[go: up one dir, main page]

TW201341851A - Spatio-optical and temporal spatio-optical directional light modulators - Google Patents

Spatio-optical and temporal spatio-optical directional light modulators Download PDF

Info

Publication number
TW201341851A
TW201341851A TW101145957A TW101145957A TW201341851A TW 201341851 A TW201341851 A TW 201341851A TW 101145957 A TW101145957 A TW 101145957A TW 101145957 A TW101145957 A TW 101145957A TW 201341851 A TW201341851 A TW 201341851A
Authority
TW
Taiwan
Prior art keywords
light
light modulator
array
pixels
angular
Prior art date
Application number
TW101145957A
Other languages
Chinese (zh)
Other versions
TWI611214B (en
Inventor
Hussein S El-Ghoroury
Zahir Y Alpaslan
jing-bo Cai
Marty Maiers
Philip Warner
Dale A Mcneill
Original Assignee
Ostendo Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/329,107 external-priority patent/US8928969B2/en
Priority claimed from US13/546,858 external-priority patent/US8854724B2/en
Application filed by Ostendo Technologies Inc filed Critical Ostendo Technologies Inc
Publication of TW201341851A publication Critical patent/TW201341851A/en
Application granted granted Critical
Publication of TWI611214B publication Critical patent/TWI611214B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/33Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving directional light or back-light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

Spatio-optical directional light modulators and temporal spatio-optical directional light modulators are introduced. These directional light modulators can be used to create 3D displays, ultra-high resolution 2D displays or 2D/3D switchable displays with extended viewing angle. The temporal spatio-optical aspects of an embodiment of these novel light modulators allow them to modulate the intensity, color and direction of the light they emit within a wide viewing angle. The inherently fast modulation and wide angular coverage capabilities of these directional light modulators increase the achievable viewing angle, and directional resolution making the 3D images created by the display be more realistic or alternatively the 2D images created by the display having ultra high resolution. Alternate embodiments are disclosed.

Description

空間光學及時間空間光學方向光調節器 Space optics and time space optical direction light modulator

本發明係關於方向光調節、3D顯示器、發射式微顯示器、2D/3D可切換顯示器及2D/3D自動立體可切換顯示器之領域。 The present invention relates to the field of directional light adjustment, 3D displays, emissive microdisplays, 2D/3D switchable displays, and 2D/3D autostereoscopic switchable displays.

本申請案主張2011年12月6日提出申請之美國臨時專利申請案第61/567,520號之權益及2012年3月27日提出申請之美國臨時專利申請案第61/616,249號之權益。 This application claims the benefit of U.S. Provisional Patent Application Serial No. 61/567,520, filed on Jan. 6, 2011, and the benefit of U.S. Provisional Patent Application No. 61/616,249, filed on March 27, 2012.

在3D顯示器中,形成3D觀看感知需要所發射光之方向調節。在一典型3D顯示器中,藉由在空間光調節器中利用空間多工及時間多工之某一組合來顯示來自不同方向之相同場景之影像需要具有多個照射方向上之均勻照射之一背光。在此等3D顯示器中,通常來自方向背光之光在其到達在保持其方向性同時調節光色彩及強度之空間光調節器像素之前通常藉由一方向選擇性濾光器(諸如例如一繞射板或一全像光學板)處理。 In 3D displays, the formation of 3D viewing perception requires the direction adjustment of the emitted light. In a typical 3D display, the use of a combination of spatial multiplexing and time multiplexing in a spatial light modulator to display images of the same scene from different directions requires one of multiple illuminations with uniform illumination in multiple illumination directions. . In such 3D displays, typically the light from the directional backlight is typically preceded by a directional selective filter (such as, for example, a diffraction) before it reaches a spatial light modulator pixel that maintains its directivity while adjusting the color and intensity of the light. Board or a holographic optical plate).

在某些可切換2D/3D顯示器中,以不同顯示模式操作顯示器需要一方向背光。在一2D顯示模式中,藉助空間光調節器(諸如液晶顯示器(LCD))顯示一單個影像需要具有均勻照射及較大角涵蓋範圍之一背光。在一3D顯示模式中,藉由在空間光調節器中利用空間多工及時間多工之某一組合來顯示來自不同方向之相同場景之影像需要具有均勻照射及多個照射方向之一背光。 In some switchable 2D/3D displays, operating the display in different display modes requires a backlight in one direction. In a 2D display mode, displaying a single image with a spatial light modulator, such as a liquid crystal display (LCD), requires a backlight with uniform illumination and a large angular coverage. In a 3D display mode, the use of a combination of spatial multiplexing and time multiplexing in a spatial light modulator to display images of the same scene from different directions requires uniform illumination and one of a plurality of illumination directions.

在2D模式及3D模式兩者中,來自方向背光之光在其到達空間光調節器像素以在保持其方向性同時均勻地擴展光束之前通常藉由一方向選擇性濾光器(諸如繞射板、一全像光學板等)處理。 In both 2D mode and 3D mode, light from the directional backlight is typically passed through a directional selective filter (such as a diffractive plate) before it reaches the spatial light modulator pixel to maintain its directivity while uniformly spreading the beam. , a holographic image, etc.).

當前可用之方向光調節器係包括多個光源之一照射單元及引導自該等光源發射之光至一指定方向之一方向調節單元之一組合(參見圖1、圖2及圖3)。如繪示先前技術之數個變體之圖1、圖2及圖3中所圖解說明,一照射單元通常組合有諸如掃描鏡或旋轉障壁之一機電移動裝置(參見美國專利第6,151,167號、第6,433,907號、第6,795,221號、第6,803,561號、第6,924,476號、第6,937,221號、第7,061,450號、第7,071,594號、第7,190,329號、第7,193,758號、第7,209,271號、第7,232,071號、第7,482,730號、第7,486,255號、第7,580,007號、第7,724,210號及第7,791,810號以及美國專利申請公開案第2010/0026960號及第2010/0245957號),或諸如液態透鏡或偏光切換之光電移動裝置(參見圖1、圖2及圖3以及美國專利第5,986,811號、第6,999,238號、第7,106,519號、第7,215,475號、第7,369,321號、第7,619,807號及第7,952,809號)。 Currently available directional light modulators include a combination of one of a plurality of light sources and one of the light source emitted from the light sources to a direction directional adjustment unit (see Figures 1, 2 and 3). As illustrated in Figures 1, 2, and 3 of several variations of the prior art, an illumination unit is typically combined with an electromechanical mobile device such as a scanning mirror or a rotating barrier (see U.S. Patent No. 6,151,167, 6,433,907, 6,795,221, 6,803,561, 6,924,476, 6,937,221, 7,061,450, 7,071,594, 7,190,329, 7,193,758, 7,209,271, 7,232,071, 7,482,730, 7,486,255 , Nos. 7,580,007, 7,724,210 and 7,791,810, and U.S. Patent Application Publication Nos. 2010/0026960 and 2010/0245957, or photoelectric mobile devices such as liquid lenses or polarization switching (see Figures 1, 2 and Figure 3 and U.S. Patent Nos. 5,986,811, 6,999,238, 7,106,519, 7,215,475, 7,369,321, 7,619,807 and 7,952,809.

在機電調節方向光調節器與光電調節方向光調節器兩者中,存在三個主要缺點: There are three main drawbacks in both electromechanical adjustment directional light modulators and photoelectrically regulated directional light modulators:

1.回應時間:機械移動或光學表面改變通常非即刻達成且影響調節器回應時間。另外,此等操作之速度通常花費 減少可達成顯示亮度之影像圖框時間之某一部分。 1. Response time: Mechanical movement or optical surface changes are usually not achieved instantaneously and affect the regulator response time. In addition, the speed of such operations usually costs Reduce a portion of the image frame time at which the brightness can be achieved.

2.體積態樣:此等方法需要光源與一起工作之方向調節裝置之間的一距離,此增加顯示器之總體積。 2. Volumetric aspects: These methods require a distance between the light source and the direction adjustment device that works together, which increases the total volume of the display.

3.光損失:將光耦合至一活動鏡上形成光損耗,該光損耗繼而使顯示器系統電力效率降級且形成必須藉由併入添加較大體積及增加之電力消耗之龐大冷卻方法來消除之熱。 3. Light loss: coupling light to a moving mirror to create optical losses, which in turn degrades the display system power efficiency and eliminates the need to incorporate a large cooling method that adds large volumes and increased power consumption. heat.

除了緩慢、龐大及光學損耗以外,先前技術方向背光單元出於3D顯示器目的亦需要具有用於與一方向選擇性濾光器組合之窄光譜帶寬、高準直及個別可控制性。達成窄光譜帶寬及高準直需要裝置級創新及光學光調節,從而增加整個顯示器系統之成本及體積態樣。達成個別可控制性需要額外電路及多個光源,從而增加系統複雜性、容積及成本。 In addition to slow, bulky, and optical losses, prior art backlight units also require narrow spectral bandwidth, high collimation, and individual controllability for combination with a directional selective filter for 3D display purposes. Achieving narrow spectral bandwidth and high collimation requires device-level innovation and optical light conditioning, thereby increasing the cost and volume of the entire display system. Achieving individual controllability requires additional circuitry and multiple light sources, increasing system complexity, volume, and cost.

因此本發明之一目的係引入克服先前技術之缺點之一空間光學光調節器,因此使得形成提供實用體積及觀看體驗之3D顯示器可行。本發明之一目的亦係引入克服先前技術之限制之一經延伸角涵蓋範圍時間空間光學光調節器,因此使得形成提供體積優點加在一光視角內之一觀看體驗之3D及高解析度2D顯示器可行。自以下參考附圖進行之本發明之較佳實施例之詳細闡述將明瞭本發明之額外目的及優點。 It is therefore an object of the present invention to introduce a spatial optical light modulator that overcomes one of the disadvantages of the prior art, thus making it possible to form a 3D display that provides a practical volume and viewing experience. It is also an object of the present invention to introduce a time-space optical light adjuster that extends over a range of extended angles over the limitations of the prior art, thereby enabling the formation of 3D and high resolution 2D displays that provide volume advantages plus one viewing experience within a viewing angle. feasible. The additional objects and advantages of the present invention will become apparent from the Detailed Description of the <RTIgt;

藉由實例之方式而非限制之方式在附圖的圖中圖解說明 本發明,且在附圖中相同的參考編號指代相同的元件。 Illustrated in the figures of the drawings by way of example and not limitation The present invention, and the same reference numerals are used to refer to the same elements in the drawings.

在以下詳細闡述中提及「一項實施例」或「一實施例」意指結合實施例所闡述之一特定特徵、結構或特性係包含於本發明之至少一項實施例中。片語「在一項實施例中」在此詳細闡述中之各種地方之出現不必全部指代相同實施例。 References to "an embodiment" or "an embodiment" are intended to mean that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment of the invention. The appearances of the phrase "in the embodiment"

近來已引入一新種類發射式微尺度像素陣列裝置。此等裝置特徵高亮度、非常快速光多色強度及空間調節能力係包含所有裝置電流之一非常小單個裝置大小。一個此一裝置之固態發光像素可係一發光二極體(LED)或雷射二極體(LD),其接通-關斷狀態係由含於一CMOS晶片(或裝置)內之驅動電路控制,一發射式微尺度像素陣列接合於該CMOS晶片(或裝置)上。構成此等裝置之發射式陣列之像素之大小將通常介於大約5微米至20微米之範圍中,其中裝置之典型發射表面區域介於大約15平方毫米至150平方毫米之範圍中。發射式微尺度像素陣列裝置內之像素係通常透過其CMOS晶片之驅動電路可在空間上、在色度上及在時間上個別地定址。此等裝置之一項實例係下文所闡述之例示性實施例中所提及之QPI裝置(參見美國專利第7,623,560號、第7,767,479號、第7,829,902號、第8,049,231號及第8,098,265號,以及美國專利申請公開案第2010/0066921號、第2012/0033113號)。此一裝置之另一實例係一基於OLED之微顯示器。然而,應理解,QPI裝置僅係可用於本發明之實施例中之裝置類型之一實例。因此在 以下之闡述中,對一QPI裝置之提及應理解為係出於所揭示實施例之特定性之目的,且非用於對本發明之任何限制。 A new type of emissive micro-scale pixel array device has recently been introduced. These devices feature high brightness, very fast optical polychromatic intensity, and spatial adjustment capabilities that include one of all device currents that is very small for a single device size. A solid-state illuminating pixel of such a device may be a light-emitting diode (LED) or a laser diode (LD) whose on-off state is driven by a driving circuit included in a CMOS wafer (or device). Control, an emissive microscale pixel array is bonded to the CMOS wafer (or device). The size of the pixels of the emissive array constituting such devices will typically range from about 5 microns to 20 microns, with a typical emitting surface area of the device ranging from about 15 square millimeters to 150 square millimeters. The pixel systems within the emissive microscale pixel array device are typically individually addressable spatially, chrominally, and temporally through the drive circuitry of their CMOS wafer. An example of such a device is the QPI device referred to in the exemplary embodiments set forth below (see U.S. Patent Nos. 7,623,560, 7,767,479, 7,829,902, 8,049,231 and 8,098,265, and U.S. Patent Application Publication No. 2010/0066921, No. 2012/0033113). Another example of such a device is an OLED based microdisplay. However, it should be understood that the QPI device is merely one example of a type of device that can be used in embodiments of the present invention. Thus, in In the following description, a reference to a QPI device is understood to be for the purpose of particularity of the disclosed embodiments and is not intended to limit the invention.

本發明將具有被動晶圓級光學器件(WLO)之QPI裝置之發射式微像素陣列能力單獨組合或將與整個總成之一活節轉動移動組合以形成可同時執行一方向光源及先前技術之一繞射板之功能之一光調節器。如本文中使用,晶圓級或晶圓意指具有至少2英寸且最佳4英寸或4英寸以上之一直徑之一裝置或裝置矩陣。WLO係使用紫外線(UV)壓印微影由一聚合物整體地製作於晶圓上。WLO之主要優點當中有製作小特徵微透鏡陣列(MLA)之能力及能夠使多個WLO微透鏡陣列層一起精確對準且使其與諸如CMOS感測器或QPI之一光電子裝置精確對準。可藉由一典型WLO製作技術達成之對準精確度可小於一微米。QPI之發射式微發射體像素陣列及可相對於QPI之微發射體像素陣列精確對準之WLO微透鏡陣列(MLA)之個別像素可定址性之組合消除先前技術中經歷之對在系統中具有一方向選擇性濾光器之需求,同時放寬對光源中之窄光譜帶寬之要求、同時減少系統體積、複雜性及成本。在本發明之某些實施例中,所發射之光之方向調節係藉由由WLO達成之光發散來達成,且在其他實施例中,係藉由由WLO達成之光發散與整個總成之活節轉動移動之組合來達成。 The present invention combines the emission micropixel array capabilities of a QPI device with passive wafer level optics (WLO) alone or in combination with one of the entire assembly rotational movements to form a directional light source and one of the prior art One of the functions of the diffraction plate is a light regulator. As used herein, wafer level or wafer means a device or device matrix having a diameter of at least 2 inches and preferably 4 inches or more. WLO is fabricated on a wafer from a single polymer using ultraviolet (UV) imprint lithography. Among the main advantages of WLO are the ability to fabricate small feature microlens arrays (MLAs) and the ability to precisely align multiple WLO microlens array layers together and precisely align them with one of the optoelectronic devices such as CMOS sensors or QPIs. The alignment accuracy achieved by a typical WLO fabrication technique can be less than one micron. The combination of the QPI's emissive micro-emitter pixel array and the individual pixel addressability of the WLO microlens array (MLA) that can be precisely aligned with respect to the QPI's micro-emitter pixel array eliminates the prior art experience of having one in the system The need for directional selective filters while relaxing the need for narrow spectral bandwidth in the source while reducing system size, complexity and cost. In some embodiments of the invention, the direction adjustment of the emitted light is achieved by divergence of light achieved by the WLO, and in other embodiments, by the light divergence achieved by the WLO and the entire assembly. The combination of the joint movement and movement is achieved.

參考圖4及圖5,個別可定址QPI像素(p 1p 2、...、p n)之群組與構成2維微透鏡陣列MLA 220之微透鏡元件400中之 每一者相關聯,藉此自此像素群組中之像素中之每一者發射之光將在其相關聯微透鏡元件之數值孔徑(角範圍)內折射至自獨特方向(d 1d 2、...、d n)中之一者中。QPI裝置210之整個微像素陣列將包括眾多QPI像素群組(G 1G 2、...、G N)(在本文中亦稱作像素調節群組),藉此每一調節群組G i 將與2維陣列MLA 220透鏡元件中之一者相關聯且像素調節群組(G 1G 2、...、G N)集體地將然後表示本發明之空間光學方向光調節器之空間調節陣列。在圖12中所圖解說明之時間活節轉動及每一像素群組內之個別像素(p 1p 2、...、p n)與所發射光方向(d 1d 2、...、d n)之一對一相關聯之情況下,對圖12中在概念上所圖解說明之本發明之時間空間光學方向光調節器而言可能使眾多時間多工方向(d 1i d 2i 、...、d ni )(i=1、2、...)與其像素群組G i 中之每一者相關聯;每一時間多工方向可藉由像素群組(G 1G 2、...、G N)中之每一者內之個別像素(p 1p 2、...、p n)之時間定址而個別定址。與圖12之2維陣列MLA 220相關聯之眾多QPI裝置像素群組(G 1G 2、...、G N)將然後表示本發明之時間空間光學方向光調節器之空間調節陣列,其中時間多工方向(d 1i d 2i 、...、d ni )(i=1、2、...)表示可透過構成每一像素調節群組之QPI裝置210之像素(p 1p 2、...、p n)之時間可定址性而個別定址之眾多光調節方向。換言之,時間空間光學方向光調節器將能夠透過QPI像素群組(G 1G 2、...、G N)之可定址性在空間上調節光且透過構成每一群組之像素(p 1p 2、...、p n)之時間可定址性在方向上 調節自方向(d 1i d 2i 、...、d ni )(i=1、2、...)上之每一像素群組所發射之光。因此,圖12中所圖解說明之時間空間光學方向光調節器將能夠產生可在空間上及在方向上調節之光,藉此來自等效於QPI像素群組(G 1G 2、...、G N)之發射區域之空間位置中之每一者發射之光可透過像素群組之可定址性而個別定址以及可透過每一像素群組內之個別像素之時間可定址性而在方向上定址。 Referring to FIG 4 and FIG 5, QPI individually addressable pixels (p 1, p 2, ... , p n) of the group 400 of each of the associated two-dimensional microlens array MLA micro lens elements 220 constituting the Thus, light emitted from each of the pixels in the group of pixels will be refracted to a unique direction ( d 1 , d 2 , ... within the numerical aperture (angular range) of its associated microlens element. In one of d n ). QPI entire micro pixel array unit 210 will comprise a number of QPI pixel group (G 1, G 2, ... , G N) ( also referred to herein as pixel adjuster group), whereby each adjustment group G i will be associated with one of the 2D array MLA 220 lens elements and the pixel adjustment group ( G 1 , G 2 , ..., G N ) collectively will then represent the spatial optical direction light modulator of the present invention Space conditioning array. The time-segment rotation illustrated in Figure 12 and the individual pixels ( p 1 , p 2 , ..., p n ) within each pixel group and the direction of the emitted light ( d 1 , d 2 , .. . . . , d n ) in the case of one-to-one correlation, for the time-space optical direction light modulator of the present invention as conceptually illustrated in FIG. 12, it is possible to make numerous time multiplex directions ( d 1 i , d 2 i , . . . , d n i )( i =1, 2, . . . ) are associated with each of their pixel groups G i ; each time the multiplex direction can be by a pixel group ( The individual pixels ( p 1 , p 2 , ..., p n ) in each of G 1 , G 2 , ..., G N ) are time-addressed and individually addressed. The plurality of QPI device pixel groups ( G 1 , G 2 , . . . , G N ) associated with the 2-dimensional array MLA 220 of FIG. 12 will then represent the spatially-adjusted array of the temporal spatial optical direction light modulator of the present invention, Wherein the time multiplex direction ( d 1 i , d 2 i , . . . , d n i ) ( i =1, 2, . . . ) represents a pixel that can pass through the QPI device 210 constituting each pixel adjustment group ( The time of p 1 , p 2 , ..., p n ) can be addressed and the number of light adjustment directions individually addressed. In other words, the temporal spatial optical direction light modulator will be able to spatially adjust the light through the addressability of the QPI pixel group ( G 1 , G 2 , ..., G N ) and through the pixels that make up each group ( p The time of 1 , p 2 , ..., p n ) can be adjusted in the direction from the direction ( d 1 i , d 2 i , ..., d n i ) ( i =1, 2, ... The light emitted by each pixel group on it. Thus, in the FIG. 12 illustrates a time-space optical directional optical regulator and may be capable of generating light modulated in a direction in space, whereby from the QPI pixel group is equivalent to (G 1, G 2, .. , G N ) The light emitted by each of the spatial locations of the emission regions can be individually addressed by the addressability of the pixel group and can be addressed by the time addressability of individual pixels within each pixel group. Address in the direction.

圖5圖解說明本發明之空間及方向調節原理。圖5圖解說明包括眾多QPI裝置像素群組G1、G2、...、GN之一2維陣列,其中每一此類像素群組與一晶圓級微透鏡陣列(MLA)中之一個微透鏡相關聯。在每一群組內之個別像素p1、p2、...,pn與所發射光方向d1、d2、...、dn之一對一相關聯之情況下,對圖5中所圖解說明之發光裝置而言可能產生可在空間上及在方向上調節之光。因此,光可自QPI裝置像素群組G1、G2、...、GN之發射區域中之空間位置中之每一者發射且可透過像素群組之可定址而個別定址以及可透過每一像素群組內之個別像素之可定址性而在方向上定址。QPI裝置之個別像素可經調節以使得MLA中之每一透鏡可同時發射光至多個方向。由於個別像素控制,因此可透過QPI裝置像素之個別可定址性而個別調整自每一微透鏡發射之光振幅、光發射之時間持續時間、特定光方向及光方向之總數目。 Figure 5 illustrates the spatial and directional adjustment principles of the present invention. Figure 5 illustrates a 2-dimensional array comprising a plurality of QPI device pixel groups G 1 , G 2 , ..., G N , wherein each such pixel group is in a wafer level microlens array (MLA) A microlens is associated. In the case where the individual pixels p 1 , p 2 , . . . , p n in each group are associated with one of the emitted light directions d 1 , d 2 , . . . , d n The illumination device illustrated in 5 may produce light that can be spatially and directionally adjusted. Thus, light can be transmitted from each of the spatial locations in the transmit regions of the QPI device pixel groups G 1 , G 2 , . . . , G N and can be individually addressed and permeable through the addressable group of pixel groups. The individual pixels within each pixel group are addressable and addressed in the direction. The individual pixels of the QPI device can be adjusted such that each lens in the MLA can simultaneously emit light to multiple directions. Due to the individual pixel control, the amplitude of the light emitted by each microlens, the duration of the light emission, the total number of light directions, and the total number of light directions can be individually adjusted by the individual addressability of the pixels of the QPI device.

對熟習此項技術者將明顯的是,在透鏡類型之挑選之(亦即,雙凸透鏡陣列或兩軸透鏡陣列)情況下,藉由一透 鏡進行之方向調節可在一單個軸或在兩個軸上進行。然而,透鏡陣列與像素化光源之精確對準及小像素大小(大約數微米或10微米或更少)之可達成性已阻礙可產生形成高清晰度3D顯示器所需之方向光調節能力之一方向光調節器之實現。在本發明中,高像素解析度係藉由利用可獲得小於10微米像素節距之QPI裝置之發射式微像素陣列及可小於一微米(藉由晶圓級光學器件變得可能)之透鏡陣列之高精確度對準而達成。此允許空間光學光調節器達成足以實現高清晰度3D顯示器之空間以及方向調節解析度。 It will be apparent to those skilled in the art that in the case of lens type selection (i.e., lenticular lens array or two-axis lens array), The direction adjustment of the mirror can be performed on a single axis or on two axes. However, the achievability of precise alignment of the lens array with the pixelated source and small pixel size (a few microns or 10 microns or less) has hindered the ability to produce the directional light conditioning capabilities required to form a high definition 3D display. The realization of the directional light regulator. In the present invention, high pixel resolution is achieved by utilizing an array of emissive micropixels that can achieve a QPI device with a pixel pitch of less than 10 microns and a lens array that can be smaller than one micron (enabled by wafer level optics). Achieved with high precision alignment. This allows the spatial optical light modulator to achieve sufficient spatial and directional adjustment resolution for high definition 3D displays.

圖6及圖7展示本發明之一例示性實施例。參考此例示性實施例之圖6,自一像素群組Gi內之每一個別像素發射之光自QPI裝置發射式表面行進至包括三個光學元件610、620及630之一微透鏡之出射孔徑。自一像素群組Gi內之每一個別像素發射之光將經準直且經擴大以填充WLO微透鏡陣列220之出射孔徑且在一Θ=±15°之角發散內在一特定方向處橫穿。在本質上,WLO微透鏡陣列220將自構成QPI裝置之二維像素群組Gi個別像素發射之光映射至由WLO微透鏡陣列220之Θ=±15°角發散定義之三維體積內之個別方向中。 6 and 7 illustrate an exemplary embodiment of the present invention. Referring to Figure 6 of this exemplary embodiment, light emitted from each individual pixel within a group of pixels G i travels from the QPI device emitting surface to an exit comprising one of the three optical elements 610, 620, and 630 Aperture. Light emitted from each individual pixel within a group of pixels G i will be collimated and enlarged to fill the exit aperture of the WLO microlens array 220 and diverge at a particular direction at a Θ=±15° angle of divergence. wear. In essence, the WLO microlens array 220 maps light emitted from individual pixels of the two-dimensional pixel group G i constituting the QPI device to individual three-dimensional volumes defined by the 发=±15° angular divergence of the WLO microlens array 220. In the direction.

參考圖解說明一例示性實施例之圖6及圖7,眾多光學元件610、620及630經製作以形成將相對於彼此且相對於QPI裝置像素群組G1、G2、...,GN之相關聯陣列而精確對準之微透鏡陣列層710、720及730。圖7中所圖解說明之例示性實施例亦包含QPI裝置210及其相關聯QPI裝置蓋玻璃760。 光學元件610、620及630之設計經考量QPI裝置蓋玻璃760之厚度及光學特性以便在QPI裝置蓋玻璃760之發射表面上成像。圖7之例示性實施例圖解說明空間光學方向光調節器之全總成。圖7中所圖解說明之本發明之空間光學方向光調節器之此例示性實施例之典型總厚度將小於5毫米。藉由先前技術之方向光調節技術不可能達成方向光調節器之此緊湊性。 Referring to Figures 6 and 7 of an exemplary embodiment, a plurality of optical elements 610, 620, and 630 are fabricated to form pixel groups G 1 , G 2 , ..., G with respect to each other and with respect to the QPI device. The associated array of N is precisely aligned with the microlens array layers 710, 720, and 730. The exemplary embodiment illustrated in Figure 7 also includes a QPI device 210 and its associated QPI device cover glass 760. The design of optical elements 610, 620, and 630 takes into account the thickness and optical properties of the QPI device cover glass 760 for imaging on the emitting surface of the QPI device cover glass 760. The illustrative embodiment of Figure 7 illustrates the total assembly of a spatial optical direction light modulator. The exemplary overall thickness of this exemplary embodiment of the spatial optical direction light modulator of the present invention illustrated in Figure 7 will be less than 5 millimeters. This compactness of the directional light modulator is not possible with prior art directional light adjustment techniques.

圖8及圖9圖解說明空間光學方向光調節器之操作原理。圖8圖解說由QPI裝置之發射像素中之(n×n)個像素之一個二維陣列構成之調節群組Gi中之一者之一例示性實施例,藉此出於便利像素群組Gi沿一個軸之大小將經選擇為n=2m。參考圖8,可藉由像素群組Gi達成之方向調節可定址性將透過構成調節群組Gi之像素沿其兩個軸x及y中之每一者使用m位元字之可定址性來完成。圖9圖解說明將自構成QPI裝置像素群組Gi之(n×n)個像素發射之光映射至由相關聯WLO微透鏡(諸如例示性實施例600之彼微透鏡)之角發散±Θ所定義之三維體積內之個別方向中。作為一說明性實例,當QPI裝置之個別像素之尺寸係(5×5)微米且QPI裝置像素群組由(n×n)=(28×28)=(256×256)個像素陣列構成且相關聯WLO微透鏡之角發散係Θ=±15°時,則自QPI裝置發射表面處之大小(1.28×1.28)毫米之QPI裝置二維調節像素群組Gi中之每一者,將可能跨越Θ=±15°之角發散產生(256)2=65,536個可個別定址之方向光束,藉此在65,536個方向中之每一者上產生之光亦可進行色彩及強度之個別調 節,通常使用對每一像素色彩分量之一相對高頻率脈衝寬度調節,但若期望可使用其他控制技術,諸如比例控制。 Figures 8 and 9 illustrate the principle of operation of a spatial optical directional light modulator. Figure 8 illustrates an exemplary embodiment of one of the adjustment groups G i formed by a two-dimensional array of (n x n) pixels in the transmit pixels of the QPI device, thereby facilitating pixel groups The size of G i along an axis will be chosen to be n=2 m . Referring to FIG. 8, the direction-adjustable addressability that can be achieved by the pixel group G i will be addressable by using m-bit words along each of its two axes x and y by pixels constituting the adjustment group G i Sex to complete. Figure 9 illustrates mapping of light emitted from (n x n) pixels constituting a QPI device pixel group G i to angular divergence ± by an associated WLO microlens (such as the microlens of Exemplary Embodiment 600) In the individual directions within the defined three-dimensional volume. As an illustrative example, when the size of the individual pixels of the QPI device is (5 x 5) microns and the QPI device pixel group is (n x n) = (2 8 × 2 8 ) = (256 × 256) pixel arrays when the configuration and the associated microlens of the angular divergence WLO based Θ = ± 15 °, from the QPI QPI millimeters each two-dimensional adjustment means in the pixel group size G i (1.28 × 1.28) of the surface emission device, It is possible to divergence at an angle of Θ=±15° to produce (256) 2 = 65,536 individually steerable beams, whereby the light produced in each of the 65,536 directions can also be individually adjusted in color and intensity. A relatively high frequency pulse width adjustment is typically used for one of the color components of each pixel, although other control techniques, such as proportional control, may be used if desired.

使用方向調節群組Gi之一(N×M)陣列(諸如先前設計實例中所闡述之彼陣列),基於QPI裝置之空間光學方向光調節器之任何期望之空間及方向調節能力將係可能的。舉例而言,若需要形成具有提供(256)2=65,536個方向調節解析度之N=320×M=240之空間調節解析度之一空間光學方向光調節器,則空間光學方向光調節器將包括一陣列(320×240)個方向調節群組,且當使用具有(5×5)微米像素大小之QPI裝置時,空間光學方向光調節器之總大小將係大約41×31 cm。自此一空間光學方向光調節器發射之光可在與其WLO微透鏡陣列相關聯之角發散±Θ(舉例而言,針對例示性實施例600,Θ=±15°)內以(320×240)之一解析度進行空間調節及以65,536之一解析度進行方向調節且亦可在每一方向上進行色彩及強度之調節。 Using one of the directional adjustment group G i (N x M) arrays (such as the arrays described in the previous design examples), any desired spatial and directional adjustment capabilities of the spatial optical directional light modulator based on the QPI device will be possible of. For example, if it is desired to form a spatial optical direction light adjuster having a spatial adjustment resolution of N = 320 × M = 240 providing (256) 2 = 65,536 direction adjustment resolutions, the spatial optical direction light adjuster will An array (320 x 240) of directional adjustment groups is included, and when a QPI device having a (5 x 5) micron pixel size is used, the total size of the spatial optical directional light modulator will be approximately 41 x 31 cm. Light emitted from a spatial optical direction light modulator may be diverged at an angle associated with its WLO microlens array (for example, for exemplary embodiment 600, Θ = ± 15°) (320 × 240) One of the resolutions is spatially adjusted and the direction is adjusted with a resolution of 65,536 and the color and intensity can be adjusted in each direction.

光調節器之方向調節之解析度(用晶圓級微透鏡陣列之角發散±Θ內之個別可定址方向之數目表示)將藉由選擇發射式微發射體陣列QPI裝置之像素節距或藉由選擇晶圓級微透鏡陣列之透鏡節距或該兩者之一組合來判定。對熟習此項技術者明顯的是,透鏡系統(諸如圖6中所圖解說明之彼透鏡系統)可經設計以允許較寬或較窄角發散±Θ。對熟習此項技術者亦明顯的是,每一調節群組Gi內之較小或較大數目個像素以產生任何期望之方向調節解析度。 The resolution of the direction adjustment of the light modulator (represented by the number of individual addressable directions within the angular divergence of the wafer level microlens array) will be selected by the pixel pitch of the emitter micro-emitter array QPI device or by The lens pitch of the wafer level microlens array or a combination of the two is selected for determination. It will be apparent to those skilled in the art that a lens system, such as the lens system illustrated in Figure 6, can be designed to allow for a wider or narrower angle of divergence. Zheyi apparent to those skilled in the art that each adjustable within a smaller or larger group G i number of pixels in the direction of any desired adjustment resolution.

取決於所使用之QPI裝置之總像素解析度,此一空間光 學方向光調節器可使用包括眾多QPI裝置之一平鋪式陣列實施。舉例而言,若使用具有(1024×1024)像素解析度之一QPI裝置,則每一此類QPI裝置可用於實施(2×2)調節群組Gi之一陣列,且具有(6×6)空間光調節解析度及65,536個方向光調節解析度之空間光學方向光調節器將使用諸如圖11之圖解說明中之此等QPI裝置之一(3×3)平鋪式陣列實施。 Depending on the total pixel resolution of the QPI device used, this spatial optical directional light modulator can be implemented using a tiled array comprising one of a number of QPI devices. For example, if one QPI device with (1024 x 1024) pixel resolution is used, each such QPI device can be used to implement an array of (2 x 2) adjustment groups G i with (6 x 6 The spatial light adjustment resolution and the 65,536 direction light adjustment resolution spatial optical direction light modulators will be implemented using one of the QPI devices (3 x 3) tiled arrays such as illustrated in Figure 11.

由於可藉由發射式QPI裝置及相關聯WLO達成之緊湊型,使得可能平鋪一陣列QPI裝置以實施空間光學方向光調節器。舉例而言,在諸如圖7中所圖解說明之彼實施方案之一實施方案之情況下,將可能製作具有分別5.12毫米×5.12毫米×5毫米之寬度、高度及厚度之一QPI裝置/WLO總成(諸如圖7中所圖解說明之彼總成),以實現先前實例之(2×2)調節群組之空間光學方向光調節器。亦將可能以其電介面係定位於其發射式表面之相對側處之一微球柵陣列(MBGA)來實施此一QPI裝置/WLO總成,此將允許QPI裝置/WLO總成之整個頂表面構成裝置之發射表面,此繼而將使得可能無縫平鋪眾多此類QPI裝置/WLO總成以實施任何期望大小之空間光學方向光調節器。圖11係平鋪眾多QPI裝置/WLO總成以實施一任意大小之空間光學方向光調節器之一圖解說明。 Due to the compact nature that can be achieved with the emissive QPI device and associated WLO, it is possible to tile an array of QPI devices to implement a spatial optical directional light modulator. For example, in the case of an embodiment such as the one illustrated in Figure 7, it would be possible to make a QPI device/WLO total having a width, height and thickness of 5.12 mm x 5.12 mm x 5 mm, respectively. (such as the one illustrated in Figure 7) to implement the spatial optical directional light modulator of the (2 x 2) adjustment group of the previous example. It would also be possible to implement this QPI device/WLO assembly with its micro-ball grid array (MBGA) positioned at the opposite side of its emissive surface, which would allow the entire top of the QPI device/WLO assembly. The surface constitutes the emitting surface of the device, which in turn will make it possible to seamlessly tile a large number of such QPI devices/WLO assemblies to implement any desired size of the spatial optical direction light modulator. Figure 11 is a graphical illustration of one of a number of QPI devices/WLO assemblies that are tiled to implement an arbitrary size spatial optical directional light modulator.

將參考圖8及圖9之圖解說明闡述空間光學方向光調節器之操作原理。圖8圖解說明針對方向調節使用m位元解析度之調節群組Gi中之每一者之二維可定址性。如早先所闡 釋,將自調節群組Gi一n×n陣列中之(2m×2m)個個別像素發射之光藉由其相關聯WLO元件在相關聯WLO微透鏡之角發散±Θ內映射至22m個光方向中。使用個別像素在調節群組Gi中之每一者內之(x,y)維度座標,所發射光束之角座標(θ,φ)藉由以下方程式得出: The principle of operation of the spatial optical direction light modulator will be explained with reference to the illustrations of FIGS. 8 and 9. Figure 8 illustrates the two-dimensional addressability of each of the adjustment groups G i using m-bit resolution for direction adjustment. As explained earlier, the light emitted by (2 m × 2 m ) individual pixels in the self-adjusting group G i - n × n array is diverged by the associated WLO element at the corner of the associated WLO microlens ± Θ The inner map is mapped to 2 2m light directions. Using the (x, y) dimension coordinates of each of the individual pixels in the adjustment group G i , the angular coordinates ( θ, φ ) of the emitted light beam are obtained by the following equation:

其中角(θ,φ)係球座標,其中極軸在θ=0下平行於調節群組Gi之發射表面之z軸且m=log2 n係用於表達調節群組Gi之x及y像素解析度之位元之數目。 Wherein the angle ( θ, φ ) is a spherical coordinate, wherein the polar axis is parallel to the z-axis of the emission surface of the adjustment group G i at θ =0 and m=log 2 n is used to express the x of the adjustment group G i and The number of bits of y pixel resolution.

空間光學方向光調節器之空間解析度係由構成整個空間光學方向光調節器之二維調節群組陣列內之個別調節群組G i 中之每一者之座標簡單定義。當然,一個群組之像素與一毗鄰群組之微透鏡之間存在一定串擾。然而,該串擾藉由以下設計態樣實質上減少。首先,由於QPI裝置之固有經準直光發射,自QPI裝置像素發射之光通常:針對當QPI裝置像素係發光二極體時之情形侷限於一±17°角錐,或針對當QPI裝置像素係雷射二極體時之情形侷限一±5°角錐。因此,如圖6中所圖解說明接近於QPI裝置之蓋玻璃660放置晶圓級光學器件(WLO)準直透鏡元件將使自每一調節群組邊緣像素發射之光之大多數侷限於其相關聯之WLO透鏡元件600。第二,作為一添加量度,每一像素群組之數個(一些)邊緣像素經關斷以進一步避免WLO微透鏡陣列之毗 鄰透鏡之間的光洩漏(串擾)。舉例而言,假定在其像素係發光二極體之情況下QPI裝置之±17侷限發射及如圖6中所圖解說明之第一微透鏡元件之接近放置,模擬展示圍繞包括少達僅5個像素之調節群組之外邊緣之一暗環將使串擾減少至低於1%。當QPI裝置像素係雷射二極體時,經關斷像素之需要數目將甚至較少且可甚至不需要,此乃因在此情形個,QPI裝置像素光發射侷限於一甚至更窄±5°角錐。最終結果可係陣列中之QPI裝置中之作用像素之間的一些(數個)非作用、消隱或死像素位置。當然,若期望,可使用擋板及/或帶限光擴散器,但其往往使光調節器之設計複雜化且導致過量光損失。 The spatial resolution of the spatial optical direction light modulator is simply defined by the coordinates of each of the individual adjustment groups G i within the two-dimensional adjustment group array that make up the entire spatial optical direction light modulator. Of course, there is a certain amount of crosstalk between the pixels of one group and the microlens of an adjacent group. However, the crosstalk is substantially reduced by the following design aspects. First, due to the inherent collimated light emission of the QPI device, the light emitted from the pixels of the QPI device is typically limited to a ±17° pyramid for the pixel-based LED of the QPI device, or for the pixel system of the QPI device. The situation with a laser diode is limited to a ±5° pyramid. Thus, placing a wafer level optical device (WLO) collimating lens element close to the cover glass 660 of the QPI device as illustrated in Figure 6 will limit the majority of the light emitted from each adjustment group edge pixel to its correlation. Connected to the WLO lens element 600. Second, as an added measure, several (some) edge pixels of each pixel group are turned off to further avoid light leakage (crosstalk) between adjacent lenses of the WLO microlens array. For example, assuming a ±17 limited emission of the QPI device in the case of its pixel-based light-emitting diode and an approximate placement of the first micro-lens element as illustrated in Figure 6, the simulated display encompasses only as few as five A dark ring at the outer edge of the adjustment group of pixels will reduce crosstalk to less than 1%. When the QPI device pixel is a laser diode, the number of required pixels to turn off the pixel will be even less and may not even be needed, because in this case, the pixel light emission of the QPI device is limited to one or even narrower ±5. ° Angle cone. The end result can be some (several) inactive, blanking, or dead pixel locations between the active pixels in the QPI device in the array. Of course, baffles and/or band-limited light diffusers can be used if desired, but they tend to complicate the design of the light modulator and result in excessive light loss.

圖10圖解說明本發明之空間光學方向光調節器之資料處理方塊圖之一例示性實施例。至空間光學方向光調節器之輸入資料將經格式化成多個位元字進行,藉此每一輸入字含有三個資料欄位;一個欄位係構成空間光學方向光調節器之調節群組陣列內之調節群組G i 之位址,而剩餘兩個資料欄位提供在自彼調節群組發射之光之色彩、強度及方向方面之該光之資料表示。參考圖10,資料處理方塊120解碼輸入資料之調節群組位址欄位且將光調節資料欄位路由至與指定調節群組相關聯之QPI裝置。資料處理方塊130解碼所路由調節群組位址欄位且將其映射至指定調節群組之位址。資料處理方塊140解碼方向調節資料欄位且將其映射至調節群組內之指定像素位址之位址。資料處理方塊150將所得像素位址與輸入資料之相關聯光強度及色彩資 料欄位串連。資料處理方塊160解碼指定像素位址且將光調節資料路由至構成空間光學方向光調節器之指定QPI裝置內之指定像素。 Figure 10 illustrates an exemplary embodiment of a data processing block diagram of a spatial optical direction light modulator of the present invention. The input data to the spatial optical direction light modulator will be formatted into a plurality of bit words, whereby each input word contains three data fields; one field is an adjustment group array constituting the spatial optical direction light adjuster The address of the group G i is adjusted within, and the remaining two data fields provide a representation of the light in terms of color, intensity and direction of the light emitted from the adjustment group. Referring to Figure 10, data processing block 120 decodes the adjusted group address field of the input data and routes the light adjustment data field to the QPI device associated with the designated adjustment group. The data processing block 130 decodes the routed adjustment group address field and maps it to the address of the specified adjustment group. The data processing block 140 decodes the direction adjustment data field and maps it to the address of the specified pixel address within the adjustment group. The data processing block 150 concatenates the resulting pixel address with the associated light intensity and color data fields of the input data. Data processing block 160 decodes the specified pixel address and routes the light conditioning data to designated pixels within the designated QPI device that make up the spatial optical direction light modulator.

在使用16位元來表示方向調節且使用典型24位元來表示每一方向上之經調節光強度及色彩時,將表示用於每一調節群組之調節資料字之位元總數將係40位元。在無普遍性損失之情況下假定此等40位元字將依序輸入至空間光學方向光調節器以用於定址其構成調節群組(亦即,順序定址用於輸入調節群組資料40位元字)時,圖10之方塊120將負責將依序輸入資料字路由至指定QPI裝置。圖10之方塊130將負責將調節資料路由至指定調節群組。圖10之方塊140將負責將16位元方向調節資料欄位映射至指定調節群組內之像素之指定位址。圖10之方塊150將負責將24位元光強度及色彩資料與經映射之位元群組位址串連。圖10之方塊160將負責將24位元光強度及色彩調節資料路由至構成空間光學方向光調節器之指定QPI裝置內之指定像素。在40位元字順序資料輸入之此例示性資料處理流程之情況下,空間光學方向光調節器將基於編碼於其輸入資料內之資訊而調節自其孔徑發射之光之強度、色彩及方向。藉由實例之方式,光強度及色彩調節可係多色彩像素之接通/關斷時間之脈衝寬度調變以控制光之平均強度及控制構成所得色彩之每一色彩分量之強度,但若期望可使用其他控制技術。在任何情況下,方向及強度經控制,且在一多色彩系統中控制色彩、方向及強度。 When 16-bits are used to indicate direction adjustment and a typical 24-bit is used to represent the adjusted light intensity and color in each direction, the total number of bits representing the adjusted data word for each adjustment group will be 40 bits. yuan. In the absence of a general loss, it is assumed that these 40-bit words will be sequentially input to the spatial optical direction light modulator for addressing to form the adjustment group (ie, sequential addressing for input adjustment group data 40 bits) Block 120 will be responsible for routing the sequential input data words to the designated QPI device. Block 130 of Figure 10 will be responsible for routing the adjustment data to the designated adjustment group. Block 140 of Figure 10 will be responsible for mapping the 16-bit direction adjustment data field to the designated address of the pixel within the specified adjustment group. Block 150 of Figure 10 will be responsible for concatenating the 24-bit light intensity and color data with the mapped bit group address. Block 160 of Figure 10 will be responsible for routing the 24-bit light intensity and color adjustment data to the designated pixels within the designated QPI device that make up the spatial optical direction light modulator. In the case of this exemplary data processing flow of 40-bit sequential data input, the spatial optical directional light modulator will adjust the intensity, color, and direction of light emitted from its aperture based on information encoded in its input data. By way of example, the light intensity and color adjustment can be pulse width modulation of the on/off time of the multi-color pixel to control the average intensity of the light and control the intensity of each color component constituting the resulting color, but if desired Other control techniques can be used. In any case, the direction and intensity are controlled and the color, direction and intensity are controlled in a multi-color system.

可能應用包含Possible applications include

本發明之空間光學方向光調節器可用作液晶顯示器(LCD)之一背光以實施一3D顯示器。空間光學方向光調節器自身可用於實施(舉例而言)經實現為多個QPI裝置/WLO總成之一平鋪式陣列(諸如圖11中所圖解說明之彼陣列)之一任意大小之一3D顯示器。光調節器亦可操作為一2D高解析度顯示器。在此情形中,QPI裝置之個別像素將用於調節色彩及強度而其整合式WLO將用於填充顯示器之視角。針對光調節器而言可能藉由調適其輸入資料之格式以與期望之操作模式相匹配而自2D顯示模式切換至3D顯示模式。當光調節器用作一2D顯示器時,與其WLO微透鏡陣列相關聯之其光角發散將係±Θ且個別調節群組Gi之像素解析度將經利用以達成較高空間解析度。 The spatial optical direction light modulator of the present invention can be used as a backlight for a liquid crystal display (LCD) to implement a 3D display. The spatial optical directional light modulator itself may be used to implement, for example, one of any size of one of a plurality of QPI devices/WLO assemblies (such as the array illustrated in Figure 11). monitor. The light regulator can also operate as a 2D high resolution display. In this case, the individual pixels of the QPI device will be used to adjust color and intensity while its integrated WLO will be used to fill the viewing angle of the display. It is possible for the light modulator to switch from the 2D display mode to the 3D display mode by adapting the format of its input data to match the desired mode of operation. When the light modulator is used as a 2D display, its optical angular divergence associated with its WLO microlens array will be ±Θ and the pixel resolution of the individual adjustment group G i will be utilized to achieve higher spatial resolution.

圖12在概念上圖解說明另一實施例,一時間空間光學方向光調節器。如圖12中所圖解說明,方向光調節器由一發射式微陣列QPI裝置210及直接安裝於其發射表面之頂部上之一WLO微透鏡陣列(MLA)220構成,其中整個總成圍繞至少一個軸且最佳地分別圍繞其x軸及y軸兩者成在±α x 與±α y 之範圍內之角度進行時間活節轉動。如圖12中所圖解說明之QPI/MLA總成230之活節轉動將藉由將整個總成放置於一2軸常平架上完成,藉此常平架之x軸在時間上致動在±α x 之範圍內之一角度且常平架之y軸在時間上致動在±α y 之範圍內之一角度。由2軸常平架提供之x軸及y軸時間活節轉動將導致自QPI/MLA總成230發射之光之方向調節角 超過由MLA 220之微透鏡元件(參見圖4)所提供之角範圍而圍繞x軸在時間上延伸2α x 且圍繞y軸在時間上延伸2α y 。如本文中所使用,措詞常平架及兩軸常平架係在一般意義上使用,且意指將允許在任何時間繞任何兩個正交軸中之任一者或兩者旋轉至少穿過一有限角之任何結構。因此,同心環、球接頭及將提供彼能力之任何其他結構包含於該定義內。 Figure 12 conceptually illustrates another embodiment, a time space optical direction light modulator. As illustrated in Figure 12, the directional light modulator is comprised of an emissive microarray QPI device 210 and a WLO microlens array (MLA) 220 mounted directly on top of its emitting surface, wherein the entire assembly surrounds at least one axis And optimally, the time joint rotation is performed around both the x-axis and the y-axis at an angle within the range of ±α x and ±α y . The joint rotation of the QPI/MLA assembly 230 as illustrated in Figure 12 will be accomplished by placing the entire assembly on a 2-axis gimbal, whereby the x- axis of the gimbal is actuated in time at ±α An angle within the range of x and the y- axis of the gimbal is temporally actuated at an angle within the range of ±α y . The x- axis and y- axis time joint rotation provided by the 2-axis gimbal will cause the direction of adjustment of the light emitted from the QPI/MLA assembly 230 to exceed the angular range provided by the microlens elements of the MLA 220 (see Figure 4). And extending 2α x in time around the x- axis and 2α y extending in time around the y- axis. As used herein, the wording gimbal and two-axis gimbal are used in a generic sense and mean that it will allow any or both of any two orthogonal axes to be rotated through at least one at any time. Any structure of a finite angle. Thus, concentric rings, ball joints, and any other structure that will provide the capabilities are included within the definition.

如圖12中所圖解說明之QPI/MLA總成230之x軸及y軸活節轉動將導致在方向(d 1d 2、...、d n)上發射之光在時間上經多工至眾多光方向(d 1i d 2i 、...、d ni )(i=1、2、...)中,此延伸超過由MLA 220之透鏡元件提供之角範圍而在x方向上加2α x 且在y方向上加2α y 。上述情況在圖13A中圖解說明,圖13A出於圖解說明之目的展示QPI/MLA總成230角發射範圍沿一個活節轉動軸之時間擴展。參考圖13A,角Θ表示MLA 220之一個透鏡元件之角範圍,且角α表示由於分別圍繞x軸及y軸達角α x (t)及α y (t)之常平架活節轉動所致之透鏡元件之複合瞬時活節轉動角。如圖12中所圖解說明及由圖13A所闡釋之QPI/MLA總成230之活節轉動使得QPI裝置210之發射微尺度陣列內之像素(其可透過QPI驅動電路個別定址)能夠發射既在空間上、在色度上又在方向上調節之光,藉此經方向調節之光之角範圍超過MLA 220之透鏡元件之角範圍Θ(或數值孔徑)而在x方向上時間擴展一角2α x 且在y方向上時間擴展一角2α y 。此外,時間空間光學方向光調節器200之時間活節轉動將使光方向(d 1d 2、...、d n)之經調節數目在時間上增加每一活節轉動方向上之角範圍擴展比率(表達為(Θ x )(Θ y )/Θ 2)。 Rotation of the x-axis and y-axis of the QPI/MLA assembly 230 as illustrated in Figure 12 will result in more time in the light emitted in the directions ( d 1 , d 2 , ..., d n ) Working in a number of light directions ( d 1 i , d 2 i , ..., d n i ) ( i =1, 2, ...), which extend beyond the angular extent provided by the lens elements of the MLA 220 the x-direction and x 2 [alpha plus 2 [alpha plus y in the y direction. The foregoing is illustrated in Figure 13A, which shows, for purposes of illustration, the time spread of the angular transmission range of the QPI/MLA assembly 230 along a rotational axis of a joint. Referring to Fig. 13A, the corner Θ indicates the angular extent of one lens element of the MLA 220, and the angle α indicates the rotation of the gimbal hinge due to the angles α x ( t ) and α y ( t ) around the x- axis and the y- axis, respectively. The composite instantaneous joint rotation angle of the lens element. The articulation of the QPI/MLA assembly 230 as illustrated in Figure 12 and illustrated by Figure 13A enables the pixels within the transmit microscale array of the QPI device 210 (which can be individually addressed by the QPI driver circuit) to be capable of transmitting Light that is spatially and chromatically adjusted in direction, whereby the angular range of the directionally adjusted light exceeds the angular extent Θ (or numerical aperture) of the lens element of the MLA 220 and extends a time 2α x in the x direction. And time extends a corner 2α y in the y direction. In addition, the time-spatial rotation of the time-space optical direction light modulator 200 will increase the adjusted number of light directions ( d 1 , d 2 , ..., d n ) over time in the angular direction of each joint. Range expansion ratio (expressed as ( Θ x )( Θ y )/ Θ 2 ).

時間空間光學方向光調節器200之QPI/MLA總成230之2軸活節轉動可在時間上連續或離散(逐步)。出於圖解說明之目的,圖13B圖解說明當活節轉動在時間上連續1310時且當致動在時間上離散1320時一個軸上之QPI/MLA總成230之複合時間活節轉動角α(t)。當時間空間光學方向光調節器200之時間活節轉動係離散或逐步(1320)時,典型角步進大小將較佳地與MLA 220之角範圍Θ與QPI/MLA總成230之空間解析度之比率成比例。如圖13A及圖13B中所圖解說明,時間空間方向光調節器之QPI/MLA總成230之時間活節轉動將通常係重複(或週期)且圍繞該2軸中之每一者獨立。時間空間光學光調節器之活節轉動之重複週期將通常與顯示器輸入資料圖框持續時間成比例且同步(出於參考目的,至一典型顯示器之影像輸入資料以60圖框/秒到達且通常稱作60 Hz圖框速率輸入)。圖13A及圖13B中所圖解說明之時間活節轉動之最大值±α xmax 將判定由時間空間光學光調節器提供之經擴展角範圍,其由值±(Θ max )判定,其中角Θ表示MLA 220之透鏡元件之角範圍。x軸及y軸活節轉動之週期性集體地將通常經選擇以使得時間空間光學方向調節器200之期望之經擴展角範圍之時間涵蓋能夠在一所需顯示輸入圖框速率內。 The 2-space articulation of the QPI/MLA assembly 230 of the temporal spatial optical direction light modulator 200 can be continuous or discrete (stepwise) in time. For purposes of illustration, FIG. 13B illustrates the composite time joint rotation angle α of the QPI/MLA assembly 230 on one axis when the joint rotation is continuous 1310 in time and when the actuation is discrete 1320 in time. t ). When the time period of the spatial optical directional light regulator 200 in joint rotation based discrete or stepwise (1320), the angle step size will typically be preferred with a range of angles Θ to MLA 220 of QPI / MLA cartridge spatial resolution of 230 The ratio is proportional. As illustrated in Figures 13A and 13B, the time-segment rotation of the QPI/MLA assembly 230 of the temporally spatial directional light modulator will typically be repeated (or periodic) and independent of each of the two axes. The repeating period of the hinge rotation of the time space optical light adjuster will typically be proportional to and synchronized with the display input frame duration (for reference purposes, the image input data to a typical display arrives at 60 frames per second and usually Called the 60 Hz frame rate input). The maximum value ±α xmax of the time-segment rotation illustrated in Figures 13A and 13B will determine the extended angular range provided by the temporal spatial optical light modulator, which is determined by the value ±( Θ max ), where the angle Θ denotes the angular extent of the lens elements of the MLA 220. The periodicity of the x- axis and y- axis joint rotations will collectively be selected such that the desired extended angular range of time-space optical direction adjuster 200 is within a desired display input frame rate.

圖12、圖13及圖14圖解說明由MLA透鏡元件之眾多時間角涵蓋範圍剖面520構成之時間空間光學方向光調節器200 之QPI/MLA總成230之角涵蓋範圍剖面510。QPI/MLA總成230分別圍繞其x軸及y軸之經適當選擇時間活節轉動α x (t)及α y (t)將產生由MLA 220透鏡元件之眾多經時間多工之角涵蓋範圍構成之角涵蓋範圍。取決於QPI/MLA總成230圍繞其x軸及y軸之角活節轉動α x 及α y 之量值,角涵蓋範圍剖面之形狀可以縱橫比裁剪。圍繞xy方向之活節轉動速率將足以確保角涵蓋範圍內之時間所產生光方向在輸入影像資料之調節圖框內具有充足工作循環(調節持續時間)。舉例而言,當輸入影像資料之調節圖框係60影像圖框/秒(其通常稱作60 Hz影像圖框速率),圖14中所圖解說明之時間角涵蓋範圍中之每一者內之光偵測中之每一者將需要每圖框調節一次,因此使產生圖14中所圖解說明之角涵蓋範圍所需之活節轉動速率為圍繞x軸或y軸至少180 Hz。換言之,針對圖14中所圖解說明之角涵蓋範圍實例(其中時間角涵蓋範圍之大小係每一軸上之角涵蓋範圍之大小的三倍),針對圖14之圖解說明圍繞x方向或y方向之活節轉動速率將需要係輸入影像資料圖框速率之至少三倍。MLA透鏡元件之角涵蓋範圍可係重疊或不重疊。一般而言,QPI/MLA總成230圍繞x軸或y軸之活節轉動速率將必須至少等於輸入影像資料之調節圖框速率乘以等於角涵蓋範圍沿每一軸之大小(以度為單位)與角涵蓋範圍沿相同軸之大小(以度為單位)之比率之一因數。 12, 13 and 14 illustrate an angular coverage section 510 of the QPI/MLA assembly 230 of the time-space optical direction light modulator 200 comprised of a plurality of time angle coverage ranges 520 of the MLA lens elements. QPI/MLA assembly 230, respectively, around its x- axis and y- axis, with appropriate selection of time joint rotations α x ( t ) and α y ( t ) will result in numerous time-multiplexed corners covered by MLA 220 lens elements. The corners of the composition cover the scope. Depending QPI / MLA assembly 230 about its joint angles x and y axes of rotation value [alpha] [alpha] x and y, the cross-sectional shape of the angular coverage may be cut aspect ratio. The rate of rotation of the joint around the x and y directions will be sufficient to ensure that the direction of light produced by the time within the angular coverage has sufficient duty cycle (adjustment duration) within the adjustment frame of the input image data. For example, when the image frame of the input image data is 60 image frames per second (which is commonly referred to as the 60 Hz image frame rate), the time angle illustrated in FIG. 14 covers each of the ranges. Each of the light detections will need to be adjusted once per frame, thus making the knot rotation rate required to produce the angular coverage illustrated in Figure 14 at least 180 Hz around the x- axis or y- axis. In other words, for the angular coverage example illustrated in Figure 14 (where the time angle coverage range is three times the size of the angular coverage on each axis), the illustration of Figure 14 illustrates the x or y direction. The rate of rotation of the joint will need to be at least three times the rate of the input image data frame. The angular coverage of the MLA lens elements may or may not overlap. In general, the QTR/MLA assembly 230 rotation rate around the x- axis or y- axis will have to be at least equal to the adjustment frame rate of the input image data multiplied by the size of the angular coverage along each axis (in degrees) A factor of the ratio of the size of the angular coverage along the same axis (in degrees).

參考圖14,在時間空間光學方向光調節器200之QPI/MLA總成230之時間活節轉動具有角涵蓋範圍且包括與構 成QPI裝置210之眾多像素對應發射之眾多經方向調節之光之情況下,隨著某些經方向調節光束在時間上以一管線方式衰弱將連續添加一組新的經方向調節之光束直至完全涵蓋時間空間光學方向光調節器200之經擴展角範圍。在任何給定時刻處,QPI/MLA總成230之全發射孔徑將用於在任何給定方向在時間上保持於經活節轉動孔徑之涵蓋範圍內時累積(調節)在彼方向處之光束之期望之強度(通常藉由脈衝寬度調變,但若期望,可使用比例控制)。由於眾多經方向調節之光束之此時間空間光學管線化,可使時間空間光學光調節器之回應時間與具有最小延時之影像資料輸入速率相匹配。一給定方向保持在角涵蓋範圍內之時間持續時間將判定可用於調節彼方向上之光強度之調節時間,且因此,除非經補償,否則經擴展角範圍之周邊區域內之方向可具有比角涵蓋範圍之內部區少之強度。此強度邊緣遞減效應將多少類似於通常在除時間空間光學光調節器之情形中以外的一光學系統之邊緣處遭遇之Fresnel損失,此一效應可藉由適當選擇時間空間光學方向光調節器200之QPI/MLA總成230之時間活節轉動之速率來補償。 Referring to FIG. 14, the time-segment rotation of the QPI/MLA assembly 230 of the time-space optical direction light modulator 200 has an angular coverage and includes In the case where a plurality of pixels of the QPI device 210 correspond to a plurality of directionally modulated lights emitted, a certain set of new directionally-adjusted beams are continuously added until a certain directionally adjusted beam is weakened in time by a pipeline. The extended angular extent of the temporally-spaced optical direction light modulator 200 is covered. At any given time, the full transmit aperture of the QPI/MLA assembly 230 will be used to accumulate (adjust) the beam in the direction of the range of rotation of the hinged aperture in any given direction. The desired intensity (usually by pulse width modulation, but proportional control can be used if desired). Due to the optically pipelined time space of the plurality of directionally adjusted beams, the response time of the time space optical light modulator can be matched to the image data input rate with minimal delay. The time duration in which a given direction remains within the angular coverage will determine the adjustment time that can be used to adjust the intensity of the light in the direction, and thus, unless compensated, the direction within the peripheral region of the extended angular range may have a specific angle The strength of the inner zone covering the range. This intensity edge decrementing effect will be somewhat similar to the Fresnel loss typically encountered at the edge of an optical system other than in the case of a temporal spatial optical light modulator, which effect can be achieved by appropriately selecting the temporal spatial optical direction light modulator 200. The QPI/MLA assembly 230 is compensated for by the rate of rotation of the joint.

作為一替代方案,再次使用3×3實例,若Θ x 表示一個透鏡元件圍繞x軸之角範圍(半角)且Θ y 表示圍繞y軸之一個透鏡元件之角範圍,且若α x 等於2Θ x 且α y 等於2Θ y ,則總角範圍(包含活節轉動)將係一個微透鏡元件之角範圍之三倍(3倍2Θ x 或3倍2Θ y )。藉由實例之方式,針對x軸,此等三個連續角範圍將係: (-α x -Θ x )至(-Θ x ) As an alternative, a 3 x 3 instance is used again, if Θ x represents the angular extent (half angle) of a lens element around the x-axis and Θ y represents the angular extent of a lens element around the y-axis, and if α x is equal to 2 Θ x and α y are equal to 2 Θ y , then the total angular range (including the joint rotation) will be three times the angular extent of a microlens element (3 times 2 Θ x or 3 times 2 Θ y ). By way of example, for the x-axis, these three consecutive angular ranges will be: (- α x - Θ x ) to (- Θ x )

(-Θ x )至(Θ x ),及(Θ x )至(Θ x +α x ) (- Θ x ) to ( Θ x ), and ( Θ x ) to ( Θ x + α x )

每一角範圍亦構成活節轉動之一角增量。 Each angular range also constitutes an angular increase in the rotation of the joint.

每一方向上之三個連續個別角範圍,可視為如下之一個二維角範圍矩陣:1,2,3 Three consecutive individual angular ranges in each direction can be considered as a two-dimensional angular range matrix as follows: 1, 2, 3

4,5,6 4,5,6

7,8,9 7,8,9

此替代方案係一離散技術,亦即,針對顯示角範圍1達一分配時間,然後圍繞一第一軸前進一個角增量且然後顯示角範圍2達相同分配時間,然後前進再一個角增量且顯示角範圍達分配時間,然後在另一軸上前進一個角增量3以顯示範圍6達分配時間,然後在彼軸上返回一個角增量且顯示角範圍5達分配時間,等等。在角範圍9顯示達分配時間之後,可重複9(連續顯示達兩次分配時間且然後回溯)以避免一個軸上一次一個以上角增量,但除非使用一較高速率否則上述情況將預期形成一閃爍。一較佳方法將係自角範圍9變為角範圍1,在2個軸上同時進行兩個角增量之一跳躍。然而,只要一個軸上之一個角增量之一角改變,2個軸上之兩個角增量之一跳躍不應進行兩次,此乃因x軸及y軸將彼此獨立,且任何改變包括一角加速,後續接著一角減速,因此針對兩個角增量之一改變之平均速度高於針對一個角增量之一改變之平均速度。又一些其他方 案可包含離散及連續技術之一組合。關鍵的是,存在可挑選之諸多替代方案,所有替代方案皆在本發明之範疇內。 This alternative is a discrete technique, ie, for a display angle range of up to a set time, then advancing an angular increment around a first axis and then displaying an angular range of 2 for the same dispense time, then proceeding to another angular increment And the display angle range is up to the distribution time, then an angle increment of 3 is advanced on the other axis to display the range 6 up to the dispense time, then an angular increment is returned on the axis and the angular range is displayed up to 5, and so on. After the angular range 9 is displayed for the distribution time, 9 can be repeated (continuous display for two allocation times and then backtracking) to avoid one or more angular increments on one axis, but the above situation will be expected unless a higher rate is used. One flashes. A preferred method would be to change from an angular range of 9 to an angular range of 1, with one of two angular increments being simultaneously performed on two axes. However, as long as one of the angular increments on one axis changes, one of the two angular increments on the two axes should not jump twice, since the x-axis and the y-axis will be independent of each other, and any changes include One corner is accelerated, followed by a corner deceleration, so the average speed for one of the two angular increments is higher than the average speed for one of the angular increments. Some other parties The case may include a combination of discrete and continuous techniques. It is critical that there are many alternatives that can be selected, all of which are within the scope of the present invention.

圖15中圖解說明本發明之一項實施例(在本文中稱作1500),其包含對此實施例之一等角視圖、俯視圖及側視圖圖解說明。如圖15中所圖解說明,時間空間光學方向光調節器藉由將QPI/MLA總成230(圖12中所繪示)接合於使用多個矽基板層(亦即,一鉸鏈層1521、一間隔層1528及一基底層1530)製作之2軸常平架總成1520之頂側上實現。如圖15中所圖解說明,2軸常平架1520之鉸鏈層1521由一外框架1522、一內環1523及QPI/MLA總成230將接合於其上之內分段1525(1525在下文中亦同義稱作裝置接合墊1525)構成。外框架1522、內環1523及內分段1525之間的間隙將使用標準半導體微影技術蝕刻。內分段1525藉由兩個矽鉸鏈1524沿x軸實體連接至內環1523,每一矽鉸鏈之寬度通常大約在0.3 mm至0.5 mm範圍中,其將充當x軸鉸鏈且亦將界定常平架之中性x軸位置且充當用於x軸活節轉動之一機械阻抗彈簧。內環1523藉由兩個矽鉸鏈1526沿y軸連接至外框架1522,每一矽鉸鏈之寬度通常大約在在0.3 mm至0.5 mm範圍中,其將充當y軸鉸鏈且亦將界定常平架之中性y軸位置且充當用於y軸活節轉動之一機械阻抗彈簧。兩對矽鉸鏈1524及1526構成將圍繞其執行x及y活節轉動之2軸常平架之樞轉點。2軸常平架總成1520之鉸鏈層1521之內分段1525含有QPI/MLA總成230使用標準焊接技術(諸如覆晶焊料球)接合至其之眾多接觸墊,因此使得內 分段1525變成QPI/MLA總成230將接合於其上之接合墊。眾多金屬軌嵌入於2軸常平架總成1520之鉸鏈層1521之內分段1525內,該等金屬軌經由x軸矽鉸鏈1524及y軸矽鉸鏈1526將內分段1525之頂側上之一組接觸墊連接至沿外框架1522之周邊放置之一組裝置接觸墊1527。內分段1525之頂側上之該組接觸墊係將為QPI/MLA總成230之背側提供電及實體接觸之接觸墊。 An embodiment of the invention (referred to herein as 1500) is illustrated in Figure 15, which includes an isometric view, a top view, and a side view illustration of one embodiment of the present invention. As illustrated in Figure 15, the temporal spatial optical direction light modulator is joined to the use of a plurality of germanium substrate layers (i.e., a hinge layer 1521, one by bonding the QPI/MLA assembly 230 (shown in Figure 12). The spacer layer 1528 and a base layer 1530) are implemented on the top side of the 2-axis gimbal assembly 1520. As illustrated in Figure 15, the hinge layer 1521 of the 2-axis gimbal 1520 is bounded by an outer frame 1522, an inner ring 1523, and an inner segment 1525 to which the QPI/MLA assembly 230 will be joined (1525 is also synonymous hereinafter). It is called a device bonding pad 1525). The gap between outer frame 1522, inner ring 1523 and inner segment 1525 will be etched using standard semiconductor lithography techniques. The inner segment 1525 is physically connected to the inner ring 1523 along the x-axis by two ankle hinges 1524, each of which typically has a width in the range of about 0.3 mm to 0.5 mm, which will act as an x-axis hinge and will also define a gimbal Neutral x-axis position and acts as a mechanical impedance spring for x-axis articulation. The inner ring 1523 is coupled to the outer frame 1522 along the y-axis by two weir hinges 1526, each of which is typically about 0.3 mm to 0.5 mm wide, which will act as a y-axis hinge and will also define a gimbal Neutral y-axis position and acts as a mechanical impedance spring for y-axis articulation. The two pairs of hinges 1524 and 1526 form a pivot point for the 2-axis gimbal around which the x and y joints are rotated. The inner segment 1525 of the hinge layer 1521 of the 2-axis gimbal assembly 1520 contains a plurality of contact pads to which the QPI/MLA assembly 230 is bonded using standard soldering techniques, such as flip-chip solder balls, thereby Segment 1525 becomes the bond pad to which the QPI/MLA assembly 230 will be bonded. A plurality of metal rails are embedded in the inner segment 1525 of the hinge layer 1521 of the 2-axis gimbal assembly 1520. The metal rails are one of the top sides of the inner segment 1525 via the x-axis 矽 hinge 1524 and the y-axis 矽 hinge 1526. The set of contact pads are attached to a set of device contact pads 1527 placed along the periphery of the outer frame 1522. The set of contact pads on the top side of inner segment 1525 will provide electrical and physical contact pads for the back side of QPI/MLA assembly 230.

參考圖15之側視圖圖解說明,QPI/MLA總成230經展示接合至內分段1525之頂側。如早先所闡釋,此將係使用焊料或共晶球柵陣列類型接合之內分段1525之頂側上之接觸墊與QPI/MLA總成230之背側處之接觸墊之間的一既係電又實體之接觸接合。圖15側視圖中亦圖解說明間隔層1528,該間隔層將以晶圓級使用苯環丁烯(BCB)聚合物黏合劑接合或諸如此類與基底層1530接合於頂側及與鉸鏈層接合於背側。間隔層1528之高度(或厚度)將經選擇以適應內分段1525之拐角連同經接合之QPI/MLA總成230在最大致動角處之垂直位移。舉例而言,若內分段1525之對角線總共量測5 mm且拐角處之最大活節轉動角係15°,則間隔層1528之厚度應量測大約0.65 mm以便適應內分段1525之拐角在最大活節轉動處之垂直位移。 Referring to the side view illustration of FIG. 15, the QPI/MLA assembly 230 is shown joined to the top side of the inner segment 1525. As explained earlier, this would be a tie between the contact pads on the top side of the inner segment 1525 and the contact pads on the back side of the QPI/MLA assembly 230 using solder or eutectic ball grid array type bonding. Electrical and physical contact bonding. Also illustrated in Fig. 15 is a side view layer 1528 which will be bonded at the wafer level using a benzocyclobutene (BCB) polymer binder or the like to bond to the top side of the substrate layer 1530 and to the back side with the hinge layer side. The height (or thickness) of the spacer layer 1528 will be selected to accommodate the corner of the inner segment 1525 along with the vertical displacement of the joined QPI/MLA assembly 230 at the maximum actuation angle. For example, if the diagonal of the inner segment 1525 is measured for a total of 5 mm and the maximum articulation angle at the corner is 15°, the thickness of the spacer layer 1528 should be measured to be approximately 0.65 mm to accommodate the inner segment 1525. The vertical displacement of the corner at the maximum joint rotation.

參考圖15之側視圖圖解說明,內分段1525連同經接合之QPI/MLA總成230之活節轉動將使用以下物項完成:放置於內分段1525之背側之四個拐角處之一組電磁鐵1535,及放置於基底層1530之頂側上與內分段1525之背側之四個角 對準之一組永久磁鐵1536。電磁鐵1535將係具有以晶圓級使用多層壓印微影形成於內分段1525之背側上之一金屬核心之一線圈。永久磁鐵1536將係通常由釹磁鐵(Nd2Fe14B)或諸如此類形成之一薄磁條。如早先所闡述內分段1525連同經接合QPI/MLA總成230之活節轉動將藉由藉助一電信號驅動該組電磁鐵1535來完成,該電信號具有適當時間振幅變化以影響該組電磁鐵1535與永久磁鐵1536之間的磁性吸引之適當時間變化,該適當時間變化將導致內分段1525連同經接合QPI/MLA總成230如早先所闡述進行時間活節轉動。由QPI裝置210產生且經由併入於早先所闡述之內分段1525中之金屬軌及接觸件而供應至該組電磁鐵1535之至該組電磁鐵1535之驅動電信號將與由QPI裝置210執行之像素調節同步達一定程度以致將達成自QPI裝置210之像素陣列發射之經強度及色彩調節之光之期望之方向調節。至該組電磁鐵1535之驅動電信號之時間變化將經選擇以達成內分段1525連同經接合QPI/MLA總成230圍繞其x軸及y軸兩者之時間角活節轉動,如圖15中所圖解說明。取決於鉸鏈層1521之矽基板之厚度及矽鉸鏈1524及1526之經選擇寬度,可藉由本發明之實施例1500達成之圖13B中所圖解說明之時間角活節轉動α(t)之最大值±α max 將通常在自±15°至±17°之範圍中。 Referring to the side view of Figure 15, the articulation of the inner segment 1525 along with the engaged QPI/MLA assembly 230 will be accomplished using the following items: one of the four corners placed on the back side of the inner segment 1525. The set of electromagnets 1535, and the four corners placed on the top side of the base layer 1530 and the back side of the inner segment 1525, are aligned with a set of permanent magnets 1536. The electromagnet 1535 will have a coil of one of the metal cores formed on the back side of the inner segment 1525 using a multi-laminate lithography at the wafer level. The permanent magnet 1536 will be a thin magnetic strip typically formed by a neodymium magnet (Nd 2 Fe 14 B) or the like. Rotation of the inner segment 1525 along with the bonded QPI/MLA assembly 230 as previously described will be accomplished by driving the set of electromagnets 1535 with an electrical signal having an appropriate time amplitude variation to affect the set of electromagnetics. The appropriate time variation of magnetic attraction between the iron 1535 and the permanent magnet 1536 will cause the inner segment 1525 to rotate with the bonded QPI/MLA assembly 230 as explained earlier. The drive electrical signals generated by the QPI device 210 and supplied to the set of electromagnets 1535 to the set of electromagnets 1535 via the metal rails and contacts incorporated in the inner segment 1525 described earlier will be associated with the QPI device 210. The pixel adjustments performed are synchronized to such an extent that the desired direction of intensity and color-adjusted light emitted from the pixel array of QPI device 210 is adjusted. The time variation of the drive electrical signal to the set of electromagnets 1535 will be selected to achieve the inner segment 1525 along with the time angle of the engaged QPI/MLA assembly 230 about its x-axis and y-axis, as shown in FIG. Illustrated in the middle. Depending on the thickness of the germanium substrate of the hinge layer 1521 and the selected width of the turns hinges 1524 and 1526, the maximum value of the time-angle joint rotation α( t ) illustrated in Figure 13B achieved by embodiment 1500 of the present invention can be achieved. ±α max will typically range from ±15° to ±17°.

由QPI裝置210產生且經由併入於早先所闡述之內分段1525中之金屬軌及接觸件而供應至該組電磁鐵1535之至該組電磁鐵1535之驅動電信號將由一基礎分量及一校正分量 構成。至該組電磁鐵1535之驅動電信號之基礎分量將表示一標稱值,且一校正分量將自由定位於內分段1525之背側上與矽鉸鏈1524及1526對準之一組四個感測器所產生之一角活節轉動錯誤值導出。此等感測器將係放置於內分段1525之背側上與放置於基底層1530之頂側上之四個紅外線(IR)發射體對準之一IR偵測器陣列。此等四個IR偵測器陣列之輸出值將再次經由併入於早先所闡述之內分段1525中之金屬軌及接觸件路由至QPI裝置,且用於計算對導出之活節轉動角與實際活節轉動角之間的錯誤之一估計值,該估計值將併入作為對由QPI裝置提供至該組電磁鐵1535之驅動信號之一校正。定位於內分段1525之背側上之感測器亦將係經恰當對準以沿常平架之2軸中之每一者偵測致動角之微尺度陀螺儀。 The drive electrical signals generated by the QPI device 210 and supplied to the set of electromagnets 1535 to the set of electromagnets 1535 via the metal rails and contacts incorporated in the inner segment 1525 described earlier will consist of a base component and a Correction component Composition. The base component of the drive electrical signal to the set of electromagnets 1535 will represent a nominal value, and a correction component will be freely positioned on the back side of the inner segment 1525 in alignment with the ankle hinges 1524 and 1526. One of the angular joint rotation error values generated by the detector is derived. The sensors will be placed on the back side of inner segment 1525 with one of the four infrared (IR) emitters placed on the top side of substrate layer 1530 aligned with one of the IR detector arrays. The output values of the four IR detector arrays will again be routed to the QPI device via the metal rails and contacts incorporated in the inner segment 1525 as described earlier, and used to calculate the derived joint rotation angle and An estimate of the error between the actual joint rotation angles that will be incorporated as one of the drive signals supplied to the set of electromagnets 1535 by the QPI device. The sensors positioned on the back side of the inner segment 1525 will also be properly aligned to detect the actuated angle of the micro-scale gyroscope along each of the two axes of the gimbal.

圖16中圖解說明本發明之另一實施例(在本文中稱作1600)。圖16包含對此實施例之等角視圖及側視圖圖解說明。如圖16中所圖解說明,本發明之實施例1600由2軸常平架1620及接合於其頂部上之QPI/MLA總成230構成。圖16亦展示展示實施例1600之2軸常平架總成1620之構成層之此實施例之一分解等角圖解說明。如圖16中所圖解說明,時間空間光學方向光調節器藉由將QPI/MLA總成230(圖12中所繪示)接合於使用多個矽基板層(亦即,一墊層1621、一彈簧層1625及一基底層1630)製作之2軸常平架總成1620之頂側上實現。墊層1621之頂側併入QPI/MLA總成230欲使用標準焊接技術(諸如覆晶焊料球)接合至之眾多接 觸墊,因此使墊層1621之頂側成為QPI/MLA總成230接合於其上之接合層/接觸墊1623。墊層1621之背側併入將藉由在晶圓級上使用UV壓印微影或諸如此類將聚碳酸酯聚合物壓凸於墊層1621之背側上所形成之球形樞軸1635。墊層1621連同壓凸於其背側上之球形樞軸1635將稱作鉸鏈式墊1621/1635。球形樞軸1635之中心之仰角判定角偏轉之x及y軸之仰角。基底層1630之頂側併入將藉由將聚碳酸酯聚合物壓凸於晶圓處之基底層1630之頂側上形成之球形承窩1636。基底層1630連同經壓凸於其頂側上之球形承窩1636將稱作托架1630/1636。併入於墊層1621之背側上之球形樞軸1635及併入於基底層1630之頂側上之球形承窩1636之表面曲率將±匹配以便在放置於托架1630/1636之頂部上時允許鉸鏈式墊1621/1635使其成為一2軸活節轉動墊。儘管球形樞軸1635及球形承窩1636之壓凸表面將具有約數nm RMS之表面粗糙度表示之光學品質,但由於活節轉動移動所致之兩個表面之間的可能摩擦將藉由用一薄層(50 nm至100 nm)石墨來塗佈球形樞軸1635及球形承窩1636之表面而減少。 Another embodiment of the invention (referred to herein as 1600) is illustrated in FIG. Figure 16 contains an isometric view and a side view illustration of this embodiment. As illustrated in Figure 16, an embodiment 1600 of the present invention is comprised of a 2-axis gimbal 1620 and a QPI/MLA assembly 230 bonded to the top thereof. Figure 16 also shows an exploded isometric illustration of one embodiment of the constituent layers of the 2-axis gimbal assembly 1620 of the embodiment 1600. As illustrated in Figure 16, the temporal spatial optical direction light modulator is bonded to the use of a plurality of germanium substrate layers (i.e., a pad layer 1621, by bonding the QPI/MLA assembly 230 (shown in Figure 12). The spring layer 1625 and a base layer 1630) are implemented on the top side of the 2-axis gimbal assembly 1620. The top side of the pad 1621 is incorporated into the QPI/MLA assembly 230 to be bonded to a number of connections using standard soldering techniques such as flip chip solder balls. The pads are such that the top side of the pad 1621 becomes the bonding layer/contact pad 1623 to which the QPI/MLA assembly 230 is bonded. The backside of the backing layer 1621 incorporates a spherical pivot 1635 that will be formed by crimping a polycarbonate polymer onto the back side of the backing layer 1621 using UV imprint lithography or the like at the wafer level. The cushion layer 1621, together with the spherical pivot 1635 that is embossed on its back side, will be referred to as a hinged pad 1621/1635. The elevation angle of the center of the spherical pivot 1635 determines the x and y axis elevation angles of the angular deflection. The top side of the base layer 1630 incorporates a spherical socket 1636 that will be formed by embossing the polycarbonate polymer on the top side of the substrate layer 1630 at the wafer. The base layer 1630, along with the spherical socket 1636 that is pressed against its top side, will be referred to as a bracket 1630/1636. The surface curvature of the spherical pivot 1635 incorporated on the back side of the backing layer 1621 and the spherical socket 1636 incorporated on the top side of the base layer 1630 will be ± matched for placement on top of the bracket 1630/1636 The hinged pad 1621/1635 is allowed to be a 2-axis articulating pad. Although the convex surface of the spherical pivot 1635 and the spherical socket 1636 will have an optical quality represented by a surface roughness of about several nm RMS, the possible friction between the two surfaces due to the rotational movement of the joint will be used by Thin layers (50 nm to 100 nm) of graphite are coated to reduce the surface of the spherical pivot 1635 and the spherical socket 1636.

鉸鏈式墊1621/1635藉由彈簧層1625(在其四個拐角中之每一者處含有在彈簧層1625中蝕刻成之一單個螺旋形彈簧1626)在托架1630/1636之表面曲率內保持於適當位置中。如圖16分解等角視圖中所圖解說明,四個螺旋形彈簧中之每一者之內端併入一內接合墊1627,該內接合墊1627對應於定位於墊層1621之背側處之一完全相同接觸墊1622。多 個金屬軌嵌入於螺旋形彈簧1626中,該等金屬軌用於將來自內接合墊1627之電介面信號路由至定位於彈簧層1625之背側之周邊邊緣處之一組邊緣接觸件/墊1628。彈簧層1625之外端之背側上之邊緣接觸件/墊1628對應於定位於基底層1630之周邊邊緣處之一匹配組接合墊1629。基底層1630之頂側上之邊緣接觸件經由嵌入於基底層內之金屬軌連接至定位於基底層1630之背側上之一組裝置接觸墊1631。在圖16之側視圖中所圖解說明之本發明之實施例1600之最終總成中,當彈簧層1625之邊緣接觸件/墊1628之背側接合至基底層1630之頂側接合墊1629且螺旋形彈簧1626之內接合墊1627接合至墊層1621之背側上之對應接觸墊1622時四個螺旋形彈簧1626將擴展。當彈簧層1625接合至墊層1621之背側及基底層1630之頂側時,螺旋形彈簧1626(如剛所闡述,四個螺旋彈簧)變得完全擴展且在彼全擴展組態中其用於多種用途:(1)形成使球形樞軸1635保持於球形承窩1636內所需之一彈簧負載阻抗;(2)形成維持鉸鏈式墊1621/1635之中性位置所需之機械平衡;及(3)將電介面信號自裝置接觸墊1631路由至QPI/MLA總成230之接合層/接觸墊1623。參考圖16之側視圖圖解說明,QPI/MLA總成230經展示接合至墊層1621之頂側接合層/接觸墊1623。此將係使用焊料或共晶球柵陣列類型接合之接合層/接觸墊1623與QPI/MLA總成230之背側處之接觸墊之間的一既係電又實體之接觸接合。在操作組態中,全裝置總成1600將使用焊料或共晶球柵陣列類型接合使用定位於 基底層之背側上之接觸墊1631接合至一基板或印刷電路板。 The hinged pad 1621/1635 is held within the surface curvature of the bracket 1630/1636 by a spring layer 1625 (containing a single helical spring 1626 etched in the spring layer 1625 at each of its four corners) In the right place. As illustrated in the exploded isometric view of Figure 16, the inner ends of each of the four helical springs incorporate an inner bond pad 1627 that corresponds to being positioned at the back side of the pad 1621. An identical contact pad 1622. many The metal rails are embedded in a helical spring 1626 for routing the electrical interface signals from the inner bond pads 1627 to a set of edge contacts/pads 1628 positioned at the peripheral edge of the back side of the spring layer 1625. . The edge contact/pad 1628 on the back side of the outer end of the spring layer 1625 corresponds to one of the matching set bond pads 1629 positioned at the peripheral edge of the base layer 1630. The edge contacts on the top side of the substrate layer 1630 are connected to a set of device contact pads 1631 positioned on the back side of the substrate layer 1630 via metal rails embedded in the substrate layer. In the final assembly of embodiment 1600 of the present invention illustrated in the side view of FIG. 16, when the back side of edge contact/pad 1628 of spring layer 1625 is bonded to the top side bond pad 1629 of base layer 1630 and spiral The four helical springs 1626 will expand as the bond pads 1627 within the spring 1626 are joined to the corresponding contact pads 1622 on the back side of the pad 1621. When the spring layer 1625 is bonded to the back side of the backing layer 1621 and the top side of the base layer 1630, the helical spring 1626 (as just explained, four helical springs) becomes fully expanded and used in its fully extended configuration For a variety of uses: (1) forming a spring load impedance required to hold the spherical pivot 1635 within the spherical socket 1636; (2) forming a mechanical balance required to maintain the neutral position of the hinged pad 1621/1635; (3) Routing the electrical interface signals from the device contact pads 1631 to the bonding layer/contact pads 1623 of the QPI/MLA assembly 230. Referring to the side view illustration of FIG. 16, the QPI/MLA assembly 230 is shown bonded to the top side tie layer/contact pad 1623 of the backing layer 1621. This would be an electrical and physical contact bond between the bonding layer/contact pads 1623 bonded using solder or eutectic ball grid array type and the contact pads at the back side of the QPI/MLA assembly 230. In the operational configuration, the full device assembly 1600 will be positioned using solder or eutectic ball grid array type bonding. The contact pads 1631 on the back side of the substrate layer are bonded to a substrate or printed circuit board.

圖16側視圖中亦圖解說明將經選擇以適應鉸鏈式墊1621/1635之拐角連同經接合QPI/MLA總成230在最大致動角處之垂直位移之球形承窩1636之經延伸高度。舉例而言,若鉸鏈式墊1621/1635連同經接合之QPI/MLA總成230之對角線量測5 mm且拐角處之最大致動角係±30°,則球形承窩1636之經延伸高度之厚度應量測大約1.25 mm以便適應鉸鏈式墊1621/1635之拐角連同經接合QPI/MLA總成230在最大致動角處之垂直位移。 The extended height of the spherical socket 1636 that will be selected to accommodate the corners of the hinged pads 1621/1635 along with the vertical displacement of the joined QPI/MLA assembly 230 at the maximum actuation angle is also illustrated in the side view of FIG. For example, if the hinged pad 1621/1635 is measured along the diagonal of the joined QPI/MLA assembly 230 by 5 mm and the maximum actuation angle at the corner is ±30°, the spherical socket 1636 is extended. The thickness of the height should be measured approximately 1.25 mm to accommodate the corners of the hinged pad 1621/1635 along with the vertical displacement of the bonded QPI/MLA assembly 230 at the maximum actuation angle.

墊層1621連同經接合QPI/MLA總成230之致動將使用以下物項完成:嵌入於球形樞軸1635內之一組電磁鐵及嵌入於球形承窩1636內之一組永久磁鐵。致動電驅動信號將經路由至嵌入於球形樞軸1635內之電磁鐵以便影響早先段落中所闡述之致動移動。至嵌入於球形樞軸1635內之電磁鐵之致動電驅動信號之基礎分量將表示一標稱值,且將自由定位於墊層1621之背側上之一組四個感測器所產生之一角活節轉動錯誤值導出。此等感測器係放置於墊層1621之背側上之與放置於基底層1630之頂側上之四個紅外線(IR)發射體對準之一IR偵測器陣列。此等四個IR偵測器陣列之輸出值將再次經由併入於早先所闡述之墊層1621中之金屬軌及接觸件路由至QPI裝置,且用於計算對導出之活節轉動角與實際活節轉動角之間的錯誤之一估計值,該估計值將併入作為對由PDA裝置提供至嵌入於球形樞軸1635內之該 組電磁鐵之驅動信號之一校正。定位於墊層1621之背側上之感測器亦可係經恰當對準以沿常平架之2軸中之每一者偵測致動角之微尺度陀螺儀。 Actuation of the mat 1621 along with the bonded QPI/MLA assembly 230 will be accomplished using a set of electromagnets embedded within the spherical pivot 1635 and a set of permanent magnets embedded within the spherical socket 1636. The actuation of the electric drive signal will be routed to an electromagnet embedded within the spherical pivot 1635 to effect the actuation movements set forth in the earlier paragraph. The base component of the actuated electrical drive signal to the electromagnet embedded in the spherical pivot 1635 will represent a nominal value and will be freely positioned on the back side of the pad 1621 by a set of four sensors. A corner rotation error value is derived. The sensors are placed on the back side of the pad 1621 and aligned with one of the four infrared (IR) emitters placed on the top side of the substrate layer 1630. The output values of the four IR detector arrays will again be routed to the QPI device via the metal rails and contacts incorporated in the pad 1621 described earlier, and used to calculate the actual rotational angle of the derived joint and the actual An estimate of the error between the rotational angles of the joint, which will be incorporated as being provided by the PDA device into the spherical pivot 1635 One of the drive signals of the group of electromagnets is corrected. The sensors positioned on the back side of the pad 1621 may also be micro-scale gyroscopes that are properly aligned to detect the actuation angle along each of the two axes of the gimbal.

嵌入於球形承窩1636內之永久磁鐵將係薄磁桿或線,通常由釹磁鐵(Nd2Fe14B)或諸如此類構成,且將經塑形以橫跨球形承窩1636之彎曲腔提供一均勻磁場。如早先所闡述之墊層1621連同經接合QPI/MLA總成230之致動將藉由藉助一電信號驅動嵌入於球形樞軸1635內之該組電磁鐵來完成,該電信號具有適當時間振幅變化以影響嵌入於球形樞軸1635內之該組電磁鐵與嵌入於球形承窩1636內之永久磁鐵之間的磁性吸引之適當時間變化,該適當時間變化將導致墊層1621連同經接合QPI/MLA總成230如早先所闡述進行時間活節轉動。由QPI裝置產生且經由併入於早先所闡述之墊層1621上之金屬軌及接觸件而路由之至嵌入於球形樞軸1635內之該組電磁鐵之驅動電信號將與由QPI裝置執行之像素調變同步達一定程度以致將達成自QPI裝置之像素陣列發射之經強度及色彩調節之光之期望之方向調節。用於嵌入於球形樞軸1635內之該組電磁鐵之驅動電信號之時間變化將經選擇以達成鉸鏈式墊1621連同經接合QPI/MLA總成230沿其x軸及y軸兩者之時間角活節轉動,如圖15中所圖解說明。取決於控管墊層1621之拐角連同經接合QPI/MLA總成230之最大垂直位移之球形承窩1636之經延伸高度,可藉由本發明之實施例1600達成之圖15中所圖解說明之時間角活節轉動α(t)之最大值±α max 將通常在自 ±30°至±35°之範圍中。 The permanent magnet embedded in the spherical socket 1636 will be a thin magnetic rod or wire, typically composed of a neodymium magnet (Nd 2 Fe 14 B) or the like, and will be shaped to provide a curved cavity across the spherical socket 1636. A uniform magnetic field. Actuation of the mat 1621 as described earlier along with the bonded QPI/MLA assembly 230 will be accomplished by driving the set of electromagnets embedded in the spherical pivot 1635 by an electrical signal having an appropriate time amplitude. The change affects the appropriate time variation of the magnetic attraction between the set of electromagnets embedded within the spherical pivot 1635 and the permanent magnets embedded within the spherical socket 1636, which will cause the cushion 1621 to be coupled with the QPI/ The MLA assembly 230 performs the time-segment rotation as explained earlier. The drive electrical signals generated by the QPI device and routed through the metal rails and contacts incorporated in the cushion 1621 previously described to the set of electromagnets embedded in the spherical pivot 1635 will be executed by the QPI device. The pixel modulation is synchronized to such an extent that the desired direction of intensity and color-adjusted light emitted from the pixel array of the QPI device is adjusted. The time variation of the drive electrical signals for the set of electromagnets embedded in the ball pivot 1635 will be selected to achieve the time of the hinged pad 1621 along with the engaged QPI/MLA assembly 230 along its x-axis and y-axis. The corner joint rotates as illustrated in FIG. Depending on the angle of the corner of the control pad 1621 along with the extended height of the spherical socket 1636 of the maximum vertical displacement of the bonded QPI/MLA assembly 230, the time illustrated in Figure 15 by embodiment 1600 of the present invention can be achieved. The maximum value of the angular joint rotation α( t ) ±α max will usually be in the range from ±30° to ±35°.

熟習此項技術者將知曉先前段落中所闡述之本發明之實施例1500及1600之常平架致動器可經實施以藉由交換電磁鐵及永久磁鐵之位置而達成實質上相同目的。 Those skilled in the art will appreciate that the gimbal actuators of embodiments 1500 and 1600 of the present invention as set forth in the preceding paragraph can be implemented to achieve substantially the same purpose by exchanging the positions of the electromagnets and permanent magnets.

本發明之兩個例示性實施例1500及1600主要在各自可達成之時間角活節轉動α(t)之最大值α max 及各自實施例需要超過QPIA/MLA總成230之邊界之外區域方面不同。首先,如圖16中所圖解說明,在本發明之實施例1600中,2軸常平架完全容納於QPI/MLA總成230之佔用面積內(在下文中成為零邊緣特徵)而如圖15中所圖解說明在本發明之實施例1500中,2軸常平架容納於QPI/MLA總成230外邊界之外周邊處。其次,實施例1600可達成之時間角活節轉動α(t)之最大值α max 可能係實施例1500可提供之最大值的兩倍大。當然,可由實施例1600完成之時間角活節轉動α(t)之較大最大值α max 以需要高於實施例1500之較大垂直高度為代價。實施例1600之零邊緣特徵使其較適於經平鋪以形成一大面積顯示器而實施例1500之低輪廓(低高度)特徵使其較適於形成用於行動應用之一緊湊顯示器。 The two exemplary embodiments 1500 and 1600 of the present invention are primarily based on the respective maximum achievable time angle angular rotation α( t ) α max and the respective embodiments need to exceed the boundaries of the QPIA/MLA assembly 230. different. First, as illustrated in FIG. 16, in an embodiment 1600 of the present invention, the 2-axis gimbal is fully housed within the footprint of the QPI/MLA assembly 230 (hereinafter referred to as a zero edge feature) as shown in FIG. Illustrated In an embodiment 1500 of the present invention, a 2-axis gimbal is received at a periphery outside the outer boundary of the QPI/MLA assembly 230. Second, the maximum value α max of the time-angle joint rotation α( t ) that can be achieved by embodiment 1600 may be twice as large as the maximum value that embodiment 1500 can provide. Of course, the larger maximum value a max of the angular angular articulation α( t ) that can be accomplished by embodiment 1600 is at the expense of a larger vertical height than embodiment 1500. The zero edge feature of embodiment 1600 makes it more suitable for tiling to form a large area display and the low profile (low height) feature of embodiment 1500 makes it more suitable for forming a compact display for mobile applications.

MLA 220微透鏡系統610、620及630之角範圍Θ可透過微透鏡系統610、620及630之折射表面之適當設計選擇或藉由增加或減少其光學元件之數目而變得大於或小於圖6之例示性實施例之±15°。然而,應注意,針對一給定解析度(其以像素調節群組G i 內之像素之數目表示),改變MLA220微透鏡系統之角範圍Θ將導致由本發明之時間空間光學 方向光調節器之QPI/MLA總成230發射之經方向調節光之劍的角解析度(分離度)之一改變。舉例而言,在先前例示性實施例之Θ=±15°角範圍之情況下,若像素群組G i 包括(128×128)個像素,則由本發明之時間空間光學方向光調節器之QPI/MLA總成230發射之經方向調節光束之間的角解析度將係大約δΘ=0.23°。δΘ=0.23°之此相同角解析度值亦可藉由將MLA 220微透鏡系統之角範圍減少至Θ=±7.5°及將構成像素群組G i 之像素之數目減少至(64×64)個像素來達成。一般而言,將一較高F/#(亦即,角範圍Θ之較小值)用於MLA 220微透鏡系統將允許使用一較小像素調節群組G i 大小達成一給定角解析度值,此繼而將導致在QPI裝置210之一給定像素解析度內之多個像素之可用性以形成多個像素群組G i 且因此形成比由本發明之時間空間光學方向光調節器之QPI/MLA總成230可達成之空間解析度高之空間解析度。此設計折衷允許選擇MLA 220微透鏡系統設計參數之F/#與QPI/MLA總成230可達成之空間解析度之間的適當平衡。另一方面,MLA 220微透鏡系統之F/#增加以增加空間解析度,本發明之時間空間光學方向光調節器之QPI/MLA 230可達成之角範圍將減少。此時,時間角活節轉動α(t)之最大值α max 將變成設計折衷之一部分以恢復經損失以有助於增加空間解析度之角範圍。在先前實例中,當活節轉動角之最大值α max 經選擇為α max =±7.5°時,時間空間光學方向調節器將能夠使用(64×64)個像素之像素群組G i 達成(α max +Θ)=±15°之一經擴展角範圍。在本質上,針 對一給定角解析度值δΘ,活節轉動角之最大值α max 折衷為可用於增加可藉由時間空間光學方向調節器達成之方向調節之角範圍或空間解析度之一參數。 MLA 220 microlenses 610, 620 and 630 the system angular range Θ may or by increasing or decreasing the number of optical elements 610, 620, through proper selection and design of the refractive surface 630 of the micro-lens system becomes less than or greater than 6 ±15° of the exemplary embodiment. However, it should be noted (expressed in pixels, which regulates a number of pixels within the group G i) for a given resolution, changing the angular range Θ MLA220 microlenses systems will cause optical directional light adjusted by the time space of the present invention is One of the angular resolutions (resolutions) of the direction-adjusted light sword of the QPI/MLA assembly 230 is changed. For example, in the previous exemplary embodiment of the embodiment Θ = ± 15 ° angle range in the case of, if the pixel group comprising G i (128 × 128) pixels, by the time the present invention an optical directional optical space regulator of QPI The angular resolution between the directionally modulated beams emitted by the /MLA assembly 230 will be approximately δ Θ = 0.23°. The same angular resolution value of δ Θ = 0.23° can also be reduced by reducing the angular extent of the MLA 220 microlens system to Θ = ± 7.5° and reducing the number of pixels constituting the pixel group G i to (64 × 64) A pixel is reached. Generally, a higher F / # (i.e., the angular range smaller value Θ) for MLA 220 micro lens system will allow the use of a smaller pixel size adjustment to achieve a group G i given angular resolution The value, which in turn will result in the availability of a plurality of pixels within a given pixel resolution of one of the QPI devices 210 to form a plurality of pixel groups G i and thus form a QPI/ than the time space optical direction light modulator of the present invention. The spatial resolution of the spatial resolution of the MLA assembly 230 can be achieved. This design tradeoff allows for an appropriate balance between the F/# of the MLA 220 microlens system design parameters and the spatial resolution achievable by the QPI/MLA assembly 230. On the other hand, the F/# of the MLA 220 microlens system is increased to increase the spatial resolution, and the angular range that can be achieved by the QPI/MLA 230 of the time-space optical direction light modulator of the present invention will be reduced. At this point, the maximum value α max of the time angle articulation α( t ) will become part of the design compromise to recover the loss to help increase the angular extent of the spatial resolution. In the previous example, when the maximum value α max of the joint rotation angle is selected to be α max = ± 7.5°, the temporal spatial optical direction adjuster will be able to achieve with the pixel group G i of (64 × 64) pixels ( α max + Θ ) = ±15° one of the extended angular ranges. Essentially, for a given angular resolution value δ Θ , the maximum value α max of the joint rotation angle is a compromise between one of the angular extents or spatial resolutions that can be used to increase the direction adjustment that can be achieved by the temporal spatial optical direction adjuster. parameter.

應注意,與使用一掃描鏡來時間方向調節一光束之先前技術不同,本發明之時間空間光學光調節器在一項非常重要態樣中之不同之處在於其在任何給定時間例項下產生同時經方向調節之眾多光束。在本發明之時間空間光學光調節器之情形中,眾多經方向調節光束將藉由常平架式QPI/MLA總成230之活節轉動而經時間多工以擴展方向調節解析度及角範圍。如早先所闡釋(參見圖14),在常平架式QPI/MLA總成230進行活節轉動時,隨著某些光束在時間上以一管線方式衰弱而添加一新組經方向調節光束直至完全涵蓋本發明之時間空間光學光調節器之經擴展角範圍為止。因此,在任何給定時刻處,常平架式QPI/MLA總成230之全發射式孔徑用於在任何給定方向在時間上保持於QPI/MLA總成230之經活節轉動孔徑之涵蓋範圍內時累積彼方向處之期望之強度。由於眾多經方向調節光束之此時間管線化,可使本發明之時間空間光學光調節器之回應時間與具有最小延時之影像資料輸入速率相匹配。另外,本發明之時間空間光學方向光調節器之常平架式QPI/MLA總成230之活節轉動可以一不中斷型樣進行,該部中斷型樣將在常平架式QPI/MLA總成230橫跨本發明之時間空間光學光調節器之經擴展角範圍進行活節轉動時產生其發射孔徑之最小消隱或無消隱。因此,先前技術方向光調節器之 緩慢回應時間、不良效率及大體積缺點藉由本發明之時間空間光學光調節器全部實質上克服。 It should be noted that unlike prior art techniques that use a scanning mirror to adjust a beam of light in a time direction, the time-space optical light modulator of the present invention differs in a very important aspect in that it is at any given time. Produces a multitude of beams that are simultaneously adjusted in direction. In the case of the time space optical light modulator of the present invention, a plurality of directionally adjusted beams will be time multiplexed by the gyroscopic rotation of the gimbal QPI/MLA assembly 230 to adjust the resolution and angular extent. As explained earlier (see Figure 14), when the gimbal QPI/MLA assembly 230 is rotated, a new set of directional beam is added as the beam is weakened in time. Covering the extended angular extent of the time space optical light modulator of the present invention. Thus, at any given time, the full-emission aperture of the gimbal QPI/MLA assembly 230 is used to maintain the coverage of the QPI/MLA assembly 230 through the joint rotation aperture in any given direction. The inner time accumulates the desired strength in the direction. Due to the time-lined nature of the plurality of directionally modulated beams, the response time of the time-space optical light modulator of the present invention can be matched to the image data input rate with minimal delay. In addition, the spoke rotation of the gimbal QPI/MLA assembly 230 of the time-space optical direction light adjuster of the present invention can be performed in an uninterrupted pattern, and the interrupt pattern will be in the gimbal QPI/MLA assembly 230. Minimizing blanking or no blanking of its emission aperture occurs when the joint is rotated across the extended angular extent of the time-space optical light modulator of the present invention. Therefore, prior art directional light regulators The slow response time, poor efficiency, and large volume disadvantages are all substantially overcome by the time space optical light modulator of the present invention.

圖8及圖9圖解說明時間空間光學方向光調節器之操作原理。圖8圖解說由QPI裝置210之發射像素中之(n×n)個像素之一個二維陣列構成之調節群組G i 中之一者之一例示性實施例,藉此出於便利像素群組G i 沿一個軸之大小將經選擇為n=2m。參考圖8,可藉由像素群組G i 達成之方向調節可定址性將透過構成調節群組G i 之(n×n)個像素沿其兩個軸xy中之每一者使用m位元字之可定址性來完成。圖9圖解說明將自構成QPI像素調節群組G i 之(n×n)個像素發射之光映射至由相關聯MLA 220微透鏡(諸如圖6中所圖解說明之例示性實施例之彼微透鏡)之角範圍Θ所定義之三維體積內之個別方向中。作為一說明性實例,當QPI之個別像素之尺寸係(5×5)微米且QPI像素群組G i 由(n×n)=(27×27)=(128×128)個像素陣列構成且相關聯MLA 220微透鏡之角範圍係Θ=±15°時,則自QPI發射表面處之大小(0.64×0.64)毫米之QPI二維調節像素群組G i 中之每一者,將可能跨越Θ=±15°之角範圍產生(128)2=16,384個可個別定址之方向光束,藉此在16,384個方向中之每一者上產生之光亦可進行色彩及強度之個別調節。當QPI/MLA總成230使用實施例1500及1600之2軸常平架如早先所闡述(參見圖12及圖13A)地進行活節轉動時,由QPI/MLA總成230之透鏡元件提供之方向調節角範圍將在時間上延伸由常平架提供之最大活節轉動角±α max 。因此,由本發明之時間空間光 學方向光調節器提供之方向調節角範圍將在時間上延伸超過一角涵蓋範圍,總計±(Θ max )。舉例而言,當MLA 220透鏡元件之角範圍係Θ=±15°,且最大活節轉動角α max =±30°時,則將由時間空間光學方向光調節器提供之經擴展角範圍將係(Θ max )=±45°,且其將能夠在時間上產生之光調節方向將係[n(θ+α max )/θ]2=9×可由QPI/MLA總成230產生之光調節方向之數目(參見圖14),亦即,9(128)2=147,456個光調節方向。意指,可由本發明之時間空間光學方向光調節器產生之光調節方向之數目將係(3n×3n),其中(n×n)係與MLA 220透鏡元件中之一者相關聯之像素群組G i 之大小(以QPI像素之數目表示)。因此,針對此實施例,時間空間光學方向光調節器將提供9×QPI/MLA總成230所提供之方向調節解析度之一擴展方向偵測解析度。一般而言,由時間空間光學方向光調節器提供之方向調節解析度在延伸超過±(Θ max )之一角之一角範圍內將係[n(θ+α max )/θ]2Figures 8 and 9 illustrate the principle of operation of a time space optical direction light modulator. 8 illustrates an exemplary embodiment of one of the adjustment groups G i formed by a two-dimensional array of (n×n) pixels in the transmit pixels of the QPI device 210, thereby facilitating pixel groups The size of group G i along one axis will be chosen to be n = 2 m . Referring to FIG. 8, the direction-adjustable addressability that can be achieved by the pixel group G i is transmitted through each of its two axes x and y through (n×n) pixels constituting the adjustment group G i . The addressability of the bit word is completed. Figure 9 illustrates mapping light emitted from (n x n) pixels constituting the QPI pixel adjustment group G i to an associated MLA 220 microlens (such as the exemplary embodiment illustrated in Figure 6) individual lenses direction within three-dimensional volume) of the angle Θ in the range defined. As an illustrative example, when the size of the individual pixels of the QPI is (5 × 5) μm and the QPI pixel group G i is (n × n) = (2 7 × 2 7 ) = (128 × 128) pixel array Each of the QPI two-dimensionally adjusted pixel groups G i of the size (0.64 x 0.64) mm from the QPI emission surface will be formed when the angular extent of the associated MLA 220 microlens is Θ = ±15° It is possible to generate (128) 2 = 16, 384 individually steerable beams across the angular range of Θ = ±15°, whereby the light produced in each of the 16,384 directions can also be individually adjusted in color and intensity. When the QPI/MLA assembly 230 is rotated using the two-axis gimbal of the embodiments 1500 and 1600 as previously described (see Figures 12 and 13A), the orientation provided by the lens elements of the QPI/MLA assembly 230 The adjustment angle range will extend over time by the maximum joint rotation angle ±α max provided by the gimbal. Thus, the range of directional adjustment angles provided by the temporal spatial optical direction light modulator of the present invention will extend over time beyond a range of coverage, totaling ±( Θ max ). For example, when the angular extent of the MLA 220 lens element is Θ = ±15° and the maximum joint rotation angle α max = ±30°, the extended angular range provided by the time-space optical direction light adjuster will be ( Θ max )=±45°, and it will be able to produce light in the direction of time [ n ( θ + α max ) / θ ] 2 = 9 × light that can be generated by QPI / MLA assembly 230 The number of adjustment directions (see Figure 14), that is, 9 (128) 2 = 147, 456 light adjustment directions. It is meant that the number of light adjustment directions that can be produced by the temporal spatial optical direction light modulator of the present invention will be (3n x 3n), where (n x n) is a group of pixels associated with one of the MLA 220 lens elements. The size of the group G i (expressed as the number of QPI pixels). Thus, for this embodiment, the temporal spatial optical directional light modulator will provide one of the directional adjustment resolutions provided by the 9xQPI/MLA assembly 230 to extend the direction detection resolution. In general, the direction adjustment resolution provided by the temporal spatial optical direction light modulator will be [ n ( θ + α max ) / θ ] 2 over a range extending over an angle of ± ( Θ + α max ).

除了本發明之時間空間光學方向光調節器之方向調節能力以外,使用QPI像素調節群組G i 之一(N×M)陣列(諸如先前設計實例中所闡述之彼陣列),空間調節亦將係可能的。舉例而言,若需要形成具有提供先前實例之(9×128)2=147,456個方向調節解析度之N=16×M=16之空間調節解析度之本發明之一方向光調節器,則本發明之時間空間光學方向光調節器將包括一陣列(16×16)個方向調節群組G i ,且當使用具有(5×5)微米像素大小之一QPI時,時 間空間光學方向光調節器之總大小係大約10.24×10.24毫米。使用先前實例之角範圍值,自本發明之此一空間光學方向光調節器發射之光可以(16×16)進行空間調節且以147,456之一解析度在±45°之角範圍內進行方向調節,且亦可在每一方向上進行色彩及強度之調節。 In addition to the direction adjustment capability of the time-space optical direction light modulator of the present invention, one of the QPI pixel adjustment group G i (N x M) arrays (such as the arrays described in the previous design examples) is used, and spatial adjustment will also It is possible. For example, if it is desired to form a directional light adjuster of the present invention having the spatial adjustment resolution of N = 16 × M = 16 providing (9 × 128) 2 = 147, 456 directional adjustment resolutions of the previous example, The inventive time space optical direction light modulator will include an array (16 x 16) direction adjustment groups G i and a time space optical direction light modulator when using one QPI having a (5 x 5) micron pixel size The total size is approximately 10.24 x 10.24 mm. Using the angular range values of the previous examples, the light emitted from the spatial optical direction light modulator of the present invention can be spatially adjusted (16 x 16) and directionally adjusted at an angle of ± 45 degrees with a resolution of 147, 456. And the color and intensity can be adjusted in each direction.

如由先前實例所圖解說明,時間空間光學光調節器之空間及方向調節解析度(以一給定角範圍內之個別可定址方向之數目表示)將藉由選擇發射式微發射體陣列QPI裝置210之解析度及像素節距、MLA 220透鏡元件之節距、MLA 220透鏡元件之角範圍及調節器常平架之最大活節轉動角而判定。對熟習此項技術者將明顯的是,MLA透鏡系統可經設計以允許較寬或較窄角範圍,常平架設計可經選擇以允許較寬或較窄活節轉動角且每一調節群組內之像素之數目可經選擇為較小或較大以便形成可遵循前述論述中提供之教示達成任何期望之空間及方向調節能力之一時間空間光學方向光調節器。 As illustrated by the previous examples, the spatial and directional adjustment resolution of the temporal spatial optical light modulator (represented by the number of individual addressable directions within a given angular range) will be selected by selecting the transmit micro-emitter array QPI device 210. The resolution and pixel pitch, the pitch of the MLA 220 lens element, the angular extent of the MLA 220 lens element, and the maximum joint rotation angle of the regulator gimbal are determined. It will be apparent to those skilled in the art that the MLA lens system can be designed to allow for a wider or narrower angular range, and the gimbal design can be selected to allow for a wider or narrower pitch angle and each adjustment group The number of pixels within can be selected to be smaller or larger to form a temporal spatial optical directional light modulator that can achieve any desired spatial and directional adjustment capabilities following the teachings provided in the preceding discussion.

可使用本發明之空間光學方向光調節器實現任何期望之空間及方向調節能力。先前實例圖解說明可如何使用一單個10.24毫米×10.24毫米QPI裝置210實施具有(16)2空間解析度及(3×128)2方向解析度之本發明之空間光學方向光調節器。為實現較高空間解析度,本發明之時間空間光學方向光調節器可使用包括眾多較小空間解析度之本發明之時間空間光學方向光調節器之一平鋪式陣列來實施。舉例而言,當先前實例之時間空間光學方向光調節器之一(3×3) 陣列經如圖11中所圖解說明平鋪時,所得時間空間光學方向光調節器將提供(3×16)2空間解析度及(3×128)2方向解析度。由於其緊湊體積尺寸,因此可能平鋪眾多本發明之時間空間光學方向調節器以便實現一較高空間解析度版本。舉例而言,使用一單個QPI裝置210(其自身將具有分別10.24 mm×10.24 mm×5 mm之一例示性寬度、高度及厚度)之先前實例之時間空間光學方向光調節器可用於形成圖11中所圖解說明之較大解析度版本(其寬度、高度及厚度將分別具有3.07 cm×3.07 cm×0.5 cm之尺寸)。舉例而言,若平鋪經擴展以包含較小解析度時間空間光學方向光調節器之一(30×30)陣列,則所得時間空間光學方向光調節器將具有一(30×16)2空間解析度及(3×128)2方向解析度且將量測寬度、高度及厚度分別為30.07 cm×30.07 cm×0.5 cm。其可能藉由使用定位於一底板背側上之微球柵陣列(MBGA)之電接觸將眾多先前實例之時間空間光學方向光調節器接合至該底板來實施圖11中所圖解說明之本發明之時間空間光學方向光調節器之較高空間解析度版本,此給出實施例1600之零邊緣特徵,將使得可能實現眾多此等方向光調節器裝置之無縫平鋪以實施任何期望大小之時間空間光學方向光調節器。當然,圖11中所圖解說明之時間空間光學方向光調節器之陣列之大小可增加至實現任何期望之空間解析度所需之範圍。亦可能針對一增加空間解析度折衷時間空間光學方向光調節器之方向解析度。舉例而言,若像素調節群組大小減少至(64×64),則圖11中所圖 解說明之(3×3)陣列將提供(3×32)2空間解析度及(3×64)2方向解析度。值得注意的是,藉由本發明之時間空間光學方向光調節器實施例1600之早先所闡述之零邊緣特徵使得提供圖11中所圖解說明之經擴展空間孔徑之時間空間光學方向光調節器之陣列可能。 Any desired spatial and directional adjustment capabilities can be achieved using the spatial optical directional light modulator of the present invention. The previous example may illustrate how a single 10.24 mm × 10.24 mm QPI apparatus 210 embodiment having (16) resolution and spatial resolution of 2 (3 × 128) 2 directions spatial optical directional light adjuster of the present invention. To achieve higher spatial resolution, the time-space optical directional light modulator of the present invention can be implemented using a tiled array of one of the time-space optical directional light modulators of the present invention that includes numerous small spatial resolutions. For example, when one of the time-space optical direction light modulators (3 x 3) array of the previous example is tiled as illustrated in Figure 11, the resulting time-space optical direction light modulator will provide (3 x 16) 2 spatial resolution and (3 × 128) 2 direction resolution. Due to its compact size, it is possible to tile a number of time-space optical direction adjusters of the present invention to achieve a higher spatial resolution version. For example, a time-space optical directional light modulator using a previous example of a single QPI device 210 (which itself would have an exemplary width, height, and thickness of 10.24 mm x 10.24 mm x 5 mm, respectively) can be used to form Figure 11 The larger resolution version illustrated in the figure (its width, height and thickness will have a size of 3.07 cm x 3.07 cm x 0.5 cm, respectively). For example, if the tile is expanded to include one of the smaller resolution time-space optical direction light modulators (30 x 30) array, the resulting time-space optical direction light modulator will have one (30 x 16) 2 space Resolution and (3 × 128) 2- direction resolution and the measured width, height and thickness are respectively 30.07 cm × 30.07 cm × 0.5 cm. It is possible to implement the invention illustrated in Figure 11 by bonding a plurality of previous examples of temporal spatial optical directional light modulators to the backplane using electrical contacts of a microsphere array (MBGA) positioned on the back side of a backplane. A higher spatial resolution version of the temporal spatial optical direction light modulator, which gives the zero edge feature of embodiment 1600, will enable seamless tiling of a plurality of such directional light modulator devices to implement any desired size Time space optical direction light regulator. Of course, the size of the array of temporal spatial optical directional light modulators illustrated in Figure 11 can be increased to the extent required to achieve any desired spatial resolution. It is also possible to reduce the direction resolution of the optical direction directional light modulator for a spatial resolution compromise. For example, if the pixel adjustment group size is reduced to (64 x 64), the (3 x 3) array illustrated in Figure 11 will provide (3 x 32) 2 spatial resolution and (3 x 64) 2 Direction resolution. Notably, the zero edge feature previously described by the time-space optical direction light modulator embodiment 1600 of the present invention provides an array of time-space optical direction light modulators that provide the expanded spatial aperture illustrated in FIG. may.

將參考對圖8及圖9之圖解說明闡述時間空間光學方向光調節器之操作原理。圖8圖解說明針對方向調節使用m位元解析度之調節群組G i 中之每一者之二維可定址性。如早先所闡釋,將自調節群組G i 之(2m×2m)個個別像素發射之光藉由其相關聯MLA 220元件在相關聯MLA微透鏡元件之角範圍±Θ內映射至22m個光方向上。使用個別像素在調節群組G i 中之每一者內之個別像素之(x,y)維度座標,所發射光束之角座標(θ,φ)藉由以下方程式得出: The principle of operation of the temporal spatial optical directional light modulator will be explained with reference to the illustration of Figures 8 and 9. Figure 8 illustrates the two-dimensional addressability of each of the adjustment groups G i using m-bit resolution for direction adjustment. As explained earlier, the light emitted by the (2 m × 2 m ) individual pixels of the self-tuning group G i is mapped to 2 by the associated MLA 220 element within the angular extent ± Θ of the associated MLA microlens element. 2m light direction. Using the individual pixels to adjust the ( x,y ) dimensional coordinates of the individual pixels in each of the groups G i , the angular coordinates ( θ, φ ) of the emitted beams are obtained by the following equation:

其中α x (t)及α y (t)分別係在時期t處圍繞x軸及y軸之活節轉動角之值,角θ(t)φ(t)係在時期t處方向調節球座標之值,其中極軸在θ=0下平行於調節群組G i 之發射表面之z軸且m=log2 n係用於表達調節群組G i 內之x及y像素解析度之位元之數目。時間空間光學方向光調節器之空間解析度係由構成整個時間空間光學方向光調節器之二維調節群組陣列內之個別調節群組G i 中之每一者之座標(X,Y)定義。在本質上,時間空間光學光調節器將能夠在時間上產生(調節)藉由由其調節群組陣列及方向座標(θ,φ)定義之空間座 標(X,Y)描述之一光場,其中該等方向座標係由調節群組G i 內之發射像素之座標(x,y)之值及時間空間光學方向光調節器之活節轉動角之時間值定義,如由以上方程式3及方程式4所定義。 Where α x ( t ) and α y ( t ) are the values of the joint rotation angle around the x-axis and the y-axis at the period t , respectively, and the angles θ(t) and φ(t) adjust the sphere at the period t The value of the coordinate, where the polar axis is parallel to the z-axis of the emission surface of the adjustment group G i at θ =0 and m=log 2 n is used to express the position of the x and y pixel resolution within the adjustment group G i The number of yuan. The spatial resolution of the temporal spatial optical direction light modulator is defined by the coordinates ( X, Y ) of each of the individual adjustment groups G i within the two-dimensional adjustment group array constituting the entire time space optical direction light modulator. . In essence, the temporal spatial optical light modulator will be able to temporally generate (adjust) a light field described by the spatial coordinates ( X, Y ) defined by its adjustment group array and direction coordinates ( θ, φ ), Wherein the coordinate of the direction is defined by the value of the coordinate ( x, y ) of the emission pixel in the adjustment group G i and the time value of the rotation angle of the joint of the time-space optical direction light adjuster, as by Equation 3 above and the equation 4 defined.

圖10(其圖解說明空間光學方向光調節器之資料處理方塊圖之一例示性實施例)亦適用本發明之時間空間光學實施例。使用16位元表示方向調節及使用典型24位元來表示每一方向上之經調節之光強度及色彩之先前闡述亦適用於本發明之時間空間光學實施例。 Figure 10, which illustrates an exemplary embodiment of a data processing block diagram of a spatial optical direction light modulator, also applies to the temporal spatial optical embodiment of the present invention. The previous description using 16-bit representation of direction adjustment and the use of a typical 24-bit to represent the adjusted light intensity and color in each direction is also applicable to the temporal spatial optical embodiment of the present invention.

可能應用包含Possible applications include

本發明之時間空間光學方向光調節器可用於實施(舉例而言)經實現為眾多時間空間光學方向光調節器之一平鋪式陣列(諸如圖11中所圖解說明之陣列)具有一任意大小之一3D顯示器。可藉由時間空間光學方向光調節器實現之經擴展角範圍將達成體積緊湊且提供一大視角但無需使用龐大且高成本光學總成之3D顯示器之實現。可藉由時間空間光學方向光調節器達成之體積緊湊性之位準將達成桌上型3D顯示器以及可能行動3D顯示器兩者之實現。此外,時間空間光學方向光調節器之經擴展方向調節能力使其能夠在其經擴展角範圍內調節具有與人類視覺系統眼睛角分離度相匹配之一角解析度值δΘ之眾多視圖,因此使其成為將不需要使用眼鏡來觀看其顯示之3D內容之一3D顯示器。事實上,假定本發明之時間空間光學方向光調節器可產生高數目個經獨立調節光束,其將能夠在所產生之多個視圖 之間調節具有充足角解析度值之一3D影像,該3D影像將消除通常阻礙3D顯示器之效能且導致視覺疲勞之視覺輻輳-調節衝突(VAC)。換言之,本發明之時間空間光學方向光調節器之角解析度能力使其能夠產生將不導致觀看者之視覺疲勞的一無VAC之3D影像。時間空間光學方向光調節器之光場調節能力亦使其成為可用於實施一合成全像3D顯示器之3D光場顯示器之根本基礎。 The temporal spatial optical directional light modulator of the present invention can be used to implement, for example, a tiled array (such as the array illustrated in Figure 11) implemented as a plurality of time-space optical directional light modulators having an arbitrary size A 3D display. The extended angular range that can be achieved with a time-space optical directional light modulator will enable the implementation of a compact 3D display that provides a large viewing angle without the need for a bulky and costly optical assembly. The level of compactness achieved by the time-space optical directional light modulator will achieve both desktop 3D displays and possibly mobile 3D displays. In addition, the extended spatial adjustment capability of the temporal spatial optical direction light modulator enables it to adjust a plurality of views having an angular resolution value δΘ that matches the angular separation of the human visual system eye over its extended angular range, thus Become a 3D display that will not require the use of glasses to view the 3D content of its display. In fact, it is assumed that the time-space optical direction light modulator of the present invention can produce a high number of independently adjusted light beams that will be able to adjust one of the 3D images with sufficient angular resolution values between the generated views, the 3D The image will eliminate visual convergence-conditioning conflicts (VAC) that typically impede the performance of the 3D display and cause visual fatigue. In other words, the angular resolution capability of the time-space optical direction light modulator of the present invention enables it to produce a VAC-free 3D image that will not cause visual fatigue to the viewer. The light field adjustment capability of the temporal spatial optical direction light modulator also makes it a fundamental basis for implementing a 3D light field display of a synthetic holographic 3D display.

時間空間光學方向光調節器亦可用作用於液晶顯示器(LCD)之一背光以實施一3D顯示器。時間空間光學方向光調節器亦可操作為一2D高解析度顯示器。在此情形中,QPI裝置210之個別像素將用於調節色彩及強度同時MLA 220將用於填充顯示器之視角。對時間空間光學光調節器而言亦可能藉由調適其輸入資料之格式以與期望之操作模式相匹配而自2D顯示模式切換至3D顯示模式。當時間空間光學方向光調節器用作一2D顯示器時,其光角範圍將係與其MLA 220微透鏡元件相關聯之角範圍加其常平架之活節轉動角±(Θ max ),其中個別調節群組之像素解析度經利用以達成較高空間解析度。 The temporal spatial optical direction light modulator can also be used as a backlight for a liquid crystal display (LCD) to implement a 3D display. The time space optical direction light modulator can also operate as a 2D high resolution display. In this case, the individual pixels of the QPI device 210 will be used to adjust the color and intensity while the MLA 220 will be used to fill the viewing angle of the display. It is also possible for the time space optical light modulator to switch from the 2D display mode to the 3D display mode by adapting the format of its input data to match the desired mode of operation. When the time-space optical direction light modulator is used as a 2D display, its optical angle range will be the angular range associated with its MLA 220 microlens element plus the gimbal rotation angle of its gimbal ± ( Θ + α max ), where individual The pixel resolution of the adjustment group is utilized to achieve a higher spatial resolution.

因此,本發明具有若干個態樣,該等態樣可單獨或以各種組合或子組合實踐,如所期望。雖然本文中出於圖解說明且非出於限制目的已揭示及闡述本發明之某些較佳實施例,但熟習此項技術者應理解,在不背離如由以下申請專利範圍之整個範圍界定之本發明之精神及範疇之情況下可在其中作出各種形式及細節之改變。 Thus, the invention has several aspects which may be practiced individually or in various combinations or sub-combinations as desired. Although certain preferred embodiments of the present invention have been disclosed and described herein for the purposes of illustration Various changes in form and detail may be made therein without departing from the spirit and scope of the invention.

200‧‧‧時間空間光學方向光調節器 200‧‧‧Time Space Optical Direction Light Regulator

210‧‧‧QPI裝置/發射式微陣列QPI裝置 210‧‧‧QPI device/emissive microarray QPI device

220‧‧‧2維微透鏡陣列/晶圓級光學器件微透鏡陣列/微透鏡陣列 220‧‧‧2D Microlens Array/Wafer Level Optics Microlens Array/Microlens Array

230‧‧‧QPI/微透鏡陣列總成 230‧‧‧QPI/Microlens Array Assembly

400‧‧‧微透鏡元件 400‧‧‧Microlens components

510‧‧‧角涵蓋範圍剖面 510‧‧‧ angular coverage profile

520‧‧‧時間角涵蓋範圍剖面 520‧‧‧Time angle coverage profile

600‧‧‧晶圓級光學器件透鏡元件 600‧‧‧ Wafer-level optics lens components

610‧‧‧光學元件/微透鏡系統 610‧‧‧Optical components/microlens systems

620‧‧‧光學元件/微透鏡系統 620‧‧‧Optical components/microlens systems

630‧‧‧光學元件/微透鏡系統 630‧‧‧Optical components/microlens systems

660‧‧‧蓋玻璃 660‧‧‧ Cover glass

720‧‧‧微透鏡陣列層 720‧‧‧Microlens array layer

730‧‧‧微透鏡陣列層 730‧‧‧Microlens array layer

760‧‧‧QPI裝置蓋玻璃 760‧‧‧QPI device cover glass

1310‧‧‧連續之時間活節轉動 1310‧‧‧Continuous time to rotate

1320‧‧‧離散或逐步之時間活節轉動 1320‧‧‧Discrete or stepwise time

1500‧‧‧時間空間光學方向光調節器 1500‧‧‧Time Space Optical Direction Light Regulator

1520‧‧‧2軸常平架總成/2軸常平架 1520‧‧‧2 shaft gimbal assembly/2-axis gimbal

1521‧‧‧鉸鏈層 1521‧‧‧Hinged layer

1522‧‧‧外框架 1522‧‧‧External framework

1523‧‧‧內環 1523‧‧‧ Inner Ring

1524‧‧‧矽鉸鏈 1524‧‧‧矽 hinge

1525‧‧‧內分段/裝置接合墊 1525‧‧‧Internal segment/device joint pad

1526‧‧‧矽鉸鏈 1526‧‧‧矽 hinge

1527‧‧‧裝置接觸墊 1527‧‧‧ device contact pads

1528‧‧‧間隔層 1528‧‧‧ interval layer

1530‧‧‧基底層 1530‧‧‧ basal layer

1535‧‧‧電磁鐵 1535‧‧‧Electromagnet

1536‧‧‧永久磁鐵 1536‧‧‧ permanent magnet

1600‧‧‧時間空間光學方向光調節器 1600‧‧‧Time Space Optical Direction Light Regulator

1620‧‧‧2軸常平架/2軸常平架總成 1620‧‧‧2 axis gimbal/2-axis gimbal assembly

1621‧‧‧墊層/鉸鏈式墊 1621‧‧‧Cushion/hinge pad

1622‧‧‧接觸墊 1622‧‧‧Contact pads

1623‧‧‧接合層/接觸墊 1623‧‧‧Connection layer/contact pad

1625‧‧‧彈簧層 1625‧‧‧Spring layer

1626‧‧‧螺旋形彈簧 1626‧‧‧Spiral spring

1627‧‧‧內接合墊 1627‧‧‧Inner joint pad

1628‧‧‧邊緣接觸件/墊 1628‧‧‧Edge contact/mat

1629‧‧‧接合墊 1629‧‧‧ joint pad

1630‧‧‧基底層 1630‧‧‧ basal layer

1631‧‧‧裝置接觸墊/接觸墊 1631‧‧‧Device contact pads/contact pads

1635‧‧‧球形樞軸 1635‧‧‧Spherical pivot

1636‧‧‧球形承窩 1636‧‧‧Spherical socket

d 1‧‧‧光方向/方向 d 1 ‧‧‧Light direction/direction

d 2‧‧‧光方向/方向 d 2 ‧‧‧Light direction/direction

d 3‧‧‧光方向/方向 d 3 ‧‧‧Light direction/direction

d 4‧‧‧光方向/方向 d 4 ‧‧‧Light direction/direction

p 1‧‧‧像素 p 1 ‧ ‧ pixels

p 2‧‧‧像素 p 2 ‧ ‧ pixels

p 3‧‧‧像素 p 3 ‧ ‧ pixels

p 4‧‧‧像素 p 4 ‧ ‧ pixels

x‧‧‧軸 x ‧‧‧axis

y‧‧‧軸 y ‧‧‧axis

Θ‧‧‧角發散/角範圍/角 Θ ‧‧‧ divergence angle / angular range / angle

±α x ‧‧‧角 ±α x ‧‧‧ corner

±α y ‧‧‧角 ±α y ‧‧‧ corner

圖1圖解說明實用液態透鏡之一先前技術方向光調節器。 Figure 1 illustrates a prior art directional light modulator of one of the practical liquid lenses.

圖2圖解說明實用掃描鏡之一先前技術方向光調節器。 Figure 2 illustrates a prior art directional light modulator of a practical scanning mirror.

圖3圖解說明一先前技術方向調節3D光調節器。 Figure 3 illustrates a prior art directional adjustment 3D light modulator.

圖4圖解說明時間空間光學方向光調節器之空間光學方向光調節態樣。 Figure 4 illustrates a spatial optical directional light conditioning aspect of a temporal spatial optical directional light modulator.

圖5係空間光學方向光調節器之方向光調節原理之一等角視圖。 Figure 5 is an isometric view of the principle of directional light adjustment of a spatial optical direction light modulator.

圖6圖解說明空間光學方向光調節器之一例示性準直晶圓級光學器件設計。 Figure 6 illustrates an exemplary collimated wafer level optics design of a spatial optical directional light modulator.

圖7圖解說明使用圖6中所圖解說明之晶圓級光學器件例示性設計之空間光學方向光調節器之一例示性設計。 FIG. 7 illustrates an exemplary design of a spatial optical directional light modulator using the exemplary design of wafer level optics illustrated in FIG. 6.

圖8圖解說明時間空間光學方向光調節器之空間調節像素群組中之一者內之方向可定址性之一例示性實施例。 8 illustrates an exemplary embodiment of directional addressability within one of a set of spatially adjusted pixels of a temporal spatial optical direction light modulator.

圖9圖解說明時間空間光學方向光調節器之空間調節像素群組中之一者內之方向調節之一例示性實施例。 9 illustrates an exemplary embodiment of direction adjustment within one of a set of spatially adjusted pixels of a temporal spatial optical direction light modulator.

圖10係闡釋空間光學方向光調節器之資料處理方塊圖之一方塊圖。 Figure 10 is a block diagram showing a data processing block diagram of a spatial optical direction light modulator.

圖11圖解說明藉由平鋪眾多空間光學方向光調節器所實施之一3D/2D可切換顯示器之一例示性實施例之一等角視圖。 11 illustrates an isometric view of one exemplary embodiment of a 3D/2D switchable display implemented by tiling a plurality of spatial optical direction light modulators.

圖12圖解說明時間空間光學方向光調節器之原理態樣之一等角視圖。 Figure 12 illustrates an isometric view of the schematic aspect of a temporal spatial optical directional light modulator.

圖13A圖解說明藉由時間空間光學方向光調節器之時間活節轉動變得可能之角發射擴展。 Figure 13A illustrates the angular emission spread that is made possible by the time-slot rotation of the time-space optical direction light modulator.

圖13B圖解說明時間空間光學方向光調節器之角時間活節轉動。 Figure 13B illustrates angular time joint rotation of a time space optical direction light modulator.

圖14圖解說明時間空間光學方向光調節器之經延伸角涵蓋範圍剖面。 Figure 14 illustrates an extended angle coverage profile of a time space optical direction light modulator.

圖15圖解說明時間空間光學方向光調節器之一項實施例之等角視圖、側視圖及俯視圖。 Figure 15 illustrates an isometric view, a side view, and a top view of an embodiment of a time space optical direction light modulator.

圖16圖解說明時間空間光學方向光調節器之另一實施例之等角視圖、側視圖及俯視圖。 Figure 16 illustrates an isometric view, a side view, and a top view of another embodiment of a time space optical direction light modulator.

Claims (48)

一種光調節器,其包括:一發射式微發射體陣列裝置,其具有一微像素陣列,及一微透鏡陣列,該微透鏡陣列中之每一微透鏡跨越該發射式微發射體陣列之一像素群組,藉此該微透鏡陣列中之一微透鏡將在一不同方向上引導來自該各別像素群組中之每一發射式微發射體之照射。 A light modulator comprising: an emissive micro-emitter array device having a micro-pixel array, and a microlens array, each microlens of the microlens array spanning a pixel group of the emissive micro-emitter array The group whereby one of the microlenses in the array of microlenses directs illumination from each of the individual micro-emitters in the respective group of pixels in a different direction. 如請求項1之光調節器,其中每一像素群組係一個二維像素群組。 The light modulator of claim 1, wherein each pixel group is a two-dimensional pixel group. 如請求項2之光調節器,其中該發射式微發射體陣列裝置之該等像素中之每一者係可個別定址之一固態光發射體,該固態光發射體選自由發光二極體及雷射二極體組成之群組。 The light modulator of claim 2, wherein each of the pixels of the emissive micro-emitter array device is individually addressable to a solid-state light emitter selected from the group consisting of a light-emitting diode and a thunder A group consisting of two diodes. 如請求項3之光調節器,其中該發射式微發射體陣列裝置之每一像素可發射多種色彩之光,且每一像素可個別定址以發射一經選擇色彩及強度之光。 The light modulator of claim 3, wherein each pixel of the emissive micro-emitter array device emits light of a plurality of colors, and each pixel is individually addressable to emit a selected color and intensity of light. 如請求項3之光調節器,其中該發射式微發射體陣列裝置之該等像素具有十微米或更少之一線性尺寸。 The light modulator of claim 3, wherein the pixels of the emissive micro-emitter array device have a linear dimension of one ten micron or less. 如請求項3之光調節器,其中該微透鏡陣列由複數個堆疊式微透鏡陣列構成。 The light modulator of claim 3, wherein the microlens array is comprised of a plurality of stacked microlens arrays. 如請求項4之光調節器,其中該光調節器之該方向、色彩及強度可定址性係使用至該光調節器之一多欄位資料輸入來完成,藉此針對該等像素群組之空間陣列內之每一指定像素群組位址,至少一個輸入資料欄位用於規定 該所發射光之該方向且至少一個欄位用於規定在彼指定方向上發射之該光之該色彩及強度。 The light modulator of claim 4, wherein the direction, color and intensity addressability of the light adjuster is performed using a multi-column data input to the light adjuster, thereby targeting the pixel groups Each specified pixel group address within the spatial array, at least one input data field is specified The direction of the emitted light and the at least one field are used to specify the color and intensity of the light emitted in a specified direction. 如請求項4之光調節器,其以複數形式構成一平鋪式光調節器陣列。 The light modulator of claim 4, which is in the form of a plurality of tiled light modulator arrays. 如請求項4之光調節器,其以複數形式構成一平鋪式陣列中之一組集體式光調節器,其中在每一光調節器中,該發射式微發射體陣列裝置之該等像素係多色彩像素且可個別定址以發射具有一經選擇色彩及強度之光,該微透鏡陣列由複數個堆疊式微透鏡陣列構成,該微透鏡陣列之該等透鏡中之每一者係與該各別發射式微發射體陣列裝置之一各別像素群組內之複數個像素相關聯及對準,其中每一透鏡將自該複數個像素發射之該光光學映射至該透鏡之一數值孔徑內之一組對應離散方向中以達成在該組離散方向之每一個別方向上發射之該光之該色彩及強度,藉此使得該光調節器能夠橫跨跨越該組集體式光調節器之一孔徑產生經色彩、強度及方向調節之光。 The light modulator of claim 4, which is in the form of a plurality of collective light modulators in a tiled array, wherein each of the light modulators has a plurality of pixels of the array of emitters Color pixels and individually addressable to emit light having a selected color and intensity, the microlens array being comprised of a plurality of stacked microlens arrays, each of the lenses of the microlens array being associated with the respective emission micro A plurality of pixels within a respective pixel group of the emitter array device are associated and aligned, wherein each lens optically maps the light emitted from the plurality of pixels to a set of one of the numerical apertures of the lens The color and intensity of the light emitted in each of the discrete directions of the discrete directions is achieved in discrete directions, thereby enabling the light modulator to produce a color across the aperture across one of the set of collective light modulators Light, intensity and direction adjustment. 如請求項4之光調節器,其中該等光調節器之每一像素之該方向、色彩及強度可定址性係使用該等個別光調節器之一多欄位資料輸入來完成,藉此針對該等像素群組之該空間陣列內之每一指定像素群組位址,至少一個輸入資料欄位用於規定該所發射光之空間方向且至少一個欄位用於規定在彼指定方向上發射之該光之該色彩及強度。 The light modulator of claim 4, wherein the direction, color, and intensity addressability of each pixel of the light adjusters is accomplished using a multi-field data input of one of the individual light adjusters, thereby Each of the specified pixel group addresses in the spatial array of the groups of pixels, at least one input data field for specifying a spatial direction of the emitted light and at least one field for specifying emission in a specified direction The color and intensity of the light. 如請求項4之光調節器,其中該光調節器可藉由調適該多欄位資料輸入之格式以與期望之操作模式相匹配而經切換以作為一3D顯示器或作為一高解析度2D顯示器操作。 The light modulator of claim 4, wherein the light adjuster is switchable to act as a 3D display or as a high resolution 2D display by adapting the format of the multi-field data input to match a desired mode of operation operating. 如請求項4之光調節器,其在一液晶顯示器中作為用於該液晶顯示器之一背光以形成一3D顯示器或2D顯示器。 A light conditioner according to claim 4, which is used as a backlight for one of the liquid crystal displays in a liquid crystal display to form a 3D display or a 2D display. 如請求項1至12中任一項之光調節器,其中來自該等發射式微發射體之照射之該等不同方向定義一角範圍,且其中該發射式微發射體陣列裝置及該微透鏡陣列經裝配在一起且作為一單個總成繞至少一個軸進行角活節轉動以在該發射式微發射體陣列之一發射表面之一平面內且在正負一最大角活節轉動之一範圍內發射光。 The light modulator of any one of claims 1 to 12, wherein the different directions of illumination from the emissive micro-emitters define an angular extent, and wherein the emissive micro-emitter array device and the microlens array are assembled Together, and as a single assembly, angular articulation about at least one axis to emit light in one of the planes of one of the emitting surfaces of the array of emissive microprojectors and within one of the positive and negative one maximum angular articulation. 如請求項13之光調節器,其中該發射式微發射體陣列裝置及該微透鏡陣列經組態以作為一單個總成繞兩個正交軸在繞該各別軸之正負一最大角活節轉動之一範圍內進行角活節轉動。 The light modulator of claim 13, wherein the emissive micro-emitter array device and the microlens array are configured to act as a single assembly around two orthogonal axes about positive and negative one maximum angular joints around the respective axes Rotate the angular joint within one of the rotations. 如請求項14之光調節器,其中該角活節轉動經組態以增加該等不同方向之間的一角解析度,或增加來自該等發射式微發射體之照射之該等不同方向之該角範圍。 The light adjuster of claim 14, wherein the angular joint rotation is configured to increase an angular resolution between the different directions, or to increase the angle from the different directions of illumination of the emitted micro-emitters range. 如請求項13之光調節器,其中該平鋪式陣列中之毗鄰光調節器具有介於毗鄰像素群組中之作用像素之間的某些非作用邊緣像素。 The light modulator of claim 13, wherein the adjacent light modulators in the tiled array have certain inactive edge pixels between active pixels in adjacent groups of pixels. 如請求項3之光調節器,其中:該發射式微發射體陣列裝置之該等像素係多色彩像素 且可個別定址以發射具有一經選擇色彩及強度之光;該微透鏡陣列具有複數個堆疊式微透鏡陣列,該微透鏡陣列之該等透鏡中之每一者與該發射式微發射體陣列裝置之一像素群組內之複數個像素相關聯及對準,其中每一透鏡將自該各別複數個像素發射之該光光學映射至該各別透鏡之一數值孔徑內之一組對應離散方向中以達成在該組離散方向中之每一個別方向上發射之該光之該色彩及強度:藉此使得該光調節器能夠產生經色彩、強度及方向調節之光。 The light modulator of claim 3, wherein: the pixels of the emissive micro-emitter array device are multi-color pixels And individually addressable to emit light having a selected color and intensity; the microlens array having a plurality of stacked microlens arrays, each of the lenses of the microlens array and one of the emissive microprojector array devices A plurality of pixels within a group of pixels are associated and aligned, wherein each lens optically maps the light emitted from the respective plurality of pixels to a set of corresponding discrete directions in a numerical aperture of one of the respective lenses The color and intensity of the light emitted in each of the discrete directions of the set of directions is achieved: thereby enabling the light modulator to produce color, intensity, and direction adjusted light. 如請求項1之光調節器,其以複數形式構成一平鋪式光調節器陣列。 The light modulator of claim 1, which constitutes a tiled light modulator array in a plurality of forms. 如請求項1之光調節器,其中該光調節器可藉由調適該多欄位資料輸入之該格式以與該期望之操作模式相匹配而經切換以作為一3D顯示器或作為一高解析度2D顯示器操作。 The light adjuster of claim 1, wherein the light adjuster is switchable as a 3D display or as a high resolution by adapting the format of the multi-field data input to match the desired mode of operation 2D display operation. 一種方向光調節器,其包括:一個二維發射式微發射體陣列裝置;微透鏡元件之一微透鏡陣列;該二維發射式微發射體陣列裝置及該微透鏡陣列經裝配在一起且作為一單個總成進行角活節轉動以圍繞兩個軸在該發射式微發射體陣列之一發射表面之一平面內且在每一各別軸上之正負一最大角活節轉動之一範圍內發射光。 A directional light modulator comprising: a two-dimensional emission micro-emitter array device; a microlens array of one of the microlens elements; the two-dimensional emission micro-emitter array device and the microlens array assembled together and as a single The assembly performs angular joint rotation to emit light about one of the axes in one of the planes of one of the emitting surfaces of the array of emissive microprojectors and within one of the positive and negative one maximum angular joint rotations on each of the individual axes. 如請求項20之方向光調節器,其中該二維發射式微發射體陣列包括一像素陣列,其中每一像素係可個別定址之一固態光發射體。 The directional light modulator of claim 20, wherein the two-dimensional array of emitters comprises a pixel array, wherein each pixel is individually addressable to one of the solid state light emitters. 如請求項21之方向光調節器,其中該二維發射式微發射體陣列之每一像素具有不超過20微米×20微米之尺寸。 A directional light modulator according to claim 21, wherein each pixel of the two-dimensional array of emitters has a size of no more than 20 micrometers by 20 micrometers. 如請求項21之方向光調節器,其中每一像素可個別定址以調節其發射之光之色彩及強度兩者。 A directional light modulator of claim 21, wherein each pixel is individually addressable to adjust both the color and intensity of the light it emits. 如請求項20之方向光調節器,其中該角活節轉動係由用於該二維發射式微發射體陣列裝置及該微透鏡陣列之該總成之一常平架支撐件提供以用於藉由該常平架支撐件之該角活節轉動在時間上擴展在該兩個軸中之每一者上之角範圍,藉此在時間上擴展沿該兩個軸中之每一者之該組光方向。 The directional light modulator of claim 20, wherein the angular joint rotation is provided by a gimbal support for the two-dimensional emission micro-emitter array device and the assembly of the microlens array for The angular joint rotation of the gimbal support extends over a range of angles on each of the two axes, thereby expanding the set of light along each of the two axes over time direction. 如請求項24之方向光調節器,其中該在時間上經擴展角範圍在時間上連續或離散,且具有與一影像輸入資料圖框速率成比例且同步之一重複率,藉此圍繞該兩個軸中之每一者之該最大角活節轉動判定該方向光調節器之該經擴展角範圍、角涵蓋範圍、形狀及縱橫比。 The directional light modulator of claim 24, wherein the extended angular range is temporally continuous or discrete in time, and has a repetition rate proportional to an image input data frame rate, thereby surrounding the two The maximum angular joint rotation of each of the axes determines the extended angular extent, angular coverage, shape, and aspect ratio of the directional light modulator. 如請求項25之方向光調節器,其中圍繞該兩個軸中之每一者之該角活節轉動至少等於該輸入影像資料之一圖框速率乘以等於該經擴展角範圍與沿每一各別軸之該角範圍之比率之一因數。 The directional light adjuster of claim 25, wherein the corner joint around each of the two axes rotates at least equal to a frame rate of the input image data multiplied by the extended angular range and along each One of the ratios of the angular extents of the individual axes. 如請求項24之方向光調節器,其中每一像素之該可定址性係使用至該方向光調節器之一多欄位資料輸入來完 成,藉此針對該等像素群組之空間陣列內之每一指定像素群組位址,至少一個輸入資料欄位用於規定該所發射光之該方向且至少一個欄位用於規定在彼指定方向上發射之該光之該色彩及強度。 The directional light modulator of claim 24, wherein the addressability of each pixel is completed using a multi-field data input to the directional light modulator Thus, for each of the specified pixel group addresses in the spatial array of the groups of pixels, at least one input data field is used to specify the direction of the emitted light and at least one field is used to specify The color and intensity of the light emitted in the specified direction. 如請求項20之方向光調節器,其用作可藉由調適輸入資料之一格式以與期望模式相匹配而經切換從而以一3D顯示模式或一高解析度2D顯示模式操作之一顯示器。 A directional light modulator, as claimed in claim 20, for use as a display operable to operate in a 3D display mode or a high resolution 2D display mode by adapting one of the input data formats to match the desired mode. 如請求項20之方向光調節器,其用作可經切換以作為一3D顯示器或作為一高解析度2D顯示器操作之一液晶顯示器(LCD)之一背光。 The directional light modulator of claim 20 is used as a backlight that can be switched to operate as a 3D display or as a high resolution 2D display operation liquid crystal display (LCD). 如請求項20之方向光調節器,其能夠在其經擴展角範圍內調節具有與人類視覺系統眼睛角分離度相匹配之一角解析度值之眾多視圖,因此使其成為將不需要使用眼鏡來觀看其顯示之3D內容之一3D顯示器。 A directional light modulator as claimed in claim 20, which is capable of adjusting a plurality of views having an angular resolution value that matches the angular separation of the human visual system eye within its extended angular range, thereby making it unnecessary to use glasses Watch one of the 3D displays of the 3D content it displays. 一種方向光調節器,其包括:一發射式微發射體陣列裝置,其包括眾多像素;一微透鏡陣列,其經對準於且經實體連接至該發射式微發射體陣列裝置;及兩軸常平架,其具有兩組電磁致動器,該等電磁致動器與該常平架之該兩個軸對準以影響該接合墊圍繞該常平架之該兩個軸之時間角活節轉動。 A directional light modulator comprising: an emissive micro-emitter array device comprising a plurality of pixels; a microlens array aligned and physically coupled to the emissive micro-emitter array device; and a two-axis gimbal There are two sets of electromagnetic actuators that are aligned with the two axes of the gimbal to affect the time angle of the bond pad about the two axes of the gimbal. 如請求項31之方向光調節器,其中該兩軸常平架係使用用以實現該常平架之一個兩軸樞軸之多個矽基板層及界定該常平架相對於一常平架基底之中性位置之一機械阻 抗彈簧來實施。 The directional light modulator of claim 31, wherein the two-axis gimbal system uses a plurality of ruthenium substrate layers for implementing a two-axis pivot of the gimbal and defines the gimbal relative to a gimbal base. One of the mechanical resistance It is implemented against springs. 如請求項32之方向光調節器,其中至該等電磁致動器之驅動電信號提供時間角活節轉動,該時間角活節轉動在時間上連續或離散且具有與透過裝置介面觸點提供之一影像輸入資料圖框速率成比例且同步之一重複率,且其中該等驅動電信號包含由接合至接觸墊之一背側及該常平架之一基底層之一頂側之一組感測器提供之校正值。 The directional light modulator of claim 32, wherein the drive electrical signals to the electromagnetic actuators provide a time angle articulation that is temporally continuous or discrete and has a contact with the interface of the transmissive device One of the image input data frame rates is proportional and synchronized with a repetition rate, and wherein the driving electrical signals comprise a sense of one of a top side of one of the base layers joined to one of the contact pads and one of the base layers of the gimbal The correction value provided by the detector. 如請求項31之方向光調節器,其中該兩軸常平架包括在該接合墊之該背側上之一球形樞軸及在一常平架基底之一頂側上之一匹配球形承窩。 The directional light modulator of claim 31, wherein the two-axis gimbal includes a spherical pivot on the back side of the bond pad and a matching ball socket on one of the top sides of a gimbal base. 如請求項31之方向光調節器,其中在該微透鏡陣列中,其構成透鏡中之每一者與一個二維像素群組陣列內之各別複數個像素相關聯及精確對準,其中每一構成透鏡將自該各別複數個像素發射之該光光學映射至由該各別構成透鏡之一數值孔徑定義之一角範圍內之一組對應離散方向中。 A directional light modulator of claim 31, wherein in the microlens array, each of the constituent lenses is associated and precisely aligned with a respective plurality of pixels within a two-dimensional array of pixel groups, wherein each A constituent lens optically maps the light emitted from the respective plurality of pixels to a discrete direction corresponding to a set of angular ranges defined by one of the respective constituent lenses. 如請求項31之方向光調節器,其用於以複數形式形成具有一經擴展空間孔徑之該等方向光調節器之一平鋪式陣列。 A directional light modulator as claimed in claim 31, for forming a tiled array of one of the directional light modulators having an expanded spatial aperture in a plurality. 如請求項36之方向光調節器,其中在該等微透鏡陣列中,其構成透鏡中之每一者與一個二維像素群組陣列內之各別複數個像素相關聯及精確對準,其中每一構成透鏡將自該各別複數個像素發射之該光光學映射至由該各別構成透鏡之一數值孔徑定義之一角範圍內之一組對應 離散方向中,且該方向光調節器進一步由該等像素群組之空間陣列之一集體組構成,藉此每一像素群組內之每一像素可個別定址以產生經色彩、強度及方向調節之光,藉此使得該經擴展空間孔徑方向光調節器裝置能夠橫跨跨越該等空間陣列之該集體組之一空間孔徑產生經空間調節光,該光亦經色彩、強度及方向調節。 The directional light modulator of claim 36, wherein in each of the microlens arrays, each of the constituent lenses is associated and precisely aligned with a respective plurality of pixels within a two-dimensional array of pixel groups, wherein Each of the constituent lenses optically maps the light emitted from the respective plurality of pixels to a group corresponding to a range of angular apertures defined by one of the respective constituent lenses In a discrete direction, and the direction light modulator is further formed by a collective group of one of the spatial arrays of the groups of pixels, whereby each pixel within each group of pixels can be individually addressed for color, intensity, and direction adjustment The light thereby enabling the expanded spatial aperture direction light modulator device to produce spatially modulated light across a spatial aperture of the collective group spanning the spatial arrays, the light being also adjusted in color, intensity and direction. 如請求項37之方向光調節器,其用作可經切換以作為一3D顯示器或作為一高解析度2D顯示器操作之一液晶顯示器(LCD)之一背光以形成一3D顯示器或2D顯示器。 The directional light modulator of claim 37 is used as a backlight that can be switched to operate as a 3D display or as a high resolution 2D display to form a 3D display or a 2D display. 如請求項37之方向光調節器,其能夠在其經擴展角範圍內調節具有與人類視覺系統眼睛角分離度相匹配之一角解析度值之眾多視圖,因此使其成為將不需要使用眼鏡來觀看其顯示之3D內容之一3D顯示器。 A directional light modulator as claimed in claim 37, which is capable of adjusting a plurality of views having an angular resolution value that matches the angular separation of the human visual system eye within its extended angular range, thereby making it unnecessary to use glasses Watch one of the 3D displays of the 3D content it displays. 如請求項31之方向光調節器,其用作可經切換以作為一3D顯示器或作為一高解析度2D顯示器操作之一液晶顯示器(LCD)之一背光以形成一3D顯示器或2D顯示器。 The directional light modulator of claim 31 is used as a backlight that can be switched to operate as a 3D display or as a high resolution 2D display to form a 3D display or a 2D display. 如請求項31之方向光調節器,其中該方向光調節器之光場調節能力使其成為可用於實施一合成全像3D顯示器之一3D光場顯示器之根本基礎。 The directional light modulator of claim 31, wherein the light field adjustment capability of the directional light modulator makes it an essential basis for implementing a 3D light field display of a composite holographic 3D display. 一種形成一方向光調節器之方法,其包括:提供一發射式微發射體陣列裝置;提供微透鏡元件之一微透鏡陣列;使該微透鏡陣列與該發射式微發射體陣列裝置對準成一方向光調節器子總成以使得該微透鏡陣列之每一微透 鏡元件與該發射式微發射體陣列裝置之一個二維微發射體陣列內之對應複數個微發射體相關聯及對準以圍繞兩個軸在該發射式微發射體陣列之一發射表面之平面內在正負一最大角範圍之一範圍內發射光,藉此每一微透鏡元件將自該對應複數個微發射體發射之光光學映射至由每一微透鏡元件之一數值孔徑定義之一角範圍內之一組對應離散方向中;使該方向光調節器子總成繞至少一第一軸在該總成之一平面中進行時間活節轉動以回應於角活節轉動而擴展該組離散方向。 A method of forming a directional light modulator, comprising: providing an emissive micro-emitter array device; providing a microlens array of one of the microlens elements; aligning the microlens array with the emissive micro-emitter array device into a directional light a regulator subassembly such that each microlens array is microscopically A mirror element is associated with and aligned with a corresponding plurality of micro-emitters within a two-dimensional micro-emitter array of the emissive micro-emitter array device to surround the two axes in a plane of one of the emission surfaces of the emissive micro-emitter array Light is emitted in a range of positive and negative one of the maximum angular extents, whereby each microlens element optically maps light emitted from the corresponding plurality of microprojectors to an angular extent defined by one of the numerical apertures of each of the microlens elements A set of corresponding discrete directions; causing the directional light adjuster subassembly to rotate in a plane of the assembly about at least a first axis in a plane of the assembly to expand the set of discrete directions in response to angular joint rotation. 如請求項42之方法,其中使該方向光調節器子總成繞一第二軸在該總成之該平面中進行活節轉動以回應於該角活節轉動而進一步擴展該組離散方向,該第二軸垂直於該第一軸。 The method of claim 42, wherein the direction light adjuster subassembly is rotated about the second axis in the plane of the assembly to further expand the set of discrete directions in response to the angular joint rotation, The second axis is perpendicular to the first axis. 如請求項43之方法,其中:提供一發射式微發射體陣列裝置包括:在一單個基板上提供一微發射體陣列裝置矩陣;提供一微透鏡陣列包括:提供一微透鏡陣列矩陣;將該微透鏡陣列矩陣安裝至該微發射體陣列裝置矩陣上以形成一方向光調節器矩陣,及切割該方向光調節器矩陣以提供複數個個別方向光調節器。 The method of claim 43, wherein: providing an emissive micro-emitter array device comprises: providing a micro-emitter array device matrix on a single substrate; providing a microlens array comprising: providing a microlens array matrix; A lens array matrix is mounted to the matrix of microprojector array devices to form a directional light modulator matrix, and the directional light modulator matrix is diced to provide a plurality of individual directional light modulators. 如請求項44之方法,其中使用半導體晶圓級對準技術使該微透鏡陣列矩陣相對於該微發射體陣列裝置矩陣對準 以形成一方向光調節器矩陣。 The method of claim 44, wherein the microlens array matrix is aligned relative to the microprojector array device matrix using semiconductor wafer level alignment techniques To form a directional light modulator matrix. 如請求項44之方法,其中提供該微透鏡陣列矩陣包括:提供複數個微透鏡陣列層,其中該等微透鏡陣列層以一堆疊形式安裝且相對於彼此對準以形成該微透鏡陣列矩陣。 The method of claim 44, wherein providing the microlens array matrix comprises providing a plurality of microlens array layers, wherein the microlens array layers are mounted in a stacked form and aligned relative to one another to form the microlens array matrix. 如請求項44之方法,其中每一微發射體可個別定址以控制其色彩及亮度。 The method of claim 44, wherein each of the micro-emitters is individually addressable to control its color and brightness. 如請求項47之方法,其中自該對應複數個微發射體發射至由每一微透鏡元件之一數值孔徑定義之一角範圍內之一組對應離散方向中之光形成一對應像素群組,每一像素群組內之該等像素與該組經時間擴展方向之關聯性連同該個別像素可定址性達成該組經時間擴展方向之該個別可定址性,藉此該方向光調節器產生在包括該組經時間擴展光方向之該等方向中之任一者上經方向調節之光。 The method of claim 47, wherein a light is emitted from the corresponding plurality of micro-emitters to a corresponding group of pixels in a discrete direction corresponding to a range of angular apertures defined by one of the microlens elements, each forming a corresponding pixel group, The association of the pixels within a group of pixels with the set of time-expanding directions along with the individual pixel addressability achieves the individual addressability of the set of time-expanding directions, whereby the directional light modulator is generated The set of direction-adjusted light over any of the directions of the time-expanding light direction.
TW101145957A 2011-12-06 2012-12-06 Spatio-optical and temporal spatio-optical directional light modulators TWI611214B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201161567520P 2011-12-06 2011-12-06
US61/567,520 2011-12-06
US13/329,107 2011-12-16
US13/329,107 US8928969B2 (en) 2011-12-06 2011-12-16 Spatio-optical directional light modulator
US201261616249P 2012-03-27 2012-03-27
US61/616,249 2012-03-27
US13/546,858 2012-07-11
US13/546,858 US8854724B2 (en) 2012-03-27 2012-07-11 Spatio-temporal directional light modulator

Publications (2)

Publication Number Publication Date
TW201341851A true TW201341851A (en) 2013-10-16
TWI611214B TWI611214B (en) 2018-01-11

Family

ID=49771407

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101145957A TWI611214B (en) 2011-12-06 2012-12-06 Spatio-optical and temporal spatio-optical directional light modulators

Country Status (8)

Country Link
EP (1) EP2788813A1 (en)
JP (1) JP6095686B2 (en)
KR (1) KR102011876B1 (en)
CN (1) CN104081257B (en)
HK (1) HK1202640A1 (en)
IN (1) IN2014CN04026A (en)
TW (1) TWI611214B (en)
WO (1) WO2013086046A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762981B (en) * 2019-09-27 2022-05-01 英商杜阿里特斯有限公司 Liquid crystal display device and method for displaying holograms
TWI797132B (en) * 2017-07-13 2023-04-01 美商應用材料股份有限公司 Collimated, directional micro-led light field display and forming method thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170272739A1 (en) * 2014-09-30 2017-09-21 Koninklijke Philips N.V. Autostereoscopic display device and driving method
CA2992996C (en) * 2015-09-05 2020-12-29 Leia Inc. Supersampled 3d display with improved angular resolution
US10578882B2 (en) * 2015-12-28 2020-03-03 Ostendo Technologies, Inc. Non-telecentric emissive micro-pixel array light modulators and methods of fabrication thereof
EP3971874A1 (en) 2016-01-29 2022-03-23 Magic Leap, Inc. Display for three-dimensional image
KR102617466B1 (en) 2016-07-18 2023-12-26 주식회사 루멘스 Micro led array display apparatus
US10244230B2 (en) 2017-03-01 2019-03-26 Avalon Holographics Inc. Directional pixel for multiple view display
DE102017108951A1 (en) * 2017-04-26 2018-10-31 HELLA GmbH & Co. KGaA Communication device for a vehicle, in particular for an autonomous or semi-autonomous vehicle
CN107452890A (en) * 2017-05-22 2017-12-08 茆胜 A kind of transmission-type OLED minitype displayer part and preparation method based on SOI
WO2018222618A1 (en) 2017-05-30 2018-12-06 Magic Leap, Inc. Power supply assembly with fan assembly for electronic device
WO2019023489A1 (en) 2017-07-28 2019-01-31 Magic Leap, Inc. Fan assembly for displaying an image
US10432944B2 (en) 2017-08-23 2019-10-01 Avalon Holographics Inc. Layered scene decomposition CODEC system and methods
WO2019155243A1 (en) * 2018-02-06 2019-08-15 Holografika Kft 3d light field led-wall display
WO2019160169A1 (en) * 2018-02-13 2019-08-22 전자부품연구원 Maxwellian view display applying space-time multiplexing method
US10999573B2 (en) * 2018-04-25 2021-05-04 Raxium, Inc. Partial light field display architecture
JP2021523399A (en) * 2018-04-30 2021-09-02 オステンド・テクノロジーズ・インコーポレーテッド Quantum photonic imager incorporating color-adjustable solid-state emission micropixels
CN109462924B (en) * 2018-10-11 2020-09-11 北方信息控制研究院集团有限公司 Illumination method for multilayer spatial light modulation adaptive optical field
JPWO2020241264A1 (en) * 2019-05-31 2020-12-03
CN110971804B (en) * 2019-12-19 2022-05-10 京东方科技集团股份有限公司 Light field information acquisition structure, display device and control method thereof
EP4155760B1 (en) * 2020-06-26 2025-04-02 Mitsubishi Electric Corporation Optical scanning device and ranging apparatus

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059008A (en) * 1990-03-26 1991-10-22 General Electric Company Wide angle beam steerer using translation of plural lens arrays
US5986811A (en) 1995-06-07 1999-11-16 Meso Scale Technologies Llp Method of and apparatus for generating a 3-D image from a 2-D image having a changeable focusing micro-lens array
JPH0954281A (en) * 1995-08-14 1997-02-25 Komatsu Ltd Device and method for displaying three-dimensional stereoscopic image
JPH09109455A (en) * 1995-10-20 1997-04-28 Ricoh Co Ltd Led array head
US6937221B2 (en) 1998-08-05 2005-08-30 Microvision, Inc. Scanned beam display
US6583772B1 (en) 1998-08-05 2003-06-24 Microvision, Inc. Linked scanner imaging system and method
US6151167A (en) 1998-08-05 2000-11-21 Microvision, Inc. Scanned display with dual signal fiber transmission
US6795241B1 (en) * 1998-12-10 2004-09-21 Zebra Imaging, Inc. Dynamic scalable full-parallax three-dimensional electronic display
US6795221B1 (en) 1999-08-05 2004-09-21 Microvision, Inc. Scanned display with switched feeds and distortion correction
US6433907B1 (en) 1999-08-05 2002-08-13 Microvision, Inc. Scanned display with plurality of scanning assemblies
US6515781B2 (en) 1999-08-05 2003-02-04 Microvision, Inc. Scanned imaging apparatus with switched feeds
US6924476B2 (en) 2002-11-25 2005-08-02 Microvision, Inc. Resonant beam scanner with raster pinch compensation
US6525310B2 (en) 1999-08-05 2003-02-25 Microvision, Inc. Frequency tunable resonant scanner
US7193758B2 (en) 2001-02-06 2007-03-20 Microvision, Inc. Scanner and method for sweeping a beam across a target
US7061450B2 (en) 2001-04-09 2006-06-13 Microvision, Inc. Electronically scanned beam display
KR100939017B1 (en) 2002-05-17 2010-01-26 마이크로비젼, 인코퍼레이티드 Apparatus and method for sweeping an image beam in one dimension and bidirectionally sweeping an image beam in a second dimension
US7071594B1 (en) 2002-11-04 2006-07-04 Microvision, Inc. MEMS scanner with dual magnetic and capacitive drive
EP3419388B1 (en) * 2003-04-21 2020-06-17 Signify North America Corporation Tile lighting methods and systems
GB2403815A (en) 2003-07-10 2005-01-12 Ocuity Ltd Birefringent lens array structure
US7106519B2 (en) 2003-07-31 2006-09-12 Lucent Technologies Inc. Tunable micro-lens arrays
US7232071B2 (en) 2003-11-14 2007-06-19 Microvision, Inc. Scanned beam imager
US6999238B2 (en) 2003-12-01 2006-02-14 Fujitsu Limited Tunable micro-lens array
US7482730B2 (en) 2004-02-09 2009-01-27 Microvision, Inc. High performance MEMS scanner
US7724210B2 (en) 2004-05-07 2010-05-25 Microvision, Inc. Scanned light display system using large numerical aperture light source, method of using same, and method of making scanning mirror assemblies
US7486255B2 (en) 2004-07-21 2009-02-03 Microvision, Inc. Scanned beam system and method using a plurality of display zones
US7619807B2 (en) 2004-11-08 2009-11-17 Angstrom, Inc. Micromirror array lens with optical surface profiles
EP2365374B1 (en) * 2005-05-18 2020-02-12 Visual Physics, LLC Image presentation and micro-optic security system
JP4863044B2 (en) * 2005-07-21 2012-01-25 ソニー株式会社 Display device, display control method, and program
US7438423B2 (en) * 2005-08-29 2008-10-21 3M Innovative Properties Company Illumination system and projection system incorporating same
US7303327B2 (en) * 2005-11-15 2007-12-04 American Tack + Hardware Co., Inc. Directionally controllable night light
US7889430B2 (en) * 2006-05-09 2011-02-15 Ostendo Technologies, Inc. LED-based high efficiency illumination systems for use in projection systems
EP2503363A1 (en) 2006-07-10 2012-09-26 Sony Corporation Lens array
WO2008064361A2 (en) * 2006-11-22 2008-05-29 Real, D Illumination systems for visual displays
US7369321B1 (en) 2007-01-16 2008-05-06 University Of Central Florida Research Foundation, Inc. Variable-focus liquid lens
JP5074103B2 (en) * 2007-06-06 2012-11-14 俊郎 樋口 Oscillating display device and oscillating actuator
US7623560B2 (en) 2007-09-27 2009-11-24 Ostendo Technologies, Inc. Quantum photonic imagers and methods of fabrication thereof
US7791810B2 (en) 2007-12-21 2010-09-07 Microvision, Inc. Scanned beam display having high uniformity and diminished coherent artifacts
US7742222B2 (en) * 2008-02-29 2010-06-22 Corning Incorporated Conversion device with multi-faceted output face and laser projection system incorporating the same
US7954953B2 (en) 2008-07-30 2011-06-07 Microvision, Inc. Scanned beam overlay projection
JP2010068435A (en) * 2008-09-12 2010-03-25 Toshiba Corp Optical communication equipment
US8098265B2 (en) 2008-10-10 2012-01-17 Ostendo Technologies, Inc. Hierarchical multicolor primaries temporal multiplexing system
JP5309908B2 (en) * 2008-11-11 2013-10-09 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
US8107147B2 (en) 2009-03-27 2012-01-31 Microvision, Inc. Two-mirror scanning system
JP5558094B2 (en) * 2009-10-07 2014-07-23 オリンパス株式会社 Display method, display device, optical unit, display device manufacturing method, and electronic apparatus
KR101606797B1 (en) * 2009-10-28 2016-03-29 삼성디스플레이 주식회사 3d display device and display method thereof
GB2477294B (en) * 2010-01-27 2015-05-06 Au Optronics Corp Autostereoscopic display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797132B (en) * 2017-07-13 2023-04-01 美商應用材料股份有限公司 Collimated, directional micro-led light field display and forming method thereof
TWI762981B (en) * 2019-09-27 2022-05-01 英商杜阿里特斯有限公司 Liquid crystal display device and method for displaying holograms

Also Published As

Publication number Publication date
HK1202640A1 (en) 2015-10-02
JP6095686B2 (en) 2017-03-15
EP2788813A1 (en) 2014-10-15
CN104081257A (en) 2014-10-01
CN104081257B (en) 2018-05-15
KR20140098803A (en) 2014-08-08
JP2015501951A (en) 2015-01-19
TWI611214B (en) 2018-01-11
KR102011876B1 (en) 2019-10-21
IN2014CN04026A (en) 2015-07-10
WO2013086046A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
TW201341851A (en) Spatio-optical and temporal spatio-optical directional light modulators
US8854724B2 (en) Spatio-temporal directional light modulator
EP3673319B1 (en) Light field image engine method and apparatus for generating projected 3d light fields
US8928969B2 (en) Spatio-optical directional light modulator
JP7206283B2 (en) Three-dimensional electronics distribution by geodesic faceting
US20040021802A1 (en) Color 3D image display
CN117192791A (en) Light adjustment for cinema direct-view displays
TWI809555B (en) Horizontal parallax multiview backlight, display, and method
TW201339643A (en) Image display apparatus
WO2021213101A1 (en) Projection device
US20120139909A1 (en) 3d display apparatus and method of displaying 3d images
US20050237622A1 (en) Color 3D image display
WO2022219335A1 (en) Light-emitting diodes
WO2024087010A1 (en) Three-dimensional image and text structure, image and text apparatus, and terminal device
CN119105194A (en) Lens light-emitting unit, display unit and method for manufacturing display unit
WO2024089389A1 (en) Display
CN119355980A (en) A system and method for realizing large-viewing angle and multi-viewpoint three-dimensional display
CN115802848A (en) Display device and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees
MM4A Annulment or lapse of patent due to non-payment of fees