[go: up one dir, main page]

TW201340172A - Transparent substrate having nano pattern and method of manufacturing the same - Google Patents

Transparent substrate having nano pattern and method of manufacturing the same Download PDF

Info

Publication number
TW201340172A
TW201340172A TW101148093A TW101148093A TW201340172A TW 201340172 A TW201340172 A TW 201340172A TW 101148093 A TW101148093 A TW 101148093A TW 101148093 A TW101148093 A TW 101148093A TW 201340172 A TW201340172 A TW 201340172A
Authority
TW
Taiwan
Prior art keywords
pattern
transparent substrate
mold
protrusion
width
Prior art date
Application number
TW101148093A
Other languages
Chinese (zh)
Inventor
Jun Lee
Kyoung-Jong Yoo
Young-Jae Lee
Jin-Su Kim
Original Assignee
Lg Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Innotek Co Ltd filed Critical Lg Innotek Co Ltd
Publication of TW201340172A publication Critical patent/TW201340172A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/002Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor using materials containing microcapsules; Preparing or processing such materials, e.g. by pressure; Devices or apparatus specially designed therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Human Computer Interaction (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Laminated Bodies (AREA)
  • Nonlinear Science (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided are a transparent substrate having a nano pattern, and a method of manufacturing the same, which enables the nano pattern to be easily formed on the transparent substrate and has the nano pattern applicable to a large sized substrate by forming a resin layer made of transparent material on a transparent substrate; forming at least one or more unit pattern parts composed of a first pattern area and a second pattern area in which a plurality of grid patterns are formed, and a protrusion pattern formed between the first pattern area and the second pattern area, on the resin layer; and forming a nanoscale metal layer on the protrusion pattern.

Description

具有奈米圖案的透明基板及其製造方法 Transparent substrate with nano pattern and method of manufacturing same

本發明係主張關於2011年12月19日申請之韓國專利案號No.10-2011-0137217之優先權。藉以引用的方式併入本文用作參考。 The present invention claims priority to Korean Patent No. 10-2011-0137217, filed on Dec. 19, 2011. This is incorporated herein by reference.

本發明係有關一種形成一奈米圖案之技術領域,特別是,係有關一種具有奈米圖案的透明基板。 The present invention relates to the field of forming a nano pattern, and more particularly to a transparent substrate having a nano pattern.

在製造一半導體裝置時,需要應用各種微細圖案如一字元線(word line)、一數位線(digit line)、一接點(contact)等等。一般而言,這些微細圖案係使用一微影技術(lithograph technology)來形成。 In manufacturing a semiconductor device, it is necessary to apply various fine patterns such as a word line, a digit line, a contact, and the like. In general, these fine patterns are formed using a lithograph technology.

被廣泛使用之一傳統接觸微影技術製程(contact lithography process)係可形成圖案於一大區域之上。然而,因光之繞射極限(limit of diffraction)之故,其能夠形成之微細圖案之一線距(pitch)會受到限制(1-2 μm)。 One of the widely used contact lithography processes is to form a pattern over a large area. However, due to the limit of diffraction of light, the pitch of one of the fine patterns that can be formed is limited (1-2 μm).

據此,為解決此問題,發展出一步進方法(stepper method)、一掃描方法(scanner method)、一全像微影技術(holographic lithography method)等等。然而,這些方法需要複雜精細的儀器設備,且其費用昂貴。又,這些方法中,可形成圖案之面積係受到限制。亦即,傳統之微影技術基本上因設備的限制與製程特性之故,在奈米尺度微細圖案之實現上受到限制。更精確地來說,當使用傳統的微影技術時,很難將奈米尺度圖案均勻地形成於大於8吋之一大區域。 Accordingly, in order to solve this problem, a stepper method, a scanner method, a holographic lithography method, and the like have been developed. However, these methods require complicated and sophisticated instruments and are expensive. Moreover, in these methods, the area in which the pattern can be formed is limited. That is to say, the conventional lithography technology is basically limited in the realization of the nano-scale fine pattern due to the limitation of the device and the process characteristics. More precisely, when conventional lithography techniques are used, it is difficult to uniformly form a nanoscale pattern in a large area of more than 8 Å.

基於上述問題,韓國專利公開號No.2011-0024892係揭示使用由一金屬材料製成之一多孔模板(porous template)來形成一種多孔金屬薄膜(porous metal thin film)之方法,以及提出使用多孔金屬薄膜作為觸媒 (catalyst)來形成奈米圖案之方法。此方法係具有問題在於:因需要事先準備多孔模板,故較為不便;且因使用一觸媒成長法(catalyst growth method),故奈米圖案可僅形成於所需區域。又,此方法係具有問題在於:奈米圖案無法形成於一透明基板之上。 Based on the above problem, Korean Patent Publication No. 2011-0024892 discloses a method of forming a porous metal thin film using a porous template made of a metal material, and proposes to use a porous film. Metal film as a catalyst (catalyst) to form a nano pattern. This method has a problem in that it is inconvenient because a porous template needs to be prepared in advance; and since a catalyst growth method is used, the nano pattern can be formed only in a desired region. Moreover, this method has a problem in that the nano pattern cannot be formed on a transparent substrate.

[參考之習知技術] [Reference Known Technology]

參考專利1:韓國專利公開號No.2011-0024892。 Reference Patent 1: Korean Patent Publication No. 2011-0024892.

據此,本發明係欲解決上述習知技術之問題與缺陷。本發明之一方面係提供一種具有奈米圖案的透明基板及其製造方法,其係使奈米圖案得以輕易地形成於透明基板之上,且具有能適用於一大尺寸基板之奈米圖案。該方法係由:將由透明材料製成之一樹脂層形成於一透明基板之上;將至少一個或多個由形成有複數個格柵圖案之一第一圖案區域及一第二圖案區域所組成之單元圖案部分以及該第一圖案區域及該第二圖案區域之間的一突起圖案形成於一樹脂層之上;以及形成一奈米尺度金屬層於該突起圖案之上。 Accordingly, the present invention is intended to solve the problems and disadvantages of the above-described prior art. One aspect of the present invention provides a transparent substrate having a nano pattern and a method of manufacturing the same, which enables a nano pattern to be easily formed on a transparent substrate and has a nano pattern which can be applied to a large-sized substrate. The method comprises: forming a resin layer made of a transparent material on a transparent substrate; and forming at least one or more of the first pattern region and the second pattern region formed by forming one of the plurality of grating patterns The unit pattern portion and a protrusion pattern between the first pattern region and the second pattern region are formed on a resin layer; and a nano-scale metal layer is formed on the protrusion pattern.

根據本發明之一方面,提供一種具有奈米圖案的透明基板之製造方法,其係包含:將由一透明材料製成之一樹脂層形成於一透明基板之上;將分別形成有複數個格柵圖案於其中之一第一圖案區域及一第二圖案區域以及由該第一圖案區域及該第二圖案區域之間的一突起圖案所組成之至少一個或多個單元圖案部分形成於該樹脂層之上;以及形成一奈米尺度金屬層於該突起圖案之上。 According to an aspect of the invention, a method for manufacturing a transparent substrate having a nano pattern includes: forming a resin layer made of a transparent material on a transparent substrate; and forming a plurality of grids respectively Forming at least one of the first pattern region and the second pattern region and at least one or more unit pattern portions composed of a protrusion pattern between the first pattern region and the second pattern region is formed on the resin layer And forming a nano-scale metal layer over the protrusion pattern.

根據本發明之另一方面,提供一種具有奈米圖案的透明基板,其係包含:一透明基板;一樹脂層,形成於該透明基板之上,且係由一透明材料製成;至少一個或多個單元圖案層,形成於該樹脂層之上;一奈米尺度金屬層,形成於該單元圖案層之上,其中該單元圖案層係包含:一第一圖案區域及一第二圖案區域,其中形成有複數個格柵圖案;以及一突起圖案,形成於該第一圖案區域及該第二圖案區域之間,其中該金屬層係形成於該突起圖案之上。 According to another aspect of the present invention, a transparent substrate having a nano pattern is provided, comprising: a transparent substrate; a resin layer formed on the transparent substrate and made of a transparent material; at least one or a plurality of unit pattern layers are formed on the resin layer; a nano-scale metal layer is formed on the unit pattern layer, wherein the unit pattern layer comprises: a first pattern area and a second pattern area, A plurality of grid patterns are formed therein; and a protrusion pattern is formed between the first pattern region and the second pattern region, wherein the metal layer is formed on the protrusion pattern.

本發明之優點在於:可將奈米尺度格柵圖案均勻而透徹地形 成於該透明基板之一寬廣區域。 The invention has the advantages that the nanometer scale grating pattern can be uniformly and thoroughly formed. Formed in a wide area of the transparent substrate.

又,本發明之優點在於:除前述之奈米尺度格柵圖案以外,奈米尺度金屬層亦可均勻形成於該透明基板之上,進而能夠以低成本提供具有與ITO相等之導電性之透明基板。 Moreover, the present invention has the advantages that, in addition to the aforementioned nano-scale grid pattern, a nano-scale metal layer can be uniformly formed on the transparent substrate, thereby providing transparency with conductivity equivalent to ITO at low cost. Substrate.

此外,本發明中所使用之主模(master mold)在其損壞之前係為可回收的,故有經濟上的優勢如原料費用及製造成本之節省。 Further, the master mold used in the present invention is recyclable before it is damaged, so that there are economic advantages such as raw material cost and manufacturing cost savings.

10‧‧‧主模 10‧‧‧Master mode

10a‧‧‧結構 10a‧‧‧ structure

10b‧‧‧單元模具圖案部分 10b‧‧‧Unit mold pattern section

11‧‧‧格柵模具圖案 11‧‧‧Grid mold pattern

13‧‧‧第一模具圖案區域 13‧‧‧First mold pattern area

15‧‧‧凹模圖案 15‧‧‧ concave pattern

17‧‧‧第二模具圖案區域 17‧‧‧Second mold pattern area

20‧‧‧透明基板 20‧‧‧Transparent substrate

30‧‧‧樹脂層 30‧‧‧ resin layer

30b‧‧‧單元圖案部分 30b‧‧‧Unit pattern section

31‧‧‧格柵圖案 31‧‧‧ grille pattern

33‧‧‧第一圖案區域 33‧‧‧First pattern area

35‧‧‧突起圖案 35‧‧‧protrusion pattern

37‧‧‧第二圖案區域 37‧‧‧Second pattern area

40‧‧‧米尺度金屬層 40‧‧‧ meter scale metal layer

A‧‧‧寬度 A‧‧‧Width

B‧‧‧寬度 B‧‧‧Width

C‧‧‧寬度 C‧‧‧Width

D‧‧‧寬度 D‧‧‧Width

E‧‧‧寬度 E‧‧‧Width

F‧‧‧寬度 F‧‧‧Width

S1、S3、S5‧‧‧步驟 S1, S3, S5‧‧‧ steps

S31、S33、S35、S37‧‧‧步驟 S31, S33, S35, S37‧ ‧ steps

上述及其他本發明實施例之方面、功效、與優點將配合以下所附圖示說明之,其中:圖1、2係根據本發明,繪示一種具有一奈米圖案之一透明基板之製造方法之流程圖;以及圖3至9係根據本發明,繪示一種具有一奈米圖案之一透明基板之製造方法之製程示例圖。 The aspects, functions, and advantages of the above and other embodiments of the present invention will be described in conjunction with the following drawings, wherein: FIGS. 1 and 2 illustrate a method of manufacturing a transparent substrate having a nano pattern according to the present invention. FIG. 3 to FIG. 9 are diagrams showing an example of a process for fabricating a transparent substrate having a nano pattern according to the present invention.

以下,將配合參考所附圖式,詳細說明本發明之實施例。然而,本發明之實施例可以各種不同形式來實施,而非將本發明限制於說明書內所述者。本發明之實施例係提供以使本申請說明書更完善,並將本發明之主旨完整呈現予熟習此項技術者。又,在不影響本發明主旨之前提下,與本發明相關之技術領域中的習知結構或功能之較詳細描述將予以省略。另外應注意的是,特定用語或文句之意義應應由整個專利說明書的內容為基礎來定義。在配合圖式之說明中,相同的元件符號將指圖式解說中的相同元件。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the embodiments of the invention may be embodied in a variety of different forms and are not intended to limit the invention. The embodiments of the present invention are provided to complete the description of the present application, and the subject matter of the present invention is fully presented to those skilled in the art. Further, a detailed description of known structures or functions in the technical field related to the present invention will be omitted, without departing from the spirit of the invention. It should also be noted that the meaning of a particular term or sentence should be defined on the basis of the content of the entire patent specification. In the description of the drawings, the same reference numerals will be used to refer to the same elements in the drawings.

圖1和圖2係根據本發明,繪示一種具有一奈米圖案之一透明基板之製造方法之流程圖。 1 and 2 are flow charts showing a method of fabricating a transparent substrate having a nano pattern according to the present invention.

參閱圖1和圖2,根據本發明,一種具有一奈米圖案之一透明基板之製造方法係可包含下列步驟:將由一透明材料製成之一樹脂層形成於一透明基板之上(步驟S1);形成至少一個或多個單元圖案部分(unit pattern parts)(其中該單元圖案部分係由形成有複數個格柵圖案之一第一圖 案區域及一第二圖案區域所組成)以及形成在該第一圖案區域及該第二圖案區域之間的一突起圖案(protrusion pattern)於一樹脂層之上(步驟S3);以及形成一奈米尺度金屬層(nanoscale metal layer)於該突起圖案之上(步驟S5)。 Referring to FIG. 1 and FIG. 2, in accordance with the present invention, a method for fabricating a transparent substrate having a nano pattern can include the steps of forming a resin layer made of a transparent material on a transparent substrate (step S1). Forming at least one or more unit pattern parts (wherein the unit pattern portion is formed by one of a plurality of grid patterns) And a second pattern area and a protrusion pattern formed between the first pattern area and the second pattern area on a resin layer (step S3); and forming a A nanoscale metal layer is over the protrusion pattern (step S5).

在步驟S1中所使用之透明基板之材料可為玻璃(glass)、石英(quartz)、由一透明材料製成之一聚合物(polymer),例如廣為人知的聚合物材料如:聚對苯二甲酸乙二醇酯(polyethylene terephthalate,PET)、聚碳酸酯(polycarbonate,PC)、聚亞醯氨(polyimide,PI)。除此之外,亦可使用各種可撓性基板。此材料並不限制於此。 The material of the transparent substrate used in the step S1 may be glass, quartz, or a polymer made of a transparent material, such as a well-known polymer material such as polyterephthalic acid. Polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI). In addition to this, various flexible substrates can also be used. This material is not limited to this.

在準備該透明基板之後,將由一透明材料製成之一樹脂層塗覆於該透明基板之上。此時,該樹脂可使用一熱固性聚合物(thermosetting polymer)或一光硬化聚合物(photo curable polymer)。同時,為改善該樹脂層及該透明基板之間的接合力(bonding ability),亦可在應用該樹脂前,先將一黏著劑(adhesive)塗覆於該透明基板之上,接著再將該樹脂施加於該透明基板之上。 After the transparent substrate is prepared, a resin layer made of a transparent material is coated on the transparent substrate. At this time, the resin may use a thermosetting polymer or a photo curable polymer. Meanwhile, in order to improve the bonding ability between the resin layer and the transparent substrate, an adhesive may be applied onto the transparent substrate before applying the resin, and then A resin is applied over the transparent substrate.

執行步驟S1後,至少一個或多個由分別形成有複數個格柵圖案之一第一圖案區域及一第二圖案區域所組成之單元圖案部分,以及該第一圖案區域及該第二圖案區域之間的一突起圖案,係形成於該樹脂層之上(步驟S3)。特別是,步驟S3可如下述進行。 After performing step S1, at least one or more unit pattern portions composed of a first pattern region and a second pattern region respectively formed with a plurality of grid patterns, and the first pattern region and the second pattern region A protrusion pattern is formed on the resin layer (step S3). In particular, step S3 can be carried out as follows.

首先,生產一主模(步驟S31),該主模係具有至少一個或多個由分別形成有複數個格柵模具圖案之第一模具圖案區域以及第二模具圖案區域所組成之單元模具圖案部分,以及形成在該第一及第二模具圖案區域之間的一凹模圖案(concave mold pattern)。 First, a master mold is produced (step S31), the master mold having at least one or more unit mold pattern portions composed of a first mold pattern region and a second mold pattern region in which a plurality of grid mold patterns are respectively formed. And a concave mold pattern formed between the first and second mold pattern regions.

該些奈米尺度格柵模具圖案係首先使用一間隔微影方法(space lithography process)形成於主模之一原始材料上,例如韓國專利申請號No.10-2010-0129255所揭示之一種製造一具有一大面積之奈米尺度圖案之方法。本發明中,可藉由形成一凹模圖案以區分出一第一模具圖案區域以及一第二模具圖案區域,並形成一個或多個單元模具圖案部分來製造出主模。此時,此凹模圖案形成方法可由一電子束微影製程(electron-beam lithography process)來進行。然而,本發明並不限制於此。 The nano-scale grid mold patterns are first formed on a raw material of one of the main molds by using a space lithography process, for example, a manufacturing one disclosed in Korean Patent Application No. 10-2010-0129255. A method of having a large area of nanoscale patterns. In the present invention, the master mold can be manufactured by forming a concave mold pattern to distinguish a first mold pattern region and a second mold pattern region, and forming one or more unit mold pattern portions. At this time, the die pattern forming method can be performed by an electron beam lithography process (electron-beam) Lithography process). However, the invention is not limited thereto.

同時,該第一模具圖案區域或該第二模具圖案區域可具有落在50至100 nm之範圍內的寬度。該凹模圖案可具有落在200至1000 nm之範圍內的寬度。由此方法所製造出之主模並非為一次性拋棄式,而是可以被使用至損壞為止。又,該主模可持續用於一壓印製程(imprinting process)中,進而達到經濟上的優勢如原料費用及製造成本之節省。 Meanwhile, the first mold pattern region or the second mold pattern region may have a width falling within a range of 50 to 100 nm. The die pattern may have a width falling within the range of 200 to 1000 nm. The master mold produced by this method is not disposable, but can be used until it is damaged. Moreover, the master mold can be used in an imprinting process to achieve economic advantages such as raw material costs and manufacturing cost savings.

然後,步驟S31所製造之主模係被設置於該樹脂層之一上部分,且對應於一個或更多的單元模具圖案部分之一個或更多的單元圖案部分係透過一壓印製程對該樹脂層加壓而形成於該樹脂層之上(步驟S33)。此處,該單元圖案部分係指一結構,其係包含有對應於該第一模具圖案區域之第一圖案區域、對應於第二模具圖案區域之第二圖案區域、以及對應於凹模圖案之突起圖案單元。對應於該些格柵模具圖案之該些格柵圖案係被提供於該第一圖案區域及該第二圖案區域中。 Then, the main mold system manufactured in step S31 is disposed on an upper portion of the resin layer, and one or more unit pattern portions corresponding to one or more unit mold pattern portions are passed through an imprint process. The resin layer is pressed to be formed on the resin layer (step S33). Here, the unit pattern portion refers to a structure including a first pattern region corresponding to the first mold pattern region, a second pattern region corresponding to the second mold pattern region, and a corresponding concave pattern. Projection pattern unit. The grid patterns corresponding to the grid mold patterns are provided in the first pattern area and the second pattern area.

進行該樹脂層之一硬化製程(步驟S35)。此時,當該樹脂層係以一熱固性聚合物製成時,係藉由加熱來硬化該樹脂層。而當該樹脂層係以一光硬化聚合物製成時,係藉由照射紫外光來硬化該樹脂層。接著,本發明之步驟S3之進行係可將主模脫離該樹脂層(步驟S37)。 A hardening process of one of the resin layers is performed (step S35). At this time, when the resin layer is made of a thermosetting polymer, the resin layer is hardened by heating. When the resin layer is made of a photohardenable polymer, the resin layer is hardened by irradiation with ultraviolet light. Next, the step S3 of the present invention is carried out to remove the main mold from the resin layer (step S37).

然後,在步驟S5中,該奈米尺度金屬層係形成於該樹脂層之該突起圖案之上。 Then, in step S5, the nano-scale metal layer is formed on the protrusion pattern of the resin layer.

更精確來說,先將一金屬沉積於該些格柵圖案及該突起圖案之上。此時,該金屬可使用下述其中任一者:Al、Cr、Ag、Cu、Ni、Co、及Mo,或其合金。然而,本發明並不限定於此。除此之外,亦可隨需求使用其它適當之金屬。又,該金屬之沉積方法可選用下述至少一者:一濺鍍方法(sputtering method)、一化學氣相沉積法(chemical vapor deposition method)、及一蒸鍍法(evaporation method)。但此僅為一舉例。除了上述方法以外,尚可使用所有沉積方法,包含現存已被商業化之習知技術及未來發展出可被實施之技術。 More precisely, a metal is first deposited on the grid patterns and the protrusion pattern. At this time, the metal may use any of the following: Al, Cr, Ag, Cu, Ni, Co, and Mo, or an alloy thereof. However, the invention is not limited thereto. In addition, other suitable metals may be used as needed. Further, the metal deposition method may be at least one of the following: a sputtering method, a chemical vapor deposition method, and an evaporation method. But this is only an example. In addition to the above methods, all deposition methods can be used, including existing techniques that have been commercialized, and technologies that can be implemented in the future.

同時,沉積金屬之一高度可形成為大於該些格柵圖案之一間距值(pitch value),且該金屬可均勻地被沉積於各格柵圖案及突起圖案之 上。此係為求在稍後進行之一蝕刻製程中能夠輕易地去除形成在該些格柵圖案上之金屬。 Meanwhile, a height of one of the deposited metals may be formed to be larger than a pitch value of the grating patterns, and the metal may be uniformly deposited on each of the grating patterns and the protrusion patterns. on. This is to easily remove the metal formed on the grid patterns in one etching process to be performed later.

在金屬被沉積以後,進行一濕蝕刻製程於其上,藉此以在金屬外露之三側上進行等向性蝕刻(isotropic etching)。據此,沉積於該些格柵圖案上之該金屬係被蝕刻,或者與該些格柵圖案接合之一部份係被剝除。因此,沉積於該些格柵圖案上之金屬被移除,而保留在該突起圖案上的金屬,以形成金屬層。去除沉積於該些格柵圖案上之金屬而保留該突起圖案上的金屬來形成金屬層的原因在於:沉積於該些格柵圖案上之金屬及在濕蝕刻製程期間使用的蝕刻溶液之間的一接觸面積係大於沉積於該突起圖案上的金屬。據此,可製造出具有本發明中之奈米圖案的透明基板,其包含奈米圖案和奈米尺度金屬層。 After the metal is deposited, a wet etching process is performed thereon, whereby isotropic etching is performed on the exposed sides of the metal. Accordingly, the metal deposited on the grid patterns is etched or a portion bonded to the grid patterns is stripped. Therefore, the metal deposited on the grid patterns is removed, and the metal remaining on the protrusion pattern is formed to form a metal layer. The reason for removing the metal deposited on the grating patterns while retaining the metal on the protrusion pattern to form the metal layer is between the metal deposited on the grating patterns and the etching solution used during the wet etching process. A contact area is greater than the metal deposited on the pattern of protrusions. According to this, a transparent substrate having the nano pattern of the present invention, which comprises a nano pattern and a nano-scale metal layer, can be produced.

根據本發明,當使用濕蝕刻方法時,即使在室溫下仍可執行,且因主模之製造可分開進行,故可確保製程之彈性。另外,主模在損壞前均為可用的,故能夠節省原料費用及製造成本。 According to the present invention, when the wet etching method is used, it can be performed even at room temperature, and since the manufacture of the master mold can be performed separately, the flexibility of the process can be ensured. In addition, the main mold is available before damage, so it can save raw material costs and manufacturing costs.

又,根據本發明,該些奈米圖案可被均勻而透徹地完成於該透明基板之一寬廣區域,且奈米尺度金屬層亦可均勻地形成於該透明基板之上。據此,本發明具有能夠以低成本提供具有與ITO相等之導電性之透明基板之優點,且作為ITO代替品之一Ag網格可被製造為一奈米尺度圖案。據此,本發明可被應用於各種領域中,如一觸控面板(touch panel)、一液晶裝置(liquid crystal device)、一太陽能電池(solar cell)等等。 Moreover, according to the present invention, the nano patterns can be uniformly and thoroughly completed in a wide area of the transparent substrate, and the nano-scale metal layer can be uniformly formed on the transparent substrate. Accordingly, the present invention has an advantage of being able to provide a transparent substrate having conductivity equivalent to ITO at a low cost, and as one of ITO substitutes, the Ag grid can be manufactured as a nano-scale pattern. Accordingly, the present invention can be applied to various fields such as a touch panel, a liquid crystal device, a solar cell, and the like.

圖3至9係根據本發明,繪示一種具有一奈米圖案之一透明基板之製造方法之製程示例圖。 3 to 9 are diagrams showing an example of a process for fabricating a transparent substrate having a nano pattern according to the present invention.

參閱圖3至圖9,如圖3所示,製造出一結構10a,其一上部分上係形成複數個奈米尺度格柵模具圖案11。此時,可使用間隔微影方法作為形成格柵模具圖案11之一方法。此係與前文中有關圖2之說明相同。 Referring to Figures 3 through 9, as shown in Figure 3, a structure 10a is formed having a plurality of nano-scale grid mold patterns 11 formed on an upper portion thereof. At this time, the spacer lithography method can be used as a method of forming the grid mold pattern 11. This is the same as the description of Figure 2 above.

接著,如圖4和圖5所示,以一電子束微影方法來圖案化圖3中之結構10a,以製造出具有至少一個或多個單元模具圖案部分10b之一主模10。此時,單元模具圖案部分10b係由一第一模具圖案區域13、一第二模具圖案區域17、以及形成在第一模具圖案區域13及第二模具圖案區域 17之間的一凹模圖案15所組成。第一模具圖案區域13及第二模具圖案區域17係具有複數個格柵模具圖案11。 Next, as shown in FIGS. 4 and 5, the structure 10a of FIG. 3 is patterned by an electron beam lithography method to produce a master mold 10 having at least one or more unit mold pattern portions 10b. At this time, the unit mold pattern portion 10b is composed of a first mold pattern region 13, a second mold pattern region 17, and the first mold pattern region 13 and the second mold pattern region. A die pattern 15 is formed between 17. The first mold pattern region 13 and the second mold pattern region 17 have a plurality of grid mold patterns 11.

在此處,凹模圖案15之一寬度B係形成為大於第一模具圖案區域13之一寬度A或者第二模具圖案區域17之一寬度C。更精確而言,凹模圖案15之寬度B可形成為落在200至1000 nm之範圍內。第一模具圖案區域13之寬度A或者第二模具圖案區域17之寬度C可形成為落在50至100 nm之範圍內。然而,本發明並不限制於此。另外,凹模圖案15之一凹陷深度可形成為大於格柵模具圖案11之一高度。 Here, one width B of the female mold pattern 15 is formed to be larger than one width A of the first mold pattern region 13 or one width C of the second mold pattern region 17. More precisely, the width B of the die pattern 15 can be formed to fall within the range of 200 to 1000 nm. The width A of the first mold pattern region 13 or the width C of the second mold pattern region 17 may be formed to fall within the range of 50 to 100 nm. However, the invention is not limited thereto. In addition, one of the recess patterns 15 may have a recess depth greater than a height of the grid mold pattern 11.

接著,如圖6所示,進行壓印製程,以主模(圖5中之10)(其中形成有一個或多個單元模具圖案部分10b)對形成在透明基板20上之樹脂層30加壓。關於透明基板20及樹脂層30之詳細說明係與前文中有關圖1、2之敘述相同,故在此省略之。在執行一光硬化或一熱固化程序以後,如圖7所示,主模(圖5中之10)係與樹脂層30分離,以使對應於單元模具圖案部分(圖5、6中之10b)之一個或多個單元圖案部分30b得以形成於樹脂層30之上。在此處,單元圖案部分30b係由第一圖案區域33、第二圖案區域37、及形成在第一圖案區域33和第二圖案區域37之間的突起圖案35所組成。第一圖案區域33及第二圖案區域37係具有複數個格柵圖案31。 Next, as shown in Fig. 6, an imprint process is performed to pressurize the resin layer 30 formed on the transparent substrate 20 in a main mode (10 in Fig. 5) in which one or more unit mold pattern portions 10b are formed. . The detailed description of the transparent substrate 20 and the resin layer 30 is the same as that described above with reference to FIGS. 1 and 2, and therefore will not be described here. After performing a photohardening or a heat curing process, as shown in FIG. 7, the main mold (10 in FIG. 5) is separated from the resin layer 30 so as to correspond to the unit mold pattern portion (10b in FIGS. 5, 6). One or more unit pattern portions 30b are formed over the resin layer 30. Here, the unit pattern portion 30b is composed of a first pattern region 33, a second pattern region 37, and a protrusion pattern 35 formed between the first pattern region 33 and the second pattern region 37. The first pattern region 33 and the second pattern region 37 have a plurality of grid patterns 31.

在此處,突起圖案35之一寬度E可形成為大於第一圖案區域33之一寬度D或者第二圖案區域37之一寬度F。更精確而言,突起圖案35之寬度E可形成為落在200至1000 nm之範圍內。第一圖案區域33之寬度D或者第二圖案區域37之寬度F可形成為落在50至100 nm之範圍內。然而,本發明並不限制於此。另外,突起圖案35之一高度可形成為大於格柵模具圖案31之一高度。 Here, one of the widths E of the protrusion pattern 35 may be formed to be larger than one of the width D of the first pattern region 33 or one of the widths F of the second pattern region 37. More precisely, the width E of the protrusion pattern 35 may be formed to fall within the range of 200 to 1000 nm. The width D of the first pattern region 33 or the width F of the second pattern region 37 may be formed to fall within a range of 50 to 100 nm. However, the invention is not limited thereto. In addition, one of the heights of the protrusion pattern 35 may be formed to be larger than a height of the grid mold pattern 31.

接著,金屬係被沉積於該些格柵模具圖案31及突起圖案35之上,且沉積於格柵模具圖案31之上的金屬係在濕蝕刻製程中被去除,以形成奈米尺度金屬層40於突起圖案35之上,如圖8所示。據此,可取得具有奈米圖案之大面積透明基板,如圖9所示。 Next, a metal system is deposited on the grid mold patterns 31 and the protrusion patterns 35, and the metal deposited on the grid mold pattern 31 is removed in the wet etching process to form the nano-scale metal layer 40. Above the protrusion pattern 35, as shown in FIG. According to this, a large-area transparent substrate having a nano pattern can be obtained as shown in FIG.

雖然參考實施例之許多說明性實施例來描述實施例,但應理 解,熟習此項技術者可想出將落入本發明之原理的精神及範疇內的眾多其他修改及實施例。應理解的是,雖然參考實施例之許多說明性實施例來描述實施例,但僅用以描述特定實施例,而用以非限制本發明之範疇。因此,所有落入本發明範疇之修改及實施例均應被理解為被包含於本發明申請範疇之內。 Although the embodiments are described with reference to a number of illustrative embodiments of the embodiments, Numerous other modifications and embodiments that fall within the spirit and scope of the principles of the inventions will be apparent to those skilled in the art. It is understood that the embodiments are described with reference to a number of illustrative embodiments, and are not intended to limit the scope of the invention. Therefore, all modifications and embodiments that fall within the scope of the invention are intended to be included within the scope of the invention.

S1、S3、S5‧‧‧步驟 S1, S3, S5‧‧‧ steps

Claims (20)

一種具有一奈米圖案之一透明基板之製造方法,包含:將由一透明材料製成之一樹脂層形成於該透明基板之上;將至少一個或多個由形成有複數個格柵圖案之一第一圖案區域及一第二圖案區域所組成之單元圖案部分以及該第一圖案區域及該第二圖案區域之間的一突起圖案形成於一樹脂層之上;以及形成一奈米尺度金屬層於該突起圖案之上。 A manufacturing method of a transparent substrate having a nano pattern, comprising: forming a resin layer made of a transparent material on the transparent substrate; and forming at least one or more of the plurality of grating patterns a unit pattern portion composed of the first pattern region and a second pattern region and a protrusion pattern between the first pattern region and the second pattern region are formed on a resin layer; and forming a nanometer-scale metal layer Above the protrusion pattern. 如申請專利範圍第1項所述之方法,其中該突起圖案之高度係大於該些格柵圖案之高度。 The method of claim 1, wherein the height of the protrusion pattern is greater than the height of the grid patterns. 如申請專利範圍第1項所述之方法,其中該突起圖案之寬度係大於該第一圖案區域之寬度或該第二圖案區域之寬度。 The method of claim 1, wherein the width of the protrusion pattern is greater than a width of the first pattern area or a width of the second pattern area. 如申請專利範圍第1項所述之方法,其中形成該至少一個或多個單元圖案部分之步驟係包含:生產一主模,其係具有:分別形成有複數個格柵模具圖案之一第一模具圖案區域以及一第二模具圖案區域、以及至少一個或多個單元模具圖案部分,由形成在該第一模具圖案區域及第二模具圖案區域之間的一凹模圖案組成;透過一壓印製程(imprint process),將對應於形成在該主模上之該些單元模具圖案部分形成於該樹脂層上; 硬化該樹脂層;以及將該主模與該透明基板分離。 The method of claim 1, wherein the step of forming the at least one or more unit pattern portions comprises: producing a master mold having: forming one of a plurality of grid mold patterns respectively a mold pattern area and a second mold pattern area, and at least one or more unit mold pattern portions, consisting of a concave pattern formed between the first mold pattern area and the second mold pattern area; An imprint process, forming a portion of the unit mold pattern corresponding to the main mold formed on the resin layer; Hardening the resin layer; and separating the main mold from the transparent substrate. 如申請專利範圍第4項所述之方法,其中該第一模具圖案區域或該第二模具圖案區域係具有落在50至100 nm之範圍內的寬度。 The method of claim 4, wherein the first mold pattern region or the second mold pattern region has a width falling within a range of 50 to 100 nm. 如申請專利範圍第4項所述之方法,其中,係使用一間隔微影方法(space lithography process)來形成該些格柵模具圖案。 The method of claim 4, wherein the grid lithography process is used to form the grid mold patterns. 如申請專利範圍第4項所述之方法,其中,係使用一電子束微影製程來形成該凹模圖案。 The method of claim 4, wherein the electron beam lithography process is used to form the die pattern. 如申請專利範圍第4項所述之方法,其中該凹模圖案係具有落在200至1000 nm之範圍內的寬度。 The method of claim 4, wherein the die pattern has a width falling within the range of 200 to 1000 nm. 如申請專利範圍第1項所述之方法,其中形成該金屬層之步驟係包含:將一金屬沉積於該些格柵圖案及該突起圖案之上;以及使用一濕蝕刻方法來去除沉積在該些格柵圖案上之該金屬。 The method of claim 1, wherein the step of forming the metal layer comprises: depositing a metal on the grating patterns and the protrusion pattern; and removing the deposition by using a wet etching method. The metal on the grid pattern. 如申請專利範圍第9項所述之方法,其中該沉積金屬之高度係大於該些格柵圖案之間距值。 The method of claim 9, wherein the height of the deposited metal is greater than a distance between the grid patterns. 如申請專利範圍第9項所述之方法,其中沉積該金屬之步驟係透過下述至少一方法來進行:一濺鍍方法、一化學氣相沉積法、及一蒸鍍法。 The method of claim 9, wherein the step of depositing the metal is performed by at least one of the following: a sputtering method, a chemical vapor deposition method, and an evaporation method. 如申請專利範圍第9項所述之方法,其中該金屬層係包含下述 其中任一者:Al、Cr、Ag、Cu、Ni、Co、及Mo,或其合金。 The method of claim 9, wherein the metal layer comprises the following Any of them: Al, Cr, Ag, Cu, Ni, Co, and Mo, or an alloy thereof. 如申請專利範圍第1項所述之方法,其中該樹脂層係由一熱固性聚合物或一光硬化聚合物組成。 The method of claim 1, wherein the resin layer is composed of a thermosetting polymer or a photohardenable polymer. 一種具有一奈米圖案之透明基板,包含:一透明基板;一樹脂層,形成於該透明基板之上,且係由一透明材料製成;至少一個或多個單元圖案層,形成於該樹脂層之上;以及一奈米尺度金屬層,形成於該單元圖案層之上;其中,該單元圖案層係包含:一第一圖案區域及一第二圖案區域,其中分別形成有複數個格柵圖案;以及一突起圖案,形成於該第一圖案區域及該第二圖案區域之間,其中,該金屬層係形成於該突起圖案之上。 A transparent substrate having a nano pattern comprising: a transparent substrate; a resin layer formed on the transparent substrate and made of a transparent material; at least one or more unit pattern layers formed on the resin And a nano-scale metal layer formed on the unit pattern layer; wherein the unit pattern layer comprises: a first pattern area and a second pattern area, wherein a plurality of grids are respectively formed a pattern; and a protrusion pattern formed between the first pattern region and the second pattern region, wherein the metal layer is formed on the protrusion pattern. 如申請專利範圍第14項所述之透明基板,其中該突起圖案之高度係形成為大於該格柵圖案之高度。 The transparent substrate of claim 14, wherein the height of the protrusion pattern is formed to be greater than a height of the grid pattern. 如申請專利範圍第14項所述之透明基板,其中該突起圖案之寬度係形成為大於該第一圖案區域之寬度及該第二圖案區域之寬度。 The transparent substrate of claim 14, wherein the width of the protrusion pattern is formed to be larger than a width of the first pattern region and a width of the second pattern region. 如申請專利範圍第14項所述之透明基板,其中該第一圖案區域及該第二圖案區域係具有落在50至100 nm之範圍內的寬 度。 The transparent substrate of claim 14, wherein the first pattern region and the second pattern region have a width falling within a range of 50 to 100 nm. degree. 如申請專利範圍第14項所述之透明基板,其中該突起圖案係具有落在200至1000 nm之範圍內的寬度。 The transparent substrate of claim 14, wherein the protrusion pattern has a width falling within a range of 200 to 1000 nm. 如申請專利範圍第14項所述之透明基板,其中該金屬層係包含下述其中任一者:Al、Cr、Ag、Cu、Ni、Co、及Mo,或其合金。 The transparent substrate according to claim 14, wherein the metal layer comprises any one of the following: Al, Cr, Ag, Cu, Ni, Co, and Mo, or an alloy thereof. 如申請專利範圍第14項所述之透明基板,其中該樹脂層係由一熱固性聚合物或一光硬化聚合物組成。 The transparent substrate of claim 14, wherein the resin layer is composed of a thermosetting polymer or a photohardenable polymer.
TW101148093A 2011-12-19 2012-12-18 Transparent substrate having nano pattern and method of manufacturing the same TW201340172A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110137217A KR101856231B1 (en) 2011-12-19 2011-12-19 Transparent substrate with nano-pattern and method of manufacturing thereof

Publications (1)

Publication Number Publication Date
TW201340172A true TW201340172A (en) 2013-10-01

Family

ID=48668752

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101148093A TW201340172A (en) 2011-12-19 2012-12-18 Transparent substrate having nano pattern and method of manufacturing the same

Country Status (7)

Country Link
US (2) US9536819B2 (en)
EP (1) EP2795666B1 (en)
JP (1) JP6257522B2 (en)
KR (1) KR101856231B1 (en)
CN (1) CN103503114B (en)
TW (1) TW201340172A (en)
WO (1) WO2013094918A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856231B1 (en) * 2011-12-19 2018-05-10 엘지이노텍 주식회사 Transparent substrate with nano-pattern and method of manufacturing thereof
WO2017126673A1 (en) * 2016-01-22 2017-07-27 Scivax株式会社 Functional structural body
JP6958237B2 (en) * 2017-10-30 2021-11-02 セイコーエプソン株式会社 Encoder scales, encoder scale manufacturing methods, encoders, robots, electronic component transfer devices, printers and projectors

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001075074A (en) 1999-08-18 2001-03-23 Internatl Business Mach Corp <Ibm> Touch sensor type liquid crystal display device
KR100939747B1 (en) 2001-05-16 2010-02-04 가부시키가이샤 브리지스톤 Electromagnetic shielding light transmitting window material, manufacturing method thereof and display panel
JP2002341781A (en) * 2001-05-16 2002-11-29 Bridgestone Corp Display panel
JP2003198186A (en) * 2001-12-25 2003-07-11 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet and method for manufacturing the same
JP4323219B2 (en) 2002-05-31 2009-09-02 三星モバイルディスプレイ株式會社 Surface light source device and liquid crystal display element assembly using the same
JP4262944B2 (en) 2002-08-08 2009-05-13 アルプス電気株式会社 Illumination device and liquid crystal display device
US7113249B2 (en) 2003-01-06 2006-09-26 Dai Nippon Printing Co., Ltd. Monochrome liquid crystal display having higher spaces in pixel area than in peripheral area and production method therefor
JP4396459B2 (en) * 2004-09-08 2010-01-13 日本ゼオン株式会社 Electromagnetic wave shielding grid polarizer and manufacturing method thereof
US20080117509A1 (en) 2004-06-30 2008-05-22 Zeon Corporation Electromagnetic Wave Shielding Grid Polarizer and Its Manufacturing Method and Grid Polarizer Manufacturing Method
JP2007128091A (en) * 2005-11-03 2007-05-24 Samsung Electronics Co Ltd Display substrate, method of manufacturing the same, and display panel having the same
KR101297234B1 (en) 2006-09-26 2013-08-16 재단법인서울대학교산학협력재단 Display substrate and method of manufacturing thereof
JP4336996B2 (en) * 2006-10-03 2009-09-30 セイコーエプソン株式会社 Method for manufacturing plated substrate
JP4520445B2 (en) * 2006-10-11 2010-08-04 旭化成イーマテリアルズ株式会社 Wire grid polarizer
US7737392B2 (en) * 2006-11-09 2010-06-15 The Board Of Trustees Of The University Of Illinois Photonic crystal sensors with integrated fluid containment structure, sample handling devices incorporating same, and uses thereof for biomolecular interaction analysis
JP2008126450A (en) * 2006-11-17 2008-06-05 Fuji Electric Device Technology Co Ltd Mold, manufacturing method thereof, and magnetic recording medium
JP2008181113A (en) 2006-12-27 2008-08-07 Toray Ind Inc Reflection type polarizer and liquid crystal display device
EP1978407A1 (en) * 2007-03-28 2008-10-08 CRF Societa'Consortile per Azioni Method for obtaining a transparent conductive film
JP2008294372A (en) * 2007-05-28 2008-12-04 Panasonic Corp Electromagnetic shielding film
JP2009031392A (en) 2007-07-25 2009-02-12 Seiko Epson Corp Wire grid type polarizing element, manufacturing method thereof, liquid crystal device and projection display device
JP5413195B2 (en) 2007-09-28 2014-02-12 旭硝子株式会社 Fine pattern formed body, method for producing fine pattern formed body, optical element, and photocurable composition
WO2009148138A1 (en) * 2008-06-05 2009-12-10 旭硝子株式会社 Mold for nanoimprinting, process for producing the same, and processes for producing molded resin having fine rugged structure on surface and for producing wire-grid polarizer
JP4766094B2 (en) 2008-10-01 2011-09-07 ソニー株式会社 Display panel, display device
US20110187669A1 (en) * 2008-11-12 2011-08-04 Sharp Kabushiki Kaisha Liquid crystal display device and manufacting method thereof
JP2010205611A (en) 2009-03-04 2010-09-16 Casio Computer Co Ltd Touch panel
KR101191981B1 (en) 2009-09-03 2012-10-17 한국표준과학연구원 semiconductor nanowires array and manufacturing method thereof
WO2011065032A1 (en) * 2009-11-27 2011-06-03 凸版印刷株式会社 Transparent conductive laminate, method for producing same, and electrostatic capacitance type touch panel
US8493349B2 (en) 2009-12-10 2013-07-23 Lg Display Co., Ltd. Touch screen panel
CN102652301B (en) 2009-12-11 2016-07-06 日本写真印刷株式会社 Touch display unit including thin display and resistive touch panel, the resistive touch panel unit with protrusion of surface and the thin display unit with back side projection
JP5769734B2 (en) * 2010-02-05 2015-08-26 モレキュラー・インプリンツ・インコーポレーテッド Template with high contrast alignment mark
US8611077B2 (en) 2010-08-27 2013-12-17 Apple Inc. Electronic devices with component mounting structures
KR20100129255A (en) 2010-11-09 2010-12-08 최은석 Electric mat display stand
KR101197776B1 (en) 2010-12-27 2012-11-06 엘지이노텍 주식회사 method for manufacturing wire grid polarizer
DK2746824T3 (en) 2011-09-15 2017-02-13 Soken Kagaku Kk Contact preventive film, touch panel and cover plate for a screen device
KR101856231B1 (en) 2011-12-19 2018-05-10 엘지이노텍 주식회사 Transparent substrate with nano-pattern and method of manufacturing thereof

Also Published As

Publication number Publication date
CN103503114A (en) 2014-01-08
CN103503114B (en) 2017-05-03
US20150022742A1 (en) 2015-01-22
JP2015503244A (en) 2015-01-29
US20140272316A1 (en) 2014-09-18
WO2013094918A1 (en) 2013-06-27
EP2795666A1 (en) 2014-10-29
KR20130070076A (en) 2013-06-27
KR101856231B1 (en) 2018-05-10
EP2795666B1 (en) 2019-06-12
EP2795666A4 (en) 2015-07-29
US9536819B2 (en) 2017-01-03
JP6257522B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
US8168107B2 (en) Method of forming a pattern using nano imprinting and method of manufacturing a mold to form such a pattern
JP5942551B2 (en) Manufacturing method of master template and replica template for nanoimprint
CN103149615A (en) Preparation method of multilayer metal grating
JP2008078550A (en) Imprint mold, its manufacturing method, and pattern formation method
WO2016107081A1 (en) Circular polarizer, fabrication method therefor, and a display panel
CN115236779B (en) First mold for preparing blazed grating, blazed grating and preparation method
US20100096770A1 (en) Method for fabrication of mold for nano imprinting and method for production of photonic crystal using the same
EP3619160B1 (en) Methods for micro and nano fabrication by selective template removal
TWI466820B (en) Nano wire grid structure and method for manufacturing nano wire
TW201340172A (en) Transparent substrate having nano pattern and method of manufacturing the same
KR101448870B1 (en) Method for fabricating nano/micro hybrid structure
KR20110134175A (en) Pattern forming mold and its manufacturing method
US20130082029A1 (en) Stamper, imprint device, product processed by imprint device, device for manufacturing product processed by imprint device, and method for manufacturing product processed by imprint device
CN116300304A (en) Mask plate suitable for UV-NIL technology, and preparation method and application thereof
US11261085B2 (en) Methods for micro and nano fabrication by selective template removal
JP6015140B2 (en) Nanoimprint mold and manufacturing method thereof
KR101401579B1 (en) Method for fabricating wire grid polarizer
CN108550527B (en) Graphical method
JP6020026B2 (en) Method for correcting defect in template for nanoimprint lithography, and method for manufacturing template for nanoimprint lithography
TWI500979B (en) Base nano-mold and method of manufacturing nano-mold using the same
KR20070054896A (en) Nano imprint stamp manufacturing method and photonic crystal manufacturing method using the same
KR20050107118A (en) Method for manufacturing mold for uv embossing
KR20130099656A (en) Method of fabricating master mold for low reflection film and master mold for low reflection film using the same