment and the second embodiment, the shape of the female spoiler and the shape of the male spoiler are both rectangular parallelepipeds, but it is not limited to this, please refer to FIGS. 13 and 14. 13 is a perspective view of a mother spoiler stack structure of a spoiler module according to a third embodiment of the present invention. 14 is an exploded schematic view of the mother spoiler stack structure of FIG. 13.
本實施例中,母擾流堆疊結構50b的這些母擾流板的外形為圓盤形,且這些母擾流板相互堆疊。本實施例中,這些母擾流板包含一第一母擾流板501b及一第二母擾流板502b。第一母擾流板501b包含多個第一分流件5010b,且這些第一分流件5010b沿一第一徑向方向L1延伸。第二母擾流板502b包含多個第一分流件5020b,且這些第一分流件5020b沿一第二徑向方向L2延伸。這些第一分流件5010b與這些第一分流件5020b不完全重疊而形成局部的一第一擾流道5003b。而整個第一擾流道5003b係沿一螺旋形的一延伸方向D1延伸。In this embodiment, the outer shape of the mother spoilers of the mother
請參閱圖15。圖15為根據本發明第三實施例之擾流模組之公擾流堆疊結構的立體圖。See Figure 15. 15 is a perspective view of a public spoiler stack structure of a spoiler module according to a third embodiment of the present invention.
本實施例中,公擾流堆疊結構60b包含一中央部610b、一第一側部620b以及一第二側部630b。第一側部620b以及第二側部630b分別位於中央部610b的相對兩側,並分別與中央部610b保持一間隙G2。中央部610b的一第三擾流道6100b沿一曲線形的一延伸方向D2延伸。中央部610b形成第三擾流道6100b的方式與第一實施例之母擾流板形成第一擾流道的方式相似,故不再贅述。In this embodiment, the public
第一側部620b的一第四擾流道6200b沿一曲線形的一延伸方向D3延伸。第一側部620b形成第四擾流道6200b的方式與第一實施例之母擾流板形成第一擾流道的方式相似,故不再贅述。A
第二側部630b的一第五擾流道6300b沿曲線形的一延伸方向D4延伸。第二側部630b形成第五擾流道6300b的方式與第一實施例之母擾流板形成第一擾流道的方式相似,故不再贅述。A
此外,中央部610b中之延伸方向D2的延伸方式並非用以限定本發明,於其他實施例中,中央部中之延伸方向亦可以直線形的方式延伸。In addition, the extending manner of the extending direction D2 in the
以下將比較傳統無設置擾流堆疊結構之模具及本發明第一實施例至第三實施例之模具的散熱效果及利用上述各模具所製造出的光學成品之品質。將藉由四項實驗數據分別比較各模具之散熱效果及各模具所製造出的光學成品的品質。The following will compare the heat dissipation effect of the traditional mold without the spoiler stack structure and the molds of the first to third embodiments of the present invention and the quality of the optical products manufactured by using the above molds. Four experimental data will be used to compare the heat dissipation effect of each mold and the quality of the optical products manufactured by each mold.
第一,以光學成品經過360秒冷卻後的溫度分佈為例比較各模具的散熱效果。在經過360秒的冷卻後傳統無設置擾流堆疊結構的模具使光學成品的溫度介於攝氏80度至攝氏146.12度之間、本發明第一實施例之模具使光學成品的溫度介於攝氏79.38度至攝氏139.67度之間、本發明第二實施例之模具使光學成品的溫度介於攝氏79.9度至攝氏130.9度之間,且本發明第三實施例之模具使光學成品的溫度介於攝氏73.9度至攝氏111.3度之間。根據上述數據,本發明各實施例之模具相較於傳統模具皆能更快速地降低光學成品的溫度,而具有較好的散熱效果。First, compare the heat dissipation effect of each mold with the temperature distribution of the optical product after 360 seconds of cooling as an example. After 360 seconds of cooling, the traditional mold without a spoiler stack structure makes the temperature of the optical finished product between 80 degrees Celsius and 146.12 degrees Celsius. The mold of the first embodiment of the present invention makes the temperature of the optical finished product between 79.38 degrees Celsius. Degrees to 139.67 degrees Celsius, the mold of the second embodiment of the present invention makes the temperature of the optical finished product between 79.9 degrees Celsius and 130.9 degrees Celsius, and the mold of the third embodiment of the present invention makes the temperature of the optical finished product between the Celsius Between 73.9 degrees and 111.3 degrees Celsius. According to the above data, the molds of the embodiments of the present invention can reduce the temperature of the finished optical products more quickly than conventional molds, and have better heat dissipation effects.
以第三實施例之模具為例,並僅針對光學成品之降溫效果而言,使用根據本發明之模具僅需花費360秒即可令光學成品降溫至頂出溫度(例如為112℃)以下而能頂出模具。然而,傳統無設置擾流堆疊結構的模具在360秒冷卻時間下,光學成品仍具有高於140℃之溫度,致使光學成品無法頂出模具。Taking the mold of the third embodiment as an example, and only for the cooling effect of the optical product, it takes only 360 seconds to cool the optical product to the ejection temperature (for example, 112°C) using the mold according to the present invention. Can eject the mold. However, in a conventional mold without a spoiler stack structure, the optical finished product still has a temperature higher than 140°C under a cooling time of 360 seconds, so that the optical finished product cannot be ejected from the mold.
第二,以模具及光學成品所需之冷卻時間為例比較各模具的散熱效果。傳統無設置擾流堆疊結構的模具需花費427.9秒冷卻模具及光學成品、本發明第一實施例之模具需花費397.94秒冷卻模具及光學成品、本發明第二實施例之模具需花費393.84秒冷卻模具及光學成品,且本發明第三實施例之模具需花費397.45冷卻模具及光學成品。根據上述數據,本發明各實施例之模具相較於傳統模具能以較短的時間冷卻模具及光學成品,進而具有較好的散熱效果。Second, compare the heat dissipation effect of each mold by taking the cooling time required by the mold and optical products as an example. It takes 427.9 seconds to cool the mold and optical finished product in the traditional mold without a spoiler stack structure, 397.94 seconds to cool the mold and the optical finished product in the first embodiment of the present invention, and 393.84 seconds to cool the mold and the optical finished product in the second embodiment of the present invention. Molds and optical products, and the mold of the third embodiment of the present invention requires 397.45 to cool the molds and optical products. According to the above data, the molds of the embodiments of the present invention can cool the molds and optical products in a shorter time than conventional molds, and thus have better heat dissipation effects.
第三,由於過高的翹曲會影響光學成品的光學特性,因此以各模具製造出的光學成品之翹曲為例比較各模具製造出的光學成品的品質。又翹曲於此是指光學成品實際形成位置與預計形成位置之間的位移量。傳統無設置擾流堆疊結構的模具製造出的光學成品之翹曲介於0至0.46毫米(mm)之間、本發明第一實施例之模具製造出的光學成品之翹曲介於0毫米(mm)至0.382毫米(mm)之間、本發明第二實施例之模具製造出的光學成品之翹曲介於0毫米(mm)至0.388毫米(mm)之間且本發明第三實施例之模具製造出的光學成品之翹曲介於0毫米(mm)至0.389毫米(mm)之間。根據上述數據,相較於傳統模具所製造出的光學成品,本發明各實施例之模具所製造出的光學成品具有較低的翹曲,而令本發明各實施例之模具所製造出的光學成品具有較佳的品質。Third, since excessive warpage will affect the optical characteristics of the optical products, the warpage of the optical products manufactured by each mold is used as an example to compare the quality of the optical products manufactured by each mold. Warpage here refers to the displacement between the actual formation position and the expected formation position of the optical product. The warpage of the optical finished product manufactured by the traditional mold without the spoiler stack structure is between 0 and 0.46 millimeters (mm), and the warpage of the optical finished product manufactured by the mold of the first embodiment of the present invention is between 0 mm ( mm) to 0.382 millimeters (mm), the warpage of the optical product manufactured by the mold of the second embodiment of the present invention is between 0 millimeters (mm) and 0.388 millimeters (mm), and the third embodiment of the present invention The warpage of the optical finished product manufactured by the mold is between 0 millimeter (mm) and 0.389 millimeter (mm). According to the above data, compared with the optical finished products manufactured by the traditional mold, the optical finished products manufactured by the molds of the embodiments of the present invention have lower warpage, which makes the optical manufactured by the molds of the embodiments of the present invention. The finished product has better quality.
第四,由於光學成品中過高的熱殘留應力會影響光學成品的光學特性,因此以各模具製造出的光學成品中之熱殘留應力為例比較各模具製造出的光學成品的品質。傳統無設置擾流堆疊結構的模具所製造出的光學成品之熱殘留應力介於0.008百萬帕(Mpa)至85.44百萬帕(Mpa)之間、本發明第一實施例之模具所製造出的光學成品之熱殘留應力介於0.027百萬帕(Mpa)至66.43百萬帕(Mpa)之間、本發明第二實施例之模具所製造出的光學成品之熱殘留應力介於0.028百萬帕(Mpa)至43.32百萬帕(Mpa)之間且本發明第三實施例之模具所製造出的光學成品之熱殘留應力介於0.02百萬帕(Mpa)至42.85百萬帕(Mpa)之間。根據上述數據,相較於傳統模具所製造出的光學成品,本發明各實施例之模具所製造出的光學成品具有較低的熱殘留應力,而令本發明各實施例之模具所製造出的光學成品具有較佳的品質。Fourth, since the excessively high thermal residual stress in the optical finished product will affect the optical characteristics of the optical finished product, the thermal residual stress in the optical finished product manufactured by each mold is used as an example to compare the quality of the optical finished product manufactured by each mold. The thermal residual stress of the optical finished product manufactured by the traditional mold without the turbulent stacked structure is between 0.008 million Pa (Mpa) and 85.44 million Pa (Mpa), which is manufactured by the mold of the first embodiment of the present invention The thermal residual stress of the finished optical products is between 0.027 million Pa (Mpa) and 66.43 million Pa (Mpa). The thermal residual stress of the finished optical products manufactured by the mold of the second embodiment of the present invention is between 0.028 million Pa (Mpa) to 43.32 million Pa (Mpa) and the thermal residual stress of the optical finished product manufactured by the mold of the third embodiment of the present invention is between 0.02 million Pa (Mpa) and 42.85 million Pa (Mpa) between. According to the above data, compared with the optical finished products manufactured by traditional molds, the optical finished products manufactured by the molds of the embodiments of the present invention have lower thermal residual stress, which makes the molds manufactured by the embodiments of the present invention The finished optical products have better quality.
根據上述實施例所揭露的模具及擾流堆疊結構,由於擾流堆疊結構位於冷卻流道中,且擾流堆疊結構之至少二第一分流件於基準面上的投影不完全重疊。因此,當散熱流體通過冷卻流道時,便會於擾流道中形成紊流,而延長散熱流體停留於擾流堆疊結構中的時間。如此一來,便能增加與擾流堆疊結構的熱交換效率,而提升散熱流體之散熱效果。另一方面,當擾流堆疊結構位於母模仁的第一冷卻流道中而為母擾流堆疊結構時,不完全重疊的至少二第一分流件便能使散熱流體於第一擾流道中形成紊流,進而提升散熱流體協助母模仁散熱的效果。According to the mold and the spoiler stack structure disclosed in the above embodiments, since the spoiler stack structure is located in the cooling flow channel, and the projections of the at least two first diverters on the reference plane of the spoiler stack structure do not completely overlap. Therefore, when the heat-dissipating fluid passes through the cooling flow channel, turbulent flow is formed in the spoiler channel, and the time for the heat-dissipating fluid to stay in the spoiler stack structure is extended. In this way, the heat exchange efficiency with the turbulence stack structure can be increased, and the heat dissipation effect of the heat dissipation fluid can be improved. On the other hand, when the spoiler stack structure is located in the first cooling flow channel of the female mold core and is a mother spoiler stack structure, at least two first splitters that do not completely overlap can form a heat dissipating fluid in the first spoiler channel Turbulent flow, which in turn enhances the effect of the heat dissipation fluid to assist the heat dissipation of the female mold core.
此外,由於第一擾流道係由這些母擾流板所拼湊而成。因此,使用者能依照不同光學成品的溫度分佈重新排列母擾流板,而拼湊出對應不同溫度分佈的第一擾流道。如此一來,便無需藉由重新切削的方式提供具有專屬冷卻流道設計的模具,而降低製造光學成品的成本。In addition, since the first spoiler is made up of these mother spoilers. Therefore, the user can rearrange the mother spoiler according to the temperature distribution of different optical products, and piece together the first spoiler corresponding to the different temperature distribution. In this way, there is no need to provide a mold with a dedicated cooling channel design by re-cutting, which reduces the cost of manufacturing optical finished products.
雖然本發明以前述之諸項實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。Although the present invention is disclosed as above with the foregoing embodiments, it is not intended to limit the present invention. Any person familiar with similar arts can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of patent protection for inventions shall be subject to the scope defined in the patent application scope attached to this specification.
10:模具20:母模仁21:第一冷卻流道22:模穴30:公模仁31:第二冷卻流道40:冷卻管50、50a、50b:母擾流堆疊結構5000、5000a:流入面5001:流出面5002:環形側面5003、5003b:第一擾流道5004:凹陷結構501、501a、501b:第一母擾流板502、502b:第二母擾流板503、503a:分區隔流板5010、5020、5010a、5030a:側邊條5011:頂邊條5012:底邊條5013、5021、5011a、5010b、5020b:第一分流件5014、5022、5031、5012a、5031a:第二分流件5023:開孔5013a、5032a:遮擋結構530:轉折處60、60a、60b:公擾流堆疊結構601:第一公擾流板602:第二公擾流板6010、6020:第三分流件6000:第二擾流道610a、610b:中央部6100b:第三擾流道620a、620b:第一側部6200b:第四擾流道630a、630b:第二側部6300b:第五擾流道A:堆疊方向B1、B1a:中央區域B2、B2a、B3、B3a:側區域N:法線方向C:中心軸E1、E2:深度T1、T2:厚度G1、G2:間隙W1、W2:寬度D1、D2、D3、D4:延伸方向P1、P2:投影S:基準面L1:第一徑向方向L2:第二徑向方向15:光學成品10: mold 20: female mold core 21: first cooling runner 22: mold cavity 30: male mold core 31: second cooling runner 40: cooling pipe 50, 50a, 50b: female disturbance flow stacking structure 5000, 5000a: Inflow surface 5001: Outflow surface 5002: annular side surfaces 5003, 5003b: first spoiler 5004: recessed structure 501, 501a, 501b: first mother spoiler 502, 502b: second mother spoiler 503, 503a: partition Separator 5010, 5020, 5010a, 5030a: side strip 5011: top side strip 5012: bottom side strip 5013, 5021, 5011a, 5010b, 5020b: first diverter 5014, 5022, 5031, 5012a, 5031a: second Diverter 5023: openings 5013a, 5032a: blocking structure 530: turning points 60, 60a, 60b: public spoiler stacking structure 601: first public spoiler 602: second public spoiler 6010, 6020: third diverter Item 6000: Second spoiler 610a, 610b: Central part 6100b: Third spoiler 620a, 620b: First side part 6200b: Fourth spoiler 630a, 630b: Second side part 6300b: Fifth spoiler Lane A: Stacking direction B1, B1a: Central area B2, B2a, B3, B3a: Side area N: Normal direction C: Central axis E1, E2: Depth T1, T2: Thickness G1, G2: Gap W1, W2: Width D1, D2, D3, D4: extension direction P1, P2: projection S: reference plane L1: first radial direction L2: second radial direction 15: optical finished product
圖1為根據本發明第一實施例之模具的立體圖。 圖2為圖1之模具的剖面示意圖。 圖3為圖1之母擾流堆疊結構的立體圖。 圖4為圖3之母擾流堆疊結構的分解示意圖。 圖5為圖3之母擾流堆疊結構的其中二母擾流板的立體示意圖。 圖6為圖3之母擾流堆疊結構的側面示意圖。 圖7為圖1之公擾流堆疊結構的立體圖。 圖8為圖7之公擾流堆疊結構的分解示意圖。 圖9為根據本發明第二實施例之模具之母擾流堆疊結構的立體圖。 圖10為圖9之母擾流堆疊結構的分解示意圖。 圖11為根據本發明第二實施例之模具之公擾流堆疊結構的立體圖。 圖12為圖11之公擾流堆疊結構的分解示意圖。 圖13為根據本發明第三實施例之擾流模組之母擾流堆疊結構的立體圖。 圖14為圖13之母擾流堆疊結構的分解示意圖。 圖15為根據本發明第三實施例之擾流模組之公擾流堆疊結構的立體圖。FIG. 1 is a perspective view of a mold according to a first embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the mold of FIG. 1. 3 is a perspective view of the mother spoiler stack structure of FIG. 1. 4 is an exploded schematic view of the mother spoiler stack structure of FIG. 3. FIG. 5 is a perspective schematic view of two mother spoilers in the mother spoiler stack structure of FIG. 3. 6 is a schematic side view of the mother spoiler stack structure of FIG. 3. 7 is a perspective view of the public disturbance stack structure of FIG. 1. FIG. 8 is an exploded schematic view of the public disturbance stack structure of FIG. 7. 9 is a perspective view of a mother spoiler stack structure of a mold according to a second embodiment of the present invention. FIG. 10 is an exploded schematic view of the mother spoiler stack structure of FIG. 9. 11 is a perspective view of a public disturbance stack structure of a mold according to a second embodiment of the present invention. FIG. 12 is an exploded schematic view of the public disturbance stack structure of FIG. 11. 13 is a perspective view of a mother spoiler stack structure of a spoiler module according to a third embodiment of the present invention. 14 is an exploded schematic view of the mother spoiler stack structure of FIG. 13. 15 is a perspective view of a public spoiler stack structure of a spoiler module according to a third embodiment of the present invention.
50:母擾流堆疊結構 50: mother spoiler stack structure
501:第一母擾流板 501: First mother spoiler
502:第二母擾流板 502: second mother spoiler
503:分區隔流板 503: Partition spoiler
5000:流入面 5000: inflow surface
5001:流出面 5001: outflow surface
5002:環形側面 5002: circular side
5004:凹陷結構 5004: sunken structure
A:堆疊方向 A: Stacking direction
C:中心軸 C: central axis
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107137485A TWI664064B (en) | 2018-10-24 | 2018-10-24 | Mold and flow disturbing stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107137485A TWI664064B (en) | 2018-10-24 | 2018-10-24 | Mold and flow disturbing stack |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI664064B TWI664064B (en) | 2019-07-01 |
TW202015876A true TW202015876A (en) | 2020-05-01 |
Family
ID=68049411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107137485A TWI664064B (en) | 2018-10-24 | 2018-10-24 | Mold and flow disturbing stack |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI664064B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112848179B (en) * | 2021-03-04 | 2023-02-28 | 上海工程技术大学 | A pith-shaped cooling mold and its forming method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7198400B2 (en) * | 2003-05-03 | 2007-04-03 | Husky Injection Molding Systems Ltd. | Static mixer and a method of manufacture thereof |
BR112013002999A2 (en) * | 2010-08-12 | 2016-06-14 | Husky Injection Molding | technical application of molding apparatus |
EP2832520B1 (en) * | 2013-07-30 | 2016-04-06 | Confindustria Bergamo | Machine and method for rotational molding of hollow objects of thermoplastic material |
FR3015918A1 (en) * | 2013-12-31 | 2015-07-03 | Roctool | DEVICE FOR HEATING A MOLD |
CN206953499U (en) * | 2017-02-28 | 2018-02-02 | 惠州伟志电子有限公司 | A kind of injection mould cooling system and a kind of injection mold |
CN107791460B (en) * | 2017-11-24 | 2024-02-20 | 浙江赛豪实业有限公司 | Injection mold with built-in mixed flow |
-
2018
- 2018-10-24 TW TW107137485A patent/TWI664064B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI664064B (en) | 2019-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI682207B (en) | Plastic lens barrel | |
CN204859868U (en) | Liquid-cooled water-cooled head with split flow design and its heat dissipation structure | |
CN105517772A (en) | Mold component with conformal cooling channels | |
TW202015876A (en) | Mold and flow disturbing stack | |
CN102385080A (en) | Dihedral corner reflector array optical element and method for fabricating the same and display device using the same | |
US10843424B2 (en) | Lens injection molded product to which hot runner is applied | |
US8845321B2 (en) | Split thread insert | |
CN202572826U (en) | Mould device adopting central cooling manner | |
CN104647704A (en) | Mold device for forming lens | |
CN100528525C (en) | Ejection shaping mould set | |
US20220205738A1 (en) | Heat exchange plate and heat exchanger including heat exchange plate | |
US8083516B2 (en) | Mold having air-venting grooves | |
JP7163096B2 (en) | multilayer molded lens | |
CN214820424U (en) | Set top box mold with time delay annular cooling structure | |
CN105196504A (en) | Combined type mould with 3D cooling water route | |
TWM628643U (en) | Twin cooling water channel structure for blow molding mold | |
CN208215892U (en) | A kind of headlight turns to the molding die of Light reflecting mirror | |
KR101990534B1 (en) | Lens injection mold module | |
CN219311851U (en) | Positioning mechanism for hardware injection molding and injection mold | |
US20220111432A1 (en) | Mold cooling structure | |
CN206011609U (en) | A lens injection mold | |
CN204109303U (en) | Combined type mould with 3D cooling water route | |
KR101655335B1 (en) | Injection molded lens | |
CN220784780U (en) | Stacked mold core cooling water path structure | |
US6872067B2 (en) | Mould tempering |