TW201314779A - Method of repairing defect of oxide semiconductor layer - Google Patents
Method of repairing defect of oxide semiconductor layer Download PDFInfo
- Publication number
- TW201314779A TW201314779A TW100134784A TW100134784A TW201314779A TW 201314779 A TW201314779 A TW 201314779A TW 100134784 A TW100134784 A TW 100134784A TW 100134784 A TW100134784 A TW 100134784A TW 201314779 A TW201314779 A TW 201314779A
- Authority
- TW
- Taiwan
- Prior art keywords
- oxide semiconductor
- semiconductor layer
- repairing
- organic gas
- reaction chamber
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000007547 defect Effects 0.000 title claims abstract description 24
- 238000000137 annealing Methods 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000007789 gas Substances 0.000 claims description 37
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 12
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 claims description 10
- 239000012159 carrier gas Substances 0.000 claims description 9
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 description 26
- 239000003960 organic solvent Substances 0.000 description 13
- 230000004888 barrier function Effects 0.000 description 5
- 229910052732 germanium Inorganic materials 0.000 description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- XXLJGBGJDROPKW-UHFFFAOYSA-N antimony;oxotin Chemical compound [Sb].[Sn]=O XXLJGBGJDROPKW-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PNHVEGMHOXTHMW-UHFFFAOYSA-N magnesium;zinc;oxygen(2-) Chemical compound [O-2].[O-2].[Mg+2].[Zn+2] PNHVEGMHOXTHMW-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- UPAJIVXVLIMMER-UHFFFAOYSA-N zinc oxygen(2-) zirconium(4+) Chemical compound [O-2].[O-2].[O-2].[Zn+2].[Zr+4] UPAJIVXVLIMMER-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
- Chemical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本發明係關於一種修補氧化物半導體層之缺陷的方法,尤指一種在有機氣體環境下利用退火製程修補氧化物半導體層之缺陷的方法。The present invention relates to a method of repairing defects of an oxide semiconductor layer, and more particularly to a method of repairing defects of an oxide semiconductor layer by an annealing process in an organic gas environment.
目前顯示器業界使用之薄膜電晶體可根據使用之半導體層材料來做區分,包括非晶矽薄膜電晶體(amorphous silicon TFT,a-Si TFT)、多晶矽薄膜電晶體(poly silicon TFT)以及氧化物半導體薄膜電晶體(oxide semiconductor TFT)。非晶矽薄膜電晶體受到非晶矽半導體材料本身特性的影響,使其電子遷移率無法大幅且有效地藉由製程或元件設計的調整來改善,故無法滿足目前可見的未來更高規格顯示器的需求。多晶矽薄膜電晶體的製程複雜(相對地成本提升)且於大尺寸面板應用時會有結晶化製程導致結晶程度均勻性不佳的問題存在,故目前多晶矽薄膜電晶體仍以小尺寸面板應用為主。氧化物半導體薄膜電晶體則是應用近年來新崛起的氧化物半導體材料,此類材料一般為非晶相(amorphous)結構,沒有應用於大尺寸面板上均勻性不佳的問題。氧化物半導體薄膜電晶體的電子遷移率一般可較非晶矽薄膜電晶體高10倍以上,已可滿足目前可見的未來高規格顯示器的需求。Currently, thin film transistors used in the display industry can be distinguished according to the semiconductor layer materials used, including amorphous silicon TFTs (a-Si TFTs), polysilicon TFTs, and oxide semiconductors. Thin film transistor (oxide semiconductor TFT). The amorphous germanium thin film transistor is affected by the characteristics of the amorphous germanium semiconductor material, so that its electron mobility cannot be greatly and effectively improved by the adjustment of the process or component design, so it cannot meet the future display of higher specification displays. demand. The process of polycrystalline germanium thin film transistors is complicated (relatively costly) and there is a problem that the crystallization process leads to poor uniformity of crystallinity in the application of large-sized panels. Therefore, polycrystalline germanium thin film transistors are still mainly used in small-sized panel applications. . Oxide semiconductor thin film transistors are applications of newly emerging oxide semiconductor materials in recent years. Such materials are generally amorphous structures and are not suitable for the problem of poor uniformity on large-sized panels. The electron mobility of the oxide semiconductor thin film transistor is generally 10 times higher than that of the amorphous germanium thin film transistor, which can meet the needs of the currently available high-profile displays.
一般而言,在氧化物半導體層形成後,會對氧化物半導體層進行至少一次的電漿製程,以使氧化物半導體層的阻值降低。此外,在後續定義源極與汲極之圖案時,亦常使用電漿製程加以達成。然而,電漿製程會使得氧化物半導體層產生缺陷,而導致汲極引致能障下降(Drain induced barrier lowering,DIBL)問題,因此造成氧化物半導體薄膜電晶體之元件特性不穩定,影響了氧化物半導體薄膜電晶體的發展。In general, after the formation of the oxide semiconductor layer, the oxide semiconductor layer is subjected to at least one plasma process to lower the resistance of the oxide semiconductor layer. In addition, when the pattern of source and drain is defined later, it is often achieved by using a plasma process. However, the plasma process causes defects in the oxide semiconductor layer and causes Drain induced barrier lowering (DIBL) problems, thereby causing instability of the element characteristics of the oxide semiconductor thin film transistor, which affects the oxide. Development of semiconductor thin film transistors.
本發明之目的之一在於提供一種修補氧化物半導體層之缺陷的方法,以提升氧化物半導體薄膜電晶體之元件特性的穩定性。SUMMARY OF THE INVENTION An object of the present invention is to provide a method of repairing defects of an oxide semiconductor layer to improve stability of element characteristics of an oxide semiconductor thin film transistor.
本發明之一較佳實施例提供了一種修補氧化物半導體層之缺陷的方法,包括下列步驟。首先提供一基板,並於基板上形成一氧化物半導體層。接著將基板載入一反應室內,並於反應室內通入至少一有機氣體,以使反應室內形成一有機氣體環境。隨後,在有機氣體環境下對氧化物半導體層進行一退火製程,以修補氧化物半導體層之缺陷。A preferred embodiment of the present invention provides a method of repairing defects of an oxide semiconductor layer, comprising the following steps. First, a substrate is provided, and an oxide semiconductor layer is formed on the substrate. Then, the substrate is loaded into a reaction chamber, and at least one organic gas is introduced into the reaction chamber to form an organic gas environment in the reaction chamber. Subsequently, the oxide semiconductor layer is subjected to an annealing process in an organic gas atmosphere to repair defects of the oxide semiconductor layer.
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .
請參考第1圖至第3圖。第1圖至第3圖繪示了本發明之一較佳實施例之修補氧化物半導體層之缺陷的方法示意圖。如第1圖所示,首先提供一基板30。在本實施例中,基板30可為一顯示面板之陣列基板,其可為例如一玻璃基板,但不以此為限。接著,於基板30上形成一氧化物半導體層32。在本實施例中,氧化物半導體層30可包括例如一銦鎵鋅氧化物(IGZO)半導體層,其可作為氧化物半導體薄膜電晶體之半導體通道層。氧化物半導體層30並不限於為銦鎵鋅氧化物半導體層,亦可為例如氧化鋅(ZnO)半導體層、鋅鎂氧化物(ZnMgO)半導體層、錫銻氧化物(SnSbO2)半導體層、鋅硒氧化物(ZnSeO)半導體層或鋅鋯氧化物(ZnZrO)半導體層等具有半導體特性之氧化物。Please refer to Figures 1 to 3. 1 to 3 are schematic views showing a method of repairing defects of an oxide semiconductor layer according to a preferred embodiment of the present invention. As shown in Fig. 1, a substrate 30 is first provided. In this embodiment, the substrate 30 can be an array substrate of a display panel, which can be, for example, a glass substrate, but is not limited thereto. Next, an oxide semiconductor layer 32 is formed on the substrate 30. In the present embodiment, the oxide semiconductor layer 30 may include, for example, an indium gallium zinc oxide (IGZO) semiconductor layer which can serve as a semiconductor channel layer of an oxide semiconductor thin film transistor. The oxide semiconductor layer 30 is not limited to an indium gallium zinc oxide semiconductor layer, and may be, for example, a zinc oxide (ZnO) semiconductor layer, a zinc magnesium oxide (ZnMgO) semiconductor layer, a tin antimony oxide (SnSbO 2 ) semiconductor layer, or An oxide having semiconductor characteristics such as a zinc selenide oxide (ZnSeO) semiconductor layer or a zinc zirconium oxide (ZnZrO) semiconductor layer.
如第2圖所示,隨後,將基板30載入一反應室40內,其中反應室40具有至少一氣體通入口42。之後,經由氣體通入口42於反應室40內通入至少一有機氣體44,以使反應室40內形成一有機氣體環境。在本實施例中,有機氣體44可包括例如丙二醇甲醚(Propylene Glycol Monomethyl Ether,PGME)之蒸氣、丙二醇甲醚醋酸酯(Propylene Glycol Monomethyl Ether Acetate,PGMEA)之蒸氣或N-甲基吡咯酮(N-methyl pyrrolidinone,NMP)之其中至少一者,但不以此為限。值得說明的是,當通入不同的有機氣體44時,通入氣體體積濃度(亦即通入之有機氣體44的體積與反應室之體積之比)亦可視需要加以調整。舉例而言,若有機氣體44係選用丙二醇甲醚(PGME)之蒸氣,則丙二醇甲醚(PGME)的體積濃度大體上較佳係小於等於1.6%或大於等於13.5%;若有機氣體44係選用丙二醇甲醚醋酸酯(PGMEA)之蒸氣,則丙二醇甲醚醋酸酯(PGMEA)的體積濃度大體上較佳係小於等於1.5%或大於等於7%;若有機氣體44係選用N-甲基吡咯酮(NMP)之蒸氣,則N-甲基吡咯酮(NMP)的體積濃度大體上較佳係小於等於1.3%或大於等於9.5%。在本發明中,形成有機氣體環境的方式具有不同的實施樣態。舉例而言,在本實施例之第一實施樣態中,可直接加熱上述有機溶劑形成蒸氣,再經由氣體通入口42將有機溶劑的蒸氣通入反應室40內以形成有機氣體環境,或是直接將有機溶劑通入反應室40內,並於反應室40內加熱有機溶劑以形成有機氣體環境。另外,若使用上述有機溶劑的蒸氣作為有機氣體44,則有機溶劑的蒸氣的溫度大體上較佳宜控制在250℃以下,以避免產生爆炸。若使用其它有機溶劑的蒸氣,則其溫度可視有機溶劑的自燃溫度或其它性質加以調整。另外,在本實施例之第二實施樣態中,可利用一載流氣體(carrier gas)通過有機溶劑使有機溶劑的分子附著於載流氣體上,再將載流氣體經由氣體通入口42通入反應室40內,以形成有機氣體環境。在此實施樣態中,載流氣體的溫度可達到250℃以上。As shown in FIG. 2, substrate 30 is then loaded into a reaction chamber 40 having at least one gas inlet 42 therein. Thereafter, at least one organic gas 44 is introduced into the reaction chamber 40 via the gas inlet 42 to form an organic gas atmosphere in the reaction chamber 40. In the present embodiment, the organic gas 44 may include, for example, Propylene Glycol Monomethyl Ether (PGME) vapor, Propylene Glycol Monomethyl Ether Acetate (PGMEA) vapor or N-methylpyrrolidone ( At least one of N-methyl pyrrolidinone, NMP), but not limited thereto. It is worth noting that when a different organic gas 44 is introduced, the volume concentration of the introduced gas (i.e., the ratio of the volume of the organic gas 44 that is introduced to the volume of the reaction chamber) can also be adjusted as needed. For example, if the organic gas 44 is a propylene glycol methyl ether (PGME) vapor, the volume concentration of the propylene glycol methyl ether (PGME) is preferably 1.6% or less or 13.5% or more; if the organic gas 44 is selected The vapor concentration of propylene glycol methyl ether acetate (PGMEA), the volume concentration of propylene glycol methyl ether acetate (PGMEA) is generally preferably 1.5% or more or 7% or more; if the organic gas 44 is N-methylpyrrolidone The vapor concentration of (NMP), the volume concentration of N-methylpyrrolidone (NMP) is preferably preferably 1.3% or more and 9.5% or more. In the present invention, the manner in which the organic gas environment is formed has different embodiments. For example, in the first embodiment of the present embodiment, the organic solvent may be directly heated to form a vapor, and the vapor of the organic solvent may be introduced into the reaction chamber 40 through the gas inlet 42 to form an organic gas environment, or The organic solvent is directly introduced into the reaction chamber 40, and the organic solvent is heated in the reaction chamber 40 to form an organic gas atmosphere. Further, if the vapor of the above organic solvent is used as the organic gas 44, the temperature of the vapor of the organic solvent is preferably controlled to be preferably 250 ° C or less to avoid an explosion. If a vapor of another organic solvent is used, the temperature can be adjusted depending on the auto-ignition temperature of the organic solvent or other properties. In addition, in the second embodiment of the present embodiment, a carrier gas may be used to attach molecules of the organic solvent to the carrier gas through the organic solvent, and then the carrier gas is passed through the gas inlet 42. It is introduced into the reaction chamber 40 to form an organic gas atmosphere. In this embodiment, the temperature of the carrier gas can reach above 250 °C.
如第3圖所示,接著在有機氣體環境下對氧化物半導體層32進行一退火製程,以修補氧化物半導體層32之缺陷。在本實施例中,退火製程之製程溫度大體上介於200℃至400℃之間,且大體上較佳介於220℃至250℃之間,但不以此為限;退火製程係於常壓下進行,但不以此為限;退火製程之製程時間大體上係介於1小時至2小時之間,但不以此為限。在本實施例中,反應室40內僅載入一基板30,但不以此為限。舉例而言,反應室40內可一次載入多片基板30,藉此退火製程可一次修補多片基板30上之氧化物半導體層32。As shown in FIG. 3, the oxide semiconductor layer 32 is then subjected to an annealing process in an organic gas atmosphere to repair the defects of the oxide semiconductor layer 32. In this embodiment, the process temperature of the annealing process is generally between 200 ° C and 400 ° C, and is generally preferably between 220 ° C and 250 ° C, but not limited thereto; the annealing process is at atmospheric pressure The process is performed below, but not limited thereto; the process time of the annealing process is generally between 1 hour and 2 hours, but not limited thereto. In the present embodiment, only one substrate 30 is loaded in the reaction chamber 40, but not limited thereto. For example, a plurality of substrates 30 can be loaded at a time in the reaction chamber 40, whereby the annealing process can repair the oxide semiconductor layers 32 on the plurality of substrates 30 at a time.
請參考第4圖與第5圖。第4圖繪示了氧化物半導體薄膜電晶體於進行退火製程前之閘極-源極電壓(Vgs)與汲極電流(Ids)之關係圖,而第5圖繪示了氧化物半導體薄膜電晶體於進行本實施例之第一實施樣態之退火製程後之閘極-源極電壓與汲極電流之關係圖。如第4圖所示,在汲極電壓(Vd)為10伏特的狀況下(如第4圖之六條實線所繪示之六個不同樣本所示),以及在汲極電壓為0.1伏特的狀況下(如第4圖之六條虛線所繪示之六個不同樣本所示),在未進行退火製程之前,六個氧化物半導體薄膜電晶體之樣本的閘極-源極電壓與汲極電流之關係顯示了明顯的不均性(non-uniformity),而具有汲極引致能障下降問題。相較之下,如第5圖所示,不論是在汲極電壓為10伏特的狀況下(如第5圖之六條實線所繪示之六個不同樣本所示),或是在汲極電壓為0.1伏特的狀況下(如第5圖之六條虛線所繪示之六個不同樣本所示),在進行了本實施例之第一實施樣態之退火製程後(亦即於反應室內直接通入有機溶劑之蒸氣後進行退火製程),六個氧化物半導體薄膜電晶體之樣本的閘極-源極電壓與汲極電流之關係顯示了均勻性(uniformity)明顯地提升了,而沒有汲極引致能障下降問題。因此,本實施例之第一實施樣態之退火製程經證實可有效改善氧化物半導體薄膜電晶體的元件特性的穩定性。Please refer to Figures 4 and 5. Figure 4 is a graph showing the relationship between the gate-source voltage (Vgs) and the gate current (Ids) of the oxide semiconductor thin film transistor before the annealing process, and Figure 5 shows the oxide semiconductor thin film. The relationship between the gate-source voltage and the drain current after the crystal is subjected to the annealing process of the first embodiment of the present embodiment. As shown in Figure 4, the drain voltage (Vd) is 10 volts (as shown by the six different samples shown in the six solid lines in Figure 4), and the drain voltage is 0.1 volts. Under the condition (as shown by the six different samples depicted by the dotted line in Figure 4), the gate-source voltage and 汲 of the samples of the six oxide semiconductor thin film transistors before the annealing process is performed The relationship between the polar currents shows a significant non-uniformity and the bungee leads to a decrease in the energy barrier. In contrast, as shown in Figure 5, either in the case of a drain voltage of 10 volts (as shown by the six different samples depicted in the six solid lines in Figure 5), or in 汲In the case where the pole voltage is 0.1 volt (as shown by six different samples shown by the six broken lines in Fig. 5), after the annealing process of the first embodiment of the present embodiment is performed (i.e., in the reaction) The furnace is directly introduced into the vapor of the organic solvent and then annealed. The relationship between the gate-source voltage and the drain current of the samples of the six oxide semiconductor thin film transistors shows that the uniformity is significantly improved. There is no bungee that causes the problem of energy barrier decline. Therefore, the annealing process of the first embodiment of the present embodiment has been confirmed to effectively improve the stability of the element characteristics of the oxide semiconductor thin film transistor.
請參考第6圖與第7圖。第6圖繪示了氧化物半導體薄膜電晶體於進行退火製程前之閘極-源極電壓與汲極電流之關係圖,而第7圖繪示了氧化物半導體薄膜電晶體於進行本實施例之第二實施樣態之退火製程後之閘極-源極電壓與汲極電流之關係圖。如第6圖所示,在汲極電壓為10伏特的狀況下(如第6圖之四條實線所繪示之四個不同樣本所示),以及在汲極電壓為0.1伏特的狀況下(如第6圖之四條虛線所繪示之四個不同樣本所示),在未進行退火製程之前,四個氧化物半導體薄膜電晶體之樣本的閘極-源極電壓與汲極電流之關係顯示了明顯的不均性,而具有汲極引致能障下降問題。相較之下,如第7圖所示,不論是在汲極電壓為10伏特的狀況下(如第7圖之四條實線所繪示之四個不同樣本所示),或是在汲極電壓為0.1伏特的狀況下(如第7圖之四條虛線所繪示之四個不同樣本所示),在進行了本實施例之第二實施樣態之退火製程後(亦即利用一氧化二氮作為載流氣體通過有機溶劑使有機溶劑的分子附著於載流氣體上,再將載流氣體通入反應室內後進行退火製程),四個氧化物半導體薄膜電晶體之樣本的閘極-源極電壓與汲極電流之關係顯示了均勻性(uniformity)明顯地提升了,而沒有汲極引致能障下降問題。因此,本實施例之第二實施樣態之退火製程經證實可有效改善氧化物半導體薄膜電晶體的元件特性的穩定性。值得說明的是本發明所使用之載流氣體並不限於一氧化二氮,而可為其它適合之氣體。Please refer to Figure 6 and Figure 7. FIG. 6 is a diagram showing the relationship between the gate-source voltage and the drain current of the oxide semiconductor thin film transistor before the annealing process, and FIG. 7 is an oxide semiconductor thin film transistor for performing the embodiment. A diagram showing the relationship between the gate-source voltage and the drain current after the annealing process of the second embodiment. As shown in Figure 6, in the case of a drain voltage of 10 volts (as shown by the four different samples shown in the four solid lines in Figure 6), and at a drain voltage of 0.1 volts ( The relationship between the gate-source voltage and the drain current of the samples of the four oxide semiconductor thin film transistors is shown before the four different samples shown in the four dotted lines in Figure 6). There is obvious unevenness, and there is a problem that the bungee leads to the decline of energy barrier. In contrast, as shown in Figure 7, either in the case of a drain voltage of 10 volts (as shown by the four different samples depicted in the four solid lines in Figure 7), or in the bungee In the case where the voltage is 0.1 volt (as shown by four different samples shown by the four broken lines in Fig. 7), after the annealing process of the second embodiment of the present embodiment is performed (i.e., using oxidized second) Nitrogen is used as a carrier gas to pass the organic solvent to the carrier gas through the organic solvent, and then the carrier gas is introduced into the reaction chamber to perform an annealing process. The gate-source of the sample of the four oxide semiconductor thin film transistors The relationship between the pole voltage and the drain current shows that the uniformity is significantly improved without the bungee causing the energy barrier to fall. Therefore, the annealing process of the second embodiment of the present embodiment has been confirmed to effectively improve the stability of the element characteristics of the oxide semiconductor thin film transistor. It should be noted that the carrier gas used in the present invention is not limited to nitrous oxide, but may be other suitable gases.
綜上所述,本發明之修補氧化物半導體層之缺陷的方法,於有機氣體環境下對氧化物半導體層進行退火製程,可有效修補氧化物半導體層之缺陷,進而可有效提升氧化物半導體薄膜電晶體的元件特性的穩定性。值得說明的是本發明之修補氧化物半導體層的方法可以氧化物半導體層形成後之任何時間點進行,且較佳係於電漿製程後進行,藉此可修補因電漿製程造成的缺陷。In summary, the method for repairing the defects of the oxide semiconductor layer of the present invention can effectively repair the defects of the oxide semiconductor layer by annealing the oxide semiconductor layer in an organic gas environment, thereby effectively improving the oxide semiconductor film. The stability of the element characteristics of the transistor. It is to be noted that the method of repairing the oxide semiconductor layer of the present invention can be carried out at any time after the formation of the oxide semiconductor layer, and is preferably performed after the plasma process, whereby defects due to the plasma process can be repaired.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
30...基板30. . . Substrate
32...氧化物半導體層32. . . Oxide semiconductor layer
40...反應室40. . . Reaction chamber
42...氣體通入口42. . . Gas inlet
44...有機氣體44. . . Organic gas
第1圖至第3圖繪示了本發明之一較佳實施例之修補氧化物半導體層之缺陷的方法示意圖。1 to 3 are schematic views showing a method of repairing defects of an oxide semiconductor layer according to a preferred embodiment of the present invention.
第4圖繪示了氧化物半導體薄膜電晶體於進行退火製程前之閘極-源極電壓與汲極電流之關係圖。Figure 4 is a graph showing the relationship between the gate-source voltage and the drain current of the oxide semiconductor thin film transistor before the annealing process.
而第5圖繪示了氧化物半導體薄膜電晶體於進行本實施例之第一實施樣態之退火製程後之閘極-源極電壓與汲極電流之關係圖。FIG. 5 is a diagram showing the relationship between the gate-source voltage and the drain current of the oxide semiconductor thin film transistor after performing the annealing process of the first embodiment of the present embodiment.
第6圖繪示了氧化物半導體薄膜電晶體於進行退火製程前之閘極-源極電壓與汲極電流之關係圖。Figure 6 is a graph showing the relationship between the gate-source voltage and the drain current of the oxide semiconductor thin film transistor before the annealing process.
第7圖繪示了氧化物半導體薄膜電晶體於進行本實施例之第二實施樣態之退火製程後之閘極-源極電壓與汲極電流之關係圖。FIG. 7 is a graph showing the relationship between the gate-source voltage and the drain current of the oxide semiconductor thin film transistor after performing the annealing process of the second embodiment of the present embodiment.
30...基板30. . . Substrate
32...氧化物半導體層32. . . Oxide semiconductor layer
40...反應室40. . . Reaction chamber
42...氣體通入口42. . . Gas inlet
44...有機氣體44. . . Organic gas
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100134784A TWI456662B (en) | 2011-09-27 | 2011-09-27 | Method of repairing defect of oxide semiconductor layer |
CN201110359413.5A CN102354657B (en) | 2011-09-27 | 2011-11-14 | Method for repairing defect of oxide semiconductor layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100134784A TWI456662B (en) | 2011-09-27 | 2011-09-27 | Method of repairing defect of oxide semiconductor layer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201314779A true TW201314779A (en) | 2013-04-01 |
TWI456662B TWI456662B (en) | 2014-10-11 |
Family
ID=45578196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100134784A TWI456662B (en) | 2011-09-27 | 2011-09-27 | Method of repairing defect of oxide semiconductor layer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102354657B (en) |
TW (1) | TWI456662B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109722632A (en) * | 2017-10-31 | 2019-05-07 | 陕西南水汽车配件制造有限公司 | A kind of aluminum alloy control arm forging coarse grains on surface ring control method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05323366A (en) * | 1992-05-19 | 1993-12-07 | Mitsubishi Electric Corp | Method for repairing defect of liquid crystal display |
JP2000133806A (en) * | 1998-10-28 | 2000-05-12 | Sony Corp | Hydrogenation method of thin-film transistor |
US7008669B2 (en) * | 2001-06-13 | 2006-03-07 | Seiko Epson Corporation | Ceramic and method of manufacturing the same, dielectric capacitor, semiconductor device, and element |
US7659138B2 (en) * | 2003-12-26 | 2010-02-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing an organic semiconductor element |
JP4873726B2 (en) * | 2007-03-26 | 2012-02-08 | 独立行政法人物質・材料研究機構 | Method for forming zinc oxide thin film |
US8963146B2 (en) * | 2009-11-05 | 2015-02-24 | Sumitomo Metal Mining Co., Ltd. | Method of manufacturing transparent conductive film, the transparent conductive substrate using the film, as well as device using the substrate |
WO2011077978A1 (en) * | 2009-12-25 | 2011-06-30 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing display device |
-
2011
- 2011-09-27 TW TW100134784A patent/TWI456662B/en active
- 2011-11-14 CN CN201110359413.5A patent/CN102354657B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN102354657B (en) | 2015-03-11 |
TWI456662B (en) | 2014-10-11 |
CN102354657A (en) | 2012-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103151388B (en) | A kind of polycrystalline SiTFT and preparation method thereof, array base palte | |
CN102386070B (en) | Form the method for polysilicon layer, TFT and manufacture method and organic light-emitting display device | |
US20120012835A1 (en) | Metal Oxide Semiconductor Thin Film Transistors | |
Schropp et al. | New challenges in thin film transistor (TFT) research | |
Nakata et al. | Development of flexible displays using back‐channel‐etched In–Sn–Zn–O thin‐film transistors and air‐stable inverted organic light‐emitting diodes | |
US20190172850A1 (en) | Oled array substrate, method for manufacturing the same and oled display device | |
CN103985638A (en) | Low temperature polycrystalline silicon thin film transistor, preparation method thereof, and display device | |
US20200350167A1 (en) | Inorganic metallic oxide thin film with composite crystal form and manufacturing method thereof | |
Arai et al. | 56.1: Invited Paper: Manufacturing Issues for Oxide TFT Technologies for Large‐Sized AMOLED Displays | |
US20210066153A1 (en) | Nitrogen-rich silicon nitride films for thin film transistors | |
US9093427B2 (en) | Method for fabricating semiconductor device | |
US8975164B2 (en) | Method of manufacturing semiconductor device | |
US10192903B2 (en) | Method for manufacturing TFT substrate | |
CN103236400A (en) | Production method of low-temperature polysilicon thin film and production method of thin-film transistor | |
WO2020113763A1 (en) | Preparation method for thin film transistor | |
TW201314779A (en) | Method of repairing defect of oxide semiconductor layer | |
KR102238749B1 (en) | Indium zinc oxide thin film transistor and manufacturing method thereof | |
Park | Investigation of the electromechanical stability of low temperature polycrystalline silicon thin-film transistors governed by types of stress | |
Saito et al. | P‐13: Large Subthreshold Swing of LTPS TFTs by Efficient Annealing Method for Light Emitting Diode Displays | |
Park et al. | Novel Integration Process for IGZO MO-TFT Fabrication on Gen 8.5 PECVD and PVD Systems-A Quest to Improve TFT Stability and Mobility | |
Nishizaki et al. | Comparison of a-Si TFTs fabricated by Cat-CVD and PECVD methods | |
CN112088432B (en) | Thin film transistor including oxide semiconductor layer | |
CN107170830A (en) | A kind of thin film transistor (TFT), its preparation method and display device | |
CN1265428C (en) | A method of fabricating a thin film transistor | |
US20040157382A1 (en) | Diffusion barrier multi-layer structure for thin film transistor liquid crystal displays and process for fabricating thereof |