CN108615798A - nitride LED epitaxial layer structure and manufacturing method - Google Patents
nitride LED epitaxial layer structure and manufacturing method Download PDFInfo
- Publication number
- CN108615798A CN108615798A CN201810391297.7A CN201810391297A CN108615798A CN 108615798 A CN108615798 A CN 108615798A CN 201810391297 A CN201810391297 A CN 201810391297A CN 108615798 A CN108615798 A CN 108615798A
- Authority
- CN
- China
- Prior art keywords
- layer
- ugan
- nitride
- silicon nitride
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/8215—Bodies characterised by crystalline imperfections, e.g. dislocations; characterised by the distribution of dopants, e.g. delta-doping
Landscapes
- Led Devices (AREA)
Abstract
本发明提出一种氮化物LED外延层结构及制造方法,其特征在于,包括:在表面形成有凸状图形的蓝宝石衬底、在所述蓝宝石衬底上形成的下部uGaN层、在所述下部uGaN层上形成的凸丘状或凹凸状氮化镓晶体构成的应力释放层、在所述应力释放层上形成的氮化硅插入层、在所述氮化硅插入层上形成的上部uGaN层、以及在所述上部uGaN层上形成的氮化镓基外延层。其不仅解决了在蓝宝石衬底上生长氮化镓半导体层时产生位错缺陷问题,同时还解决了脱位缺陷和裂纹的产生的问题,可以最大限度地减少由贯穿电势引发缺陷的形象,从而形成高质量外延层,同时,通过增加uGaN层厚度,可以防止裂纹的发生。
The present invention proposes a nitride LED epitaxial layer structure and manufacturing method, which is characterized in that it includes: a sapphire substrate with convex patterns formed on the surface, a lower uGaN layer formed on the sapphire substrate, and a lower uGaN layer formed on the lower A stress release layer formed of bumpy or concave-convex gallium nitride crystals formed on the uGaN layer, a silicon nitride insertion layer formed on the stress release layer, and an upper uGaN layer formed on the silicon nitride insertion layer , and a GaN-based epitaxial layer formed on the upper uGaN layer. It not only solves the problem of dislocation defects when growing gallium nitride semiconductor layers on sapphire substrates, but also solves the problems of dislocation defects and cracks, which can minimize the image of defects caused by penetration potentials, thereby forming High-quality epitaxial layer, meanwhile, by increasing the uGaN layer thickness, can prevent the occurrence of cracks.
Description
技术领域technical field
本发明属于LED外延片制造领域,尤其涉及一种氮化物LED外延层结构及制造方法。The invention belongs to the field of LED epitaxial wafer manufacturing, and in particular relates to a nitride LED epitaxial layer structure and a manufacturing method.
背景技术Background technique
当正向电压施加在半导体发光元件(LED)上的情况下,p型半导体层的空穴与n型半导体层的电子相结合,发射出与带隙能量相对应波长的光。氮化镓基半导体(AlxInyGa1-x-yN;0≤x≤1,0≤y≤1,0≤x+y≤1)通过改变其外延层当中铝、铟和镓的组成比,发出不同波长的光,并作为这样的一种发光元件材料受到瞩目。When a forward voltage is applied to a semiconductor light-emitting element (LED), holes in the p-type semiconductor layer combine with electrons in the n-type semiconductor layer to emit light with a wavelength corresponding to the energy of the band gap. GaN-based semiconductors (AlxInyGa1-x-yN; 0≤x≤1,0≤y≤1,0≤x+y≤1) emit different wavelengths by changing the composition ratio of aluminum, indium and gallium in the epitaxial layer light, and has attracted attention as such a light-emitting element material.
氮化镓基外延层通过高温沉积过程生长获得,在制造过程如湿法蚀刻过程中,通过酸性或碱性的化学药品暴露出来。因此具有高熔点(2050℃)以及优秀的耐化学性的六方晶系构造的带有类似氮化镓基外延层晶体学构造的蓝宝石衬底被用作氮化镓基外延层的生长基板。但是,由于蓝宝石衬底和氮化镓半导体层的晶格常数差异造成的晶格失配情况较为严重,且界面之间的晶格不一致导致产生位错(dislocation)。这样的位错向外延层的内部扩散,这是降低发光二极管发光效率的关键因素。GaN-based epitaxial layers are grown by high-temperature deposition processes and exposed by acidic or alkaline chemicals during fabrication processes such as wet etching. Therefore, a sapphire substrate with a hexagonal structure with a high melting point (2050° C.) and excellent chemical resistance and a crystallographic structure similar to GaN-based epitaxial layers is used as a growth substrate for GaN-based epitaxial layers. However, the lattice mismatch caused by the difference in lattice constant between the sapphire substrate and the gallium nitride semiconductor layer is serious, and the lattice inconsistency between the interfaces leads to dislocation. Such dislocations diffuse to the inside of the epitaxial layer, which is a key factor for reducing the luminous efficiency of LEDs.
在现有技术中,为了减少以上所述的位错缺陷已经研究出了一种无掺杂氮化镓(uGaN)底层的形成方法。但是随着uGaN底层厚度的增加,由于热膨胀系数差异容易产生裂纹,并不能真正稳妥地解决氮化镓半导体层的脱位缺陷和裂纹的产生的问题。In the prior art, in order to reduce the above-mentioned dislocation defects, a method for forming an undoped gallium nitride (uGaN) bottom layer has been studied. However, as the thickness of the uGaN bottom layer increases, cracks are likely to occur due to differences in thermal expansion coefficients, and the problems of dislocation defects and cracks in the gallium nitride semiconductor layer cannot be truly and reliably solved.
发明内容Contents of the invention
针对现有技术存在的不足和难以解决的技术缺陷,本发明提供了一种主要针对氮化物底层(Nitride template)结构进行改进的氮化镓基外延层结构方案,其具体采用以下技术方案:In view of the deficiencies in the existing technology and technical defects that are difficult to solve, the present invention provides a gallium nitride-based epitaxial layer structure scheme mainly aimed at improving the structure of the nitride bottom layer (Nitride template), which specifically adopts the following technical scheme:
一种氮化物LED外延层结构,其特征在于,包括:在表面形成有凸状图形的蓝宝石衬底、在所述蓝宝石衬底上形成的下部uGaN层、在所述下部uGaN层上形成的凸丘状或凹凸状氮化镓晶体构成的应力释放层、在所述应力释放层上形成的氮化硅插入层、在所述氮化硅插入层上形成的上部uGaN层、以及在所述上部uGaN层上形成的氮化镓基外延层。A nitride LED epitaxial layer structure, characterized in that it includes: a sapphire substrate with convex patterns formed on the surface, a lower uGaN layer formed on the sapphire substrate, and a convex uGaN layer formed on the lower uGaN layer. A stress release layer made of hilly or concave-convex gallium nitride crystals, a silicon nitride insertion layer formed on the stress release layer, an upper uGaN layer formed on the silicon nitride insertion layer, and an upper uGaN layer formed on the upper GaN-based epitaxial layer formed on uGaN layer.
优选地,所述氮化硅插入层的厚度为1nm-1.5nm。Preferably, the silicon nitride insertion layer has a thickness of 1 nm-1.5 nm.
优选地,所述氮化硅插入层中具有纳米孔结构。Preferably, the silicon nitride insertion layer has a nanopore structure.
优选地,所述蓝宝石衬底和下部uGaN层之间设置有种晶层,所述种晶层为包含氮化铝的氮化物底层。Preferably, a seed layer is provided between the sapphire substrate and the lower uGaN layer, and the seed layer is a nitride bottom layer including aluminum nitride.
一种氮化物LED外延层结构的制造方法,其特征在于,包括以下步骤:A method for manufacturing a nitride LED epitaxial layer structure, comprising the following steps:
步骤1:将蓝宝石衬底图形化,表面形成多个凸状图形;Step 1: Patterning the sapphire substrate to form multiple convex patterns on the surface;
步骤2:在所述蓝宝石衬底上形成下部uGaN层;Step 2: forming a lower uGaN layer on the sapphire substrate;
步骤3:在所述下部uGaN层上形成凸丘状或凹凸状氮化镓晶体构成的应力释放层;Step 3: forming a stress release layer composed of bumpy or concave-convex gallium nitride crystals on the lower uGaN layer;
步骤4:在所述应力释放层上形成氮化硅插入层;Step 4: forming a silicon nitride insertion layer on the stress release layer;
步骤5:在所述氮化硅插入层上形成上部uGaN层;Step 5: forming an upper uGaN layer on the silicon nitride insertion layer;
步骤6:在所述上部uGaN层上形成氮化镓基外延层。Step 6: forming a GaN-based epitaxial layer on the upper uGaN layer.
优选地,在步骤3中,形成凸丘状或凹凸状氮化镓晶体构成的应力释放层的温度条件为:800℃到900℃。Preferably, in step 3, the temperature condition for forming the stress release layer made of bumpy or concave-convex gallium nitride crystals is: 800°C to 900°C.
优选地,在步骤1和步骤2之间还包括步骤11:在所述蓝宝石衬底上形成种晶层,所述种晶层由氮化铝在1050℃到1200℃的温度下,通过化学气相沉积法蒸镀沉积形成;所述步骤2为:在所述种晶层上形成下部uGaN层。Preferably, step 11 is further included between step 1 and step 2: forming a seed layer on the sapphire substrate, the seed layer is made of aluminum nitride at a temperature of 1050°C to 1200°C through a chemical vapor phase It is formed by deposition method by evaporation deposition; the step 2 is: forming a lower uGaN layer on the seed crystal layer.
优选地,在步骤2中,所述下部uGaN层在950℃以上的温度下进行蒸镀沉积形成;在步骤5中,所述上部uGaN层在950℃以上的温度下进行蒸镀沉积形成。Preferably, in step 2, the lower uGaN layer is formed by vapor deposition at a temperature above 950°C; in step 5, the upper uGaN layer is formed by vapor deposition at a temperature above 950°C.
优选地,在步骤3中,所述应力释放层的上侧为通过调节应力释放层生长时间及生长温度形成的凸丘状图案,或通过图案化及刻蚀形成的凹凸状图案。Preferably, in step 3, the upper side of the stress release layer is a bumpy pattern formed by adjusting the growth time and temperature of the stress release layer, or a concave-convex pattern formed by patterning and etching.
优选地,在步骤4中,所述氮化硅插入层的形成过程中,采用形成下部uGaN层和应力释放层时所使用的反应室,通过注入含甲硅烷及氮气的反应源,蒸镀形成氮化硅插入层;所述氮化硅插入层中具有纳米孔结构。Preferably, in step 4, during the formation of the silicon nitride insertion layer, the reaction chamber used for forming the lower uGaN layer and the stress release layer is used to inject a reaction source containing monosilane and nitrogen, and evaporate to form A silicon nitride insertion layer; the silicon nitride insertion layer has a nanopore structure.
本发明及其优选方案的提出,不仅解决了在蓝宝石衬底上生长氮化镓半导体层时产生位错缺陷问题,同时还解决了脱位缺陷和裂纹的产生的问题,可以最大限度地减少由贯穿电势引发缺陷的形象,从而形成高质量外延层,同时,通过增加uGaN层厚度,可以防止裂纹的发生。The present invention and its preferred solution not only solve the problem of dislocation defects when growing gallium nitride semiconductor layers on sapphire substrates, but also solve the problems of dislocation defects and cracks, which can minimize the problems caused by penetration The potential induces the image of the defect, thereby forming a high-quality epitaxial layer, and at the same time, by increasing the thickness of the uGaN layer, the occurrence of cracks can be prevented.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明进一步详细的说明:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
图1为现有技术中氮化物LED外延层结构截面结构示意图;FIG. 1 is a schematic cross-sectional structure diagram of a nitride LED epitaxial layer structure in the prior art;
图2为本发明实施例的截面结构示意图;Fig. 2 is a schematic cross-sectional structure diagram of an embodiment of the present invention;
图3为本发明实施例的制造方法流程示意图;3 is a schematic flow chart of a manufacturing method according to an embodiment of the present invention;
图中:20-蓝宝石衬底;21-种晶层;12-uGaN层;22-下部uGaN层;23-应力释放层;25-氮化硅插入层;26-上部uGaN层;27-氮化镓基外延层。In the figure: 20-sapphire substrate; 21-seed layer; 12-uGaN layer; 22-lower uGaN layer; 23-stress release layer; 25-silicon nitride insertion layer; 26-upper uGaN layer; 27-nitride Gallium-based epitaxial layer.
具体实施方式Detailed ways
为让本专利的特征和优点能更明显易懂,下文特举实施例,作详细说明如下:In order to make the features and advantages of this patent more obvious and easy to understand, the following special examples are described in detail as follows:
如图1所示,在现有技术中,为了解决蓝宝石衬底20及生长在其上的氮化镓基外延层27由于晶格失配产生的位错缺陷的问题,采用的是插入一层uGaN层12的方案,其中,种晶层21的设置是为了使蓝宝石衬底20上能够更好地生长uGaN层12。但是,虽然厚厚的uGaN层12或多或少可以防止在与蓝宝石衬底20的临界面上发生的位错传播至氮化镓基外延层27,但由于蓝宝石衬底20与uGaN层12间的热膨胀系数差异将产生应力,因此当uGaN层12的厚度超过2㎛时,就很容易发生因应力而破裂的现象。As shown in FIG. 1 , in the prior art, in order to solve the problem of dislocation defects caused by lattice mismatch between the sapphire substrate 20 and the GaN-based epitaxial layer 27 grown thereon, an insertion layer The scheme of the uGaN layer 12 , wherein the seed layer 21 is provided for better growth of the uGaN layer 12 on the sapphire substrate 20 . However, although the thick uGaN layer 12 can more or less prevent dislocations occurring on the interface with the sapphire substrate 20 from propagating to the gallium nitride-based epitaxial layer 27, due to the gap between the sapphire substrate 20 and the uGaN layer 12 The difference in thermal expansion coefficient will generate stress, so when the thickness of the uGaN layer 12 exceeds 2㎛, it is easy to crack due to stress.
如图2所示,本发明针对现有技术的方案作出了改进,其要旨在于:在表面形成有凸状图形的蓝宝石衬底20(图形化蓝宝石衬底20)上形成下部uGaN层22、在下部uGaN层22上形成凸丘状或凹凸状氮化镓晶体构成的应力释放层23、在应力释放层23上形成氮化硅插入层25、在氮化硅插入层25上形成上部uGaN层26、以及在上部uGaN层26上形成氮化镓基外延层27。As shown in FIG. 2 , the present invention has improved the solutions in the prior art, and its gist is to form a lower uGaN layer 22 on a sapphire substrate 20 (patterned sapphire substrate 20 ) with convex patterns formed on its surface, On the lower uGaN layer 22, a stress release layer 23 composed of convex or concave gallium nitride crystals is formed, a silicon nitride insertion layer 25 is formed on the stress release layer 23, and an upper uGaN layer 26 is formed on the silicon nitride insertion layer 25. , and forming a GaN-based epitaxial layer 27 on the upper uGaN layer 26 .
其中,将蓝宝石衬底20图案化之后形成阵列排布的凸状图形后,可以减少氮化物底层生长时产生的缺陷,防止内部全反射,同时增加发光效率。Wherein, after the sapphire substrate 20 is patterned to form a convex pattern arranged in an array, defects generated during the growth of the nitride bottom layer can be reduced, internal total reflection can be prevented, and luminous efficiency can be increased at the same time.
在蓝宝石衬底20上可以选择性地生长种晶层21,种晶层21可以调节氮化镓的晶体核生成率。种晶层21之中包含有氮化铝(AlN)。A seed crystal layer 21 can be selectively grown on the sapphire substrate 20, and the seed crystal layer 21 can adjust the crystal nucleation rate of gallium nitride. The seed layer 21 contains aluminum nitride (AlN).
下部uGaN层22形成于蓝宝石衬底20或种晶层21上,作为削减与蓝宝石衬底20间因晶格系数差异而产生的位错缺陷的一层,下部uGaN层22包含未掺杂的氮化镓半导体。The lower uGaN layer 22 is formed on the sapphire substrate 20 or the seed layer 21 as a layer for reducing the dislocation defects caused by the difference in lattice coefficient between the sapphire substrate 20 and the sapphire substrate 20. The lower uGaN layer 22 contains undoped nitrogen gallium semiconductor.
应力缓冲层作为具有凸丘状(hillock)或凹凸状图案的氮化镓晶体层,它在低温下形成,具有很多缺陷。应力缓冲层的凸丘或凹凸图案可以吸收因加热或冷却时发生的热膨胀系数差异而产生的应力,并且起着防止发生破裂的作用。The stress buffer layer is a gallium nitride crystal layer having a hillock or concave-convex pattern, which is formed at a low temperature and has many defects. The hillock or concavo-convex pattern of the stress buffer layer absorbs stress due to the difference in thermal expansion coefficient that occurs when heating or cooling, and functions to prevent cracks from occurring.
氮化硅插入层25的厚度仅为1nm-1.5nm.非常薄的氮化硅插入层25中可以形成纳米孔结构。即,在此情况下,氮化硅插入层25实际在应力缓冲层上形成了多个氮化硅岛(island),这些氮化硅岛可以起纳米罩(nano-mask)的作用。The thickness of the silicon nitride insertion layer 25 is only 1nm-1.5nm. A nanopore structure can be formed in the very thin silicon nitride insertion layer 25 . That is, in this case, the silicon nitride insertion layer 25 actually forms a plurality of silicon nitride islands on the stress buffer layer, and these silicon nitride islands can function as nano-masks.
上部uGaN层26作为在从氮化硅插入层25的纳米孔结构而裸露的应力缓冲层侧面长出的氮化镓晶体,是一种几乎没有缺陷的高品质氮化镓半导体层。而且因蓝宝石衬底20的热膨胀系数差异引起的应力也可以由其下部的应力缓冲层消除。因而,为了更进一步地消除遗留的位错缺陷等,可以形成一层厚度充分的上部uGaN层26。The upper uGaN layer 26 is a gallium nitride crystal grown on the side of the stress buffer layer exposed from the nanopore structure of the silicon nitride insertion layer 25, and is a high-quality gallium nitride semiconductor layer with almost no defects. Moreover, the stress caused by the difference in thermal expansion coefficient of the sapphire substrate 20 can also be relieved by the stress buffer layer below it. Therefore, in order to further eliminate remaining dislocation defects and the like, an upper uGaN layer 26 having a sufficient thickness can be formed.
在此基础上,形成的氮化镓基外延层27即可为几乎没缺陷的高品质外延层。On this basis, the formed GaN-based epitaxial layer 27 can be a high-quality epitaxial layer with almost no defects.
如图3所示,本实施例的制造方法大致可以划分为S10~S60,共6个步骤:As shown in Figure 3, the manufacturing method of this embodiment can be roughly divided into S10~S60, a total of 6 steps:
步骤1:将蓝宝石衬底20图形化,表面形成多个凸状图形;(S10)Step 1: Patterning the sapphire substrate 20 to form a plurality of convex patterns on the surface; (S10)
步骤2:在蓝宝石衬底20上形成下部uGaN层22;(S20)Step 2: forming the lower uGaN layer 22 on the sapphire substrate 20; (S20)
步骤3:在下部uGaN层22上形成凸丘状或凹凸状氮化镓晶体构成的应力释放层23;(S30)Step 3: forming a stress release layer 23 made of bumpy or concave-convex gallium nitride crystals on the lower uGaN layer 22; (S30)
步骤4:在应力释放层23上形成氮化硅插入层25;(S40)Step 4: forming a silicon nitride insertion layer 25 on the stress release layer 23; (S40)
步骤5:在氮化硅插入层25上形成上部uGaN层26;(S50)Step 5: forming an upper uGaN layer 26 on the silicon nitride insertion layer 25; (S50)
步骤6:在上部uGaN层26上形成氮化镓基外延层27。(S60)Step 6: forming a GaN-based epitaxial layer 27 on the upper uGaN layer 26 . (S60)
将蓝宝石衬底20图形化,表面形成多个凸状图形(S10)是指利用光刻技术形成蚀刻掩模,继而进行湿法刻蚀形成凸状图案。凸状图案可以是纳米或者微米尺寸。凸状图案可以具有减小通过下部uGaN层22的电流密度且最大化其内部全反射的作用。根据蚀刻掩模及湿法刻蚀工艺,凸状图案可以为金字塔形、晶状体形、圆柱形等多种形态。Patterning the sapphire substrate 20 to form a plurality of convex patterns on the surface (S10) refers to forming an etching mask by using photolithography technology, and then performing wet etching to form convex patterns. The convex pattern can be nanometer or micrometer sized. The convex pattern may have the effect of reducing the current density through the lower uGaN layer 22 and maximizing its total internal reflection. According to the etching mask and wet etching process, the convex pattern can be in various shapes such as pyramid, lens, and cylinder.
在S10和S20之间,还可以选择性地包含形成种晶层21的阶段。种晶层21可以通过在图形化的蓝宝石衬底20表面蒸镀氮化铝(AlN)而形成。氮化铝(AlN)可以在1050℃到1200℃的温度下,通过化学气相沉积法被蒸镀沉积。也可以通过物理气相沉积(Physicalvapordeposition),溅射(sputtering),氢化物气相沉积法(Hydridevaporphaseepitaxy,HVPE)或者原子层沉积常规沉积法进行蒸镀。Between S10 and S20, a stage of forming the seed layer 21 may optionally be included. The seed layer 21 can be formed by evaporating aluminum nitride (AlN) on the surface of the patterned sapphire substrate 20 . Aluminum nitride (AlN) can be deposited by chemical vapor deposition at a temperature of 1050°C to 1200°C. Evaporation can also be performed by physical vapor deposition (Physical vapor deposition), sputtering (sputtering), hydride vapor deposition (Hydride vapor phase epitaxy, HVPE) or atomic layer deposition.
在蓝宝石衬底20上形成下部uGaN层22(S20)是指在图形化的蓝宝石衬底20的表面或种晶层21上沉积或生长uGaN薄膜的阶段。下部uGaN层22在950℃以上的高温下可以通过化学气相沉积、物理气相沉积、溅射、氢化物气相沉积或原子层沉积等方法进行蒸镀沉积。Forming the lower uGaN layer 22 on the sapphire substrate 20 ( S20 ) refers to a stage of depositing or growing a uGaN thin film on the surface of the patterned sapphire substrate 20 or the seed layer 21 . The lower uGaN layer 22 can be vapor deposited by chemical vapor deposition, physical vapor deposition, sputtering, hydride vapor deposition or atomic layer deposition at a high temperature above 950°C.
在下部uGaN层22上形成凸丘状或凹凸状氮化镓晶体构成的应力释放层23(S30)包含在比形成种晶层21及下部uGaN层22阶段更低的温度下生长GaN的阶段。应力释放层23可以通过化学气相沉积法或氢化物气相沉积法在800℃至900℃的温度下进行沉积而形成。调节应力释放层23的生长时间及生长温度可以在表面形成凸丘(hillock)。或者在沉积的应力缓冲层上通过图案化及刻蚀可以在表面形成凹凸图案。凸丘(hillock)或凹凸图案可以在后续的氮化硅插入层25形成阶段使氮化硅插入层25沉积得不均匀。而且凸丘(hillock)或凹凸图案减小了加热及冷却产生的应力,防止氮化物底层发生破裂。Forming the stress release layer 23 ( S30 ) made of bumpy or concave-convex GaN crystals on the lower uGaN layer 22 includes a stage of growing GaN at a temperature lower than that of forming the seed layer 21 and the lower uGaN layer 22 . The stress release layer 23 may be formed by depositing at a temperature of 800° C. to 900° C. by chemical vapor deposition or hydride vapor deposition. Adjusting the growth time and growth temperature of the stress release layer 23 can form hillocks on the surface. Alternatively, a concave-convex pattern can be formed on the surface of the deposited stress buffer layer by patterning and etching. The hillock or concave-convex pattern can make the silicon nitride insertion layer 25 deposited unevenly in the subsequent formation stage of the silicon nitride insertion layer 25 . Moreover, the hillock or concave-convex pattern reduces the stress generated by heating and cooling, and prevents cracking of the nitride bottom layer.
在应力释放层23上形成氮化硅插入层25(S40)包含在应力释放层23上形成非常薄的氮化硅薄膜的阶段,本实施例中可以选择使用类如化学气相沉积、物理气相沉积、原子层沉积或溅射等常规方法沉积氮化硅。但为简化制造工艺,减少制造成本,本实施例选择通过在与沉积下部uGaN层22及应力释放层23使用的同一反应室内注入含甲硅烷及氮气的反应源,继而蒸镀形成氮化硅插入层25。通过调节氮化硅插入层25的工艺时间及温度,形成具有纳米孔结构的氮化硅插入层25。氮化硅插入层25在应力释放层23形成的凸丘(hillock)或凹凸图案的上面形成,并露出侧面。Forming the silicon nitride insertion layer 25 (S40) on the stress release layer 23 includes the stage of forming a very thin silicon nitride film on the stress release layer 23. In this embodiment, chemical vapor deposition, physical vapor deposition, etc. can be selected. Silicon nitride is deposited by conventional methods such as atomic layer deposition or sputtering. However, in order to simplify the manufacturing process and reduce manufacturing costs, this embodiment chooses to inject a reaction source containing monosilane and nitrogen into the same reaction chamber used for depositing the lower uGaN layer 22 and the stress release layer 23, and then vapor-deposit to form a silicon nitride insertion Layer 25. By adjusting the process time and temperature of the silicon nitride insertion layer 25, the silicon nitride insertion layer 25 with a nanopore structure is formed. The silicon nitride insertion layer 25 is formed on the hillock or concave-convex pattern formed by the stress release layer 23 , and the side faces are exposed.
在氮化硅插入层25上形成上部uGaN层26(S50)是指将氮化硅插入层25用作掩模(mask)并沿侧面方向生长高质量uGaN的阶段。如前所述,当氮化硅插入层25具备纳米孔或因应力释放层23的凸丘或凹凸图案而未均匀沉积时,从由氮化硅插入层25露出的应力释放层23开始,uGaN层出现侧方向过生长。上部uGaN层26可以在与下部uGaN层22相同的950℃以上的高温下通过类如化学气相沉积、物理气相沉积、溅射、氢化物气相沉积或者原子层沉积等方法进行蒸镀沉积。Forming the upper uGaN layer 26 on the silicon nitride insertion layer 25 ( S50 ) refers to a stage of growing high-quality uGaN in the lateral direction using the silicon nitride insertion layer 25 as a mask. As mentioned above, when the silicon nitride insertion layer 25 has nanoholes or is not uniformly deposited due to the bump or concave-convex pattern of the stress release layer 23, starting from the stress release layer 23 exposed by the silicon nitride insertion layer 25, uGaN layer overgrowth in the lateral direction. The upper uGaN layer 26 can be evaporated and deposited by methods such as chemical vapor deposition, physical vapor deposition, sputtering, hydride vapor deposition or atomic layer deposition at the same high temperature as the lower uGaN layer 22 above 950°C.
在上部uGaN层26上形成氮化镓基外延层27(S60)的过程,可以通过常规的氮化镓基外延层27生长方法完成。The process of forming the GaN-based epitaxial layer 27 on the upper uGaN layer 26 ( S60 ) can be completed by a conventional GaN-based epitaxial layer 27 growth method.
本实施例提供的方案可以尽可能减少由穿过电流产生的缺陷,形成高质量外延层,防止uGaN层随着厚度变厚而破裂。The solution provided in this embodiment can minimize the defects generated by passing current, form a high-quality epitaxial layer, and prevent the uGaN layer from cracking as the thickness becomes thicker.
本专利不局限于最佳实施方式,任何人在本专利的启示下都可以得出其它各种形式的氮化物LED外延层结构及制造方法,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本专利的涵盖范围。This patent is not limited to the best implementation mode. Anyone can draw other various forms of nitride LED epitaxial layer structures and manufacturing methods under the inspiration of this patent. Modifications should all fall within the scope of this patent.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810391297.7A CN108615798A (en) | 2018-04-27 | 2018-04-27 | nitride LED epitaxial layer structure and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810391297.7A CN108615798A (en) | 2018-04-27 | 2018-04-27 | nitride LED epitaxial layer structure and manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108615798A true CN108615798A (en) | 2018-10-02 |
Family
ID=63660959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810391297.7A Pending CN108615798A (en) | 2018-04-27 | 2018-04-27 | nitride LED epitaxial layer structure and manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108615798A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110767785A (en) * | 2019-11-12 | 2020-02-07 | 佛山市国星半导体技术有限公司 | High-quality epitaxial structure and manufacturing method thereof |
CN111613704A (en) * | 2020-05-29 | 2020-09-01 | 黄山博蓝特半导体科技有限公司 | A kind of patterned sapphire substrate for high-brightness deep ultraviolet LED and preparation method thereof |
CN111834496A (en) * | 2020-05-27 | 2020-10-27 | 华灿光电(浙江)有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof |
CN111864535A (en) * | 2020-06-22 | 2020-10-30 | 中国计量科学研究院 | Optical frequency comb device and method for making the same |
CN112993105A (en) * | 2019-12-16 | 2021-06-18 | 东莞市中图半导体科技有限公司 | Graphical composite substrate, preparation method and LED epitaxial wafer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101325237A (en) * | 2008-07-30 | 2008-12-17 | 鹤山丽得电子实业有限公司 | LED chip and manufacturing method thereof |
CN102576663A (en) * | 2009-07-17 | 2012-07-11 | 应用材料公司 | A method of forming a Group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE) |
CN103035793A (en) * | 2011-10-07 | 2013-04-10 | 夏普株式会社 | Method of manufacturing nitride semiconductor device |
CN103165779A (en) * | 2013-02-08 | 2013-06-19 | 芜湖德豪润达光电科技有限公司 | Light emitting diode (LED) semiconductor element and manufacture method thereof |
CN203192835U (en) * | 2013-02-08 | 2013-09-11 | 芜湖德豪润达光电科技有限公司 | Led semiconductor element |
CN105355739A (en) * | 2015-10-23 | 2016-02-24 | 安徽三安光电有限公司 | Patterned substrate, preparation method and light-emitting diode |
CN107810563A (en) * | 2015-06-25 | 2018-03-16 | Lg伊诺特有限公司 | Ultraviolet light-emitting diodes, LED package and lighting device |
-
2018
- 2018-04-27 CN CN201810391297.7A patent/CN108615798A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101325237A (en) * | 2008-07-30 | 2008-12-17 | 鹤山丽得电子实业有限公司 | LED chip and manufacturing method thereof |
CN102576663A (en) * | 2009-07-17 | 2012-07-11 | 应用材料公司 | A method of forming a Group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE) |
CN103035793A (en) * | 2011-10-07 | 2013-04-10 | 夏普株式会社 | Method of manufacturing nitride semiconductor device |
CN103165779A (en) * | 2013-02-08 | 2013-06-19 | 芜湖德豪润达光电科技有限公司 | Light emitting diode (LED) semiconductor element and manufacture method thereof |
CN203192835U (en) * | 2013-02-08 | 2013-09-11 | 芜湖德豪润达光电科技有限公司 | Led semiconductor element |
CN107810563A (en) * | 2015-06-25 | 2018-03-16 | Lg伊诺特有限公司 | Ultraviolet light-emitting diodes, LED package and lighting device |
CN105355739A (en) * | 2015-10-23 | 2016-02-24 | 安徽三安光电有限公司 | Patterned substrate, preparation method and light-emitting diode |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110767785A (en) * | 2019-11-12 | 2020-02-07 | 佛山市国星半导体技术有限公司 | High-quality epitaxial structure and manufacturing method thereof |
CN112993105A (en) * | 2019-12-16 | 2021-06-18 | 东莞市中图半导体科技有限公司 | Graphical composite substrate, preparation method and LED epitaxial wafer |
CN112993105B (en) * | 2019-12-16 | 2025-04-08 | 广东中图半导体科技股份有限公司 | A patterned composite substrate, preparation method and LED epitaxial wafer |
CN111834496A (en) * | 2020-05-27 | 2020-10-27 | 华灿光电(浙江)有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof |
CN111834496B (en) * | 2020-05-27 | 2021-08-06 | 华灿光电(浙江)有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof |
CN111613704A (en) * | 2020-05-29 | 2020-09-01 | 黄山博蓝特半导体科技有限公司 | A kind of patterned sapphire substrate for high-brightness deep ultraviolet LED and preparation method thereof |
CN111864535A (en) * | 2020-06-22 | 2020-10-30 | 中国计量科学研究院 | Optical frequency comb device and method for making the same |
CN111864535B (en) * | 2020-06-22 | 2021-11-23 | 中国计量科学研究院 | Optical frequency comb device and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108615798A (en) | nitride LED epitaxial layer structure and manufacturing method | |
US7811902B2 (en) | Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same | |
TWI574434B (en) | A substrate for the growth of Group III-V nitride and a preparation method thereof | |
CN100587919C (en) | Fabrication method of nanoscale pattern substrate for nitride epitaxial growth | |
CN110783167B (en) | Preparation method of semiconductor material patterned substrate, material film and device | |
CN111261759B (en) | A kind of aluminum nitride epitaxial structure and growth method thereof | |
CN106374023B (en) | The nonpolar nano-pillar LED and preparation method thereof being grown on lithium gallium oxide substrate | |
CN105355739A (en) | Patterned substrate, preparation method and light-emitting diode | |
CN101295636A (en) | Preparation method of pattern substrate for epitaxial growth of high crystal quality nitride | |
TWI407491B (en) | Method for separating semiconductor and substrate | |
TWI303847B (en) | ||
CN113066911B (en) | LED epitaxial wafer substrate structure and preparation method thereof, LED chip and preparation method thereof | |
KR100878512B1 (en) | BANN semiconductor substrate manufacturing method | |
CN102593297A (en) | A method for manufacturing semiconductor light emitting device | |
CN104409577A (en) | Epitaxial growth method for GaN-based LED epitaxial active area basic structure | |
CN104659164A (en) | Method for growing photoelectric material and device through two-step method | |
CN104485406A (en) | Method for preparing sapphire pattern substrate | |
CN106435720A (en) | A kind of preparation method of GaN thin film material | |
TWI725418B (en) | Structure of epitaxial on heterogeneous substrate and preparation method | |
CN105826438B (en) | A kind of light emitting diode with metal buffer layer and preparation method thereof | |
CN210805810U (en) | Silicon-based gallium nitride epitaxial structure | |
KR100786797B1 (en) | Light Emitting Diode Having Silicon Substrate Group III-nitride-Laminated Structure and Its Manufacturing Method | |
US7154163B2 (en) | Epitaxial structure of gallium nitride series semiconductor device utilizing two buffer layers | |
WO2016173359A1 (en) | Light-emitting diode structure and preparation method therefor | |
CN109411580B (en) | Gallium nitride-based power device and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181002 |