TW201327810A - Nitride semiconductor structure and fabricating method thereof - Google Patents
Nitride semiconductor structure and fabricating method thereof Download PDFInfo
- Publication number
- TW201327810A TW201327810A TW100147768A TW100147768A TW201327810A TW 201327810 A TW201327810 A TW 201327810A TW 100147768 A TW100147768 A TW 100147768A TW 100147768 A TW100147768 A TW 100147768A TW 201327810 A TW201327810 A TW 201327810A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- nitride
- nitride semiconductor
- semiconductor structure
- defect
- Prior art date
Links
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 139
- 239000004065 semiconductor Substances 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 238000009826 distribution Methods 0.000 claims abstract description 12
- 230000007547 defect Effects 0.000 claims description 96
- 230000004888 barrier function Effects 0.000 claims description 63
- 229910002601 GaN Inorganic materials 0.000 claims description 35
- 238000000137 annealing Methods 0.000 claims description 30
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 24
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 17
- 230000000903 blocking effect Effects 0.000 claims description 16
- 238000011065 in-situ storage Methods 0.000 claims description 14
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims description 7
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 6
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 152
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000004630 atomic force microscopy Methods 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
本申請案是有關於一種氮化物半導體結構及其製造方法。The present application relates to a nitride semiconductor structure and a method of fabricating the same.
發光二極體(LED)是一種由化合物半導體製作而成的發光元件,其經由半導體材料中的電子與電洞在結合時釋放能量,並將電能轉換成光的形式釋出,因而已廣泛地被應用於各領域。特別是,以氮化鎵製成(GaN-based)的藍光LED搭配黃色螢光粉可以獲得白光,其不僅在亮度的表現比傳統燈管或是燈泡要來得好,其耗電量也比傳統燈管或是燈泡要來得低。此外,發光二極體的壽命更比傳統燈管或是燈泡要來得長。A light-emitting diode (LED) is a light-emitting element made of a compound semiconductor, which emits energy by combining electrons and holes in a semiconductor material, and converts electrical energy into light, and thus has been widely used. It is used in various fields. In particular, GaN-based blue LEDs with yellow phosphors can be used to obtain white light, which not only performs better than traditional lamps or bulbs, but also consumes more power than conventional lamps. The lamp or bulb should come low. In addition, the life of the LED is longer than that of a conventional lamp or bulb.
就矽基板為基礎的氮化鎵LED而言,其關鍵步驟之一是於矽基板上的氮化鎵(GaN)磊晶,在材料特性上必須克服的課題為不同材料間晶格常數(lattice constant)以及熱膨脹係數的不匹配。晶格常數的不匹配會造成成長在基板上的材料與基板之交接處容易形成缺陷,而吸收發光的電子電洞對(EHP)進而影響發光效率。而在高溫的磊晶製程中,熱膨脹係數的不匹配則會在磊晶材料冷卻時,造成材料收縮程度不一而產生龜裂。One of the key steps in germanium-based GaN-based LEDs is epitaxial gallium nitride (GaN) epitaxy on germanium substrates. The problem that must be overcome in material properties is the lattice constant between different materials (lattice). Constant) and the mismatch of thermal expansion coefficients. The mismatch in lattice constants causes defects to form at the interface between the material on the substrate and the substrate, and the electron hole pair (EHP) that absorbs light affects the luminous efficiency. In the high-temperature epitaxial process, the mismatch of the thermal expansion coefficient causes the material to shrink to a different degree when the epitaxial material is cooled.
由上述可知,因矽基板與氮化鎵磊晶薄膜材料的晶格常數差異與熱膨脹係數差異過大,此極大的晶格不匹配率(>17%)與熱膨脹係數不匹配率(54%)使得氮化鎵在磊晶成長過程中容易產生晶格錯位等問題,因此造成所成長的氮化鎵產生大量缺陷(缺陷密度高)並導致氮化鎵磊晶層的品質不佳,進而影響了半導體發光元件的發光效率。It can be seen from the above that since the lattice constant difference and the thermal expansion coefficient of the tantalum substrate and the gallium nitride epitaxial film material are too large, the maximum lattice mismatch ratio (>17%) and the thermal expansion coefficient mismatch ratio (54%) make Gallium nitride is prone to lattice misalignment during epitaxial growth, which causes the grown gallium nitride to produce a large number of defects (high defect density) and lead to poor quality of the gallium nitride epitaxial layer, which in turn affects the semiconductor. The luminous efficiency of the light-emitting element.
本申請案提供一種氮化物半導體結構及其製造方法,其可以降低氮化物半導體層的缺陷密度。The present application provides a nitride semiconductor structure and a method of fabricating the same that can reduce the defect density of a nitride semiconductor layer.
本申請案提出一種氮化物半導體結構,其包括基板、氮化物緩衝層、第一氮化物半導體層以及第一缺陷阻擋層。氮化物緩衝層位於基板上。第一氮化物半導體層位於氮化物緩衝層上。第一缺陷阻擋層位於第一氮化物半導體層與基板之間,其中第一缺陷阻擋層中具有多個奈米孔隙,奈米孔隙的分布密度為3.5×1013/cm2至8.4×1013/cm2。The present application proposes a nitride semiconductor structure including a substrate, a nitride buffer layer, a first nitride semiconductor layer, and a first defect blocking layer. The nitride buffer layer is on the substrate. The first nitride semiconductor layer is on the nitride buffer layer. The first defect blocking layer is located between the first nitride semiconductor layer and the substrate, wherein the first defect blocking layer has a plurality of nanopores, and the distribution density of the nanopores is 3.5×10 13 /cm 2 to 8.4×10 13 /cm 2 .
本申請案另提出一種氮化物半導體結構的製造方法,包括下列步驟。於基板上形成氮化物緩衝層。於氮化物緩衝層上原位(in-situ)形成第一缺陷阻擋層。進行一第一熱退火製程,以於第一缺陷阻擋層中形成多個奈米孔隙,奈米孔隙的分布密度為3.5×1013/cm2至8.4×1013/cm2。於第一缺陷阻擋層上原位形成第一氮化物半導體層。The present application further provides a method of fabricating a nitride semiconductor structure comprising the following steps. A nitride buffer layer is formed on the substrate. A first defect barrier layer is formed in-situ on the nitride buffer layer. A first thermal annealing process is performed to form a plurality of nanopores in the first defect barrier layer, and the distribution density of the nanopores is from 3.5×10 13 /cm 2 to 8.4×10 13 /cm 2 . A first nitride semiconductor layer is formed in situ on the first defect blocking layer.
基於上述,本申請案之氮化物半導體結構及其製造方法藉由熱退火製程獲得原位形成之奈米等級的多孔隙(nano-porous)缺陷阻擋層,以阻擋缺陷或差排的延伸,進而使得形成於其上之氮化物半導體層的品質提升且缺陷密度減低。此外,具有多個奈米孔隙的缺陷阻擋層可以降低氮化物半導體層在磊晶成長過程之晶格錯位並釋放應力。如此一來,若將所述氮化物半導體層應用於發光元件的製造,便可以提高發光元件的發光效率。Based on the above, the nitride semiconductor structure of the present application and the method of fabricating the same obtain a nano-porous defect barrier layer formed in situ by a thermal annealing process to block the extension of the defect or the differential row, thereby further The quality of the nitride semiconductor layer formed thereon is improved and the defect density is reduced. In addition, the defect barrier layer having a plurality of nanopores can reduce lattice misalignment of the nitride semiconductor layer during epitaxial growth and release stress. As a result, when the nitride semiconductor layer is applied to the production of a light-emitting element, the light-emitting efficiency of the light-emitting element can be improved.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
圖1A至圖1D是依照本發明之一實施例之一種氮化物半導體結構的製造流程剖面示意圖。1A through 1D are schematic cross-sectional views showing a manufacturing process of a nitride semiconductor structure in accordance with an embodiment of the present invention.
請參照圖1A,提供基板100。在一實施例中,基板100為磊晶基板,其材質例如是單晶矽。接著,在基板100上形成氮化物緩衝層102。形成氮化物緩衝層102的方法例如是採用金屬有機化學氣相沈積法(metal organic chemical-vapor deposition,MOCVD)。上述氮化物緩衝層102之材質例如是單晶之氮化鋁(AlN)、氮化鋁鎵(GaxAl1-xN,0<x<100)、氮化鎵(GaN)、InGaN(GayIn1-yN,0<y<100)_或是上述單晶材料之組合。在一實施例中,氮化物緩衝層102包括氮化鋁(AlN)層102a及氮化鋁鎵(AlGaN)層102b,其中氮化鋁層102a配置在氮化鋁鎵層102b與基板100之間,且氮化鋁層102a的厚度約為50 nm~500 nm,氮化鋁鎵層102b的厚度約為0.5 μm~3 μm。之後,於氮化鋁鎵層102b上原位(in-situ)形成第一缺陷阻擋層104。在此說明的是,所謂的「原位」是指基板100上形成膜層以及熱退火製程皆是在同一反應室中進行,其中反應室例如是MOCVD反應腔體。形成第一缺陷阻擋層104的方法例如是採用金屬有機化學氣相沈積法(MOCVD),第一缺陷阻擋層104的材質例如是非晶之氮化矽,且所形成的第一缺陷阻擋層104厚度約為5 nm~100 nm。Referring to FIG. 1A, a substrate 100 is provided. In one embodiment, the substrate 100 is an epitaxial substrate, and the material thereof is, for example, a single crystal germanium. Next, a nitride buffer layer 102 is formed on the substrate 100. The method of forming the nitride buffer layer 102 is, for example, metal organic chemical-vapor deposition (MOCVD). The material of the nitride buffer layer 102 is, for example, single crystal aluminum nitride (AlN), aluminum gallium nitride (Ga x Al 1-x N, 0 < x < 100), gallium nitride (GaN), InGaN (Ga y In 1-y N, 0 < y < 100) _ or a combination of the above single crystal materials. In one embodiment, the nitride buffer layer 102 includes an aluminum nitride (AlN) layer 102a and an aluminum gallium nitride (AlGaN) layer 102b, wherein the aluminum nitride layer 102a is disposed between the aluminum gallium nitride layer 102b and the substrate 100. The aluminum nitride layer 102a has a thickness of about 50 nm to 500 nm, and the aluminum gallium nitride layer 102b has a thickness of about 0.5 μm to 3 μm. Thereafter, a first defect barrier layer 104 is formed in-situ on the aluminum gallium nitride layer 102b. Here, the term "in situ" means that a film layer is formed on the substrate 100 and the thermal annealing process is performed in the same reaction chamber, wherein the reaction chamber is, for example, an MOCVD reaction chamber. The method of forming the first defect barrier layer 104 is, for example, metal organic chemical vapor deposition (MOCVD), the material of the first defect barrier layer 104 is, for example, amorphous tantalum nitride, and the thickness of the first defect barrier layer 104 is formed. It is about 5 nm to 100 nm.
請參照圖1B,進行熱退火製程T1,以於第一缺陷阻擋層104'中形成多個奈米孔隙106,其中奈米孔隙106的分布密度約為3.5×1013/cm2至8.4×1013/cm2。在一實施例中,上述之熱退火製程T1可在MOCVD反應腔體內進行,其溫度約為500℃至1000℃,較佳約為800℃,且進行時間約為10分鐘至60分鐘。在進行上述熱退火製程T1之後,可使得第一缺陷阻擋層104'原先的平整表面轉變成奈米多孔隙(nano-porous)結構,且可透過奈米孔隙106暴露出第一缺陷阻擋層104'下方的氮化物緩衝層102。在一實施例中,經熱退火製程T1處理之第一缺陷阻擋層104'的表面型態可依不同的退火溫度及時間而形成球狀或角錐狀,如圖2A及圖2B的掃描式電子顯微鏡(SEM)影像所示。Referring to FIG. 1B, a thermal annealing process T1 is performed to form a plurality of nanopores 106 in the first defect barrier layer 104', wherein the nanopore 106 has a distribution density of about 3.5×10 13 /cm 2 to 8.4×10. 13 /cm 2 . In one embodiment, the thermal annealing process T1 described above can be carried out in an MOCVD reaction chamber at a temperature of from about 500 ° C to about 1000 ° C, preferably about 800 ° C, for a period of from about 10 minutes to about 60 minutes. After the thermal annealing process T1 is performed, the original flat surface of the first defect barrier layer 104' may be transformed into a nano-porous structure, and the first defect barrier layer 104 may be exposed through the nanopore 106. 'The nitride buffer layer 102 below. In one embodiment, the surface pattern of the first defect barrier layer 104' processed by the thermal annealing process T1 may be spherical or pyramidal according to different annealing temperatures and times, such as the scanning electrons of FIGS. 2A and 2B. Microscope (SEM) images are shown.
請參照圖1C,於具有奈米多孔隙結構的第一缺陷阻擋層104'上原位形成第一氮化物半導體層108。形成第一氮化物半導體層108的方法例如是採用金屬有機化學氣相沈積法(MOCVD),且第一氮化物半導體層108是單晶的材質,可為氮化鎵(GaN)、氮化鋁(AlN)、氮化鋁鎵(GaxAl1-xN,0<x<100)、氮化銦鎵(GayIn1-yN,0<y<100)、氮化鋁銦鎵(InpGaqAl1-p-qN,0<p,q<100,0<1-p-q<100)_或是上述單晶材料之組合,在本實施例中係以氮化鎵(GaN)為例,但本發明不限於此。特別說明的是,在形成第一氮化物半導體層108之前,藉由調整熱退火製程T1的製程溫度及退火時間獲得具有多個奈米孔隙106分布於其中的第一缺陷阻擋層104',因此具有奈米多孔隙結構的第一缺陷阻擋層104'不僅可阻擋缺陷的延伸及阻擋差排,以改善其上第一氮化物半導體層108的磊晶品質,且第一缺陷阻擋層104'亦可增加壓縮應力或張應力,端看下方材料之晶格常數而定,以減少第一氮化物半導體層108與基板100間因材料熱膨脹係數差異過大導致的破片。Referring to FIG. 1C, a first nitride semiconductor layer 108 is formed in situ on a first defect barrier layer 104' having a nanoporous structure. The method of forming the first nitride semiconductor layer 108 is, for example, metal organic chemical vapor deposition (MOCVD), and the first nitride semiconductor layer 108 is a single crystal material, which may be gallium nitride (GaN) or aluminum nitride. (AlN), aluminum gallium nitride (Ga x Al 1-x N, 0 < x < 100), indium gallium nitride (Ga y In 1-y N, 0 < y < 100), aluminum indium gallium nitride ( In p Ga q Al 1-pq N, 0<p, q<100, 0<1-pq<100)_ or a combination of the above single crystal materials, in this embodiment, gallium nitride (GaN) For example, the invention is not limited thereto. Specifically, before the first nitride semiconductor layer 108 is formed, the first defect barrier layer 104 ′ having the plurality of nano-pores 106 distributed therein is obtained by adjusting the process temperature and the annealing time of the thermal annealing process T1. The first defect barrier layer 104' having a nanoporous structure not only blocks the extension of the defect and the barrier row to improve the epitaxial quality of the first nitride semiconductor layer 108 thereon, and the first defect barrier layer 104' The compressive stress or the tensile stress may be increased depending on the lattice constant of the underlying material to reduce the fragmentation caused by the excessive difference in thermal expansion coefficient between the first nitride semiconductor layer 108 and the substrate 100.
在一實施例中,為了能夠獲得接平厚度更厚的氮化物半導體層,在形成第一氮化物半導體層108之後,還可以選擇性地重複進行至少一次類似圖1B至圖1C所示之流程,以增加氮化物半導體層的厚度並減少缺陷密度與彎曲,進而改善LED的電性,如圖1D所示。In an embodiment, in order to obtain a nitride semiconductor layer having a thicker thickness, after forming the first nitride semiconductor layer 108, at least one process similar to that shown in FIGS. 1B to 1C may be selectively repeated. In order to increase the thickness of the nitride semiconductor layer and reduce the defect density and bending, thereby improving the electrical properties of the LED, as shown in FIG. 1D.
請參照圖1D,於第一氮化物半導體層108上原位形成第二缺陷阻擋層110並進行熱退火製程,以於第二缺陷阻擋層110中形成多個奈米孔隙112,其中奈米孔隙112的分布密度約為3.5×1013/cm2至8.4×1013/cm2。接著,再於具有奈米多孔隙結構的第二缺陷阻擋層110上原位形成第二氮化物半導體層114。在一實施例中,第二缺陷阻擋層110以及第二氮化物半導體層114的材料、厚度、表面型態、形成方法等可以實質上相同或相似於圖1B及圖1C所示之第一缺陷阻擋層104'以及第一氮化物半導體層108,且用於形成奈米孔隙112之熱退火製程的條件或參數亦可實質上相同或相似於圖1B所示之熱退火製程T1,故於此不再贅述。Referring to FIG. 1D, a second defect barrier layer 110 is formed on the first nitride semiconductor layer 108 and a thermal annealing process is performed to form a plurality of nano-porosity 112 in the second defect barrier layer 110, wherein the nano-porosity The distribution density of 112 is about 3.5 × 10 13 /cm 2 to 8.4 × 10 13 /cm 2 . Next, the second nitride semiconductor layer 114 is formed in situ on the second defect barrier layer 110 having a nanoporous structure. In an embodiment, the material, thickness, surface pattern, formation method, and the like of the second defect barrier layer 110 and the second nitride semiconductor layer 114 may be substantially the same or similar to the first defect shown in FIG. 1B and FIG. 1C. The barrier layer 104' and the first nitride semiconductor layer 108, and the conditions or parameters of the thermal annealing process for forming the nanopore 112 may be substantially the same or similar to the thermal annealing process T1 shown in FIG. 1B. No longer.
之後,可選擇性地以類似圖1D所示之步驟,於第二氮化物半導體層114上原位形成至少一層具有多個奈米孔隙的缺陷阻擋層及至少一層氮化物半導體。當形成有多層缺陷阻擋層及多層氮化物半導體層時,缺陷阻擋層與氮化物半導體層會以交替排列的方式堆疊於第二氮化物半導體層114上。Thereafter, at least one defect barrier layer having a plurality of nanopores and at least one nitride semiconductor may be selectively formed on the second nitride semiconductor layer 114 in a step similar to that shown in FIG. 1D. When the multilayer defect barrier layer and the multilayer nitride semiconductor layer are formed, the defect barrier layer and the nitride semiconductor layer are stacked on the second nitride semiconductor layer 114 in an alternate arrangement.
上述實施例所示之方法藉由在MOCVD反應腔體中原位形成氮化物緩衝層102與第一缺陷阻擋層104,並利用調整在MOCVD反應腔體中所進行的熱退火製程的溫度及時間來獲得具有特定孔隙密度及表面型態的第一缺陷阻擋層104',並藉由第一缺陷阻擋層104'阻擋差排而改善其上第一氮化物半導體層108之品質。The method shown in the above embodiment forms the nitride buffer layer 102 and the first defect barrier layer 104 in situ in the MOCVD reaction chamber, and adjusts the temperature and time of the thermal annealing process performed in the MOCVD reaction chamber. The first defect blocking layer 104' having a specific pore density and surface type is obtained, and the quality of the first nitride semiconductor layer 108 thereon is improved by blocking the difference between the first defect blocking layer 104'.
另一方面,無需藉由光阻形成圖案化即可原位形成此第一缺陷阻擋層104'以阻擋缺陷的延伸,且第一缺陷阻擋層104'亦可增加壓縮應力張應力,端看下方材料之晶格常數而定,以減少第一氮化物半導體層108與基板100之間因熱膨脹係數差異造成拉伸應力的產生,因此能夠避免晶片破裂的情況發生。如此一來,相較於習知方法在矽基板上成長GaN的厚度極限約為1 μm~2 μm,藉由本實施例之方法能夠使在MOCVD反應腔體內形成之單層第一氮化物半導體層108的厚度提升至3 μm,甚至是5 μm。On the other hand, the first defect barrier layer 104' may be formed in situ to prevent the extension of the defect without forming a pattern by photoresist, and the first defect barrier layer 104' may also increase the compressive stress tensile stress. The lattice constant of the material is determined to reduce the occurrence of tensile stress caused by the difference in thermal expansion coefficient between the first nitride semiconductor layer 108 and the substrate 100, so that occurrence of cracking of the wafer can be avoided. In this way, the thickness limit of GaN grown on the germanium substrate is about 1 μm~2 μm compared to the conventional method, and the single-layer first nitride semiconductor layer formed in the MOCVD reaction chamber can be obtained by the method of the embodiment. The thickness of 108 is increased to 3 μm or even 5 μm.
本發明實施例之氮化物半導體結構如圖1D所示,其包括基板100、氮化物緩衝層102、第一缺陷阻擋層104'、第二缺陷阻擋層110、第一氮化物半導體層108以及第二氮化物半導體層114。氮化物緩衝層102位於基板100上。第一缺陷阻擋層104'位於氮化物緩衝層102上。第一氮化物半導體層108位於第一缺陷阻擋層104'上。第二缺陷阻擋層110位於第一氮化物半導體層108上。第二氮化物半導體層114位於第二缺陷阻擋層110上。特別是,第一缺陷阻擋層104'與第二缺陷阻擋層110中分別具有多個奈米孔隙106、112,奈米孔隙106、112的分布密度為3.5×1013/cm2至8.4×1013/cm2。The nitride semiconductor structure of the embodiment of the present invention, as shown in FIG. 1D, includes a substrate 100, a nitride buffer layer 102, a first defect barrier layer 104', a second defect barrier layer 110, a first nitride semiconductor layer 108, and a first The nitride semiconductor layer 114. The nitride buffer layer 102 is located on the substrate 100. The first defect blocking layer 104' is located on the nitride buffer layer 102. The first nitride semiconductor layer 108 is on the first defect blocking layer 104'. The second defect blocking layer 110 is on the first nitride semiconductor layer 108. The second nitride semiconductor layer 114 is located on the second defect blocking layer 110. In particular, the first defect barrier layer 104' and the second defect barrier layer 110 respectively have a plurality of nanopore 106, 112, and the nanopore 106, 112 has a distribution density of 3.5×10 13 /cm 2 to 8.4×10. 13 /cm 2 .
值得一提的是,當利用上述實施例所述之方法於MOCVD反應腔體中原位形成氮化物半導體結構時,則第一缺陷阻擋層104'的材質為氮化矽。然而,若不限定在MOCVD反應腔體中原位形成氮化物半導體結構而利用其它形成方法來進行,則第一缺陷阻擋層104'的材質可為氮化矽或氧化矽。It is worth mentioning that when the nitride semiconductor structure is formed in situ in the MOCVD reaction chamber by the method described in the above embodiment, the material of the first defect barrier layer 104' is tantalum nitride. However, if the formation of the nitride semiconductor structure in the MOCVD reaction chamber is not limited and is performed by other formation methods, the material of the first defect barrier layer 104' may be tantalum nitride or hafnium oxide.
在此說明的是,雖然上述實施例(圖1A至圖1D)中是以將具有奈米孔隙106之第一缺陷阻擋層104'形成於第一氮化物半導體層108與氮化物緩衝層102之間為例來進行說明,但本發明並不限於此。換言之,具有奈米多孔隙結構的缺陷阻擋層可插入任兩層磊晶層之間以阻擋差排,而不特別限定其位置。It is explained herein that although the above embodiment (FIGS. 1A to 1D) is formed with the first defect blocking layer 104' having the nanopore 106 in the first nitride semiconductor layer 108 and the nitride buffer layer 102, The description will be made by way of example, but the present invention is not limited thereto. In other words, a defect barrier layer having a nanoporous structure can be interposed between any two layers of epitaxial layers to block the difference, without particularly limiting its position.
圖3及圖4分別是依照本發明之另一實施例之一種氮化物半導體結構的剖面示意圖,且與前述相同的構件則使用相同的標號並省略其說明。如圖3所示,在一實施例中,具有奈米孔隙106之第一缺陷阻擋層104'可以形成於氮化物緩衝層102與基板100之間。如圖4所示,在一實施例中,具有奈米孔隙106之第一缺陷阻擋層104'也可以插入於氮化物緩衝層102中的氮化鋁鎵層102b與氮化鋁層102a之間。3 and FIG. 4 are schematic cross-sectional views showing a nitride semiconductor structure according to another embodiment of the present invention, and the same members as those described above are denoted by the same reference numerals and the description thereof will be omitted. As shown in FIG. 3, in an embodiment, a first defect barrier layer 104' having nanopores 106 may be formed between the nitride buffer layer 102 and the substrate 100. As shown in FIG. 4, in an embodiment, the first defect barrier layer 104' having nanopores 106 may also be interposed between the aluminum gallium nitride layer 102b and the aluminum nitride layer 102a in the nitride buffer layer 102. .
此外,氮化物半導體結構中的氮化物緩衝層並不限於上述實施例中所述之兩層結構(如氮化鋁層102a及氮化鋁鎵層102b)。圖5是依照本發明之又一實施例之一種氮化物半導體結構的剖面示意圖,且與前述相同的構件則使用相同的標號並省略其說明。如圖5所示,在一實施例中,氮化物半導體結構中的氮化物緩衝層102'可以僅由一種材質所形成,例如是單晶之氮化鋁(AlN)層。Further, the nitride buffer layer in the nitride semiconductor structure is not limited to the two-layer structure (such as the aluminum nitride layer 102a and the aluminum gallium nitride layer 102b) described in the above embodiments. FIG. 5 is a cross-sectional view showing a nitride semiconductor structure according to still another embodiment of the present invention, and the same members as those described above are denoted by the same reference numerals and the description thereof will be omitted. As shown in FIG. 5, in an embodiment, the nitride buffer layer 102' in the nitride semiconductor structure may be formed of only one material, such as a single crystal aluminum nitride (AlN) layer.
當然,在本發明其他實施例中,氮化物半導體結構更可以是由上述實施例任意組合而成,只要使第一氮化物半導體層108與基板100之間形成有具有奈米孔隙106之第一缺陷阻擋層104以阻擋差排延伸即可,熟知本領域之技術人員當可知其應用及變化,故於此不再贅述。Of course, in other embodiments of the present invention, the nitride semiconductor structure may be any combination of the above embodiments, as long as the first nitride semiconductor layer 108 and the substrate 100 are formed with the first nanopore 106. The defect barrier layer 104 can be extended by the barrier row. It is well known to those skilled in the art that the application and variations thereof are known, and thus will not be described again.
接下來將以實驗例說明一具有多孔隙缺陷阻擋層之氮化物半導體結構之製造方法。須注意的是,以下實驗例之結果或數據僅是用來說明上述特性,但並非用以限定本發明之範圍。Next, a method of manufacturing a nitride semiconductor structure having a porous defect barrier layer will be described by way of an experimental example. It is to be noted that the results or data of the following experimental examples are merely illustrative of the above characteristics, but are not intended to limit the scope of the invention.
圖6A至圖6C為Si/AlN/AlGaN/SiN分別經不同退火時間後之掃描式電子顯微鏡(SEM)俯視圖。在此實驗例中,利用MOCVD技術在矽(Si)基板上依序形成厚度為150 nm之氮化鋁(AlN)層、厚度為600 nm之氮化鋁鎵(AlGaN)層及厚度為50 nm之氮化矽(SiN)層後,於MOCVD反應腔體內在1000℃溫度下分別進行10分鐘(圖6A)、30分鐘(圖6B)及60分鐘(圖6C)的熱退火製程,並將其結果分別列於圖6A至圖6C中。6A to 6C are top views of a scanning electron microscope (SEM) of Si/AlN/AlGaN/SiN after different annealing times. In this experimental example, an aluminum nitride (AlN) layer having a thickness of 150 nm, an aluminum nitride (AlGaN) layer having a thickness of 600 nm, and a thickness of 50 nm were sequentially formed on a germanium (Si) substrate by MOCVD. After the layer of tantalum nitride (SiN), the thermal annealing process was performed in the MOCVD reaction chamber at 1000 ° C for 10 minutes ( FIG. 6A ), 30 minutes ( FIG. 6B ) and 60 minutes ( FIG. 6C ) respectively. The results are shown in Figures 6A to 6C, respectively.
在圖6A至圖6C所示之SEM影像中,深色的部分代表SiN層而淺色的部分代表位於SiN層下方之AlGaN層。從圖6A至圖6C明顯可觀察到:藉由進行熱退火製程而能夠獲得奈米等級多孔隙的SiN層,且可藉由不同的退火時間改變孔隙彼此的間距,進而形成不同的孔隙分布密度。In the SEM images shown in FIGS. 6A to 6C, the dark portion represents the SiN layer and the light portion represents the AlGaN layer under the SiN layer. It can be clearly observed from FIG. 6A to FIG. 6C that a nano-scale porous SiN layer can be obtained by performing a thermal annealing process, and the spacing between the pores can be changed by different annealing times to form different pore distribution densities. .
之後,以上述進行10分鐘熱退火製程的Si/AlN/AlGaN/SiN為例,於MOCVD反應腔體內原位成長厚度為2 μm之氮化鎵(GaN)層。由於進行熱退火製程後的SiN層具有多個奈米孔隙,因此GaN將由間距較小之SiN層間的底層(即AlGaN層)成長起,並於後續進行接平動作。接著,將此氮化物半導體結構(Si/AlN/AlGaN/SiN(退火10分鐘)/2 μm GaN)與未形成SiN之氮化物半導體結構(Si/AlN/AlGaN/2 μm GaN)分別利用XRD進行品質分析並比較其結果於圖7A及7B中。Then, using Si/AlN/AlGaN/SiN which was subjected to the above-described thermal annealing process for 10 minutes as an example, a gallium nitride (GaN) layer having a thickness of 2 μm was grown in situ in the MOCVD reaction chamber. Since the SiN layer after the thermal annealing process has a plurality of nano-pores, the GaN is grown by the underlayer (ie, the AlGaN layer) between the SiN layers having a small pitch, and is subsequently subjected to the leveling operation. Next, the nitride semiconductor structure (Si/AlN/AlGaN/SiN (annealed 10 minutes)/2 μm GaN) and the nitride semiconductor structure (Si/AlN/AlGaN/2 μm GaN) not formed with SiN were respectively performed by XRD. The quality analysis and comparison of the results are shown in Figures 7A and 7B.
圖7A及圖7B分別是利用X光繞射(XRD)檢測對GaN進行螺旋差排及刃差排的分析結果圖。圖7A及圖7B分別為X-ray之(002)及(102)的半高寬分析,其中(002)是代表材料本質中螺旋差排缺陷的密度,而(102)是代表材料本質中刃差排缺陷的密度。在(002)及(102)品質分析中,當量測曲線的半高寬愈小時,則代表其缺陷密度愈少以及膜層品質愈好。由圖7A及圖7B之XRD結果可發現,當氮化物半導體結構加入SiN(退火10分鐘)後,因SiN可阻擋晶格常數差異所造成之缺陷及差排,因此不論是螺旋差排(002)還是刃差排(102),包括SiN(退火10分鐘)之氮化物半導體結構的半高寬皆較未形成SiN之氮化物半導體結構的半高寬減少一倍以上,其代表內部差排(缺陷)大幅減少。由此結果顯示出,包括SiN(退火10分鐘)可以大幅提升GaN的薄膜品質。7A and 7B are diagrams showing the results of analysis of the spiral difference and the edge difference row of GaN by X-ray diffraction (XRD) detection, respectively. 7A and 7B are the FWHMs of (002) and (102) of X-ray, respectively, where (002) represents the density of the helical difference in the nature of the material, and (102) represents the edge of the material. The density of the defective defect. In the (002) and (102) quality analysis, the smaller the half-height of the equivalent curve, the less the defect density and the better the film quality. From the XRD results of FIG. 7A and FIG. 7B, it can be found that when the nitride semiconductor structure is added with SiN (annealing for 10 minutes), SiN can block defects and poor rows caused by the difference in lattice constant, so whether it is a spiral difference row (002) Or the edge difference row (102), the half-height width of the nitride semiconductor structure including SiN (annealing for 10 minutes) is more than doubled than the half-height width of the nitride semiconductor structure not forming SiN, which represents the internal difference row ( Defects) are greatly reduced. The results show that the inclusion of SiN (annealing for 10 minutes) can greatly improve the film quality of GaN.
此外,進一步利用AFM對上述形成之氮化物半導體結構(Si/AlN/AlGaN/SiN(退火10分鐘)/2 μm GaN)進行表面缺陷密度分析,其表面型態顯示於圖8中。圖8是利用原子力顯微鏡(AFM)對GaN的表面型態進行缺陷密度分析的結果圖。圖8所示為在SiN上成長GaN時,在5 μm×5 μm範圍內表面的缺陷分布,依照本發明實施例所成長之GaN層,其缺陷密度可大幅降至約8×108/cm2。Further, surface defect density analysis of the above-described nitride semiconductor structure (Si/AlN/AlGaN/SiN (annealed 10 minutes)/2 μm GaN) was further carried out by AFM, and its surface type is shown in FIG. Fig. 8 is a graph showing the results of defect density analysis of the surface morphology of GaN by atomic force microscopy (AFM). Figure 8 shows the defect distribution of the surface in the range of 5 μm × 5 μm when GaN is grown on SiN. The defect density of the GaN layer grown according to the embodiment of the present invention can be greatly reduced to about 8 × 10 8 /cm. 2 .
綜上所述,本發明實施例之氮化物半導體結構及其製造方法在形成氮化物半導體層之前預先形成其中具有多個奈米孔隙之缺陷阻擋層,並可調整製程溫度及退火時間以獲得特定分布密度及表面形狀的缺陷阻擋層,因而能夠藉由多孔隙缺陷阻擋層改善其上氮化物半導體層的磊晶品質,並大幅增加氮化物半導體層的單層接平厚度。另外,多孔隙缺陷阻擋層不僅可插入不同磊晶層之間以阻擋缺陷(差排)的延伸,還具有更佳的應力釋放效應以降低晶片破裂的情況發生。而且,本技術無須形成光阻進行圖案化,即可直接在同一個反應室(如MOCVD)中原位形成奈米多孔隙的缺陷阻擋層以阻擋差排。因此,使用本發明實施例之氮化物半導體結構及其製造方法可有助於顯著提升氮化物半導體層的品質並降低其缺陷密度,且能夠有效改善晶格常數不匹配及熱膨脹係數不匹配的問題,以提高LED的發光效率。In summary, the nitride semiconductor structure and the method of fabricating the same according to the embodiments of the present invention form a defect barrier layer having a plurality of nanopores therein before forming the nitride semiconductor layer, and can adjust the process temperature and the annealing time to obtain a specific The defect barrier layer of the distribution density and the surface shape can thereby improve the epitaxial quality of the nitride semiconductor layer thereon by the porous defect barrier layer and greatly increase the single-layer leveling thickness of the nitride semiconductor layer. In addition, the porous defect barrier layer can be inserted not only between different epitaxial layers to block the extension of the defect (difference), but also has a better stress release effect to reduce the occurrence of wafer cracking. Moreover, the present technology can form a nanoporous defect barrier layer in situ in the same reaction chamber (such as MOCVD) to block the difference row without forming a photoresist for patterning. Therefore, the nitride semiconductor structure and the method of fabricating the same according to the embodiments of the present invention can contribute to significantly improve the quality of the nitride semiconductor layer and reduce the defect density thereof, and can effectively improve the lattice constant mismatch and the thermal expansion coefficient mismatch. To improve the luminous efficiency of LEDs.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100...基板100. . . Substrate
102、102'...氮化物緩衝層102, 102'. . . Nitride buffer layer
102a...氮化鋁層102a. . . Aluminum nitride layer
102b...氮化鋁鎵層102b. . . Aluminum gallium nitride layer
104、104'...第一缺陷阻擋層104, 104'. . . First defect barrier
106、112...奈米孔隙106, 112. . . Nanoporosity
108...第一氮化物半導體層108. . . First nitride semiconductor layer
110...第二缺陷阻擋層110. . . Second defect barrier
114...第二氮化物半導體層114. . . Second nitride semiconductor layer
T1...熱退火製程T1. . . Thermal annealing process
圖1A至圖1D是依照本發明之一實施例之一種氮化物半導體結構的製造流程剖面示意圖。1A through 1D are schematic cross-sectional views showing a manufacturing process of a nitride semiconductor structure in accordance with an embodiment of the present invention.
圖2A及圖2B是依照本發明之一實施例之氮化物半導體結構中缺陷阻擋層的表面型態。2A and 2B are surface patterns of a defect barrier layer in a nitride semiconductor structure in accordance with an embodiment of the present invention.
圖3及圖4分別是依照本發明之另一實施例之一種氮化物半導體結構的剖面示意圖。3 and 4 are schematic cross-sectional views showing a nitride semiconductor structure in accordance with another embodiment of the present invention.
圖5是依照本發明之又一實施例之一種氮化物半導體結構的剖面示意圖。Figure 5 is a cross-sectional view showing a nitride semiconductor structure in accordance with still another embodiment of the present invention.
圖6A至圖6C為Si/AlN/AlGaN/SiN分別經不同退火時間後之掃描式電子顯微鏡(SEM)俯視圖。6A to 6C are top views of a scanning electron microscope (SEM) of Si/AlN/AlGaN/SiN after different annealing times.
圖7A及圖7B分別是利用X光繞射(XRD)檢測對GaN進行螺旋差排及刃差排的分析結果圖。7A and 7B are diagrams showing the results of analysis of the spiral difference and the edge difference row of GaN by X-ray diffraction (XRD) detection, respectively.
圖8是利用原子力顯微鏡(AFM)對GaN的表面型態進行缺陷密度分析的結果圖。Fig. 8 is a graph showing the results of defect density analysis of the surface morphology of GaN by atomic force microscopy (AFM).
100...基板100. . . Substrate
102...氮化物緩衝層102. . . Nitride buffer layer
102a...氮化鋁層102a. . . Aluminum nitride layer
102b...氮化鋁鎵層102b. . . Aluminum gallium nitride layer
104'...第一缺陷阻擋層104'. . . First defect barrier
106...奈米孔隙106. . . Nanoporosity
108...第一氮化物半導體層108. . . First nitride semiconductor layer
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100147768A TWI460855B (en) | 2011-12-21 | 2011-12-21 | Nitride semiconductor structure and fabricating method thereof |
CN2011104612997A CN103178174A (en) | 2011-12-21 | 2011-12-30 | Nitride semiconductor structure and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100147768A TWI460855B (en) | 2011-12-21 | 2011-12-21 | Nitride semiconductor structure and fabricating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201327810A true TW201327810A (en) | 2013-07-01 |
TWI460855B TWI460855B (en) | 2014-11-11 |
Family
ID=48637910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100147768A TWI460855B (en) | 2011-12-21 | 2011-12-21 | Nitride semiconductor structure and fabricating method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103178174A (en) |
TW (1) | TWI460855B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105514232B (en) * | 2016-01-08 | 2018-04-24 | 华灿光电股份有限公司 | A kind of production method of LED epitaxial slice, light emitting diode and epitaxial wafer |
CN115443521A (en) * | 2020-06-17 | 2022-12-06 | 华为技术有限公司 | Epitaxial wafer, LED chip and display screen |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475882B1 (en) * | 1999-12-20 | 2002-11-05 | Nitride Semiconductors Co., Ltd. | Method for producing GaN-based compound semiconductor and GaN-based compound semiconductor device |
JP3886341B2 (en) * | 2001-05-21 | 2007-02-28 | 日本電気株式会社 | Method for manufacturing gallium nitride crystal substrate and gallium nitride crystal substrate |
TWI408264B (en) * | 2005-12-15 | 2013-09-11 | Saint Gobain Cristaux & Detecteurs | New process for growth of low dislocation density gan |
KR100994643B1 (en) * | 2009-01-21 | 2010-11-15 | 주식회사 실트론 | Method for manufacturing compound semiconductor substrate using spherical ball, compound semiconductor substrate and compound semiconductor device using same |
CN101702418B (en) * | 2009-10-23 | 2011-02-16 | 山东华光光电子有限公司 | GaN-based LED chip extending and growing method for reducing dislocation defects |
-
2011
- 2011-12-21 TW TW100147768A patent/TWI460855B/en active
- 2011-12-30 CN CN2011104612997A patent/CN103178174A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN103178174A (en) | 2013-06-26 |
TWI460855B (en) | 2014-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100902512B1 (en) | Method for growing BaN single crystals on silicon substrate, manufacturing method of BaN-based light emitting devices and BaN-based light emitting devices | |
KR101650840B1 (en) | Light emitting device and method of manufacturing the same | |
CN100452449C (en) | Nitride semiconductors on silicon substrate and method of manufacturing the same | |
KR102094471B1 (en) | Method for growing nitride semiconductor layer and Nitride semiconductor formed therefrom | |
JP2009510729A (en) | Method for producing an indium gallium aluminum nitride thin film on a silicon substrate | |
CN102593297A (en) | A method for manufacturing semiconductor light emitting device | |
CN108615798A (en) | nitride LED epitaxial layer structure and manufacturing method | |
JP2012182421A (en) | Nitride-based light-emitting element using patterned lattice buffer layer and manufacturing method of the same | |
JP2012094802A (en) | Multilayer structure substrate having gallium nitride layer and method of manufacturing the same | |
US20140103354A1 (en) | Nitride semiconductor structure | |
US20210005778A1 (en) | Composite substrate and light-emitting diode | |
CN105789392A (en) | GaN-based LED epitaxial structure and manufacturing method thereof | |
TWI460855B (en) | Nitride semiconductor structure and fabricating method thereof | |
CN108598226B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
KR101471608B1 (en) | Nitride based light emitting diode including nanorods and method for manufacturing the same | |
KR100691277B1 (en) | Gallium nitride based light emitting device and manufacturing method | |
CN106299047A (en) | AlInGaN base ultraviolet LED epitaxial structure and manufacture method thereof | |
KR20120065610A (en) | Semiconductor light emitting device | |
CN111509095A (en) | Composite substrate and method of making the same | |
TWI416723B (en) | Nitride semiconductor structure and manufacturing method thereof | |
TWI385820B (en) | Semiconductor light emitting element and method of manufacturing same | |
US20120122258A1 (en) | Method for manufacturing semiconductor light emitting device | |
KR100834698B1 (en) | Gallium nitride thin film forming method and gallium nitride thin film substrate produced by the method | |
TWI830472B (en) | Light-emitting element manufacturing method | |
CN112768578B (en) | A semiconductor epitaxial structure and its manufacturing method, and LED chip |