TW201911116A - Biometric device - Google Patents
Biometric device Download PDFInfo
- Publication number
- TW201911116A TW201911116A TW106144871A TW106144871A TW201911116A TW 201911116 A TW201911116 A TW 201911116A TW 106144871 A TW106144871 A TW 106144871A TW 106144871 A TW106144871 A TW 106144871A TW 201911116 A TW201911116 A TW 201911116A
- Authority
- TW
- Taiwan
- Prior art keywords
- photosensitive
- light
- layer
- microlens
- biometric device
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 40
- 230000003287 optical effect Effects 0.000 claims abstract description 6
- 238000012216 screening Methods 0.000 claims description 32
- 238000005286 illumination Methods 0.000 claims description 14
- 125000006850 spacer group Chemical group 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 13
- 210000003462 vein Anatomy 0.000 description 7
- 108091008695 photoreceptors Proteins 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000013475 authorization Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Image Input (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
本發明係關於一種生物辨識裝置,特別是一種薄型化的生物辨識裝置。The present invention relates to a biometric device, and more particularly to a thinned biometric device.
生物辨識技術是指利用人體的生理特徵或行為特徵來達到身份辨識與認證授權的目的,其中人體的生理特徵包含有指紋、掌紋、靜脈分布、虹膜、視網膜及臉部特徵等。現今,生物辨識技術已被應用在數位助理、智慧型手機、筆記型電腦、金融卡、電子錢包和海關通行等對於資訊隱密與人身安全有高度需求的領域中。Biometric technology refers to the use of human physiological characteristics or behavioral characteristics to achieve identity identification and authentication and authorization. The physiological characteristics of the human body include fingerprints, palm prints, vein distribution, iris, retina and facial features. Today, biometrics are used in areas such as digital assistants, smart phones, laptops, financial cards, e-wallets, and customs clearance that are highly demanding for information privacy and personal safety.
一般而言,被廣泛應用的生物辨識技術有指紋辨識與靜脈辨識。現有的指紋辨識裝置與靜脈辨識裝置為了將手指或靜脈反射的光線聚焦到感光器上,內部的光學系統必須滿足成像公式(1/f=1/u+1/v。其中f為焦距,u為物距,v為像距),配置焦距足夠的透鏡,導致裝置整體有體積過大的缺點,而不利於應用在小型化或可攜式的電子裝置。若將透鏡省略,則被感光器接收的光線會不足,同時手指或靜脈之單一特徵點所反射的光線會朝向各方向發散而可能被複數個感光器接收,進而輸出的影像訊號解析度不佳,影響到裝置的辨識精準度。目前有利用遮光層形成高深寬比(大於10)的通光部來避免光線發散,達成點對點成像效果,但遮光層的通光孔徑小導致感光單元的入光量很低,抑或通光孔徑大但必須有足夠厚度來滿足通光部的高深寬比,導致裝置厚度增加與製程變困難等問題。In general, biometric technologies that are widely used include fingerprint recognition and vein identification. In the existing fingerprint recognition device and vein identification device, in order to focus the light reflected by the finger or vein onto the photoreceptor, the internal optical system must satisfy the imaging formula (1/f=1/u+1/v. where f is the focal length, u For the object distance, v is the image distance, the lens with sufficient focal length is disposed, which causes the overall size of the device to be excessively large, and is not suitable for use in a miniaturized or portable electronic device. If the lens is omitted, the light received by the photoreceptor will be insufficient, and the light reflected by a single feature point of the finger or vein will diverge in all directions and may be received by a plurality of photoreceptors, so that the output image signal resolution is not good. , affecting the identification accuracy of the device. At present, a light-shielding layer is formed by using a light-shielding layer to form a high aspect ratio (greater than 10) to avoid light divergence, and a point-to-point imaging effect is achieved. However, the light-passing aperture of the light-shielding layer is small, so that the light-input amount of the photosensitive unit is low, or the aperture diameter is large. It must have a sufficient thickness to satisfy the high aspect ratio of the light-passing portion, resulting in problems such as an increase in thickness of the device and difficulty in manufacturing the process.
鑒於以上的問題,本發明揭露一種生物辨識裝置,有助於解決現有生物辨識裝置體積過大的問題。In view of the above problems, the present invention discloses a biometric device that helps solve the problem of excessive volume of the existing biometric device.
本發明所揭露的生物辨識裝置包含一照明單元以及一成像模組。照明單元用以發出光線至生物體,且成像模組用以接收照明單元之光線。成像模組包含一光篩選結構以及一感光層。光篩選結構包含一微透鏡陣列、一折射聚焦層以及一遮光層。折射聚焦層介於微透鏡陣列與遮光層之間。微透鏡陣列包含多個微透鏡單元,且遮光層具有多個通光部。感光層用以接收自生物體反射之光線。感光層具有間隔配置的多個感光區。遮光層介於折射聚焦層與感光層之間。這些感光區分別對應這些通光部,且遮光層與感光層之間具有一角度篩選間距。微透鏡單元的曲率半徑為R,微透鏡單元的直徑為D,微透鏡單元的最大厚度為LH,相鄰之其中二微透鏡單元的中心間距為P,折射聚焦層的厚度為H,通光部的孔徑為WO,通光部的深寬比為AR,角度篩選間距為S,感光區的寬度為WS,其滿足下列條件:The biometric device disclosed in the present invention comprises an illumination unit and an imaging module. The illumination unit is configured to emit light to the living body, and the imaging module is configured to receive the light of the illumination unit. The imaging module includes a light screening structure and a photosensitive layer. The light screening structure comprises a microlens array, a refractive focusing layer and a light shielding layer. The refractive focusing layer is interposed between the microlens array and the light shielding layer. The microlens array includes a plurality of microlens units, and the light shielding layer has a plurality of light passing portions. The photosensitive layer is used to receive light reflected from the living body. The photosensitive layer has a plurality of photosensitive regions spaced apart. The light shielding layer is interposed between the refractive focusing layer and the photosensitive layer. The photosensitive regions respectively correspond to the light-passing portions, and the light-shielding layer and the photosensitive layer have an angular screening interval. The radius of curvature of the microlens unit is R, the diameter of the microlens unit is D, the maximum thickness of the microlens unit is LH, the center spacing of two adjacent microlens units is P, and the thickness of the refractive focusing layer is H, clear light The aperture of the portion is WO, the aspect ratio of the light-passing portion is AR, the angle of the screening interval is S, and the width of the photosensitive region is WS, which satisfies the following conditions:
AR < 1.0;AR < 1.0;
0.5 ≦ R/D ≦ 2.86;0.5 ≦ R/D ≦ 2.86;
0.02 < WO/P < 0.3;以及0.02 < WO/P < 0.3;
(H+LH)×(WS-WO)/(2×P+WO) ≦ S ≦ (H+LH)×(2×P-WS-WO)/(2×P+WO)。(H+LH) × (WS-WO) / (2 × P + WO) ≦ S ≦ (H + LH) × (2 × P - WS - WO) / (2 × P + WO).
本發明另揭露的生物辨識裝置包含一照明單元以及一成像模組。照明單元用以發出光線至生物體,且成像模組用以接收照明單元之光線。成像模組包含一光篩選結構以及一感光層。光篩選結構包含一微透鏡陣列、一折射聚焦層以及一遮光層。折射聚焦層介於微透鏡陣列與遮光層之間。微透鏡陣列包含多個微透鏡單元,且遮光層具有多個通光部。感光層用以接收自生物體反射之光線。遮光層介於折射聚焦層與感光層之間,且遮光層與感光層之間具有一角度篩選間距。微透鏡單元的曲率半徑為R,微透鏡單元的直徑為D,相鄰之其中二微透鏡單元的中心間距為P,通光部的孔徑為WO,通光部的深寬比為AR,角度篩選間距為S,其滿足下列條件:The biometric device disclosed in the present invention comprises a lighting unit and an imaging module. The illumination unit is configured to emit light to the living body, and the imaging module is configured to receive the light of the illumination unit. The imaging module includes a light screening structure and a photosensitive layer. The light screening structure comprises a microlens array, a refractive focusing layer and a light shielding layer. The refractive focusing layer is interposed between the microlens array and the light shielding layer. The microlens array includes a plurality of microlens units, and the light shielding layer has a plurality of light passing portions. The photosensitive layer is used to receive light reflected from the living body. The light shielding layer is interposed between the refractive focusing layer and the photosensitive layer, and the angle between the light shielding layer and the photosensitive layer is an angle of screening. The radius of curvature of the microlens unit is R, the diameter of the microlens unit is D, the center spacing of two adjacent microlens units is P, the aperture of the light passing portion is WO, and the aspect ratio of the light passing portion is AR, angle The screening pitch is S, which satisfies the following conditions:
1.0 ≦ AR < 5.0;1.0 ≦ AR < 5.0;
0.6 < R/D ≦ 2.86;0.6 < R/D ≦ 2.86;
0.02 ≦ WO/P ≦ 0.5;以及0.02 ≦ WO/P ≦ 0.5; and
0 ≦ S < 3P。0 ≦ S < 3P.
根據本發明所揭露的生物辨識裝置,將遮光層之通光部的深寬比限定在一定範圍內以控制遮光層的厚度,有助於生物辨識裝置的薄型化。此外,當生物辨識裝置的光篩選結構與感光層的規格滿足特定條件時,若生物體之特徵點所產生的反射光以較大入射角進入對應到其中一個感光單元的微透鏡單元時,此反射光會被光篩選結構的遮光層阻擋或是只能投射至感光層的非感光區,而不會被鄰近前述之其中一個感光單元的其他感光單元接收,進而有助於降低串擾以提升辨識生物體之特徵點的精準度。因此,本發明之生物辨識裝置可不遵守傳統透鏡成像公式,也不需要利用深寬比大於10的結構來篩選入光角度,可提升入光效率並進一步滿足薄型化的需求。According to the biometric device disclosed in the present invention, the aspect ratio of the light-passing portion of the light-shielding layer is limited to a certain range to control the thickness of the light-shielding layer, which contributes to the thinning of the biometric device. In addition, when the light screening structure of the biometric device and the specification of the photosensitive layer satisfy a specific condition, if the reflected light generated by the feature point of the living body enters the microlens unit corresponding to one of the photosensitive cells at a large incident angle, this The reflected light is blocked by the light shielding layer of the light screening structure or can only be projected to the non-photosensitive area of the photosensitive layer, and is not received by other photosensitive cells adjacent to one of the aforementioned photosensitive cells, thereby helping to reduce crosstalk and enhance identification. The accuracy of the feature points of the organism. Therefore, the biometric device of the present invention can not follow the conventional lens imaging formula, and does not need to use a structure having an aspect ratio greater than 10 to screen the incident light angle, thereby improving the light entering efficiency and further satisfying the demand for thinning.
以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the disclosure and the following description of the embodiments of the present invention are intended to illustrate and explain the spirit and principles of the invention, and to provide further explanation of the scope of the invention.
以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the present invention are set forth in the Detailed Description of the Detailed Description of the <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The objects and advantages associated with the present invention can be readily understood by those skilled in the art. The following examples are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention.
請同時參照圖1與圖2。圖1為根據本發明一實施例之生物辨識裝置的立體示意圖。圖2為根據本發明一實施例之生物辨識裝置的側視剖切示意圖。在本實施例中,生物辨識裝置1包含一基座10、一成像模組20以及一照明單元30。生物辨識裝置1用以辨識生物體之一部位的生物特徵,例如指紋、靜脈或虹膜等。照明單元30與成像模組20皆設置於基座10,並且成像模組20位於照明單元30的一側。照明單元30例如但不限於是發光二極體,其可發出光線投射至生物體的特徵點,並且特徵點反射光線至成像模組20內。本實施例以反射式的生物辨識裝置作說明,但本發明並不以此為限。在其他實施例中,依據照明單元的位置不同,生物辨識裝置可為穿透式(從生物體上方打光)或散射式(從生物體側向打光)。Please refer to FIG. 1 and FIG. 2 at the same time. 1 is a perspective view of a biometric device according to an embodiment of the invention. 2 is a side cross-sectional view of a biometric device in accordance with an embodiment of the present invention. In this embodiment, the biometric device 1 includes a base 10, an imaging module 20, and a lighting unit 30. The biometric device 1 is used to identify biometric features of a part of an organism, such as a fingerprint, a vein or an iris. The illumination unit 30 and the imaging module 20 are both disposed on the base 10 , and the imaging module 20 is located on one side of the illumination unit 30 . The illumination unit 30 is, for example but not limited to, a light-emitting diode that emits light to a feature point of the living body, and the feature point reflects light into the imaging module 20. This embodiment is described by a reflective biometric device, but the invention is not limited thereto. In other embodiments, depending on the location of the illumination unit, the biometric device may be transmissive (lighted from above the living body) or scattered (lighted laterally from the living body).
參照圖2,成像模組20包含一光篩選結構210以及一感光層220。光篩選結構210用以篩選入射光角度,其包含一微透鏡陣列211、一折射聚焦層212、一遮光層213以及一間隔層214。Referring to FIG. 2, the imaging module 20 includes a light screening structure 210 and a photosensitive layer 220. The light screening structure 210 is configured to screen an incident light angle, and includes a microlens array 211, a refractive focusing layer 212, a light shielding layer 213, and a spacer layer 214.
微透鏡陣列211包含多個微透鏡單元2111。在本實施例中,這些微透鏡單元2111的彼此相同並且緊密排列,意即微透鏡單元2111的直徑D與相鄰二微透鏡單元2111的中心間距P之比值為1(D/P=1)。微透鏡單元2111的排列密度並非用以限制本發明。在其他實施例中,微透鏡單元可以排列得較鬆散(D/P<1),或是相鄰的微透鏡單元可彼此連接而使每個微透鏡單元在俯視視角下的形狀為矩形(D/P>1)。當D/P=1.414時,微透鏡陣列211的開口率(有效通光比率)為100%。The microlens array 211 includes a plurality of microlens units 2111. In the present embodiment, the microlens units 2111 are identical to each other and closely arranged, that is, the ratio of the diameter D of the microlens unit 2111 to the center pitch P of the adjacent two microlens units 2111 is 1 (D/P = 1). . The arrangement density of the microlens unit 2111 is not intended to limit the invention. In other embodiments, the microlens units may be arranged loosely (D/P<1), or adjacent microlens units may be connected to each other such that each microlens unit has a rectangular shape in a plan view. /P>1). When D/P=1.414, the aperture ratio (effective light transmittance ratio) of the microlens array 211 is 100%.
折射聚焦層212例如但不限於是透光樹脂層,並且微透鏡陣列211設置於折射聚焦層212的其中一側。遮光層213例如但不限於是不透光或低透光率的黑矩陣(Black Matrix),且折射聚焦層212介於微透鏡陣列211與遮光層213之間。遮光層213具有多個通光部2131,並且這些通光部2131分別對應這些微透鏡單元2111。通光部2131例如但不限於是遮光層213的穿孔。間隔層214例如但不限於是樹脂介質層,其位於遮光層213相對於折射聚焦層212之一側。The refractive focusing layer 212 is, for example but not limited to, a light transmissive resin layer, and the microlens array 211 is disposed on one side of the refractive focusing layer 212. The light shielding layer 213 is, for example but not limited to, a black matrix that is opaque or low in light transmittance, and the refractive focusing layer 212 is interposed between the microlens array 211 and the light shielding layer 213. The light shielding layer 213 has a plurality of light passing portions 2131, and these light passing portions 2131 correspond to the micro lens units 2111, respectively. The light passing portion 2131 is, for example but not limited to, a perforation of the light shielding layer 213. The spacer layer 214 is, for example but not limited to, a resin dielectric layer located on one side of the light shielding layer 213 with respect to the refractive focusing layer 212.
感光層220包含間隔配置的多個感光單元221、222與223,其例如但不限於是互補式金屬氧化物半導體(CMOS)感光元件。間隔層214介於遮光層213與感光層220的感光單元221~223之間,而界定出遮光層213與感光層220之間的一角度篩選間距S。感光單元221~223於頂部各自具有一感光區,其能接收自生物體反射之光線。感光單元221~223的感光區分別對應遮光層213的這些通光部2131,並且相鄰之其中二個感光單元221~223之間形成一非感光區224。The photosensitive layer 220 includes a plurality of photosensitive cells 221, 222, and 223 disposed at intervals, such as, but not limited to, a complementary metal oxide semiconductor (CMOS) photosensitive element. The spacer layer 214 is interposed between the light shielding layer 213 and the photosensitive cells 221 to 223 of the photosensitive layer 220 to define an angle of the screening interval S between the light shielding layer 213 and the photosensitive layer 220. The photosensitive cells 221 to 223 each have a photosensitive region at the top, which is capable of receiving light reflected from the living body. The photosensitive regions of the photosensitive cells 221 to 223 correspond to the light-passing portions 2131 of the light shielding layer 213, respectively, and a non-photosensitive region 224 is formed between the adjacent two photosensitive cells 221 to 223.
當照明單元30的光線投射至生物體的其中一個特徵點時,特徵點將光線反射,並且反射光朝向成像模組20前進。反射光依序通過微透鏡陣列211、折射聚焦層212、遮光層213的通光部2131以及間隔層214而最終投射至感光層220。感光單元221~223的感光區接收此反射光而轉換成影像訊號輸出。當生物體之特徵點產生的反射光投射到成像模組20內時,若通過其中一個通光部2131的反射光被複數個感光單元接收(例如同時被感光單元222與223接收),則輸出之影像訊號會因為串擾(Cross talk)而使得生物辨識裝置1難以精確辨識前述之特徵點。為了防止上述問題發生並兼顧生物辨識裝置1的薄型化,本實施例的生物辨識裝置1對各元件之間的空間配置關係作了改良。When the light of the illumination unit 30 is projected to one of the feature points of the living body, the feature point reflects the light and the reflected light advances toward the imaging module 20. The reflected light is sequentially projected to the photosensitive layer 220 through the microlens array 211, the refractive focusing layer 212, the light passing portion 2131 of the light shielding layer 213, and the spacer layer 214. The photosensitive regions of the photosensitive cells 221 to 223 receive the reflected light and convert them into image signal outputs. When the reflected light generated by the feature points of the living body is projected into the imaging module 20, if the reflected light passing through one of the light passing portions 2131 is received by the plurality of photosensitive cells (for example, received by the photosensitive cells 222 and 223 at the same time), the output is output. The image signal may make it difficult for the biometric device 1 to accurately recognize the aforementioned feature points due to cross talk. In order to prevent the above problem from occurring and to reduce the thickness of the biometric device 1, the biometric device 1 of the present embodiment improves the spatial arrangement relationship between the elements.
如圖2所示,每個通光部2131具有一深寬比AR(即遮光層213的厚度BH與通光部2131的孔徑WO之比值,AR=BH/WO),其滿足下列條件:AR < 1.0。藉此,可防止遮光層213深寬比過大導致製作困難,也有助於生物辨識裝置1的薄型化。As shown in FIG. 2, each light-passing portion 2131 has an aspect ratio AR (ie, a ratio of the thickness BH of the light-shielding layer 213 to the aperture WO of the light-passing portion 2131, AR=BH/WO), which satisfies the following condition: AR < 1.0. Thereby, it is possible to prevent the light-shielding layer 213 from being excessively large in the aspect ratio, which is difficult to manufacture, and contributes to the reduction in thickness of the biometric device 1.
每個微透鏡單元2111具有曲率半徑R,每個微透鏡單元2111具有直徑D,相鄰之二微透鏡單元2111具有中心間距P,每個通光部2131具有一孔徑WO,遮光層213與感光層220之間具有角度篩選間距S,每個微透鏡單元2111具有一最大厚度LH,折射聚焦層212具有厚度H,感光單元221~223各自的感光區具有一寬度WS,其滿足下列條件:Each microlens unit 2111 has a radius of curvature R, each microlens unit 2111 has a diameter D, two adjacent microlens units 2111 have a center pitch P, and each light passing portion 2131 has an aperture WO, a light shielding layer 213 and a photosensitive The layer 220 has an angular screening pitch S, each microlens unit 2111 has a maximum thickness LH, and the refractive focusing layer 212 has a thickness H. The photosensitive regions of the photosensitive cells 221 to 223 each have a width WS which satisfies the following conditions:
﹝條件一﹞0.5 ≦ R/D ≦ 2.86;[Condition 1] 0.5 ≦ R/D ≦ 2.86;
﹝條件二﹞0.02 < WO/P < 0.3;以及[Condition 2] 0.02 < WO/P < 0.3;
﹝條件三﹞(H+LH)×(WS-WO)/(2×P+WO) ≦ S ≦ (H+LH)×(2×P-WS-WO)/(2×P+WO)。[Condition 3] (H+LH) × (WS-WO) / (2 × P + WO) ≦ S ≦ (H + LH) × (2 × P - WS - WO) / (2 × P + WO).
當滿足條件一時,能避免以較大入射角進入微透鏡單元2111的光線被鄰近的感光單元接收,而有助於降低串擾。舉例來說,當來自生物體特徵點的反射光訊號以較大的入射角進入對應到感光單元221的微透鏡單元2111時,能確保反射光不會被感光單元222或223接收。此外如圖2所示,由於製程上微透鏡單元2111的加工極限為半球狀,因此R/D的最小值不能小於0.5。When the condition one is satisfied, the light entering the microlens unit 2111 at a large incident angle can be prevented from being received by the adjacent photosensitive unit, contributing to the reduction of crosstalk. For example, when the reflected light signal from the feature point of the living body enters the microlens unit 2111 corresponding to the photosensitive unit 221 at a large incident angle, it is ensured that the reflected light is not received by the photosensitive unit 222 or 223. Further, as shown in FIG. 2, since the processing limit of the microlens unit 2111 on the process is hemispherical, the minimum value of R/D cannot be less than 0.5.
當滿足條件二時,以過大的入射角進入微透鏡單元2111的光線會被遮光層213阻擋而不會被感光單元接收,有助於進一步降低串擾。舉例來說,當反射光以較大入射角進入對應到感光單元221的微透鏡單元2111時,反射光會被遮光層213阻擋而不會被感光單元222或223接收。此外,由於通光部2131之孔徑WO過小會產生不必要的光學繞射現象,且穿透率因為次波長通孔而大幅下降,因此WO/P的最小值不能小於0.02。When Condition 2 is satisfied, light entering the microlens unit 2111 at an excessive incident angle is blocked by the light shielding layer 213 without being received by the photosensitive unit, contributing to further reduction of crosstalk. For example, when the reflected light enters the microlens unit 2111 corresponding to the photosensitive unit 221 at a large incident angle, the reflected light is blocked by the light shielding layer 213 without being received by the photosensitive unit 222 or 223. Further, since the aperture WO of the light-passing portion 2131 is too small, an unnecessary optical diffraction phenomenon is generated, and the transmittance is largely lowered due to the sub-wavelength via hole, so the minimum value of WO/P cannot be less than 0.02.
當滿足條件三時,即便以過大的入射角進入微透鏡單元2111的光線通過鄰近的通光部2131,此光線也會投射至感光層220的非感光區224而不會被感光單元接收。舉例來說,當反射光以較大入射角進入對應到感光單元221的微透鏡單元2111並且通過對應到感光單元222的通光部2131時,反射光會投射至感光單元222與223之間的非感光區224,更加確保串擾的減少。When the condition three is satisfied, even if light entering the microlens unit 2111 at an excessive incident angle passes through the adjacent light passing portion 2131, the light is projected to the non-photosensitive region 224 of the photosensitive layer 220 without being received by the photosensitive unit. For example, when the reflected light enters the microlens unit 2111 corresponding to the photosensitive unit 221 at a larger incident angle and passes through the light passing portion 2131 corresponding to the photosensitive unit 222, the reflected light is projected between the photosensitive units 222 and 223. The non-photosensitive area 224 further ensures the reduction of crosstalk.
透過上述元件之空間配置,本實施例的微透鏡陣列211、折射聚焦層212、遮光層213、間隔層214與感光層220的總厚度可小於3.0mm(公釐),而有助於實現生物辨識裝置1的薄型化,同時對於生物體特徵點也保有良好的辨識精準度。The total thickness of the microlens array 211, the refractive focusing layer 212, the light shielding layer 213, the spacer layer 214, and the photosensitive layer 220 of the present embodiment may be less than 3.0 mm (mm) through the spatial configuration of the above components, thereby contributing to the realization of the biological The identification device 1 is thinned, and at the same time, good recognition accuracy is maintained for the biological feature points.
在圖2中,單一微透鏡單元對應到單一感光單元,但本發明並不以此為限。請參照圖3,為根據本發明另一實施例之生物辨識裝置的側視剖切示意圖。由於本實施例和圖2的實施例相似,故以下就相異處進行說明。In FIG. 2, a single microlens unit corresponds to a single photosensitive unit, but the invention is not limited thereto. Please refer to FIG. 3, which is a side cross-sectional view of a biometric device according to another embodiment of the present invention. Since this embodiment is similar to the embodiment of Fig. 2, the following description will be made on the difference.
在圖3之實施例中,生物辨識裝置之成像模組20b的光篩選結構210b包含微透鏡陣列211b、折射聚焦層212、遮光層213、間隔層214以及遮罩圖案215。微透鏡陣列211b包含一第一透鏡單元群組2112與一第二透鏡單元群組2113,並且第一透鏡單元群組2112與第二透鏡單元群組2113各自包含多個微透鏡單元。遮罩圖案215設置於間隔層214內,而將感光層220之感光單元221~223各自界定出多個感光區與多個非感光區,其中感光區顯露出感光單元221~223的頂部,且非感光區被遮罩圖案215覆蓋。In the embodiment of FIG. 3, the light screening structure 210b of the imaging module 20b of the biometric device includes a microlens array 211b, a refractive focusing layer 212, a light shielding layer 213, a spacer layer 214, and a mask pattern 215. The microlens array 211b includes a first lens unit group 2112 and a second lens unit group 2113, and the first lens unit group 2112 and the second lens unit group 2113 each include a plurality of microlens units. The mask pattern 215 is disposed in the spacer layer 214, and the photosensitive cells 221 to 223 of the photosensitive layer 220 respectively define a plurality of photosensitive regions and a plurality of non-photosensitive regions, wherein the photosensitive regions expose the tops of the photosensitive cells 221 to 223, and The non-photosensitive area is covered by the mask pattern 215.
第一透鏡單元群組2112對應感光層220的感光單元221,且第二透鏡單元群組2113對應感光層220的感光單元222,而實現複數個微透鏡單元對應到單一感光單元的配置方式。詳細來說,第一透鏡單元群組2112的多個微透鏡單元分別對應感光單元221的多個感光區,第二透鏡單元群組2113的多個微透鏡單元則分別對應感光單元222的多個感光區。The first lens unit group 2112 corresponds to the photosensitive unit 221 of the photosensitive layer 220, and the second lens unit group 2113 corresponds to the photosensitive unit 222 of the photosensitive layer 220, and a configuration in which a plurality of microlens units correspond to a single photosensitive unit is realized. In detail, the plurality of microlens units of the first lens unit group 2112 respectively correspond to the plurality of photosensitive regions of the photosensitive unit 221, and the plurality of microlens units of the second lens unit group 2113 correspond to the plurality of photosensitive units 222, respectively. Photosensitive area.
圖4為根據本發明又一實施例之生物辨識裝置的側視剖切示意圖。由於本實施例和圖2的實施例相似,故以下就相異處進行說明。在圖4之實施例中,生物辨識裝置之成像模組20c的光篩選結構210c包含一微透鏡陣列211、一折射聚焦層212、一遮光層213c以及一間隔層214。遮光層213c的每個通光部2131c具有深寬比AR,其滿足下列條件:1.0 ≦ AR < 5.0。藉此,能利用通光部2131c的側壁阻擋光線投射至複數個感光單元,有助於降低串擾並兼顧生物辨識裝置薄型化之需求。相較於圖2之實施例,由於通光部2131c之深寬比AR的數值範圍有所更動,圖4之實施例的生物辨識裝置對各元件之間的空間配置關係作另外的改良。4 is a side cross-sectional view of a biometric device in accordance with yet another embodiment of the present invention. Since this embodiment is similar to the embodiment of Fig. 2, the following description will be made on the difference. In the embodiment of FIG. 4, the optical screening structure 210c of the imaging module 20c of the biometric device includes a microlens array 211, a refractive focusing layer 212, a light shielding layer 213c, and a spacer layer 214. Each light-passing portion 2131c of the light-shielding layer 213c has an aspect ratio AR which satisfies the following condition: 1.0 ≦ AR < 5.0. Thereby, the side wall of the light-passing portion 2131c can be used to block light from being projected onto the plurality of photosensitive cells, which contributes to reducing crosstalk and achieving the demand for thinning of the biometric device. Compared with the embodiment of FIG. 2, since the depth-to-width ratio of the light-passing portion 2131c is changed by the numerical range of the AR, the biometric device of the embodiment of FIG. 4 additionally improves the spatial arrangement relationship between the elements.
微透鏡陣列211的每個微透鏡單元2111具有曲率半徑R,每個微透鏡單元2111具有直徑D,相鄰之二微透鏡單元2111具有中心間距P,每個通光部2131c具有孔徑WO,每個通光部2131c具有深寬比AR,遮光層213c與感光層220之間具有角度篩選間距S,其滿足下列條件:Each microlens unit 2111 of the microlens array 211 has a radius of curvature R, each microlens unit 2111 has a diameter D, two adjacent microlens units 2111 have a center pitch P, and each light passing portion 2131c has an aperture WO, each The light-passing portions 2131c have an aspect ratio AR, and the light-shielding layer 213c and the photosensitive layer 220 have an angular screening pitch S which satisfies the following conditions:
﹝條件四﹞0.6 < R/D ≦ 2.86;[Condition 4] 0.6 < R/D ≦ 2.86;
﹝條件五﹞0.02 ≦ WO/P ≦ 0.5;以及[Condition 5] 0.02 ≦ WO/P ≦ 0.5;
﹝條件六﹞0 ≦ S < 3P[Condition 6] 0 ≦ S < 3P
當滿足條件四至條件六時,能避免以較大入射角進入微透鏡單元2111的光線被鄰近的感光單元接收,而有助於降低串擾,以提升影像品質。When the condition four to the condition six is satisfied, the light entering the microlens unit 2111 at a large incident angle can be prevented from being received by the adjacent photosensitive unit, which helps to reduce crosstalk to improve image quality.
圖5為根據本發明又另一實施例之生物辨識裝置的側視剖切示意圖。由於本實施例和圖4的實施例相似,故以下就相異處進行說明。FIG. 5 is a side cross-sectional view of a biometric device according to still another embodiment of the present invention. Since this embodiment is similar to the embodiment of Fig. 4, the following description will be made on the difference.
在圖5之實施例中,生物辨識裝置之成像模組20d的光篩選結構210d包含微透鏡陣列211d、折射聚焦層212以及遮光層213c。微透鏡陣列211d包含一第一透鏡單元群組2114與一第二透鏡單元群組2115,並且第一透鏡單元群組2114與第二透鏡單元群組2115各自包含多個微透鏡單元2111。遮光層213c設置於感光層220,而將感光層220之感光單元221~223各自界定出多個感光區與多個非感光區,其中感光區顯露出感光單元221~223的頂部,且非感光區被遮光層213c覆蓋。第一透鏡單元群組2114對應感光層220的感光單元221,且第二透鏡單元群組2115對應感光層220的感光單元222,而實現複數個微透鏡單元對應到單一感光單元的配置方式。In the embodiment of FIG. 5, the light screening structure 210d of the imaging module 20d of the biometric device includes a microlens array 211d, a refractive focusing layer 212, and a light shielding layer 213c. The microlens array 211d includes a first lens unit group 2114 and a second lens unit group 2115, and the first lens unit group 2114 and the second lens unit group 2115 each include a plurality of microlens units 2111. The light shielding layer 213c is disposed on the photosensitive layer 220, and the photosensitive cells 221 to 223 of the photosensitive layer 220 respectively define a plurality of photosensitive regions and a plurality of non-photosensitive regions, wherein the photosensitive regions expose the tops of the photosensitive cells 221 to 223, and are not photosensitive. The area is covered by the light shielding layer 213c. The first lens unit group 2114 corresponds to the photosensitive unit 221 of the photosensitive layer 220, and the second lens unit group 2115 corresponds to the photosensitive unit 222 of the photosensitive layer 220, and a configuration in which a plurality of microlens units correspond to a single photosensitive unit is realized.
以下,提供數個有具體規格的本發明實施例,以說明本發明所揭露之生物辨識裝置,並且驗證本發明所揭露之生物辨識裝置的功效。In the following, several embodiments of the invention having specific specifications are provided to illustrate the biometric device disclosed in the present invention and to verify the efficacy of the biometric device disclosed in the present invention.
﹝實施例一至實施例十六﹞[Example 1 to Example 16]
圖6為根據本發明實施例一至實施例十六之生物辨識裝置之成像模組的立體示意圖。以實施例一舉例說明,相鄰二微透鏡單元2111的中心間距P為50.0μm(微米),微透鏡單元2111的曲率半徑R為25.0μm,微透鏡單元2111的直徑D為50.0μm,且微透鏡單元2111的最大厚度LH為25.0μm。折射聚焦層212的折射率為1.57,且折射聚焦層212的厚度H為48.00μm。通光部2131的孔徑WO為3.0μm,遮光層213的厚度BH為1.5μm,且通光部2131的深寬比AR為0.5。遮光層213與感光層220的感光單元221~223之間的角度篩選間距S為16.0μm。感光單元221~223各自之感光區的寬度WS為10.0μm。實施例一至實施例十六的具體規格請參照下列表一,且所有實施例均滿足前述之條件一、條件二與條件三。6 is a perspective view of an imaging module of a biometric device according to Embodiments 16 to 16 of the present invention. As an example, the center-to-center spacing P of the adjacent two microlens units 2111 is 50.0 μm (micrometers), the radius of curvature R of the microlens unit 2111 is 25.0 μm, and the diameter D of the microlens unit 2111 is 50.0 μm. The maximum thickness LH of the lens unit 2111 is 25.0 μm. The refractive index of the refractive focusing layer 212 is 1.57, and the thickness H of the refractive focusing layer 212 is 48.00 μm. The aperture WO of the light-passing portion 2131 is 3.0 μm, the thickness BH of the light-shielding layer 213 is 1.5 μm, and the aspect ratio AR of the light-passing portion 2131 is 0.5. The angle S between the light shielding layer 213 and the photosensitive cells 221 to 223 of the photosensitive layer 220 is 16.0 μm. The width WS of each of the photosensitive regions of the photosensitive cells 221 to 223 is 10.0 μm. For the specific specifications of the first embodiment to the sixteenth embodiment, please refer to the following list 1, and all the embodiments satisfy the foregoing condition one, condition two and condition three.
另外,還提供比較例一至比較例十作為對照,其具體規格請參照下列表二。所有比較例均沒有滿足前述之條件一、條件二與條件三至少其中之一。In addition, Comparative Example 1 to Comparative Example 10 are also provided as controls. For specific specifications, please refer to Table 2 below. All of the comparative examples did not satisfy at least one of Condition 1, Condition 2 and Condition 3 described above.
圖7為根據本發明實施例一之生物辨識裝置之感光單元所接收光強度與光入射角度關係的示意圖。圖8為根據本發明實施例一之生物辨識影像。當生物體特徵所產生的反射光訊號進入生物辨識裝置之成像模組時,入射角較小的反射光訊號才會被感光單元接收,而入射角較大的反射光訊號無法被感光單元接收,故在圖7的元件特性中只有小入射角的反射光訊號會顯示出光強度峰值。實施例一之成像模組接收反射光訊號而輸出圖8的高解析度影像,其能清晰顯示出生物體之特徵(例如指紋或靜脈分布)。實施例二至實施例十六之成像模組也能輸出高解析度影像。FIG. 7 is a schematic diagram showing the relationship between the received light intensity and the incident angle of light of the photosensitive unit of the biometric device according to the embodiment of the present invention. FIG. 8 is a biometric image according to an embodiment of the present invention. When the reflected light signal generated by the biological feature enters the imaging module of the biometric device, the reflected light signal with a smaller incident angle is received by the photosensitive unit, and the reflected light signal with a larger incident angle cannot be received by the photosensitive unit. Therefore, in the element characteristics of Fig. 7, only the reflected light signal of a small incident angle shows a peak of light intensity. The imaging module of the first embodiment receives the reflected light signal and outputs the high-resolution image of FIG. 8 , which clearly displays the characteristics of the birth object (eg, fingerprint or vein distribution). The imaging modules of the second embodiment to the sixteenth embodiment can also output high resolution images.
圖9為根據本發明比較例一之生物辨識裝置之感光單元所接收光強度與光入射角度關係的示意圖。圖10為根據本發明比較例六之生物辨識影像。相較於實施例一,比較例六沒有滿足條件二與條件三,因此入射角較大的反射光會被感光單元接收,使得圖9中小入射角(入射角小於3度)的反射光訊號與大入射角(約22度)的反射光訊號都會顯示出光強度峰值,進而產生串擾。比較例六之成像模組接收反射光而輸出圖10的影像,其解析度明顯低於圖8的影像,使得生物辨識裝置無法判讀生物體之特徵。比較例一至五與比較例七至十之成像模組也會輸出低解析度影像。Fig. 9 is a view showing the relationship between the received light intensity and the incident angle of light of the photosensitive unit of the biometric device according to Comparative Example 1 of the present invention. Figure 10 is a biometric image of Comparative Example 6 in accordance with the present invention. Compared with the first embodiment, the sixth embodiment does not satisfy the condition two and the third condition, so that the reflected light with a larger incident angle is received by the photosensitive unit, so that the reflected light signal of the small incident angle (the incident angle is less than 3 degrees) in FIG. 9 is A reflected light signal at a large angle of incidence (about 22 degrees) will show a peak in light intensity, which in turn produces crosstalk. The imaging module of Comparative Example 6 receives the reflected light and outputs the image of FIG. 10, the resolution of which is significantly lower than that of the image of FIG. 8, so that the biometric device cannot interpret the features of the living body. The imaging modules of Comparative Examples 1 to 5 and Comparative Examples 7 to 10 also output low resolution images.
﹝實施例十七至實施例三十六﹞[Example 17 to Example 36]
圖11為根據本發明實施例十七至實施例三十六之生物辨識裝置之成像模組的立體示意圖。以實施例十七舉例說明,相鄰二微透鏡單元2111的中心間距P為50.0μm(微米),微透鏡單元2111的曲率半徑R為40.0μm,微透鏡單元2111的直徑D為40.0μm,且微透鏡單元2111的最大厚度LH為5.36μm。折射聚焦層212的折射率為1.57,且折射聚焦層212的厚度H為110.00μm。通光部2131c的孔徑WO為3.0μm,遮光層213c的厚度BH為15.0μm,且通光部2131c的深寬比AR為5.0。遮光層213c與感光層220的感光單元221~223之間的角度篩選間距S為0μm(即遮光層213c緊貼著感光單元221~223)。實施例十七至實施例三十六的具體規格請參照下列表三,且所有實施例均滿足前述之條件四、條件五與條件六。11 is a perspective view of an imaging module of a biometric device according to Embodiment 17 to Embodiment 36 of the present invention. As illustrated in the seventeenth embodiment, the center-to-center spacing P of the adjacent two microlens units 2111 is 50.0 μm (micrometers), the radius of curvature R of the microlens unit 2111 is 40.0 μm, and the diameter D of the microlens unit 2111 is 40.0 μm. The maximum thickness LH of the microlens unit 2111 is 5.36 μm. The refractive index of the refractive focusing layer 212 is 1.57, and the thickness H of the refractive focusing layer 212 is 110.00 μm. The aperture WO of the light-passing portion 2131c is 3.0 μm, the thickness BH of the light-shielding layer 213c is 15.0 μm, and the aspect ratio AR of the light-passing portion 2131c is 5.0. The angle S between the light shielding layer 213c and the photosensitive cells 221 to 223 of the photosensitive layer 220 is 0 μm (that is, the light shielding layer 213c is in close contact with the photosensitive cells 221 to 223). For the specific specifications of the seventeenth embodiment to the thirty-sixth embodiment, please refer to the following Table 3, and all the embodiments satisfy the foregoing condition four, condition five and condition six.
另外,還提供比較例十一至比較例十八作為對照,其具體規格請參照下列表四。所有比較例均沒有滿足前述之條件四、條件五與條件六至少其中之一。In addition, Comparative Example 11 to Comparative Example 18 are also provided as controls. For specific specifications, please refer to Table 4 below. All of the comparative examples did not satisfy at least one of the foregoing condition four, condition five and condition six.
綜上所述,本發明所揭露的生物辨識裝置中,將遮光層之通光部的深寬比限定在一定範圍內以控制遮光層的厚度,有助於生物辨識裝置的薄型化。此外,當生物辨識裝置的光篩選結構與感光層的規格滿足特定條件時,若生物體之特徵點所產生的反射光以較大入射角進入對應到其中一個感光單元的微透鏡單元時,此反射光會被光篩選結構的遮光層阻擋或是只能投射至感光層的非感光區,而不會被鄰近前述之其中一個感光單元的其他感光單元接收,進而有助於降低串擾以提升辨識生物體之特徵點的精準度。因此,本發明之生物辨識裝置可不遵守傳統透鏡成像公式,也不需要利用深寬比大於10的結構來篩選入光角度,可提升入光效率並進一步滿足薄型化的需求。As described above, in the biometric device disclosed in the present invention, the aspect ratio of the light-transmitting portion of the light-shielding layer is limited to a certain range to control the thickness of the light-shielding layer, which contributes to the reduction in thickness of the biometric device. In addition, when the light screening structure of the biometric device and the specification of the photosensitive layer satisfy a specific condition, if the reflected light generated by the feature point of the living body enters the microlens unit corresponding to one of the photosensitive cells at a large incident angle, this The reflected light is blocked by the light shielding layer of the light screening structure or can only be projected to the non-photosensitive area of the photosensitive layer, and is not received by other photosensitive cells adjacent to one of the aforementioned photosensitive cells, thereby helping to reduce crosstalk and enhance identification. The accuracy of the feature points of the organism. Therefore, the biometric device of the present invention can not follow the conventional lens imaging formula, and does not need to use a structure having an aspect ratio greater than 10 to screen the incident light angle, thereby improving the light entering efficiency and further satisfying the demand for thinning.
雖然本發明以前述之實施例揭露如上,然而這些實施例並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention has been disclosed above in the foregoing embodiments, these embodiments are not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.
1‧‧‧生物辨識裝置1‧‧‧Biometric device
10‧‧‧基座10‧‧‧ Pedestal
20、20b、20c、20d‧‧‧成像模組20, 20b, 20c, 20d‧‧‧ imaging modules
210、210b、210c、210d‧‧‧光篩選結構210, 210b, 210c, 210d‧‧‧ light screening structure
211、211b 、211d‧‧‧微透鏡陣列211, 211b, 211d‧‧‧ microlens array
2111‧‧‧微透鏡單元2111‧‧‧Microlens unit
2112、2114‧‧‧第一透鏡單元群組2112, 2114‧‧‧ first lens unit group
2113、2115‧‧‧第二透鏡單元群組2113, 2115‧‧‧ second lens unit group
212‧‧‧折射聚焦層212‧‧‧Reflective focusing layer
213、213c‧‧‧遮光層213, 213c‧‧‧ shading layer
2131、2131c‧‧‧通光部2131, 2131c‧‧‧Lighting Department
214‧‧‧間隔層214‧‧‧ spacer
215‧‧‧遮罩圖案215‧‧‧ mask pattern
220‧‧‧感光層220‧‧‧Photosensitive layer
221、222、223‧‧‧感光單元221, 222, 223‧‧ ‧Photosensitive unit
224‧‧‧非感光區224‧‧‧ non-photosensitive area
30‧‧‧照明單元30‧‧‧Lighting unit
BH‧‧‧遮光層的厚度BH‧‧‧ thickness of the light-shielding layer
D‧‧‧微透鏡單元的直徑D‧‧‧diameter of microlens unit
H‧‧‧折射聚焦層的厚度H‧‧‧Reflecting the thickness of the focusing layer
LH‧‧‧微透鏡單元的最大厚度Maximum thickness of the LH‧‧ microlens unit
P‧‧‧相鄰二微透鏡單元的中心間距P‧‧‧Center spacing of adjacent two microlens units
R‧‧‧微透鏡單元的曲率半徑R‧‧‧ radius of curvature of the microlens unit
S‧‧‧角度篩選間距S‧‧‧ Angle screening spacing
WO‧‧‧通光部的孔徑WO‧‧‧ aperture of the light department
WS‧‧‧感光單元之感光區的寬度Width of the photosensitive area of the WS‧‧·photosensitive unit
圖1為根據本發明一實施例之生物辨識裝置的立體示意圖。 圖2為圖1之生物辨識裝置之成像模組的側視剖切示意圖。 圖3為根據本發明另一實施例之生物辨識裝置之成像模組的側視剖切示意圖。 圖4為根據本發明又一實施例之生物辨識裝置之成像模組的側視剖切示意圖。 圖5為根據本發明再一實施例之生物辨識裝置之成像模組的側視剖切示意圖。 圖6為根據本發明實施例一至實施例十六之生物辨識裝置之成像模組的立體示意圖。 圖7為根據本發明實施例一之生物辨識裝置之感光單元所接收光強度與光入射角度關係的示意圖。 圖8為根據本發明實施例一之生物辨識影像。 圖9為根據本發明比較例一之生物辨識裝置之感光單元所接收光強度與光入射角度關係的示意圖。 圖10為根據本發明比較例一之生物辨識影像。 圖11為根據本發明實施例十七至實施例三十六之生物辨識裝置之成像模組的立體示意圖。1 is a perspective view of a biometric device according to an embodiment of the invention. 2 is a side cross-sectional view of the imaging module of the biometric device of FIG. 1. 3 is a side cross-sectional view of an imaging module of a biometric device in accordance with another embodiment of the present invention. 4 is a side cross-sectional view showing an imaging module of a biometric device according to still another embodiment of the present invention. FIG. 5 is a side cross-sectional view showing an imaging module of a biometric device according to still another embodiment of the present invention. 6 is a perspective view of an imaging module of a biometric device according to Embodiments 16 to 16 of the present invention. FIG. 7 is a schematic diagram showing the relationship between the received light intensity and the incident angle of light of the photosensitive unit of the biometric device according to the embodiment of the present invention. FIG. 8 is a biometric image according to an embodiment of the present invention. Fig. 9 is a view showing the relationship between the received light intensity and the incident angle of light of the photosensitive unit of the biometric device according to Comparative Example 1 of the present invention. Figure 10 is a biometric image of Comparative Example 1 in accordance with the present invention. 11 is a perspective view of an imaging module of a biometric device according to Embodiment 17 to Embodiment 36 of the present invention.
Claims (16)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/854,991 US10613256B2 (en) | 2017-08-11 | 2017-12-27 | Biometric device |
CN201711479421.7A CN109389023B (en) | 2017-08-11 | 2017-12-29 | biometric device |
US16/681,923 US10830926B2 (en) | 2017-08-11 | 2019-11-13 | Biometric device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762544493P | 2017-08-11 | 2017-08-11 | |
US62/544,493 | 2017-08-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI652626B TWI652626B (en) | 2019-03-01 |
TW201911116A true TW201911116A (en) | 2019-03-16 |
Family
ID=66590468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106144871A TWI652626B (en) | 2017-08-11 | 2017-12-20 | Biometric device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI652626B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021082937A1 (en) * | 2019-10-30 | 2021-05-06 | Oppo广东移动通信有限公司 | Under-screen optical fingerprint module, display screen assembly, and electronic device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111435213B (en) | 2019-01-11 | 2021-12-31 | 财团法人工业技术研究院 | Imaging module and biometric device using the same |
CN111598060A (en) | 2019-12-11 | 2020-08-28 | 神盾股份有限公司 | Fingerprint sensing system and method of use thereof |
CN111368809A (en) * | 2020-04-23 | 2020-07-03 | 上海菲戈恩微电子科技有限公司 | Optical biological fingerprint identification structure and image edge relative illumination improving method |
TWI748791B (en) * | 2020-07-31 | 2021-12-01 | 友達光電股份有限公司 | Photo sensor and manufacturing method thereof |
TWI785478B (en) * | 2020-08-17 | 2022-12-01 | 友達光電股份有限公司 | Fingerprint sensing device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7728959B2 (en) | 2003-06-21 | 2010-06-01 | Aprilis, Inc. | Acquisition of high resolution biometric images |
JP5861257B2 (en) | 2011-02-21 | 2016-02-16 | ソニー株式会社 | Imaging device and imaging apparatus |
JP5828371B2 (en) | 2011-04-07 | 2015-12-02 | セイコーエプソン株式会社 | Image acquisition device, biometric authentication device, electronic device |
TWI552091B (en) | 2014-10-23 | 2016-10-01 | 財團法人工業技術研究院 | Press sheet for fingerprint reader and fingerprint reader |
CN106228147B (en) | 2016-08-04 | 2023-04-18 | 京东方科技集团股份有限公司 | Grain collector, grain collecting method thereof and display device |
-
2017
- 2017-12-20 TW TW106144871A patent/TWI652626B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021082937A1 (en) * | 2019-10-30 | 2021-05-06 | Oppo广东移动通信有限公司 | Under-screen optical fingerprint module, display screen assembly, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
TWI652626B (en) | 2019-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109389023B (en) | biometric device | |
TWI652626B (en) | Biometric device | |
CN111435213B (en) | Imaging module and biometric device using the same | |
CN111488830B (en) | Fingerprint identification device and electronic equipment | |
CN210295125U (en) | Fingerprint detection device and electronic equipment | |
CN211349375U (en) | Optical fingerprint device and electronic equipment | |
WO2021082680A1 (en) | Optical image collection structure, method for distinguishing between true and false biological features, and electronic device | |
WO2018113105A1 (en) | Biometric identification device | |
CN114399797A (en) | Optical Fingerprint Identification System | |
CN110781848B (en) | Screen fingerprint identification device and electronic equipment | |
CN213659463U (en) | Fingerprint identification device and electronic equipment | |
CN209312028U (en) | Optical lens, fingerprint recognition mould group and mobile terminal | |
CN206489579U (en) | biometric device | |
TWM605463U (en) | Under-screen optical fingerprint recognition component and electronic equipment | |
TW201824069A (en) | Biological feature identification device | |
CN206497471U (en) | Biometric feature recognition device | |
CN108241827A (en) | Biometric identification device | |
TWI717868B (en) | Image module and biometric device using the same | |
CN111095287A (en) | Optical fingerprint device and electronic equipment | |
US20240014238A1 (en) | Light receiving apparatus and electronic appliance | |
CN214540788U (en) | Optical fingerprint identification module | |
CN213303046U (en) | Optical image acquisition unit, optical image system and electronic equipment | |
CN112380983A (en) | Fingerprint identification device and electronic equipment | |
CN219695779U (en) | Fingerprint identification device and electronic equipment | |
CN111860296B (en) | Optical fingerprint identification module, display module and fingerprint identification method thereof |