TW201517338A - Resistive memory device and fabrication thereof - Google Patents
Resistive memory device and fabrication thereof Download PDFInfo
- Publication number
- TW201517338A TW201517338A TW102137251A TW102137251A TW201517338A TW 201517338 A TW201517338 A TW 201517338A TW 102137251 A TW102137251 A TW 102137251A TW 102137251 A TW102137251 A TW 102137251A TW 201517338 A TW201517338 A TW 201517338A
- Authority
- TW
- Taiwan
- Prior art keywords
- resistive memory
- layer
- memory device
- resistive
- transition layer
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
本發明係有關於一種半導體裝置及其製作方法,特別是關於一種電阻式記憶體及其製作方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a resistive memory and a method of fabricating the same.
近年來,由於快閃記憶體(Flash memory)面臨到微縮物理極限與操作電壓過大等問題,因此,具簡單結構、小面積、操作速度快與低功率消耗的電阻式記憶體裝置(Resistive random access memory,簡稱RRAM)極有可能取代傳統的快閃記憶體,成為下世代非揮發性記憶體的主流。 In recent years, flash memory has faced problems such as miniature physical limit and excessive operating voltage. Therefore, a resistive memory device with simple structure, small area, fast operation speed and low power consumption (Resistive random access) Memory, or RRAM for short, is very likely to replace traditional flash memory and become the mainstream of next generation non-volatile memory.
電阻式記憶體係利用電阻值改變來達到記憶效應,電阻式記憶體的轉態機制為利用氧空缺(oxygen vacancies)或氧離子(oxygen ions)移動來形成傳導路徑(conductive filament),利用外在施加電壓極性與電流值,促使傳導路徑斷裂與再生成的現象,造成電阻值的差異。 The resistive memory system uses the change of resistance value to achieve the memory effect. The transition mechanism of the resistive memory is to use oxygen vacancies or oxygen ions to form a conductive filament, using external application. Voltage polarity and current values cause the conduction path to break and regenerate, resulting in a difference in resistance values.
電阻式記憶體具有低電壓操作、低功率消耗、高密度堆積結構等極佳的記憶體操作特性,但是,電阻式記憶體在執行耐久度(endurance)或重複寫入/抹除(program/Erase)時的高、低電阻狀態會產生變動(variation),使電阻式記憶體的高、低阻態電阻值無法維持穩定的狀態,容易造成記憶狀態判讀錯誤,成為電阻式記 憶體實現量產的阻礙。 Resistive memory has excellent memory operation characteristics such as low voltage operation, low power consumption, and high density stacked structure. However, resistive memory performs endurance or repeated write/erase (program/Erase) When the high and low resistance states are changed, the high and low resistance resistance values of the resistive memory cannot be maintained in a stable state, and the memory state interpretation error is likely to occur, and the resistance type is changed. Recall that the body is hindered by mass production.
根據上述,業界需要一可解決上述問題之電阻式記憶體及相關製作方法。 According to the above, the industry needs a resistive memory and related manufacturing method that can solve the above problems.
根據上述,本發明提供一種電阻式記憶體裝置,包括:一基板;一下電極,位於基板上方;一下電阻轉態層,位於下電極上;一界面層,位於下電阻轉態層與下電極間;一上電阻轉態層,位於下電阻轉態層上;及一上電極,位於上電阻轉態層上。 According to the above, the present invention provides a resistive memory device comprising: a substrate; a lower electrode located above the substrate; a lower resistance transition layer on the lower electrode; and an interface layer between the lower resistance transition layer and the lower electrode An upper resistive layer is disposed on the lower resistive transition layer; and an upper electrode is disposed on the upper resistive transition layer.
本發明提供一種電阻式記憶體裝置之製作方法,包括:提供一基板;形成一下電極於基板上方;形成一下電阻轉態層於下電極上;進行一退火製程,於下電極和下電阻轉態層間形成一界面層;形成一上電阻轉態層於下電阻轉態層上;及形成一上電極於上電阻轉態層上。 The invention provides a method for manufacturing a resistive memory device, comprising: providing a substrate; forming a lower electrode on the substrate; forming a resistive transition layer on the lower electrode; performing an annealing process on the lower electrode and the lower resistance state Forming an interface layer between the layers; forming an upper resistance transition layer on the lower resistance transition layer; and forming an upper electrode on the upper resistance transition layer.
102‧‧‧基板 102‧‧‧Substrate
104‧‧‧絕緣層 104‧‧‧Insulation
106‧‧‧附著層 106‧‧‧Adhesive layer
108‧‧‧導電層 108‧‧‧ Conductive layer
110‧‧‧下電極 110‧‧‧ lower electrode
112‧‧‧電阻轉態層 112‧‧‧resistive transition layer
114‧‧‧上電極 114‧‧‧Upper electrode
115‧‧‧氧空缺 115‧‧‧Oxygen vacancies
116‧‧‧界面層 116‧‧‧Interfacial layer
118‧‧‧下電阻轉態層 118‧‧‧ Lower resistance transition layer
120‧‧‧上電阻轉態層 120‧‧‧Upper resistance transition layer
122‧‧‧導電路徑 122‧‧‧ conductive path
124‧‧‧導電路徑 124‧‧‧ conductive path
第1圖顯示一電阻式記憶體之剖面圖。 Figure 1 shows a cross-sectional view of a resistive memory.
第2圖顯示第1圖電阻式記憶體之寫入與抹除電壓之耐久度測試電流和循環次數關係圖。 Fig. 2 is a graph showing the relationship between the endurance test current and the number of cycles of the write and erase voltages of the resistive memory of Fig. 1.
第3圖描述本發明一實施例之電阻式記憶體之剖面圖。 Fig. 3 is a cross-sectional view showing a resistive memory according to an embodiment of the present invention.
第4A~4C圖顯示本發明一實施例電阻式記憶體之轉態機制。 4A to 4C are views showing the transition mechanism of the resistive memory according to an embodiment of the present invention.
第5圖顯示本發明一實施例電阻式記憶體之電壓電流關係圖。 Fig. 5 is a view showing a voltage-current relationship diagram of a resistive memory according to an embodiment of the present invention.
第6圖顯示一比較例電阻式記憶體之電壓電流關係圖。 Fig. 6 is a graph showing the voltage-current relationship of a resistive memory of a comparative example.
第7圖顯示本發明一實施例之電阻式記憶體施加偏壓連續循環100次的電壓電流關係圖。 Fig. 7 is a view showing a voltage-current relationship diagram of a resistive memory in which a bias voltage is continuously applied for 100 times in an embodiment of the present invention.
第8圖顯示本發明一實施例之電阻式記憶體結構在施予直流寫入與抹除電壓之耐久度測試分佈圖。 Figure 8 is a graph showing the durability test distribution of a resistive memory structure according to an embodiment of the present invention for applying a DC write and erase voltage.
第9圖為本發明一實施例之電阻式記憶體結構施予交流寫入與抹除電壓之耐久度測試電流和循環次數關係圖。 FIG. 9 is a diagram showing the relationship between the endurance test current and the number of cycles of the alternating current writing and erasing voltages applied to the resistive memory structure according to an embodiment of the present invention.
第10圖為本發明一實施例之電阻式記憶體之保久度測試曲線圖。 Fig. 10 is a graph showing the durability test of the resistive memory according to an embodiment of the present invention.
第11圖為本發明一實施例之電阻式記憶體結構之非破壞性讀取測試曲線圖。 Figure 11 is a non-destructive read test curve diagram of a resistive memory structure according to an embodiment of the present invention.
以下詳細討論實施本發明之實施例。可以理解的是,實施例提供許多可應用的發明概念,其可以較廣的變化實施。所討論之特定實施例僅用來發明使用實施例的特定方法,而不用來限定發明的範疇。為讓本發明之特徵能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下:以下根據第1圖描述一電阻式記憶體之製作方法。請參照第1圖,提供一矽之基板102,形成一二氧化矽之絕緣層104於基板102上。接著,形成鈦之附著層106於絕緣層104上,形成一鉑之導電層108於附著層106上。形成氮化鈦之下電極110於導電層108上。形成二氧化鉿之電阻轉 態層於下電極110上。形成氮化鉭之上電極114於電阻轉態層112上。第2圖顯示第1圖電阻式記憶體之寫入與抹除電壓之耐久度測試。如第2圖所示,此電阻式記憶體裝置之高電阻和低電阻狀態之阻值變動太大,且高電阻和低電阻之區間不明顯,顯示其耐久度測試並不理想。 Embodiments embodying the invention are discussed in detail below. It will be appreciated that the embodiments provide many applicable inventive concepts that can be implemented in a wide variety of variations. The specific embodiments discussed are merely illustrative of specific ways to use the embodiments and are not intended to limit the scope of the invention. In order to make the features of the present invention more comprehensible, the following detailed description of the embodiments, together with the accompanying drawings, will be described in detail below. The following describes a method of fabricating a resistive memory according to FIG. Referring to FIG. 1, a substrate 102 is provided to form an insulating layer 104 of germanium dioxide on the substrate 102. Next, an adhesion layer 106 of titanium is formed on the insulating layer 104 to form a conductive layer 108 of platinum on the adhesion layer 106. The titanium nitride lower electrode 110 is formed on the conductive layer 108. Formation of erbium oxide resistance The layer is on the lower electrode 110. An upper surface of the tantalum nitride electrode 114 is formed on the resistive transition layer 112. Figure 2 shows the endurance test of the write and erase voltages of the resistive memory of Figure 1. As shown in Fig. 2, the resistance values of the high resistance and low resistance states of the resistive memory device are too large, and the interval between the high resistance and the low resistance is not obvious, indicating that the durability test is not satisfactory.
根據上述,本發明於一實施例提供一電阻式記憶體裝置,其具有兩層電阻轉態層,且對下電阻轉態層進行退火,於下電極和下電阻轉態層間形成一界面層。 In accordance with the above, the present invention provides a resistive memory device having two layers of resistive transition layers and annealed the lower resistive transition layer to form an interfacial layer between the lower electrode and the lower resistive transition layer.
以下根據第3圖描述本發明一實施例之電阻式記憶體之製作方法。請參照第3圖,提供一基板102,基板102上方可以形成任何所需的半導體裝置,例如電晶體、電阻、邏輯裝置等,不過此處為了簡化圖式,僅以平整的基板102表示之。在本發明的敘述中,「基板」一詞係包括半導體晶圓上已形成的裝置與覆蓋在晶圓上的各種塗層;「基板表面」一詞係包括半導體晶圓的所露出的最上層,例如矽晶圓表面、絕緣層、金屬導線等。基板可以是絕緣層上有矽基板、矽、砷化鎵、氮化鎵、應變矽、矽鍺、碳化矽、鑽石及/或其它材料。 Hereinafter, a method of fabricating a resistive memory according to an embodiment of the present invention will be described based on FIG. Referring to FIG. 3, a substrate 102 is provided. Any desired semiconductor device, such as a transistor, a resistor, a logic device, etc., can be formed over the substrate 102. However, for the sake of simplicity of the drawing, only the planar substrate 102 is shown. In the context of the present invention, the term "substrate" includes both formed devices on a semiconductor wafer and various coatings overlying the wafer; the term "substrate surface" includes the exposed uppermost layer of the semiconductor wafer. For example, wafer surface, insulating layer, metal wire, and the like. The substrate may be a germanium substrate, germanium, gallium arsenide, gallium nitride, strain enthalpy, germanium, tantalum carbide, diamond, and/or other materials on the insulating layer.
形成一絕緣層104於基板102上,在一些實施例中,絕緣層104為氧化矽或氮化矽,在一些範例中,絕緣層104為氧化矽。絕緣層104可以利用熱氧化法於爐管中形成,絕緣層104之厚度可以為100nm~300nm。其後,形成一附著層106和一導電層108於絕緣層104上。附著層106可包括鈦、氮化鈦、鉭或氮化鉭,導電層108可包括鉑、鈦、氮 化鈦、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯、銦錫氧化物或鋁矽銅合金。在一些範例中,附著層106為鈦,導電層108為鉑。附著層106和導電層108可利用交流磁控濺鍍法、直流濺鍍法、原子層沉積系統或電子束蒸鍍法形成。 An insulating layer 104 is formed on the substrate 102. In some embodiments, the insulating layer 104 is hafnium oxide or tantalum nitride. In some examples, the insulating layer 104 is hafnium oxide. The insulating layer 104 may be formed in the furnace tube by thermal oxidation, and the insulating layer 104 may have a thickness of 100 nm to 300 nm. Thereafter, an adhesion layer 106 and a conductive layer 108 are formed on the insulating layer 104. The adhesion layer 106 may include titanium, titanium nitride, tantalum or tantalum nitride, and the conductive layer 108 may include platinum, titanium, nitrogen. Titanium, aluminum, tungsten, tantalum, niobium oxide, tantalum, niobium, tantalum nitride, nickel, molybdenum, zirconium, indium tin oxide or aluminum beryllium copper alloy. In some examples, the adhesion layer 106 is titanium and the conductive layer 108 is platinum. The adhesion layer 106 and the conductive layer 108 may be formed by an alternating current magnetron sputtering method, a direct current sputtering method, an atomic layer deposition system, or an electron beam evaporation method.
其後,形成一下電極110於導電層108上。下電極110可以為鈦、氮化鈦、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯、銦錫氧化物或重摻雜矽半導體。下電極110可利用交流磁控濺鍍法、原子層沉積系統或電子束蒸鍍法形成。下電極110之厚度可以為1nm~500nm,較佳為10nm~50nm。在一些實施例中,下電極110為氮化鈦。在一些範例中,下電極110可以利用一原子層沉積系統,以四二甲胺基化鈦(TDMAT)當作前驅物,利用氮氣電漿與四二甲胺基化鈦反應形成。 Thereafter, the lower electrode 110 is formed on the conductive layer 108. The lower electrode 110 may be titanium, titanium nitride, aluminum, tungsten, tantalum, hafnium oxide, tantalum, niobium, tantalum nitride, nickel, molybdenum, zirconium, indium tin oxide or heavily doped germanium semiconductor. The lower electrode 110 can be formed by an alternating current magnetron sputtering method, an atomic layer deposition system, or an electron beam evaporation method. The thickness of the lower electrode 110 may be from 1 nm to 500 nm, preferably from 10 nm to 50 nm. In some embodiments, the lower electrode 110 is titanium nitride. In some examples, the lower electrode 110 can be formed using an atomic layer deposition system using tetramethylammonium titanium (TDMAT) as a precursor and a nitrogen plasma to react with tetramethylammonium.
後續,形成一下電阻轉態層118於下電極110上在一些實施例中,下電阻轉態層118為二氧化鉿、氧化鋁、二氧化鈦、二氧化鋯、氧化錫或氧化鋅。下電阻轉態層118可利用交流濺鍍沉積形成,其溫度可為100℃~500℃。下電阻轉態層118之厚度可以為1nm~100nm。 Subsequently, a resistive transition layer 118 is formed over the lower electrode 110. In some embodiments, the lower resistive transition layer 118 is hafnium oxide, aluminum oxide, titanium dioxide, zirconium dioxide, tin oxide or zinc oxide. The lower resistance transition layer 118 can be formed by alternating current sputtering deposition, and the temperature can be from 100 ° C to 500 ° C. The lower resistance transition layer 118 may have a thickness of 1 nm to 100 nm.
後續,對下電阻轉態層118進行一氧氣氣氛下之退火處理之步驟,形成位於下電極110和下電阻轉態層118間之界面層116。界面層116之厚度可為1nm~10nm。退火處理之溫度可以為200℃~600℃。退火處理之可使用爐管、快速熱退火裝置或可升溫的濺鍍機台中進行,退火處 理之氧氣流量可以為約10sccm至約50sccm,壓力可以為約0.1Torr至約0.5Torr,製程時間可以為約10分至約60分。界面層116可以為退火處理中氧與下電極110反應形成之層。在另一實施例中,界面層116可以為退火處理中下電阻轉態層118與下電極110反應形成之層。在下電極為氮化鈦之範例中,界面層116可以為氮氧化鈦。 Subsequently, the lower resistance transition layer 118 is subjected to an annealing treatment under an oxygen atmosphere to form an interface layer 116 between the lower electrode 110 and the lower resistance transition layer 118. The thickness of the interface layer 116 can be from 1 nm to 10 nm. The annealing temperature may be from 200 ° C to 600 ° C. Annealing can be carried out using a furnace tube, a rapid thermal annealing device or a temperature-increasing sputtering machine. The oxygen flow rate can range from about 10 sccm to about 50 sccm, the pressure can range from about 0.1 Torr to about 0.5 Torr, and the process time can range from about 10 minutes to about 60 minutes. The interface layer 116 may be a layer formed by the reaction of oxygen with the lower electrode 110 in the annealing process. In another embodiment, the interface layer 116 may be a layer formed by the reaction of the lower resistance transition layer 118 and the lower electrode 110 in the annealing process. In the example where the lower electrode is titanium nitride, the interface layer 116 may be titanium oxynitride.
本發明不特別限定於下電阻轉態層118後進行退火處理之步驟,在一實施例中,退火處理可以在形成下電極110之後,於形成下電阻轉態層118之前進行。且可於形成下電阻轉態層118之後,進行一額外的退火步驟。更甚者,本發明不限定於氧氣氣氛下進行上述退火步驟,本發明於另一實施例中可於氮氣或其他氣體(例如氨氣或一氧化二氮氣體)之氣氛下進行。 The present invention is not particularly limited to the step of performing an annealing treatment after the lower resistance transition layer 118. In one embodiment, the annealing treatment may be performed after the formation of the lower electrode 110 before the formation of the lower resistance transition layer 118. An additional annealing step can be performed after forming the lower resistance transition layer 118. Furthermore, the present invention is not limited to the above annealing step in an oxygen atmosphere, and in another embodiment, the present invention can be carried out under an atmosphere of nitrogen or another gas such as ammonia or nitrous oxide gas.
其後,形成一上電阻轉態層120於下電阻轉態層上118。在一些實施例中,上電阻轉態層120為二氧化鉿、氧化鋁、二氧化鈦、二氧化鋯、氧化錫或氧化鋅。上電阻轉態層120可利用交流濺鍍沉積形成,其溫度可為100℃~500℃。在一些實施例中,上電阻轉態層120為二氧化鋯(ZrO2)。上電阻轉態層120之厚度可以為1nm~100nm。 Thereafter, an upper resistive transition layer 120 is formed on the lower resistive transition layer 118. In some embodiments, the upper resistive transition layer 120 is ceria, alumina, titania, zirconia, tin oxide or zinc oxide. The upper resistive transition layer 120 can be formed by alternating current sputtering deposition, and the temperature can be from 100 ° C to 500 ° C. In some embodiments, the upper resistive transition layer 120 is zirconium dioxide (ZrO 2 ). The upper resistance transition layer 120 may have a thickness of 1 nm to 100 nm.
接著,形成一上電極114於上電阻轉態層120上。上電極114可以為鈦、氮化鈦、鋁、鎢、銥、氧化銥、釕、鉭、氮化鉭、鎳、鉬、鋯或銦錫氧化物。上電極114可以交流磁控濺鍍法、直流濺鍍法、原子層沉積系統或電子束蒸鍍法形成。上電極114之厚度可以為1nm~1000nm, 較佳為10nm~50nm。上電極114可使用微影製程進行圖案化。 Next, an upper electrode 114 is formed on the upper resistance transition layer 120. The upper electrode 114 may be titanium, titanium nitride, aluminum, tungsten, tantalum, hafnium oxide, tantalum, niobium, tantalum nitride, nickel, molybdenum, zirconium or indium tin oxide. The upper electrode 114 can be formed by an alternating current magnetron sputtering method, a direct current sputtering method, an atomic layer deposition system, or an electron beam evaporation method. The thickness of the upper electrode 114 may be 1 nm to 1000 nm. It is preferably 10 nm to 50 nm. The upper electrode 114 can be patterned using a lithography process.
以下根據第4A~4C圖並搭配第5圖之電壓電流關係圖說明本發明一實施例電阻式記憶體之轉態機制。首先,請參照第4A圖,在下電阻轉態層118和上電阻轉態層120形成後,且未施加電壓前,下電阻轉態層118和上電阻轉態層120中包括氧空缺115,但沒有形成傳導路徑(或稱為導電絲(conductive filament))。後續,請參照第4B圖和第5圖,施加負直流偏壓於下電極110,且上電極114接地時,電流會隨著電壓增加而上升,當電流上升至限電流值(compliance current)(1mA)時,其偏壓值為第一次形成電壓(forming voltage),此時該裝置電阻值由原本高電阻的初始狀態(initial state)轉換到高電阻狀態(high resistance state,簡稱HRS)。此為第一次形成過程,於上電阻轉態層120中形成導電路徑122,且由於界面層116較緻密,其中並未形成導電路徑,因此導致裝置尚未到達低電阻狀態(low resistance state,簡稱LRS)。 Hereinafter, the transition mechanism of the resistive memory according to an embodiment of the present invention will be described based on the voltage current relationship diagrams of FIGS. 4A-4C and FIG. First, referring to FIG. 4A, after the lower resistance transition layer 118 and the upper resistance transition layer 120 are formed, and before the voltage is applied, the lower resistance transition layer 118 and the upper resistance transition layer 120 include oxygen vacancies 115, but No conductive path (or known as a conductive filament) is formed. Subsequently, referring to FIG. 4B and FIG. 5, when a negative DC bias is applied to the lower electrode 110, and the upper electrode 114 is grounded, the current rises as the voltage increases, and when the current rises to a compliance current (compliance current) At 1 mA), the bias voltage is the first forming voltage, and the device resistance value is switched from the original high resistance initial state to the high resistance state (HRS). This is the first formation process, the conductive path 122 is formed in the upper resistance transition layer 120, and since the interface layer 116 is relatively dense, no conductive path is formed therein, thereby causing the device not to reach a low resistance state (low resistance state, referred to as LRS).
接著請參照第4C圖和第5圖,對裝置施予正偏壓操作(亦即施加正直流偏壓於下電極110,且上電極114接地),電流會隨著電壓增加而上升,當電流上升至限電流值(compliance current)(1mA)時,其偏壓值為第二次形成電壓,此時該裝置之界面層116中產生導電路徑124,使得裝置之電阻值由高電阻狀態轉換到低電阻狀態。 Next, referring to FIG. 4C and FIG. 5, the device is subjected to a positive bias operation (ie, a positive DC bias is applied to the lower electrode 110 and the upper electrode 114 is grounded), and the current rises as the voltage increases. When rising to a compliance current (1 mA), the bias voltage is the second time the voltage is formed. At this time, the conductive path 124 is generated in the interface layer 116 of the device, so that the resistance value of the device is switched from the high resistance state to the high resistance state. Low resistance state.
之後進行負偏壓操作,於下電極施加偏壓從0 V連續變化到-1V,當施加偏壓到達-1V時,電流值開始下降,顯示出裝置的電阻值隨著負偏壓的增高而上升。當持續施加負偏壓到達-1.8V之後,裝置具有較高的電阻值,之後將施加的偏壓由-2V變化至0V,可得到當施加偏壓由0V到-1.8V時的電壓-電流曲線與由-1.8V到0V不同,顯示出該裝置由低電阻狀態轉態到高電阻狀態。 After the negative bias operation, the bias is applied to the lower electrode from 0. V continuously changes to -1 V. When the applied bias voltage reaches -1 V, the current value starts to decrease, indicating that the resistance value of the device rises as the negative bias voltage increases. After continuously applying a negative bias voltage to -1.8V, the device has a higher resistance value, and then the applied bias voltage is changed from -2V to 0V, and a voltage-current when a bias voltage is applied from 0V to -1.8V is obtained. The curve differs from -1.8V to 0V, indicating that the device transitions from a low resistance state to a high resistance state.
第6圖顯示一比較例(未對下電阻轉態層進行退火製程)電阻式記憶體之電壓電流關係圖。請參照第6圖,若沒有對下電阻轉態層118進行退火製程,形成一界面層(亦即第3圖之界面層116),當施加電壓(-2V)使裝置轉變成低電阻狀態,裝置會產生崩潰,因此,此裝置無法進行後續轉態操作。 Fig. 6 is a graph showing the voltage-current relationship of a resistive memory in a comparative example (without annealing the lower resistance transition layer). Referring to FIG. 6, if the lower resistance transition layer 118 is not annealed, an interface layer (ie, the interface layer 116 of FIG. 3) is formed. When a voltage (-2V) is applied to turn the device into a low resistance state, The device will crash, so the device cannot perform subsequent transitions.
第7圖為第2圖實施例之電阻式記憶體結構施加偏壓連續週期為0V~1.5V~0V~-2V~0V循環100次的結果,其顯示出在讀取電壓為0.3V時,具有高電流值(0.6mA)與低電流值(20μA)2種不同的電阻狀態。因此,可以利用控制施予偏壓的大小使裝置產生電阻的轉換以達到記憶目的,且在無外加電源供應下,高低電阻狀態皆能維持其穩定的記憶狀態。 Fig. 7 is a result of applying a bias voltage continuous cycle of 0V~1.5V~0V~-2V~0V for 100 times in the resistive memory structure of the embodiment of Fig. 2, which shows that when the read voltage is 0.3V, It has two different resistance states: high current value (0.6mA) and low current value (20μA). Therefore, the size of the bias can be controlled to cause the device to generate a resistance conversion for memory purposes, and the high and low resistance states can maintain a stable memory state without an external power supply.
第8圖顯示第2圖實施例之電阻式記憶體結構在施予直流寫入與抹除電壓之耐久度(endurance)測試電流和循環次數關係圖。量測條件為於裝置之上電極施加偏壓,且裝置下電極接地,其中高電阻狀態與低電阻狀態皆在讀取電壓為0.3V偏壓下讀取其高低電阻狀態電流值,根 據第8圖,在超過10000次以上的連續轉態操作下,高電阻狀態與低電阻狀態之電阻比仍大於10倍。 Fig. 8 is a graph showing the relationship between the endurance test current and the number of cycles of the resistive memory structure of the embodiment of Fig. 2 when the DC write and erase voltages are applied. The measurement condition is that a bias is applied to the upper electrode of the device, and the lower electrode of the device is grounded, wherein the high resistance state and the low resistance state both read the high and low resistance state current values under the bias voltage of 0.3V, and the root value is obtained. According to Fig. 8, in the continuous transition operation of more than 10,000 times, the resistance ratio of the high resistance state to the low resistance state is still more than 10 times.
第9圖為第2圖實施例之電阻式記憶體結構施予交流寫入與抹除電壓之耐久度測試電流和循環次數關係圖。測量條件為於裝置之上電極施加偏壓,且裝置下電極給予接地,其中高電阻狀態與低電阻狀態皆在讀取電壓為0.3V偏壓下,讀取其高低電阻狀態電流值,其中施予的脈衝電壓值分別為3V與-3.3V,且脈衝寬度為40奈米-秒。本實施例的裝置在超過107次以上的連續轉態操作下,高電阻狀態與低電阻狀態之電阻比仍大於10倍,且高、低電阻狀態電流值無明顯變化。 Fig. 9 is a graph showing the relationship between the endurance test current and the number of cycles of the alternating current writing and erasing voltages applied to the resistive memory structure of the second embodiment. The measurement condition is that a bias is applied to the electrode on the device, and the lower electrode of the device is grounded, wherein the high resistance state and the low resistance state are both read at a bias voltage of 0.3 V, and the current value of the high and low resistance states is read. The pulse voltage values were 3 V and -3.3 V, respectively, and the pulse width was 40 nm-second. Apparatus of the present embodiment operate in a continuous transient more than 107 times, the resistance of the high resistance state and a low resistance state ratio is still more than 10 times, and high and low resistance current state no significant changes.
第10圖為第2圖實施例之電阻式記憶體之保久度(retention)測試,將裝置分別轉態至低電阻與高電阻記憶狀態,之後在低電阻與高電阻記憶狀態下,每隔一段時間以0.3V電壓讀取兩記憶態之電流值,結果顯示在85℃溫度下在放置10000秒後仍可正確讀取資料且無任何記憶特性劣化產生,且兩記憶狀態間有著10倍以上的電阻比值。 Figure 10 is a retention test of the resistive memory of the embodiment of Fig. 2, the device is respectively switched to a low resistance and high resistance memory state, and then in a low resistance and high resistance memory state, every other segment The time reads the current values of the two memory states at a voltage of 0.3 V. The result shows that the data can be read correctly after being placed at 850 ° C for 10,000 seconds without any deterioration of memory characteristics, and the memory states have more than 10 times. Resistance ratio.
第11圖為第2圖實施例之電阻式記憶體結構之非破壞性讀取測試(stress test),將裝置轉態至低電阻與高電阻記憶狀態之後,在低電阻與高電阻記憶狀態下,持續在上電極處施加0.3V的偏壓,每隔10秒鐘以0.3V電壓讀取兩記憶態之電流值,結果顯示在85℃溫度下在放置10000秒後仍可正確讀取資料且無任何記憶特性劣化產生,且低電阻與高電阻記憶狀態間有著大於10倍以上的電阻比值。 Figure 11 is a non-destructive read test of the resistive memory structure of the embodiment of Figure 2, after the device is switched to a low resistance and high resistance memory state, in a low resistance and high resistance memory state. Continuously applying a bias voltage of 0.3V to the upper electrode, and reading the current values of the two memory states at a voltage of 0.3 V every 10 seconds, and the result shows that the data can be correctly read after being placed for 10000 seconds at a temperature of 85 ° C and No deterioration of memory characteristics occurs, and there is a resistance ratio greater than 10 times between the low resistance and high resistance memory states.
根據上述,本發明實施例之電阻式記憶體結構具有較少的高電阻及低電阻狀態的變動程度,可有效改善電阻式記憶體的耐久度。 According to the above, the resistive memory structure of the embodiment of the present invention has less variation in high resistance and low resistance state, and can effectively improve the durability of the resistive memory.
雖然本發明之較佳實施例說明如上,然其並非用以限定本發明,任何熟習此技術領域之士,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the preferred embodiments of the present invention are described above, it is not intended to limit the present invention, and any person skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
102‧‧‧基板 102‧‧‧Substrate
104‧‧‧絕緣層 104‧‧‧Insulation
106‧‧‧附著層 106‧‧‧Adhesive layer
108‧‧‧導電層 108‧‧‧ Conductive layer
110‧‧‧下電極 110‧‧‧ lower electrode
114‧‧‧上電極 114‧‧‧Upper electrode
116‧‧‧界面層 116‧‧‧Interfacial layer
118‧‧‧下電阻轉態層 118‧‧‧ Lower resistance transition layer
120‧‧‧上電阻轉態層 120‧‧‧Upper resistance transition layer
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102137251A TWI520394B (en) | 2013-10-16 | 2013-10-16 | Resistive memory device and fabrication thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102137251A TWI520394B (en) | 2013-10-16 | 2013-10-16 | Resistive memory device and fabrication thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201517338A true TW201517338A (en) | 2015-05-01 |
TWI520394B TWI520394B (en) | 2016-02-01 |
Family
ID=53720505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102137251A TWI520394B (en) | 2013-10-16 | 2013-10-16 | Resistive memory device and fabrication thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI520394B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI612701B (en) * | 2017-01-25 | 2018-01-21 | 華邦電子股份有限公司 | Conductive-bridging random access memory and method for fabricating the same |
TWI682533B (en) * | 2019-06-21 | 2020-01-11 | 華邦電子股份有限公司 | Memory devices and methods for forming the same |
US10586831B1 (en) | 2018-10-09 | 2020-03-10 | Opto Tech Corporation | Light emitting diode memory |
-
2013
- 2013-10-16 TW TW102137251A patent/TWI520394B/en active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI612701B (en) * | 2017-01-25 | 2018-01-21 | 華邦電子股份有限公司 | Conductive-bridging random access memory and method for fabricating the same |
US10181560B2 (en) | 2017-01-25 | 2019-01-15 | Winbond Electronics Corp. | Conductive-bridging random access memory and method for fabricating the same |
US10586831B1 (en) | 2018-10-09 | 2020-03-10 | Opto Tech Corporation | Light emitting diode memory |
TWI720351B (en) * | 2018-10-09 | 2021-03-01 | 光磊科技股份有限公司 | Light emitting diode memoey |
TWI682533B (en) * | 2019-06-21 | 2020-01-11 | 華邦電子股份有限公司 | Memory devices and methods for forming the same |
Also Published As
Publication number | Publication date |
---|---|
TWI520394B (en) | 2016-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI518956B (en) | Resistive ram and fabrication method | |
TWI402980B (en) | Resistive memory structure with buffer layer | |
CN106684242B (en) | Conductive bridge type random access memory | |
US9853212B2 (en) | Resistive switching in memory cells | |
CN1953230A (en) | Nonvolatile memory device comprising nanodot and manufacturing method for the same | |
KR20080044479A (en) | Resistive memory device containing transition metal solid solution and method for manufacturing same | |
CN104733612B (en) | A kind of resistance-variable storing device and preparation method thereof | |
US8791445B2 (en) | Interfacial oxide used as switching layer in a nonvolatile resistive memory element | |
US9231208B2 (en) | Method for forming memory device | |
KR20190075036A (en) | Regulating interface layer formation for two-terminal memory | |
TW201931631A (en) | One-time programmable resistive random access memory bit and method for forming the same and one-time programmable resistive random access memory | |
TWI520394B (en) | Resistive memory device and fabrication thereof | |
CN106803533A (en) | Resistive random access memory and method of manufacturing the same | |
KR101789755B1 (en) | Resistive Random Access Memory | |
CN102867912A (en) | Resistive memory with diode rectification capability | |
TWI568042B (en) | Resistive random access memory | |
CN105575991A (en) | Memory structure and method of forming the same | |
CN104617218B (en) | Resistive memory device and preparation method thereof | |
CN105280810B (en) | Resistive random access memory and manufacturing method thereof | |
TWI500193B (en) | Memory device and manufacturing method thereof | |
CN103022346B (en) | Resistance-type memorizer | |
KR102359393B1 (en) | Filament-based device with low variation switching voltage implemented using leakage current characteristics in oxide double layers and manufacturing method thereof | |
CN103066205A (en) | Resistive random access memory preparation method | |
JP6825085B2 (en) | Manufacturing method of resistance changing element and resistance changing element | |
Misra et al. | Resistive switching characteristics teristics 16 of TiO2 thin films for nonvolatile |