TW201236139A - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- TW201236139A TW201236139A TW101101918A TW101101918A TW201236139A TW 201236139 A TW201236139 A TW 201236139A TW 101101918 A TW101101918 A TW 101101918A TW 101101918 A TW101101918 A TW 101101918A TW 201236139 A TW201236139 A TW 201236139A
- Authority
- TW
- Taiwan
- Prior art keywords
- region
- conductivity type
- conductor
- sub
- type
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 45
- 239000004020 conductor Substances 0.000 claims description 114
- 239000003990 capacitor Substances 0.000 claims description 27
- 239000012212 insulator Substances 0.000 claims description 16
- 239000000969 carrier Substances 0.000 claims description 14
- 238000009413 insulation Methods 0.000 claims description 13
- 238000007667 floating Methods 0.000 claims description 12
- 230000005684 electric field Effects 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 208000003251 Pruritus Diseases 0.000 claims 1
- 239000002019 doping agent Substances 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 4
- 229920006395 saturated elastomer Polymers 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 30
- 229910052732 germanium Inorganic materials 0.000 description 12
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 6
- 238000002955 isolation Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 206010036790 Productive cough Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D18/00—Thyristors
- H10D18/60—Gate-turn-off devices
- H10D18/65—Gate-turn-off devices with turn-off by field effect
- H10D18/655—Gate-turn-off devices with turn-off by field effect produced by insulated gate structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D18/00—Thyristors
- H10D18/40—Thyristors with turn-on by field effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/141—Anode or cathode regions of thyristors; Collector or emitter regions of gated bipolar-mode devices, e.g. of IGBTs
- H10D62/148—Cathode regions of thyristors
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thyristors (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
201236139 六、發明說明: 【發明所屬之技術領域】 本發明涉及半導體技術領域,尤其涉及大功率元件。 【先前技術】 通㊉的垂直型高壓半導體元件,需要高電阻率的半導 體材料做耐壓區(voltage-sustaining region)。 現有技術中,在閘流體、GTO ( Gate Turn-Off Thyristor,閘控閘流體)、MCT ( m〇s控制閘流體)等元 件中由於採用了非平衡載流子,使高電阻率的财壓區 (voltage-sustaining region)的導通壓降大大下降。 在利用外接信號控制元件夾止的GTO和MCT中,通 常會遇到電流集中效應’從而導致元件損壞。這是因爲, 這類元件本身利用了再生效應,每個局部或每個元胞的電 壓稱有增加,該局部或該元胞的電流就大大增加,從而導 致電流集中。這個效應使元件可靠性大大降低。 參考文獻 [1] 陳星弼,「一 種高速 IGBT」,ZL200910119961.3 , 及 U.S.Appl· No.12/712,583(2010); [2] 陳星弼’ 「一種用於半導體器件的表面耐壓區」, ZL 95108317.1 ’ 及 U.S.5,726,469 A ; [3] 陳星弼,「低壓電源」,中國專利申請號 201010000034.2 ’ 公佈號 CN101719721 A,公開日 2010.06.02 〇 201236139 【發明内容】 本發明的目的之一是:在穩態的導通情形下,電流隨 元件耐高壓的兩端的外加電壓增加而劇烈增加;外加電壓 的進一步增加’電流趨向飽和。此飽和電流隨控制導通的 信號的改變而改變。 本發明的目的之二是:當元件原處於夾止而有控制導 通的信號時,從夾止到導通的時間段落中及達到完全導通 之後的時間中元件不産生電流集中效應。 本發明的目的之二是.當元件原處於導通而有控制夾 止的信號時’從導通到夾止的時間段落中元件不產生電流 集中效應。 本發明的目的之四是:當元件夾止時,兩種載流子在 耐壓區(voltage-sustaining region)的數量逐漸減少是依靠 消除兩種載流子向耐壓區(這時爲漂移區)的注入。這種 方法可達到快速夾止的目的。 以下提供具體實施例對本發明的内容進行描述。 1 ·本發明的實施例提供一種半導體元件,它的工作區 在-塊半導體的第一主表面(各圖中在半導體最上的表面) 與第二主表面(各圖中在半導體最下的表面)之間,含有 苐一類το胞(cell)或第二類元胞或第三類元胞或同時含有任 何兩類或全部三類元胞; 所述第一類元胞的特徵(圖]、圖2、圖3、圖4、圖5、 圖6、圖7、圖8、圖9、圖1〇、圖杓和圖12)在於: 第一個Ν區(各圖中的11〇,或11〇與1〇3 一起)作 4 201236139 爲主耐壓區’該區的全部或絕大部分範圍是輕摻雜的; 所述第-個N區的一面與—個較重摻雜的第一個p區 (各圖…〇”相連接;所述第一個4的另一 二個P區(各圖中的12〇)相連接; 、 所述第二個P區(各圖中的12〇)的另一面至少有一 部分與一個第二個N區(各圖中的13〇)相連接; 所述第一個N區(各圖中的盘货 Μ 丁叼Ί )與第一個受控制的 電流源(各圖中的200 )的第一追相搁姑 β 乐垾相聯接,所述第二個Ρ 區(各圖中的120)還有另一部分與第二個受控制的電流源 (各圖中的300)的第一埠相聯接,所述第_個和第二個受 控的兩個電流源的兩個第二埠聯接在一起且均聯接到第一 個導體’肖第-個導體作爲兩個被控制的電極的第一 極(各圖中的Κ); 所述第二主表面上具有兩種電極接法中之任一種:第 一種接法是只有第二個導體(各圖中與1〇1相連接的粗黑 線)與第-個Ρ區(各圖中的101)相聯接,該第二個導 體作爲兩個被控制的電極的第二個電極(各圖中的Α);第 二種接法是除第二個導體外,還有第三個導體與輕摻雜的 第一個Ν區(各圖中的110)通過一個问區(圖4(句或圖 4(f))相聯接,第三個導體是基極(圖4 _的b ); 所述第一個受控制的電流源控制了流過第一個N區(各 圖中的11〇)的電子流0丨0以「〇门(^「「扣〖),所述第二個受控 制的電流源控制了流過第一個N區(各圖中的11〇)的電 洞流(hole Current);控制兩種載流子電流的電流源就控制 了兩個被控制的電極(電極A與電極κ)之間的電流; 5 201236139 所述第二類元胞除含有第一類元胞的特徵外,還有如 下特徵,在第一個N區(110)還有直接連通到第一主表面 的區域(圖13、圖14、圖15、圖16和圖17中的N區11〇), 該區域有第一個絕緣層(圖13中的161及圖14、圖15、 圖16和圖17中的162)覆蓋,該絕緣層還在第一主表面 覆蓋了第二個P區(圖13中的122及圖14、圖15、圖16 和圖17中的121)和第二個N區(圖13中的132及圖14、 圖15、圖16和圖17中的130),該絕緣層頂部覆蓋有— 個導體(圖13、圖14、圖15、圖16和圖17中的Gon);連 通到第一主表面的第一個N區(圖13、圖14、圖15、圖 16和圖17中的11〇)和第二個n區(圖13中的132及圖 14、圖15、圖16和圖17中的130)分別構成一個n_MIS (Meta卜Insulator-Semi conductor,金屬-絕緣-半導體場效 電晶體)的汲極區(drain region)及源極區(source regj0n) ’ 第二個P區(圖13中的122及圖14、圖15、圖16和圖 17中的121)作爲一個基底區(s〇u「ce_b〇cJyregj〇n),絕緣 層頂部覆蓋的導體作爲該n_MIS的閘(gate);該閘上加 k號可控制η - ΜIS的汲極區與源極區間的電流; 第三類元胞除含有第一類元胞的特徵外,還有如下特 徵’(參考文獻[1])第二個Ρ區(圖18中的601 )的一側 有第二個絕緣層(圖1 8中的660)覆蓋,該絕緣層還覆蓋 了在工作區邊緣之外的作爲接面邊緣終止區(juncti〇n edge termination regi〇n )的P區(圖】8中的6〇2)的一側;該 接面邊緣終止區(junctj〇n edge termination region)是在 第一主表面的從半導體元件的工作區邊界作爲第一邊開 201236139 始,直到兩個被控制的電極(電極A與電極κ)之間即使 加有很高電壓仍無電場存在的第一冑Ν㊄的—個區域(圖 18中的稱)作爲第二邊結束;該第二個絕緣層(圖心 的660)的頂部有-個導體覆蓋,作爲—個夾止閘(圖μ 中的0。);接面邊緣終止區在第二邊之外設有低壓電路(圖 19中的該低壓電路設有兩個輸出槔(圖19中_ 區的Α和Β),其第—個輸出皡與半導體元件的第二個電 極(電極A)通過一個導體相聯接’其第二個輸出埠與第二 種接法的基極(Base)(圖19中的B)通過另_個導體相 聯接; 接面邊緣終止之外的低廢番牧、祭+ | 7低壓電路還有兩個輸入埠,其第 一個輸入谭可以是圖19中的_區,也可以是與兩個被控201236139 VI. Description of the Invention: [Technical Field] The present invention relates to the field of semiconductor technology, and more particularly to high power components. [Prior Art] A vertical high-voltage semiconductor element of the tenth is required to have a high-resistivity semiconductor material as a voltage-sustaining region. In the prior art, in the components such as thyristor, GTO (Gate Gate Turn-Off Thyristor), MCT (m〇s control thyristor), unbalanced carriers are used, so that high resistivity is used. The conduction voltage drop in the voltage-sustaining region is greatly reduced. In GTO and MCT clamped by an external signal control element, a current concentration effect is often encountered, resulting in component damage. This is because such components themselves utilize the regenerative effect, and the voltage of each local or each cell is increased, and the current of the local or the cell is greatly increased, resulting in current concentration. This effect greatly reduces component reliability. References [1] Chen Xingyu, "A High Speed IGBT", ZL200910119961.3, and USAppl. No. 12/712,583 (2010); [2] Chen Xingyu, "A Surface Withstand Voltage Region for Semiconductor Devices," ZL 95108317.1 ' and US 5,726,469 A ; [3] Chen Xingyu, "Low-Voltage Power Supply", Chinese Patent Application No. 201010000034.2 'Publication No. CN101719721 A, Publication Date 2010.06.02 〇201236139 Summary of the Invention One of the objects of the present invention is: in steady state In the on-state case, the current increases sharply as the applied voltage across the high-voltage-resistant component increases; the applied voltage further increases, and the current tends to be saturated. This saturation current changes as the signal that controls conduction turns. A second object of the present invention is that the element does not produce a current concentration effect in the time period from pinch to conduction and after the time to full conduction when the element is originally clamped and has a signal to control conduction. A second object of the present invention is that the element does not produce a current concentration effect in the time period from conduction to pinch when the element is originally conducting and there is a signal to control the pinch. The fourth object of the present invention is that when the components are clamped, the number of two carriers in the voltage-sustaining region is gradually reduced by eliminating the two carriers to the withstand voltage region (in this case, the drift region). Injection). This method can achieve the purpose of fast clamping. The contents of the present invention are described below by providing specific examples. 1 . Embodiments of the present invention provide a semiconductor device having a working region on a first main surface of a semiconductor (the uppermost surface of the semiconductor in each drawing) and a second main surface (the lowermost surface of the semiconductor in each of the figures) Between the two types of το cells or the second type of cells or the third type of cells or both of any two or all of the three types of cells; the characteristics of the first type of cells (Figure), Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 1, Figure, Figure 12 and Figure 12): The first zone (11 inches in each figure, or 11〇 and 1〇3 together) 4 201236139 Main pressure zone 'all or most of the range is lightly doped; one side of the first N zone and one of the heavier doped A p-region (each map...〇) is connected; the other two P regions of the first one (12〇 in each figure) are connected; and the second P region (in each figure) At least a part of the other side of 12〇) is connected to a second N zone (13〇 in each figure); the first N zone (the disk in each figure) and the first one Controlled current source The first chasing phase of the (200 in each figure) is coupled, and the second region (120 in each figure) has another portion and a second controlled current source (each graph) The first one of the 300) is coupled, and the two second turns of the first and second controlled two current sources are coupled together and are coupled to the first conductor 'Shaw-first conductor a first pole (Κ in each figure) as two controlled electrodes; the second main surface has any one of two electrode connections: the first connection is only a second conductor (each The thick black line connected to 〇1 in the figure is coupled to the first Ρ region (101 in each figure), and the second conductor serves as the second electrode of the two controlled electrodes (in each figure) The second connection is that in addition to the second conductor, there is a third conductor and a lightly doped first Ν region (110 in each figure) passing through a question area (Fig. 4 (sentence or Figure 4 (f)) is connected, the third conductor is the base (b of Figure 4 _); the first controlled current source controls the flow through the first N zone (11 各 in each figure) ) the electronic flow 0丨0 to "〇门( ^""", the second controlled current source controls the hole current flowing through the first N zone (11〇 in each figure); controlling the two carrier currents The current source controls the current between the two controlled electrodes (electrode A and electrode κ); 5 201236139 The second type of cell has the following characteristics in addition to the characteristics of the first type of cell, The first N zone (110) also has a region directly communicating to the first major surface (N zone 11〇 in FIGS. 13, 14, 15, 16 and 17) having the first insulating layer (162 in FIG. 13 and 162 in FIG. 14, FIG. 15, FIG. 16, and FIG. 17), the insulating layer also covers the second P region on the first main surface (122 in FIG. 13 and FIG. 121) in FIG. 15, FIG. 16, and FIG. 17, and a second N-region (132 in FIG. 13 and 130 in FIG. 14, FIG. 15, FIG. 16, and FIG. 17), the top of the insulating layer is covered with a conductor. (Gon in Figs. 13, 14, 15, 16 and 17); the first N region connected to the first major surface (11 in Figs. 13, 14, 15, 16 and 17) 〇) and the second n-zone (132 and Figure 14 in Figure 13, 15. 130 in FIG. 16 and FIG. 17 respectively constitute a drain region and a source region (source regj0n) of an n_MIS (Meta-Insulator-Semiconductor). The second P region (122 in Fig. 13 and 121 in Fig. 14, Fig. 15, Fig. 16, and Fig. 17) serves as a base region (s〇u "ce_b〇cJyregj〇n"), and the conductor covered at the top of the insulating layer serves as a conductor The gate of the n_MIS; the gate is added with k to control the current of the drain region and the source region of the η - ΜIS; the third type of cell has the following features in addition to the characteristics of the first type of cell; One side of the second sputum (601 in Figure 18) is covered by a second insulating layer (660 in Figure 18), which also covers the edge of the work area. The other side of the P region (6〇2 in Fig. 8) which is the junction edge termination region (juncj〇n edge termination regi〇n); the junction edge termination region (junctj〇n edge termination region) is The working area boundary of the semiconductor element on the first main surface starts as the first side opening 201236139 until the two controlled electrodes (electrical The region between the first electrode and the electrode κ) that has no electric field even if a high voltage is applied is present (the one in Fig. 18) ends as the second side; the second insulating layer (the heart of the figure 660) The top of the ) has a conductor covering as a pinch gate (0 in Figure μ). The junction edge termination region is provided with a low voltage circuit outside the second side (the low voltage circuit in FIG. 19 is provided with two output ports (the _ and Β in the region of FIG. 19), and the first output 皡The second electrode (electrode A) of the semiconductor component is coupled by one conductor 'the second output 埠 is connected to the base of the second connection (B in FIG. 19) through the other conductor; The low-end waste, the sacrifice + | 7 low-voltage circuit has two input ports, and the first input Tan can be the _ zone in Figure 19, or it can be controlled with two
制的電極之間即使加有报高電壓仍無電場存在的第一個N 區的一個區域直接聯接,其第_ 丹弟一個輸入埠是低壓電路的控 制埠(圖1 9中的81 〇 ),它诵堝道μ〜 匕通過導體與接面邊緣終止内靠 近第二邊的一個區域有導體相聯接; 當所述的夾止閘(圖18中的r、 ndt , u 〒的G0)上加一種脈衝信號 時’低壓電路的兩個輸出埠(圖i 砰、圃19中800區的A和B)之 間可以有很大電流通過而兩個輪 网调輸出埠之間電壓很低,從而 使第一個P區(1〇1)不仓坌 )不内第一個N區(各圖令的110)注入 電洞。 2.參考圖4(c)與4(d)。按昭μ、+. 4 θ ^ ;按",、上述1中的基極(電極Β) 疋直接與第二個電極(電極相 )相聯接,而不是通過另一個 導體與所述低壓電路的第二個 调%出棒相聯接。 3 .上述兩個電流源可以 疋卜接於第一個受控制的電流 7 201236139 源(各圖中的200)的筮_ & „ μ 的第一埠及第二個受控制的電流源(各 圖中的300)的第—抬从工, ^扪弟埠的兩個電流源。 本發明也提供了可以做在元件内部的方法如下。參考 圖5和圖1 3,可以加笛一 & 把第一個p區分開。按照上述1中所述 的第一個P區分爲三個子區三個子區相互間有第一個N 區(m)隔開,每個子㈣含有各自的第二個^(13〇、 1 31、1 32 )’三個子區内各自的第二個N區分別由第二個 P區(121、123、122)及第—主表面所包圍;其中第一個 子區内的第二個N區(13〇)的摻雜劑量較第一個子區的第 二個P區(121)的摻雜劑量大得多,第二個子區内的第二 個N區(131 )的摻雜劑量較第二個子區的第二個p區(123) 的摻雜劑量小得多’第三個子區内的第二個N區(132)與 第三個子區的第二個P區(122)在第一主表面用浮動歐姆 接觸(FOC )相聯接,第三個子區内的第二個问區(η” 之内還有第二個P區(14〇),所述第三個p區(14〇)内 至>、3有兩個n-MIS,兩個n-MIS的源極區(202與302) 與構成基底區的第三個P區(14〇)在第一主表面有導體(構 成電極K的導體)相聯接,形成兩個被控制的電極的第一 個電極(電極K);兩個n-MIS的汲極區(201與301 )分 別與第一個子區内的第二個N區(13〇)及第二個子區内的 第二個N區(131)用導線相聯接;在第一主表面上至少有 兩個絕緣層( 260與360),各自覆蓋了部分源極區(2〇2 與302)、部分汲極區(2〇1與3〇1)及其間的基底區(14〇), 兩個絕緣層上有導體覆蓋作爲兩個n_Mis的閘極gate ( G. ” 〇2 ) ’這兩個閘極分別控制了作爲兩種載流子的兩個電 8 201236139A region of the first N region where no electric field exists even if a high voltage is applied between the electrodes is directly connected, and an input 埠 of the first electrode is a control of the low voltage circuit (81 图 in Fig. 19) , the channel μ~ 匕 is connected by a conductor to a region of the junction edge ending in the vicinity of the second side; when the clamping gate (r, ndt, u 〒 G0 in Fig. 18) When a pulse signal is added, there can be a large current flowing between the two output ports of the low-voltage circuit (A and B in the 800 area of Fig. i 砰, 圃 19), and the voltage between the two wheel nets is very low. Thus, the first P zone (1〇1) is not smashed) and the first N zone (110 of each figure) is injected into the hole. 2. Refer to Figures 4(c) and 4(d). According to Zhao, +. 4 θ ^ ; according to ", the base (electrode Β) 上述 in the above 1 is directly connected to the second electrode (electrode phase), instead of passing through another conductor and the low voltage circuit The second one is adjusted to be connected to the rod. 3. The above two current sources can be connected to the first and second controlled current sources of 筮_ & „ μ of the first controlled current 7 201236139 source (200 in each figure) The first current source of 300) in each figure, the two current sources of the 扪 扪 。. The present invention also provides a method that can be done inside the component as follows. Referring to Figure 5 and Figure 13, the whistle & Separating the first p. According to the first P described in the above 1, the three sub-zones are separated by a first N-zone (m), and each sub-four has its own second Each of the two N regions in the three sub-regions is surrounded by the second P region (121, 123, 122) and the first main surface; the first one The doping dose of the second N region (13〇) in the sub-region is much larger than the doping dose of the second P region (121) in the first sub-region, and the second N in the second sub-region The doping dose of the region (131) is much smaller than the doping amount of the second p region (123) of the second subregion. The second N region (132) and the third subregion of the third subregion Second P area (1 22) a first ohmic contact (FOC) is coupled to the first main surface, and a second P region (14 〇) is present within the second inter-region (n) of the third sub-region, the third There are two n-MISs in the p region (14〇) to >, 3, the source regions (202 and 302) of the two n-MISs, and the third P region (14〇) constituting the base region at the first The main surface has conductors (conductors constituting the electrode K) coupled to form a first electrode of the two controlled electrodes (electrode K); the two n-MIS drain regions (201 and 301) are respectively associated with the first The second N zone (13〇) in the sub-zone and the second N zone (131) in the second sub-zone are connected by wires; at least two insulating layers (260 and 360) on the first main surface Each covers a part of the source regions (2〇2 and 302), some of the drain regions (2〇1 and 3〇1), and a base region (14〇) therebetween, and the two insulating layers have conductor covers as two The gate of n_Mis (G. ” 〇2 ) 'The two gates respectively control two electric 8 as two kinds of carriers 201236139
4 .參考β _4. Reference β _
區(131)的摻雜劑量較第二個子區的第二個ρ區(123) 多,第三個子區内的第二個(132)與 二個P區(122)在第一主表面用浮動歐姆 按照上述1中所述的: 子區相互間有絕緣槽(171 各自的第二個ΝΙ區(130 内的第二個Ν區(130)的 Ρ區(1 21 )的摻雜齋丨詈士The doping dose of the region (131) is greater than the second p region (123) of the second subregion, and the second (132) and the second P region (122) of the third subregion are used for the first major surface. The floating ohm is as described in the above 1: The sub-regions have an insulating groove (the second ΝΙ region of each of the 171 (the doping region of the second Ν region (130) in the 130 (1 21)) Gentleman
的摻雜劑量小得多,第三 第三個子區的第二個PH 接觸(FOC)相聯接;第三個子區内的第二個Ν區(13” 之内還有第三個卩區(140),所述第三個ρ區内至少含有 兩個n-MIS,兩個η_Μ丨S的源極區(2〇2與3〇2)與構成基The doping dose is much smaller, the second PH contact (FOC) of the third and third sub-zones is connected; and the third crotch zone within the third sub-region of the third sub-zone (13" 140), the third ρ region contains at least two n-MIS, two η_Μ丨S source regions (2〇2 and 3〇2) and constituent groups
Κ的導體)相聯接,形成兩個被控制的電極的第一個電極(電 極Κ);兩個n_MIS的汲極區(201與301 )分別與第一個 子區内的第二個N區(130)及第二個子區内的第二個N 區(1 31 )用導線相聯接;在第一主表面上至少有兩個絕緣 層(260與360 ),各自覆蓋了部分源極區(202與302)、 部分沒極區(201與301)及其間的基底區(140),兩個 絕緣層上有導體覆蓋作爲兩個n-MIS的閘極(〇1與G2), 這兩個閘極分別控制了作爲兩種載流子的兩個電流源的 η-MIS的電流。 5 .參考圖8,也可以用絕緣槽把第二個ρ區局部地分 開。 9 201236139 按照上述1中所述的第二個p區分爲三個子區,三個 子區相互間有部分第二個P區相連接(122與121連接, 也與1 23連接),其他部分均有絕緣槽(i 71與i 72 )隔開, 每個子區内含有各自的第二個问區(13〇、131、132); 其中第一個子區内的第二個Ng(13〇)的摻雜劑量較第— 個子區的第二個P區(彳21 )的摻雜劑量大得多,第二個子 區内的第二個N區(131)的摻雜劑量較第二個子區的第二 個P區(123)的摻雜劑量小得多,第三個子區内的第二個 N區(132)與第三個子區的第二個p區(122)在第一主 表面用浮動歐姆接觸(F0C)相聯接;第三 二個N區⑽)之内還有第三個P區(14〇),所= 個P區(140)内至少含有兩個n_M丨s,兩個卜㈣的源極 區(202與302)與構成基底區的第三個p區(彳4〇)在第 -主表面有導體(構成電極κ的導體)相聯接,形成兩個 被控制的電極的第一個電極(電極κ);兩個η·Μ|3的汲 極區(201與301)分別與第一個子區内的第二個N區(13〇) 及第二個子區内的第二自N 1 ( 13”用導線相聯接;在第 一主表面上至少有兩個絕緣層(26〇與36〇),各自覆蓋了 部分源極區(202與302)、部分没極區(2()1與3〇1)及 其間的基底區(140) ’兩個絕緣層上有導體覆蓋作爲兩個 n-MIS的閘極((51與g2),這兩個閘極分別控制了作爲兩 種載流子的兩個電流源的的電流。 6 ·參考圖6,可以把第二個p區三個子區合攏。 按照上述1中所述的第二個p區分爲三個子區,三個 子區的第二個P區(121、123、122)相互間是相連接的, 10 •201236139 每個子區内含有各自的第二個N區(13〇、13彳、132), 三個子區内各自的第二冑N區(13〇、131、132)分別由 第一個P區(121、123、122)及第一主表面所包圍;其 中第-個子區内的第二個Ng(13〇)的摻雜劑量較第一個 子區的第二個p區(121)的摻雜劑量大得多,第二個子區 内的第二個N區(131)的摻雜劑量較第二個子區的第二個 P區(123)的摻雜劑量小得多,第三個子區内的第二個n 區(132)與第三個子區的第二個(122)在第一主表 面用浮動歐姆接觸(F0C)才目聯接;第三個子區内的第二 ㈣區⑽)之内還有第三舒區(14〇),所述第三個 P區(140)内至少含有兩個n_M丨s,兩個的源極區 ( 202與302)與構成基底區的第三個p區(㈣)在第一 主表面有導體(構成電# K的導體)相聯接,形成兩個被 控制的電極的第一個電極(電極κ);兩冑_的汲極 區(201與301)分別與第一個子區内的第二個_ 及第二個子區内的第二個N區(131)用導線相聯接;在第 主表面上至少有兩個絕緣層(26〇與36〇 ),各自覆蓋了 部分源極區202與302)、部分汲極區(2〇1與3〇1)及其 間的基底區(SOUrce_body regi〇n)(14〇),兩個絕緣層上 有導體覆蓋作爲兩個n_MIS的閘極((31與G2),這兩個閘 極刀別控制了作爲兩種載流子的兩個電流源的卜的電 流。 7·第二個P區的第二個子區内有(圖3中的131), 而導體除連接N區外還連接另一個p區(圖3中的133)。一 參考圖3。 11 201236139 按照上述3-6中的第二個子區内的第二個n區(1 31 ) 用導體相連接處,導體還連接了一個不與第二個p區相連 接的P區(1 33)。 8.第二個p區的電流源可以設在第三個子區内。參考 圖12。 按照上述1中所述的第二個P區(各圖中的12〇)的 另一部分與第二個受控制的電流源(各圖中的3〇〇 )的第一 琿相聯接的方法是做一個被第二個P區及第一主表面所包 圍的、並在第一主表面用浮動歐姆接觸(F〇c)與第二個p 區相聯接的一個N區(132),再做一個被此n區及第一 主表面所包圍的第三個P區(140),所述第三個p區内至少 含有兩個n-MIS,兩個n-MIS的源極區(202與302)與構 成基底區的第三個P區(140)在第一主表面有導體相聯 接,形成兩個被控制的電極的第一個電極(電極κ);兩個 n MIS的;及極區中的一個汲極區内有一個被該沒極區(ΜΑ) 及第一主表面所包圍的p區(143),該p區有導線聯接到 第一個P區(123);在第一主表面上至少有兩個絕緣層(26〇 與36〇) ’各自覆蓋了部分源極區(202與302)、部分汲 極區(201與301)及其間的基底區(14〇),兩個絕緣層 上有導體覆蓋作爲兩個n_M丨S的閘極(Gi與g2),這兩個 開極刀別控制了作爲兩種載流子的兩個電流源的n-M丨S的 電流。 9 .電流源可以設在 SIS ( Silicon lnsLI|at〇r Silicon) 内。參考圖9和圖*ι 〇。 按照上述1中所述的兩個電流源是形成在第三個Ρ區 12 201236139 (140)内,第三個p區與其他半導體區域有絕緣體(in、 172以及173)相隔絕。 1〇·本發明的實施例還提供了一種自動 的電壓的方法。參考圖15。 用於‘ 按照上述1中所述第二類元胞的n_M|s的閘(G〇n)是 通過導線聯接到設在第一個N區(11〇)在第—主表^内的 一個摻雜劑量較大的N區(111 )。 11本發明的實施例還提供了一種使兩個電流源儘管 它們的控制電極存在控制電壓,但既不能提供第二個N區 以電流,也不能提供第二個p區以電流的方法。即另加Gw 的方法,參考圖16及圖17β此時還可不需箝位。 按照上述3、4、5、6、9及1 〇中的第三個子區,以其 第二個Ρ區作爲一個P-MIS的源極區(123),以其第二個 Ν區作爲該p-MIS的基底區(132),第三個ρ區作爲該 P-MIS的汲極區(140),在第一主表面從源極區的部分經 基底區到汲極區的部分有一個絕緣層(’ 63 ),此絕緣層上 覆蓋有導體,此導體作爲p_M|S的( G〇ff),當閘上加電 壓使p-MIS導通時,第二個ρ區(123)與第一個電極(電 極K)之間只有很小的電壓(對矽元件而言小於〇.7伏卜不 吕而喻,從已有的半導體知識可知,要達到該種很小電壓 的方法,也可以是在該第三個子區内的第二個N區(彳32) 和第三個P區(140)之間形成一個n_ms。 1 2 .爲了防止本發明提供的電流源的兩端間電壓過 高’本發明還提供了將兩端電壓箝..位的方法。參考圖U、 12、14、15 和 16° 13 201236139 按照上述圖4、5、6、8、9、11中所述的第二個p區 (1 22 )和第三個p區(彳4〇 )間形成兩個串聯的二極體, 其方法是在第二個P區(122)内做一個N區(126),形 成第一個一極體;在第三個p區(14〇)内做一個n區 (142),此N區内又做一個p區(141),形成第二個二 極體;第二個二極體的Ng(142 )在第一主表面用導體(電 極K的導體)與第三個p區(14〇)相聯接;第一個二極體 的N區通過導線與第二個二極體的p區相聯接。 13.本發明還提供了一種用設在第一個n區在第一主 表面的重摻雜N區來提供相對於第一個電極(各圖中的κ) 有低電壓的電源的方法’用以提供發明内容3所述兩個電 流源的輸入端所需電能,參考圖21。 按照上述1中所述的第一類元胞,有一個在第一主表 面下與其第一個Ν區(11〇)直接接觸的重摻雜的Ν區 (111) ’此Ν區在第一主表面有導體(電極Η)直接接觸, 還有一個在第一主表面用浮動歐姆接觸(F〇c)與第二個ρ 區(120)相聯接而又在該第二個ρ區(12〇)内的第二個 Ν區(132),還有一個第三個卩區(14〇)在所述的第二 個Ν區(132)内,還有一個第三個(146)在所述的 第三個Ρ區(140)内,還有一個第四個ρ區(145)在所 述的第三個Ν區(146)内;所述的第四個卩區(]45)在 第一主表面有導體直接接觸,它通過導線與所述的重摻雜 的Ν區(1 11 )接觸的導體(η )相聯接;所述的第三個Ν 區(146)在第一主表面有導體(F)直接接觸,它通過導 線與一個電容(CO的一端相聯接,所述電容的另一端與兩個 201236139 被控制的電極的第-個電極(κ)相聯接;所述電容作爲一 個設置在第三個ρ區(140)内的低壓電路的電源,低壓電 路的輸入端(Gc)是外接控制電壓,低麼電路的輸出端是 作爲受控制的電流源的控制電壓或作爲第二個ρ區(12〇) 的控制電壓。 14.本發明還提供了.—種相對於第二個電#(各圖中 的A)接面邊緣終止區(juncti〇n edge “「⑺…如训regj〇n) 之外的低壓電路的電源,參考圖2 〇 β 按·、、、上述1中所述的接面邊緣終止區第二邊之内的第 一主表面下的一個小區域上設有導體,此導體通過導線與 在接面邊緣終止區第二邊之外的—個Ν區(8Q2 )相聯接; 此N區除在第一主表面之外均被一個p區(8〇”所包圍, 此P區在第一主表面有導體直接接觸,它通過導線與一個 電容(C〇)的一端相聯接;所述電容(c〇>的另一端與接面邊緣 終止區第一邊之外的第一個N區(11〇)相聯接;所述電容 (C〇)作爲設在接面邊緣終止區的在第二邊之外的低壓電路 的電源。 【實施方式】 下面參照附圖對本發明進行更全面的描述,其中說明 本發明的不例性實施例。在所有的圖巾,同樣的號碼所代 表的意義都是一樣的。 本發明的附圖中導體統一用粗線表示,在以後不再贅 述。 本發明的閘流體的主動區(active「egj〇n)的原理性結 15 201236139 構及其簡單等效電路如圖1所示。 圖1 (a)示出本發明的主動區的原理性結構。該圖最下 面的電極A是陽極’它通過導體聯接於第一個p區1〇1, 用來注入電洞到輕摻雜的第一個N區11 〇,n區11 〇是耐 壓區(voltage-sustaining region)。耐壓區之上有一個第二 個P區120。第二個p區彳2〇之上的右邊部分是經過導體 串聯到一個電流源300再聯接到陰極κ。這樣,在外加電 壓VAK大於零時,p區1〇1、N區11〇及p區12〇構成第 一個電晶體(PNP)的發射區、基區及集電區。 在第二個P區120的左邊的上面部分有一個问區13〇, 此區經過導體串聯到一個電流源200再聯到陰極κ.當vakThe conductors of the crucible are coupled to form a first electrode of the two controlled electrodes (electrode Κ); the drain regions (201 and 301) of the two n_MIS and the second N region of the first sub-region, respectively (130) and a second N-zone (1 31) in the second sub-region are connected by wires; at least two insulating layers (260 and 360) on the first main surface, each covering a part of the source regions ( 202 and 302), part of the non-polar region (201 and 301) and the base region (140) therebetween, the two insulating layers have conductors covered as two n-MIS gates (〇1 and G2), these two The gate controls the current of the η-MIS of the two current sources as two carriers, respectively. 5. Referring to Figure 8, the second ρ region can also be partially separated by an insulating groove. 9 201236139 According to the second p described in the above 1, it is divided into three sub-areas, and three sub-areas are connected with some second P-regions (122 and 121 are connected, also connected to 1 23), and other parts are The insulating grooves (i 71 and i 72 ) are separated, and each sub-region has a respective second question region (13〇, 131, 132); wherein the second Ng (13〇) in the first sub-region The doping dose is much larger than the doping dose of the second P region (彳21) of the first sub-region, and the doping dose of the second N region (131) in the second sub-region is lower than that of the second sub-region. The doping dose of the second P region (123) is much smaller, the second N region (132) in the third subregion and the second p region (122) in the third subregion are used on the first major surface. The floating ohmic contact (F0C) is connected; there is a third P zone (14〇) in the third two N zones (10), and the = P zone (140) contains at least two n_M丨s, two The source regions (202 and 302) of Bu (4) and the third p region (彳4〇) constituting the base region are coupled with a conductor (a conductor constituting the electrode κ) on the first main surface to form two controlled electrodes. First electrode Extreme κ); two η·Μ|3 bungee regions (201 and 301) and a second N region (13〇) in the first sub-region and a second self-N 1 in the second sub-region (13" is connected by wires; at least two insulating layers (26〇 and 36〇) on the first main surface, each covering part of the source regions (202 and 302) and partial non-polar regions (2()1 With 3〇1) and the base region (140) 'The two insulating layers have conductors covered as two n-MIS gates ((51 and g2), which are controlled as two kinds of carriers respectively The current of the two current sources of the stream. 6 · Referring to Figure 6, the three sub-regions of the second p-region can be closed. According to the second p described in the above 1, the three sub-regions are divided into three sub-regions. The second P zone (121, 123, 122) is connected to each other, 10 • 201236139 Each subzone contains its own second N zone (13〇, 13彳, 132), and each of the three subzones The second N region (13〇, 131, 132) is surrounded by the first P region (121, 123, 122) and the first major surface; wherein the second Ng (13〇) in the first subregion The doping dose is the same as that of the first sub-region The doping dose of the p region (121) is much larger, the doping dose of the second N region (131) in the second subregion is smaller than the doping dose of the second P region (123) in the second subregion. Much smaller, the second n-zone (132) in the third sub-region and the second (122) of the third sub-region are connected by floating ohmic contact (F0C) on the first major surface; the third sub-region There is also a third relaxation zone (14〇) within the second (four) zone (10)), the third P zone (140) containing at least two n_M丨s, two source zones (202 and 302) a third p-region ((iv)) constituting the base region is coupled to the first main surface with a conductor (conductor constituting electric #K) to form a first electrode (electrode κ) of the two controlled electrodes; The drain regions (201 and 301) of 胄_ are respectively connected by wires with the second _ in the first sub-region and the second N region (131) in the second sub-region; at least on the main surface There are two insulating layers (26〇 and 36〇), each covering part of the source regions 202 and 302), some of the drain regions (2〇1 and 3〇1) and the base region (SOUrce_body regi〇n) ( 14〇), on two insulation layers As the conductor is covered two n_MIS gate ((31 and G2), the two knife gate current as the other two control current sources of both carriers Bu. 7. The second sub-region of the second P region has (131 in Fig. 3), and the conductor is connected to the other p region (133 in Fig. 3) in addition to the N region. Refer to Figure 3. 11 201236139 According to the second n zone (1 31 ) in the second sub-region of 3-6 above, the conductor is connected, and the conductor is also connected to a P zone which is not connected to the second p zone (1 33 ). 8. The current source of the second p-region can be placed in the third sub-region. Refer to Figure 12. The method of coupling the other portion of the second P region (12 各 in each figure) described in the above 1 with the first 珲 of the second controlled current source (3 各 in each figure) is Making an N zone (132) surrounded by the second P zone and the first major surface and connected to the second p zone by the floating ohmic contact (F〇c) on the first major surface, and then a third P region (140) surrounded by the n region and the first major surface, the third p region containing at least two n-MIS, two n-MIS source regions (202 with 302) and a third P region (140) constituting the base region is coupled to the conductor on the first main surface to form a first electrode (electrode κ) of the two controlled electrodes; two n MIS; a bungee region in the region has a p region (143) surrounded by the immersion region (ΜΑ) and the first major surface, the p region having a wire coupled to the first P region (123); At least two insulating layers (26〇 and 36〇) on a major surface each cover a portion of the source regions (202 and 302), a portion of the drain regions (201 and 301), and a base region (14〇) therebetween. On the two insulation layers As the shutter member to cover two poles S n_M Shu (Gi and g2), the two poles apart knives do not control the current as the two current sources both carriers of the n-M S, Shu. 9. The current source can be placed in SIS (Silicon lnsLI|at〇r Silicon). Refer to Figure 9 and Figure *. The two current sources as described in the above 1 are formed in the third turn region 12 201236139 (140), and the third p region is isolated from the other semiconductor regions with insulators (in, 172, and 173). An embodiment of the present invention also provides an automatic voltage method. Refer to Figure 15. The gate (G〇n) for 'n_M|s of the second type of cell described in the above 1 is connected by a wire to one of the first N regions (11〇) in the first main table Doping a larger dose of the N region (111). 11 Embodiments of the present invention also provide a method in which two current sources have neither a current in the second N region nor a current in the second p region, despite the presence of a control voltage in their control electrodes. That is, the method of adding Gw, referring to FIG. 16 and FIG. 17β, there is no need to clamp at this time. According to the third sub-area of the above 3, 4, 5, 6, 9 and 1 ,, the second Ρ area is used as the source area (123) of the P-MIS, and the second Ν area is used as the a base region (132) of the p-MIS, the third ρ region serving as a drain region (140) of the P-MIS, and a portion of the first main surface from the portion of the source region through the base region to the drain region Insulation layer ('63), this insulating layer is covered with a conductor, which is used as p_M|S (G〇ff), when the voltage is applied to the gate to turn on p-MIS, the second ρ region (123) and the first There is only a small voltage between one electrode (electrode K) (it is less than 77 volts for the 矽 element. From the existing semiconductor knowledge, the method to achieve this kind of small voltage can also be An n_ms is formed between the second N zone (彳32) and the third P zone (140) in the third sub-region. 1 2 . In order to prevent the voltage between the two ends of the current source provided by the present invention from being too high The present invention also provides a method of clamping the voltage at both ends. Refer to Figures U, 12, 14, 15 and 16° 13 201236139 as described in Figures 4, 5, 6, 8, 9, and 11 above. Two p zones Two series-connected diodes are formed between (1 22 ) and the third p-region (彳4〇) by making an N-region (126) in the second P-region (122) to form the first One pole; in the third p region (14〇), an n region (142), which in the N region is a p region (141), forming a second diode; the second diode Ng(142) is coupled to the third p-region (14〇) in the first major surface conductor (the conductor of the electrode K); the N-region of the first diode passes through the conductor and the second diode The p regions are coupled. 13. The invention also provides a low voltage with respect to the first electrode (κ in each figure) using a heavily doped N region disposed on the first major surface of the first n region The method of power supply is used to provide the electrical energy required at the input of the two current sources of the third aspect of the invention, with reference to Figure 21. According to the first type of cells described in the above 1, one has a first major surface and The first doped region (11〇) is in direct contact with the heavily doped germanium region (111). This tantalum region has direct contact with the conductor (electrodeΗ) on the first major surface, and a floating ohm on the first major surface. Contact (F〇c) The second ρ zone (120) is coupled to the second Ν zone (132) in the second ρ zone (12〇), and a third 卩 zone (14〇) is in the In the second crotch region (132), there is a third (146) in the third crotch region (140), and a fourth p region (145) in the third a fourth germanium region (146); the fourth germanium region (45) has a direct contact with the conductor on the first major surface, and the conductor in contact with the heavily doped germanium region (11) through the wire The (n) phase is coupled; the third germanium region (146) has a direct contact with the conductor (F) on the first major surface, which is coupled to a capacitor (one end of the CO) through a wire, the other end of the capacitor The first electrode (κ) of the two controlled electrodes of 201236139 is coupled; the capacitor acts as a power supply for the low voltage circuit disposed in the third ρ region (140), and the input terminal (Gc) of the low voltage circuit is externally connected The control voltage, the output of the low circuit is the control voltage as a controlled current source or as the second ρ zone (12 〇) control voltage. 14. The present invention also provides a low voltage circuit other than the junction end edge region of the second electric # (A in each figure) (juncti〇n edge "(7)... regj〇n) For the power supply, refer to FIG. 2, 〇β is provided with a conductor on a small area under the first main surface in the second side of the junction edge termination region described in the above 1, and the conductor is connected through the wire. A crotch region (8Q2) outside the second edge of the edge termination region is coupled; the N region is surrounded by a p region (8〇) except the first main surface, and the P region is in the first main The surface has a direct contact with a conductor which is coupled to one end of a capacitor (C〇) by a wire; the other end of the capacitor (c〇> and the first N region outside the first edge of the junction edge termination region ( 11〇) phase-connected; the capacitor (C〇) acts as a power source for the low-voltage circuit disposed outside the second side of the junction edge termination region. [Embodiment] The present invention will be more fully described below with reference to the accompanying drawings. The exemplary embodiments of the present invention are described. In all the tissues, the same numbers represent the same meaning. The conductors in the drawings of the present invention are collectively indicated by thick lines, and will not be described again in the future. The active region of the thyristor of the present invention (active "egj〇n" principle of the knot 15 201236139 structure and its simple equivalent circuit as shown Figure 1 (a) shows the schematic structure of the active region of the present invention. The lowermost electrode A of the figure is the anode 'which is coupled to the first p-region 1〇1 by a conductor for injecting a hole To the lightly doped first N region 11 〇, the n region 11 〇 is a voltage-sustaining region. There is a second P region 120 above the pressure-resistant region. The second p region 彳 2〇 The upper right portion is connected in series to a current source 300 via a conductor and then coupled to the cathode κ. Thus, when the applied voltage VAK is greater than zero, the p-region 1〇1, the N-region 11〇, and the p-region 12〇 constitute the first electricity. The emitter region, the base region and the collector region of the crystal (PNP). In the upper portion of the left side of the second P region 120, there is a question region 13〇, which is connected in series to a current source 200 via a conductor and then connected to the cathode κ. When vak
大於零時,N區130可以發射電子到p區彳2〇區,再由N 區11〇把電子取走。這樣,问區130、Pg 120及问區11〇 構成第二個電晶體(NPN)的發射區、基區和集電區。 兩個電晶體與兩個電流源聯接構成的等效電路如圖 1 (b)所示。 圖1(a)所示的結構與GT〇及MCT最大不同處是有兩 個電流源。 叹置兩個電流源的目的是在有電流的情況下,保證在 耐壓區11 0中兩種載流子濃度盡可能滿足下面條件: n-p-ND + «0 (,) 其中η爲電子濃度,p爲電洞濃度,Nd+是11〇區的有 效電離施體(donor)濃度。當電流很大,從而n與p均遠大 于ND +時,如果n >> p,則耐壓區承受外電屋時,其作用如 同一個重摻雜的P區,它不可能承受很高的電壓。如果 16 201236139 >n’其作用如同_個重摻雜的N[i,它也不可能承受很高 的電壓。&兩種情形都不能達到大電壓下電流飽和的目的。 注意到在Si中,電場強度大於2x1〇4v/cm時,電子及 電:的速度各約等於其飽和值^及vSh。而電場強度在2x 1 0 V’cm以上時才有明顯的碰撞電離率。因此,上述條件只 需要早位面積下電子流與電洞流的比例爲(je/jh)= (vSe/vSh)。由於在Si巾,,故只需要電子流與 電洞流相等。 按照圖1的做法,由於要維持p區12〇及N區13〇構 成的P-N接面Guncti〇n)正偏壓,使得有注入,3〇〇所聯接 的120區的電位比200所聯接的n區130的電位高。在引 中高㈣_7V左右’這顯然需要多消耗單位面積功率。爲此, 像圖2⑻所示的原理性結構那樣,我們可把最上面的n區 分成一個重摻雜的130和一個輕摻雜的N區131。同 時’把9區12〇在W 130的周圍摻雜劑量做得很低;把 P區120在N區131的周圍摻雜劑量做得很高。於是,彳 和PS 12〇構成一個Ν、Ρ·接面’其通過的電流以電子流爲 主1區⑶* PS 120構成—個Ν·_ρ +接面,其通過的電 流以電洞流爲主。 圖2(b)是圖2(a)的簡單等效電路圖。 圖2(a)中300與Ν區131聯接的導體也可以和一個& 區133同時接觸,如圖3⑻所示。這種接法相當於一個ρ 區120、Ν區131及Ρ區133構成的集電結短路的ρΝρ電 晶體,其等效電路如圖3(b)所示。 圖1⑻的耐壓區110的下部100區有幾種結構,如圖 17 201236139 4所示。目4⑷是耐壓區11G直接與P區101連接,而p 區101又與電極A相聯接1 4(b)與圖4⑻不同處是11〇 與1〇1之間增加了 一個N區1〇3作爲緩衝層,N(I 1〇3有 比110更重的摻雜濃度,但比較薄。圖4(c)所示是一種陽 極短路的接法,電極A既與p區1〇1接觸,也通過與N區 102接觸聯到耐壓區11〇。有時爲了陽極短路的效果更 好’需要I 110下方有一個比11〇更重摻雜濃度的N區 103,如圖4(d)所示。圖4⑷是—種將N耐壓區11〇經過 一個N H 1 02聯出作爲一個基極而用的結構,圖4⑴是在 圖4(e)的基礎上爲了陽極短路更有效而在1〇彳及上設 有一個較重摻雜的N區1〇3的結構。圖4⑴和圖4(e)都是 爲了快速夾止而用,其用法將在後面敍述。下面各圖中, 不管採用@ 4(a)、圖4(b)、圖4(g)、圖4(d)、@ 4(e)或圖 4(f)所示圖中哪一張接法,爲了簡單起見,我們均用圖4(a) 來表不。只是在將N耐壓區11 〇經過一個n區彳〇2聯出作 爲一個基極而用的聯法時,不管採用圖4(e)或圖4(f),均用 圖4(e)的表示方法。 圖2(a)所示的電流源2〇〇及3〇〇可以不是在該晶片上 外接的,而是做在元件的晶片内部。圖5(a)示出一個這樣 做法的一個元胞。在這裏,將p區彳2〇分成三個獨立的pWhen it is greater than zero, the N region 130 can emit electrons to the p region 彳2〇 region, and then the electrons are taken away by the N region 11〇. Thus, the interrogation zone 130, the Pg 120, and the interrogation zone 11〇 constitute the emitter, base, and collector regions of the second transistor (NPN). The equivalent circuit formed by the connection of two transistors to two current sources is shown in Figure 1 (b). The structure shown in Figure 1(a) differs from the GT〇 and MCT in that there are two current sources. The purpose of sighing two current sources is to ensure that the two carrier concentrations in the withstand voltage region 110 satisfy the following conditions as much as possible in the presence of a current: np-ND + «0 (,) where η is the electron concentration , p is the hole concentration, and Nd+ is the effective ionization donor concentration of the 11 〇 region. When the current is large, and thus n and p are both much larger than ND + , if n >> p, the withstand voltage zone is subjected to an external electric house, and its function is like a heavily doped P zone, which cannot withstand very high Voltage. If 16 201236139 >n' acts like a heavily doped N[i, it cannot withstand very high voltages. Both cases cannot achieve current saturation at large voltages. Note that in Si, when the electric field strength is greater than 2x1 〇 4v/cm, the speeds of electrons and electricity are approximately equal to their saturation values ^ and vSh. When the electric field strength is above 2x 10 V'cm, there is a significant impact ionization rate. Therefore, the above conditions only require the ratio of the electron current to the hole flow in the early area to be (je/jh) = (vSe/vSh). Since it is in the Si towel, only the electron current is required to be equal to the hole flow. According to the method of FIG. 1, since the p-region 12〇 and the N-region 13〇's PN junction Guncti〇n) are to be positively biased, so that there is an injection, the potential of the 120-zone connected to the 3〇〇 is more than 200. The potential of the n region 130 is high. In the middle of the high (four) _7V or so 'this obviously needs to consume more power per unit area. To this end, like the schematic structure shown in Fig. 2 (8), we can divide the uppermost n region into a heavily doped 130 and a lightly doped N region 131. At the same time, the doping amount of the 12-zone 12 〇 around W 130 is made very low; the doping dose of the P region 120 around the N region 131 is made high. Thus, 彳 and PS 12 〇 constitute a Ν, Ρ · junction 'the current through which the electron flow is dominated by 1 zone (3) * PS 120 constitutes a Ν·_ρ + junction, the current through which the hole flows the Lord. Fig. 2(b) is a simple equivalent circuit diagram of Fig. 2(a). The conductor of 300 in FIG. 2(a) coupled to the crotch region 131 may also be in simultaneous contact with a & region 133 as shown in FIG. 3(8). This connection is equivalent to a ρΝρ transistor in which the collector junction of the ρ region 120, the Ν region 131 and the Ρ region 133 is short-circuited, and the equivalent circuit is as shown in Fig. 3(b). The lower portion 100 of the withstand voltage region 110 of Fig. 1 (8) has several structures, as shown in Fig. 17, 201236139. Head 4 (4) is that the withstand voltage region 11G is directly connected to the P region 101, and the p region 101 is connected to the electrode A. 14 (b) is different from the case of Fig. 4 (8). An N region is added between 11 and 1〇1. 3 as a buffer layer, N (I 1 〇 3 has a heavier doping concentration than 110, but is relatively thin. Figure 4 (c) shows an anode short circuit connection, electrode A is in contact with p region 1 〇 1 It is also connected to the withstand voltage zone 11 by contact with the N zone 102. Sometimes the effect of the anode short circuit is better. 'There is a N zone 103 below the I 110 which has a heavier doping concentration than the 11 ,, as shown in Fig. 4 (d Fig. 4(4) is a structure in which the N withstand voltage region 11〇 is connected through a NH 1 02 as a base, and Fig. 4(1) is more effective for the anode short circuit on the basis of Fig. 4(e). There is a structure of a heavily doped N-zone 1〇3 on the 1〇彳 and the top. Figures 4(1) and 4(e) are used for quick clamping, the usage of which will be described later. , regardless of which one of the diagrams shown in @4(a), Fig. 4(b), Fig. 4(g), Fig. 4(d), @4(e) or Fig. 4(f), for simplicity For the sake of reference, we all use Figure 4(a) to show it. Just pass the N pressure-resistant zone 11 When the n-zone 彳〇2 is connected as a base method, the method shown in Fig. 4(e) is used regardless of the use of Fig. 4(e) or Fig. 4(f). The current sources 2〇〇 and 3〇〇 may not be external to the wafer, but are made inside the wafer of the component. Figure 5(a) shows a cell that does this. Here, the p region is 彳2〇 divided into three independent p
區:121、122、123 ’將N區130設置在P區121内,NZone: 121, 122, 123 ′ Set the N zone 130 in the P zone 121, N
區1 31設置在P區1 23内。電流源則設置在p區14〇中, 140被N區132所包圍,n區132又在第一主表面(最上 面的表面)用浮動歐姆接觸(FOC)在表面與P區122相 聯。P區140作爲兩個n-MIS的基底區,它與兩個n-MIS 18 .201236139 的源極區202及302通過導體在表面相聯接,兩個n_M|S 的沒極區分別是N+區201及N +區301,它們各自有導體聯 出到N區130上的電極D!及N區131上的電極d2。有兩 個絕緣體260及360分別覆蓋在兩個n-MIS的源極區的一 部分,基底區及汲極區的一部分。絕緣體上有導體構成兩 個n-MIS的閘G1與G2。控制G1與G2的電壓可以控制兩 個η - Μ丨S的電流,從而控制了流經n區1 3 〇及n區131的 電流。在實際設計中,可使Ρ區12彳的摻雜劑量比受它包 圍的Ν區1 30的摻雜劑量小得多,因此流過Ν區彳3〇的電 流主要是向下流的電子流。相反,ρ區彳23的摻雜劑量比 受它包圍的Ν區1 31的摻雜劑量大得多’因此流過ρ區彳23 的電流主要是向上流的電洞流。由於Ν區彳3〇與ρ區】Μ 構成的P-N接面及P區123與N區131構成的p_N接面在 正向工作時的偏壓均約爲〇 7V (對矽的情形)^如果兩個 n-MIS做得完全—樣,而流過兩個pN接面的電流不相等, 則流過的兩個n_MIS的電壓會不等’電流大的一邊造成壓 降大,結果是該邊P-N接面電壓的壓降變小。利用這種負 回饋(negative feedback)的原理,容易實現電子流與電洞流 相等或接近相等的要求。 圖5(b)是圖5(a)結構的簡單等效電路圖。 爲了實現圖2中兩個電流源2〇〇及3〇〇,不一定要把 S圖的分成獨立的三段,而是可以把三段連接在 一起。圖6(a)示出了爲達到這一目標的結構原理圖。這裏 的,區號碼和!I 5的—致,工作原理不再贅述。值得提出 勺疋w中的p區122摻雜劑量可以較重,使其橫向電阻 19 201236139 較小。從而使得兩邊(p區121與p區123)電壓不會因 發生橫向電流而不相等。 圖6(b)是圖6(a)的簡單等效電路圖。 也可以使圖5(a)或圖6(a)中的问區13〇及/或N區131 不疋完全受P區121及/或123所包圍。這就是利用刻槽技 術。圖7是將圖5(a)或圖6(a)三個完全地用介質171 及介質172隔開的方法的示意圖,圖8是將圖5(a)或圖6(旬 三個P區部分地用介質隔開的方法的示意圖。在這兩個圖 中’ N區13〇和N區131只有底部是連接p區其邊上無 P區包圍》 在圖5(a)或圖6(a)中用n_MIS來做兩個電流源這是 因爲它在同樣導通電流下所需的漏源電壓較小,可以節省 導通損耗Μ旦是爲了實現n_M|S,需要有p型的基底區14〇, 而這個P區又不能以P區122來代替,否則由p區1〇1 注入的電洞會直接經P區122流入電極κ,失去了控制兩 種載流子電流相等的能力。因此加入了與p區彳22電位相 等的N區132。如果電流源是做在一個與其他半導體區絕 緣的半導體區中,則N區1 32就無必要存在。圖9示出了 一種這樣的方法’該方法是將電流源區(current s〇urce region)的兩旁用絕緣體171和172隔開(例如利用丁「扣叻 技術),而下面也用絕緣體彳73隔開(例如利用S|S技術), 作爲基底區的是p區140。 备然’這種隔離的方法也有一定的靈活性。例如,還 可以保留一部分卩區122在隔離區之下_,如圖,〇所示。這 會使得經過耐壓區110的電洞到上層有更大的通路。同時 20 201236139 也可使P區121和P區123之間的電位更接近,使得耐壓 區電子流密度和電洞流密度更接近。 在圖1 1(a)中晝出了一個P區122和N區126構成的 P-N二極體,126通過聯線又接到P區141,後者設在n 區142中’因此又形成一個二極體》N區142通過導體直 接與P區140及陰極K相聯。這就是說,從P區122到陰 極K有兩個二極體。這樣,即使p區1 22到K有很大的電 流’兩者間的電壓也不會超過兩個二極體的正向壓降之和 (在Si元件中約爲1.5V),這可以避免在大電流下兩個受 G1及G2控制的n-MIS的漏源電壓過大,換言之,這兩個二 極體起了 一個箝位作用’在以後各圖中遇到有此結構時不 再贅述。 圖11(b)是圖11(a)的簡單等效電路圖。 在本發明元件中製造圖,和圖2中電流源3〇〇還有一 種方法疋把該兩圖中p區123和N區131形成的P-N接面 做在圖5(a)或圖6(a)所示的p區14〇之内。這種方法的結 構示意地表示在圖12(a)中。該圖中由G2控制的n M|S的 汲極區是N型區144,在144中又做一個p區143,143 與144形成了 P-N接面。143通過聯線經圖中的F〇c接到 P區123。圖12(b)是圖12(a)的簡單等效電路圖。 上述各結構固然可使元件導通,但從夾止態進入導通 態所需的時間可能較長。這是因爲,要使P區101有電洞 /主入到N區11 〇的先決條件是有電子從n區^ 3〇經p區 121抓入到N區1 1 〇 ’再達到p區]〇1而從電極a流出。 而k要求P區12"十问區13〇有正向偏壓(在s丨元件中 21 201236139 約爲0_7V) ’而p區121要有正向偏壓又必須依靠p區 1〇1的電洞注入,這一迴圈過程使閘流體的再生作用要經過 相當長的時間。 爲了加快開啓速度,我們可設法使元件在開啓之初, 電子不是從N區130經過卩區121再進入耐壓區11〇,而 是直接進入耐壓區11(^圖13(a)示出了一個這種方法的結 構圖。它是在圖5(a)結構的基礎上,用N區11〇作爲沒極 區°卩刀的N區2 01作爲源極區。在表面有一個絕緣層161 覆蓋于該兩區以及p區122、N區132及p區14〇,此絕 緣層161上有導體作爲一個n_M丨s的閘,稱爲開啓閘G。。。 開啓閘Gon與Gl聯在一起,構成了兩個串聯的而又共用一 個閘信號的n-MIS。從夾止態到開啓的初級階段兩個n.s 均開啓’有電子流向N區,1〇。由於這兩個n_M|s是串聯 的’因此總的電子流仍由閘Gi控制,可以做到電子流與電 洞流(由G2控制)在開啓後一直相等。圖13(b)是圖13(a) 的等效電路示意圖。 加速開啓過程還可以對h與G〇n採用不同的閘信號, 圖14(a)示出了一種這樣的結構。這裏專用的開啓卜是 該圖的N 1 13G作爲源極區,p區121作爲襯底區,N區 110作爲没極區,有絕緣層162覆蓋部分N區13〇、p區 121以及部分N區110,其上有導體構成閘電極、。圖 14(b)疋圖14(a)的簡單等效電路圖。 本發月還提供了 一種自動獲得G。"所需電壓的方法。如 圖15(a)所示,在..一 1 10相連接的N +區 個元胞的邊界處設了 一個與N耐壓區 111,此區在VAK很大而電流很小時不 22 201236139 會耗盡’其未耗盡區相對于P區121有—定的正 耗盡區有導體接觸,經過^ 未 ❿聯線聯到6。。上。當vAK报小時, 該區對P區121的雷壓下隊 m LL r- 墊下降。因此该區適用于作爲開啓的 G。』電壓用。圖15(b)是圖15(a)的簡單等效電路圖。 本發明的元件從導通狀態到夾止狀態的過程,在原理 上可以將。彳及G2所控制的電流逐漸減少。但是由於兩個 電晶體形成的再生作用’夾止過程會需要較長的時間。 利用陽極短路的方法,即圖4(G)與圖4(d)所示的方法, 也可以加快夾止過程。這是因爲,當流經N區11〇的電子 流很小時,P! 1〇1相對于1Q2的電壓就很小(例如, 對Si元件而言’小於〇·5ν) ’μ 1〇1就幾乎無電洞再注 入到110中。這時閘流體的再生作用不再存在。 但是,陽極短路的方法只有在電流小到一定程度時, 才能使P區101相對于N區1〇2的電壓足夠地小。爲此, 本發明還提供了快夾止的方&。這個方法是增加一個夾止 用的閘G〇ff。 圖16(a)示出了一個在圖14(句的基礎上增加一個夾止 閘的方法。在上表面之上,從p區彳23的一部分開始,經 過N區1 32到p區140的一部分,覆蓋了一個絕緣層彳63, 絕緣層上覆蓋了一個導體做夹止閘,這是一個以p區123 爲源極區,N區132爲基底區,p區14〇爲汲極區的p_M丨s。 當GoffK加電壓低於該MIS的閾電壓而使該M|S導通時, P區123與P區140導通。如果p區123與P區140導通 壓降低於P-N接面的正向導通壓降(在矽元件中約〇.7V), 則P區123與N區131間幾乎無電流。同理,p區121與 23 201236139 N區1 30間也幾乎無電流。兩個Π_ΜIS不起作用。這時元 件就像一個由P區1〇1、N區110、P區123(及p區121 和P區122)構成的PNP電晶體’可以对很高的電壓而幾 乎無電流《圖16(b)是圖16 (a)的簡單等效電路圖。不言而 喻,從已有的半導體知識可知,要達到p區1 23與p區14〇 導通壓降低於P-N接面的正向導通壓降(對於矽元件而言 約爲0.7V)的方法,也可以是在n區132和P區140之間 形成一個n-MIS。 實際上,圖1 6中的兩個箝位二極體,即由122與,26 形成的P-N接面及P區141與N區142形成的p_N接面構 成的兩個串聯的二極體,在圖16(a)中可以不再需要。因 爲圖16中的p-MIS在〇0”有足夠電壓而導通時,121 (及 122和123)與P區140之間的電位差已被抑制住了。這 種無籍位元二極體的結構如圖1 7所示。 提高夾止速度有效的方法是利用本發明人的發明專利 ‘‘一種高速 16巳丁71_2009101 19961.3,及 u s 八叩丨 N〇 12/712,583(2010)”戶斤提出的方法。在該專利中已經提出多 種具體結構,一種具體結構如圖18所示,該圖是該專利中 圖21的重現,只是各區的符號採用了本專利的符號。這裏 P區602及P區600是一箱你s r & * 楂作爲接面邊緣終止(junctj〇r| edge termination)㈣壓結構。元件爽止時的耐壓區是從聯 接電極K的P區601的右邊間私 ^ 遵開始,直到一個作爲場終止區 的重摻雜的N區400的左邊& ^ 刃及遭爲止。在P區6〇〇的末段的表 面上設有一個絕緣層6 61,卜古 ”上有一個導體〇8〇,它聯接到The area 1 31 is set in the P area 1 23 . The current source is disposed in the p-region 14A, 140 is surrounded by the N-region 132, which in turn is coupled to the P-region 122 at the surface by a floating ohmic contact (FOC) on the first major surface (the uppermost surface). The P region 140 serves as a base region for two n-MISs, which are coupled to the source regions 202 and 302 of the two n-MIS 18 .201236139 via conductors, and the two non-polar regions of the n_M|S are N+ regions, respectively. 201 and N + regions 301 each having a conductor D to the electrode D! on the N region 130 and an electrode d2 on the N region 131. There are two insulators 260 and 360 covering a portion of the source regions of the two n-MISs, a portion of the base region and the drain region, respectively. A conductor on the insulator constitutes two n-MIS gates G1 and G2. Controlling the voltages of G1 and G2 controls the currents of the two η - Μ丨S, thereby controlling the current flowing through the n regions 1 3 〇 and n regions 131. In the actual design, the doping amount of the germanium region 12 Ρ can be made much smaller than the doping amount of the germanium region 1 30 surrounded by it, so that the current flowing through the germanium region 主要 3 主要 is mainly a downward flowing electron current. In contrast, the doping amount of the ρ region 彳 23 is much larger than the doping amount of the Ν region 1 31 surrounded by it. Therefore, the current flowing through the ρ region 彳 23 is mainly an upward flowing current. The PN junction formed by the 彳3〇 and ρ areas] and the p_N junction formed by the P area 123 and the N area 131 are both 〇7V in the forward direction (for the case of 矽) ^ The two n-MISs are done completely, and the current flowing through the two pN junctions is not equal. The voltage of the two n_MIS flowing will not be equal to the larger current side, resulting in a large voltage drop. The voltage drop of the PN junction voltage becomes small. With this principle of negative feedback, it is easy to achieve equal or nearly equal requirements for the flow of electrons and the flow of holes. Fig. 5(b) is a simple equivalent circuit diagram of the structure of Fig. 5(a). In order to realize the two current sources 2〇〇 and 3〇〇 in Fig. 2, it is not necessary to divide the S picture into three independent segments, but the three segments can be connected together. Figure 6(a) shows the structural schematic for achieving this goal. Here, the area number and! I 5, the working principle is no longer described. It is worth mentioning that the doping dose of p region 122 in scoop w can be heavier, making its lateral resistance 19 201236139 smaller. Thus, the voltages on both sides (p region 121 and p region 123) are not unequal due to the occurrence of lateral current. Fig. 6(b) is a simple equivalent circuit diagram of Fig. 6(a). It is also possible that the question area 13A and/or the N area 131 in Fig. 5(a) or Fig. 6(a) are not completely surrounded by the P area 121 and/or 123. This is the use of groove technology. Fig. 7 is a schematic view showing a method of completely separating three media 171 and a medium 172 of Fig. 5 (a) or Fig. 6 (a), and Fig. 8 is a view of Fig. 5 (a) or Fig. 6 (three P zones) Schematic diagram of a method partially separated by a medium. In these two figures, 'N zone 13 〇 and N zone 131 only the bottom is connected p zone and its side is surrounded by no P zone" in Figure 5 (a) or Figure 6 ( a) Use n_MIS to do two current sources. This is because it requires less drain-source voltage at the same on-current, which can save conduction loss. In order to achieve n_M|S, a p-type base region is required. 〇, and this P zone cannot be replaced by P zone 122. Otherwise, the hole injected by p region 1〇1 will flow directly into electrode κ through P zone 122, losing the ability to control the equal current of the two carriers. An N region 132 equal to the potential of the p region 彳22 is added. If the current source is made in a semiconductor region insulated from other semiconductor regions, the N region 1 32 is not necessary. Figure 9 shows such a method. 'The method is to separate the current source region (current s〇urce region) with insulators 171 and 172 (for example, using Ding "clamping technology", and below The insulators 73 are spaced apart (e.g., using the S|S technique), and the base region is the p-region 140. There is also a certain flexibility in the method of isolation. For example, a portion of the germanium region 122 may remain in the isolation region. Lower _, as shown in Fig. 〇. This will make the hole through the pressure-resistant zone 110 have a larger passage to the upper layer. At the same time, 20 201236139 can also bring the potential between the P zone 121 and the P zone 123 closer, making the resistance The electron flow density in the nip is closer to the hole flow density. In Figure 11 (a), a PN diode composed of a P region 122 and an N region 126 is extracted, and 126 is connected to the P region 141 through the interconnect. The latter is located in the n region 142 'and thus forms a diode." The N region 142 is directly coupled to the P region 140 and the cathode K by a conductor. That is, there are two diodes from the P region 122 to the cathode K. Thus, even if the p-region 1 22 to K has a large current, the voltage between the two does not exceed the sum of the forward voltage drops of the two diodes (about 1.5 V in the Si element), which can be avoided. At high currents, the leakage currents of two n-MISs controlled by G1 and G2 are too large. In other words, the two diodes act as a clamp. FIG. 11(b) is a simplified equivalent circuit diagram of FIG. 11(a). The figure is fabricated in the element of the present invention, and the current source 3〇〇 in FIG. 2 is further omitted. There is a method of making the PN junction formed by the p region 123 and the N region 131 in the two figures within the p region 14A shown in Fig. 5(a) or Fig. 6(a). The ground is shown in Fig. 12(a). In this figure, the drain region of n M|S controlled by G2 is an N-type region 144, and in 144, a p region 143 is formed, and 143 and 144 form a PN junction. 143 is connected to the P area 123 through the line F 〇c in the figure. Fig. 12 (b) is a simple equivalent circuit diagram of Fig. 12 (a). While each of the above structures can turn the component on, the time required to enter the conduction state from the pinch state may be long. This is because, in order to make the P-zone 101 have a hole/main entry into the N-zone 11 先决, the prerequisite is that electrons are taken from the n-zone ^ 3 〇 through the p-region 121 to the N-region 1 1 〇 'and reach the p-region] 〇1 flows out from the electrode a. And k requires P zone 12 " 十问区13〇 has a forward bias (in the s丨 component 21 201236139 is about 0_7V) 'and p zone 121 must have forward bias and must rely on p zone 1〇1 Hole injection, this loop process takes a long time to regenerate the thyristor. In order to speed up the opening speed, we can try to make the component start from the beginning of the opening, the electron does not enter the pressure-resistant zone 11〇 from the N zone 130 through the crotch zone 121, but directly enters the withstand voltage zone 11 (Fig. 13(a) shows A structural diagram of such a method is based on the structure of Fig. 5(a), using N-zone 11 〇 as the N-zone 201 of the non-polar region 卩 作为 as the source region. There is an insulating layer on the surface. 161 covers the two regions and the p region 122, the N region 132 and the p region 14A. The insulating layer 161 has a conductor as a gate of n_M丨s, which is called an opening gate G. The opening gate Gon is connected with the G1. Together, two n-MISs are connected in series that share a gate signal. From the pinch state to the initial stage of the turn-on, both ns are turned on. 'There is electron flow to the N region, 1〇. Because of these two n_M|s It is connected in series 'so the total electron flow is still controlled by the gate Gi, so that the electron flow and the hole flow (controlled by G2) are always equal after being turned on. Fig. 13(b) is the equivalent circuit of Fig. 13(a) Schematic. The acceleration start process can also use different gate signals for h and G〇n, and Figure 14(a) shows one such structure. It is N 1 13G of the figure as a source region, p region 121 as a substrate region, N region 110 as a non-polar region, and an insulating layer 162 covering a portion of the N region 13 〇, the p region 121, and a portion of the N region 110, on which There is a conductor to form the gate electrode. Fig. 14(b) is a simple equivalent circuit diagram of Fig. 14(a). This month also provides a method for automatically obtaining the required voltage of G. " as shown in Fig. 15(a) It is shown that there is a N withstand voltage zone 111 at the boundary of the N 1 -cell cells connected by .1 to 10, which is large in VAK and the current is very small. 22 201236139 will be exhausted 'its unconsumed The area is opposite to the P area 121. There is a conductor contact in the positive depletion zone, and the connection is connected to the 6th. After the vAK is reported, the zone is subjected to the lightning pressure of the P zone 121. R- pad is lowered. Therefore, this area is suitable for use as a voltage for turning on. Fig. 15(b) is a simple equivalent circuit diagram of Fig. 15(a). The process of the element of the present invention from the on state to the pinch state, In principle, the current controlled by 彳 and G2 can be gradually reduced, but the regenerative effect of the formation of the two transistors will take a long time. The method of short-circuiting the anode, that is, the method shown in Fig. 4(G) and Fig. 4(d), can also speed up the pinching process. This is because when the electron flow through the N-zone 11 is small, P! 1 The voltage with respect to 1Q2 is small (for example, 'less than 〇·5ν for Si elements) 'μ 1〇1 is almost no holes and then injected into 110. At this time, the regeneration of the thyristor no longer exists. The method of short-circuiting the anode can only make the voltage of the P-zone 101 relatively small with respect to the N-zone 1〇2 when the current is small to a certain extent. To this end, the present invention also provides a fast-clamping square & This method is to add a gate G〇ff for clamping. Fig. 16(a) shows a method of adding a pinch gate to Fig. 14 (on the upper surface, starting from a portion of the p region 彳23, passing through the N region 1 32 to the p region 140 A portion is covered with an insulating layer 彳63, and the insulating layer is covered with a conductor as a pinch gate. This is a p-region 123 as a source region, N region 132 as a base region, and p region 14 is a bungee region. p_M丨s. When the GoffK voltage is lower than the threshold voltage of the MIS and the M|S is turned on, the P region 123 and the P region 140 are turned on. If the p region 123 and the P region 140 are turned on, the conduction voltage is lowered to the positive of the PN junction. The conduction voltage drop (about 77V in the 矽 element), there is almost no current between the P area 123 and the N area 131. Similarly, the p area 121 and 23 201236139 N area 1 30 also have almost no current. Two Π_ΜIS It does not work. At this time, the component is like a PNP transistor composed of P region 1〇1, N region 110, P region 123 (and p region 121 and P region 122), which can be used for very high voltage and almost no current. Fig. 16(b) is a simple equivalent circuit diagram of Fig. 16(a). It goes without saying that it is known from the existing semiconductor knowledge that the p-portion of the p-region 1 23 and the p-region 14 is reduced to the positive of the PN junction. Wizard The method of voltage drop (about 0.7 V for germanium elements) may also be to form an n-MIS between n region 132 and P region 140. In fact, the two clamp diodes in Fig. 16. The two series-connected diodes formed by the PN junction formed by 122 and 26 and the p-N junction formed by the P-region 141 and the N-region 142 are no longer needed in FIG. 16(a) because FIG. 16 When the p-MIS has sufficient voltage and is turned on, the potential difference between 121 (and 122 and 123) and the P region 140 has been suppressed. The structure of the ligandless diode is as shown in the figure. The method of increasing the pinch speed is effective by using the inventor's invention patent "a high speed 16 巳 71 71_2009101 19961.3, and us 叩丨 叩丨 N〇 12/712, 583 (2010)". A number of specific structures have been proposed in this patent. A specific structure is shown in Fig. 18. This figure is a reproduction of Fig. 21 in the patent, except that the symbols of the respective regions adopt the symbols of this patent. Here, P area 602 and P area 600 is a box of your sr & * 楂 as junction edge termination (junctj〇r | edge termination) (four) pressure structure. The region is started from the right side of the P region 601 of the junction electrode K until the left & ^ edge of the heavily doped N region 400 as the field termination region. The surface of the segment is provided with an insulating layer 6 61, which has a conductor 〇8〇, which is coupled to
一個電阻Ri,該電阻另一端躺姑M 磲聯接到N區400。當該圖的閘 24 201236139 G〇上有負脈衝信號而使該閘絕緣層660下的N區11 〇的表 面形成了反型區時,則Ρ區602及Ρ區600的電位會變得 更接近電極Κ的電位,從而661下的電位變得比G〇上無負 脈衝信號時的值低,於是080與半導體表面構成的電容會 充電,此充電電路的電流是從400開始,經R|到導體〇8〇 到P區600,最後到電極κ。這樣在電阻Rj上會有電壓, 在這個聯接導體080及Ri的埠81 0上有相對于中性N區 11 0上的脈衝電壓。 上面講了得到一個産生夾止信號的原理,至於該圖中 的N +區603與N+區604及P+區605及浮動歐姆接觸FOC 與上述的控制無關,故不贅述。 總之’可以在開啓的瞬間或其前一刻及夾止的瞬間或 其前一刻得到極性不同的信號從81 0輸出。如圖19所示, 在接面邊緣終止(junction edge termination)外的中性區 800内可以製造低壓電路。由81〇作爲輸入端,其輸出端 爲A、B兩個電極,分別用導線聯到圖4(e)的電極A電極B〇 當要夾止時,可以使電極A與電極B之間的電壓小於ρ-n 接面導通的電壓(對Si元件而言,約爲〇.7V)。使得不再 有電洞從下表面注入到N區11 〇。 上圖中的C〇代表一個可以作爲800區内低壓電路的電 源°對於小電流的元件,這個電源並不需要。但是,對於 很大電流的元件,由於夾止過程的起始階段會在電極A與 電極B之間有很大電流,就要求低壓電路有很大的驅動能 力’這時必須有能夠提供瞬間大電流的電源。這個電源在 圖中用電容C〇表示。本發明還提供了一個對電容c〇充電 25 201236139 電流的方法。其結構如圖20所示,該圖的虛線代表當元件 夾止時處於高電壓下N區110的耗盡區邊緣,p區6〇〇的 一部分是接面邊緣終止(junction edge termination)技術使 用的一個區,它可以是專利“一種用於半導體元件的表面 耐壓區,ZL 95108317.1 ’ 及 U.s· 5,726 469 a” 中講到 的最佳變摻雜區,在P區600中的接近耗盡區邊緣處有一 個導體與600相接觸,此導體通過導線聯到一個中性區内 的P區801所包圍的W 802上。p區8〇1又有另外的導 體聯接到電容C。的一端,電容C。的另一端接到設在中性 區的NT區803上。當元件的Vak較大日夺(例如在斷開 時)’可以有電流從rr區803經電容c〇,再經p區8〇1 ^區802構成的正向P-N接面,又經接面邊緣終止區的 :區_流向Kf這使得電容可以充電。當電容上㈣ =-定值時,充電停止。這個電容可以作爲低壓電路的 二圖中由Ρ區80UN區802構成的二極體可以防止 在不需要使用這個電源時電容c0的自動放電。 作爲控制電流源的Π _ Μ丨S的閘G B pA resistor Ri, the other end of which is coupled to the N region 400. When the gate 24 201236139 G 该 of the figure has a negative pulse signal and the surface of the N region 11 下 under the gate insulating layer 660 forms an inversion region, the potentials of the germanium region 602 and the germanium region 600 become more Close to the potential of the electrode ,, so that the potential under 661 becomes lower than the value when there is no negative pulse signal on G〇, so the capacitance formed by 080 and the semiconductor surface is charged, and the current of the charging circuit starts from 400, and R| From the conductor 〇8〇 to the P region 600, and finally to the electrode κ. Thus, there is a voltage across the resistor Rj, and there is a pulse voltage on the junction conductors 080 and Ri 埠81 0 with respect to the neutral N region 110. As described above, a principle for generating a pinch-out signal is obtained. As for the N + region 603 and the N+ region 604 and the P+ region 605 and the floating ohmic contact FOC in the figure, the above-described control is irrelevant, and therefore will not be described. In short, a signal having a different polarity can be output from 81 0 at the moment of opening or at the moment before and at the moment of clamping or immediately before. As shown in Fig. 19, a low voltage circuit can be fabricated in the neutral region 800 outside the junction edge termination. 81〇 is used as the input end, and the output ends are two electrodes A and B, which are respectively connected by wires to the electrode A electrode B of Fig. 4(e). When clamping, the electrode A and the electrode B can be made. The voltage is less than the voltage at which the ρ-n junction is turned on (about 77V for Si components). This eliminates the infusion of holes from the lower surface to the N zone 11 〇. The C〇 in the above figure represents a power supply that can be used as a low-voltage circuit in the 800 zone. For a small current component, this power supply is not required. However, for a component with a large current, since the initial phase of the pinch process will have a large current between the electrode A and the electrode B, the low-voltage circuit is required to have a large driving capability. At this time, it is necessary to provide an instantaneous high current. Power supply. This power supply is indicated by the capacitor C〇 in the figure. The present invention also provides a method of charging a capacitor c 25 25 201236139 current. The structure is shown in FIG. 20. The dotted line of the figure represents the edge of the depletion region of the N region 110 at a high voltage when the component is clamped, and the portion of the p region 6〇〇 is the junction edge termination technique. A region which can be patented as "a surface withstand voltage region for semiconductor components, ZL 95108317.1' and Us. 5,726 469 a", which is the best variable doping region, which is nearly depleted in the P region 600. At the edge of the zone there is a conductor in contact with 600 which is connected by wires to W 802 surrounded by a P zone 801 in a neutral zone. The p region 8〇1 has another conductor coupled to the capacitor C. At one end, capacitor C. The other end is connected to the NT zone 803 located in the neutral zone. When the Vak of the component is large (for example, when it is turned off), there may be a current from the rr region 803 through the capacitor c〇, and then through the p-region 8〇1 ^ region 802 to form a forward PN junction, and then through the junction The edge termination zone: zone_flow to Kf which allows the capacitor to be charged. When the capacitor is on (4) = - fixed value, charging stops. This capacitor can be used as a diode of the low-voltage circuit. The diode formed by the UN 80UN region 802 can prevent the automatic discharge of the capacitor c0 when the power supply is not needed.闸 Μ丨 的S gate G B p as a control current source
At ^ 导體的表面存在電容,可 ::自外來電能消耗。因此’最好能由本發明的元 加驅2ΓΓ定t量的對的正M,以降低對外 動的要求。另外’從夾止到導 ⑵相對于_13()有正„而于如果p區 則有利於電子進入N區m再到達負電厂堅, £ 121有一個相.對於κ電極的正 、要、·》Ρ 由开姓^ 本發明提供了一種 由凡件本身產生這種對電極Κ爲正電屋的電源的方法了。種 26 201236139 圖21 (a)示出了這種方法。在|^區11〇表面有一個重摻 雜的N區1 1 1 (見參考文獻[3] ) ^該區通過聯線接到一個 設在N區146内的p區145的表面,Ng 146又有一個電 極F在表面,從電極F到電極κ間接了一個電容當 VAK>0時,可以有電子從N +區m流出到n區11〇,再流 到下表面。於是’有電流從下表面流到N +區1彳彳,再經過p 區145及N區146構成的P-N接面,由電極F經電容Cl 流到電極K,使電容c!充電。 需要才曰出的是’不管下表面是圖4中的哪一種結構, 都不可能有電洞流持續不斷地流向該圖中的電極κ。這是因 爲’與電極相聯的P區彳4〇被N區132包圍,後者又被設 在表面的浮動歐姆接觸(F〇C)聯到了 p區12〇,當p區 120被充以正電荷後,N區132與p區14〇構成的p_N接 面是反偏的。另外’與F電極相聯接的n區146與P區140 構成的P-N接面在電容Cl充電後也是反偏的。 還需指出的是’本領域的普通技術人員都容易想到, 本發明所述電容不僅可以是外接電容,也可是製作在晶片 内部的電容’例如用一個Μ丨S電容。 有了對電極Κ的正電源’可以很方便地由外加控制信 號來得到前面所述I及G2要求的閘電壓,以及對ρ區1 21 (及P區122與P區123)的正電壓。圖21(b)示意地表示 這個情況’它是在p區120 (代表p區121或P區122或 P區123或與這些類似的區)上形成的n區132上做一個 'P區140’在p區14〇内可實現通常的低壓積體電路。此 低壓電路有導線聯入電極κ及電極F作爲電源,其相對於 27 201236139There is a capacitance on the surface of the At ^ conductor, which can be: from external power consumption. Therefore, it is preferable to determine the positive M of the pair of t by the elemental drive 2 of the present invention to reduce the external motion requirement. In addition, 'from pinch to guide (2) is positive with respect to _13(). If p is favorable for electrons to enter N zone m and then reach negative power plant, £121 has one phase. For κ electrode, positive, · Ρ 开 开 ^ ^ 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本The surface of the region 11 has a heavily doped N region 1 1 1 (see reference [3]). ^ This region is connected to the surface of a p region 145 disposed in the N region 146 by a line, and the Ng 146 has another The electrode F is on the surface, and a capacitance is indirectly from the electrode F to the electrode κ. When VAK>0, electrons can flow from the N + region m to the n region 11〇, and then flow to the lower surface. Then, there is current flowing from the lower surface. After 1 N to the N + region, and then through the PN junction formed by the p region 145 and the N region 146, the electrode F flows to the electrode K via the capacitor C1, so that the capacitor c! is charged. Which structure is in Fig. 4, it is impossible for the hole flow to continuously flow to the electrode κ in the figure. This is because the 'P region 与4〇 connected to the electrode is N region 13 Surrounded by 2, the latter is again connected to the p-region 12〇 by a floating ohmic contact (F〇C) provided on the surface. When the p-region 120 is charged with a positive charge, the p_N junction formed by the N region 132 and the p region 14〇 is In addition, the PN junction formed by the n-region 146 and the P-region 140 coupled to the F-electrode is also reverse-biased after the capacitor C1 is charged. It should also be noted that 'one of ordinary skill in the art will readily recognize that The capacitor of the present invention can be not only an external capacitor, but also a capacitor fabricated inside the wafer 'for example, a Μ丨S capacitor. The positive power supply with the counter electrode 可以 can be conveniently obtained by applying a control signal to the foregoing. The gate voltage required for I and G2, and the positive voltage for the ρ region 1 21 (and the P region 122 and the P region 123). Fig. 21(b) schematically shows this case 'it is in the p region 120 (representing the p region 121 Or a 'P region 140' on the n region 132 formed on the P region 122 or the P region 123 or a similar region) can realize a usual low voltage integrated circuit in the p region 14A. The low voltage circuit has a wire connection. Into the electrode κ and the electrode F as a power source, which is relative to 27 201236139
電極K的輸出端可包括供G 讶…及G2的電壓的埠,也可以包 括供P區120的埠。这此以山 幻早k些輸出埠的電壓均由一個輸入埠Gc 以外加信號來控制。 下面介紹-個按圖14⑷的類比結果,其底部採用了圖 4⑷所讀極短路的方法’具體結構如圖22所心這裏採 用了又指條圖形’其各區所用雜質濃度寬度["m】 及厚度[/zm】分別如下:110區:1χ1〇ΐ4、57 3〇〇;ι〇ι區: 3x1〇18、40、2;102 區:1x1〇19、17、2;12i 區:5χΐ〇ΐ6、 20、10 ; 122 區:1Χ1017、17 10 ; 130 區:3χ1〇17、10、2 10 ; 123 區:5χ1〇17、13、 131 區:2χ1〇16、1〇、7 ; 132區.1Χ10、15、4 ; 2〇1區與2〇2區之間距離爲〇 3, 260區厚度爲G_Q3 ; 3G1區與302區之間距離爲0.3,36〇 區厚度爲0.03 ;兩個n_MOS的閾值電壓均爲3v ; 區 下面110區與13G區之間的距離爲5,162區厚度爲〇 〇3, 受G0N控制的n_MOS閾值電壓爲’ _4V。在類比中採用了 SRH、CONMOB、FLDM0B、IMpACT」等模型,兩種載流 子的壽命均設爲2〇〇私s。 圖23是仿真所得的直流特性《元件的電流密度Jak _ 200A/cm2下,導通壓降爲彳35N^該元件的擊穿電壓爲 1 300V (在陽極短路且三個閘的電壓均與κ電極相等的情 形)。 圖24表示該元件開關特性的類比結果。從圖中可以看 出,元件的開啓時間爲〇_45ms (電流從最大電流的1〇%升 至90% ),夾止時間爲4 # δ (電流從最大電流的9〇0/〇下降 至 10%)。 28 201236139 這裏,爲了類比方便起見,在元件的電極A和電極b 之間加了-個n-MOS取代圖18, 19, 2〇的方法。元件的 開啓首先疋將V(G0N)和V(G1)同時同步地用了 〇彳以s的時 間從0V線性增加至1QV,再等…3將v(G2)用了心 的時間攸0V線性增加至10V。元件的夾止首先是在〇」” 内實現電極A和電極B的短路,與此同時,v(g〇n)用了 〇」 "s的時間從10v線性下降至〇v,再等將他1)和 V(G2)用了 10/ZS的時間從1〇v線性減小至〇ν〇 從上述特性來講,本元件類比結果已經比英飛凌的 IGBT 產品 SIGC156T120R2C (電流密度 63A/cm2 下,導 通壓降爲2.5V)在同樣正向壓降下電流密度更大。應當說 明’這裏給出的不是最佳的設計。 需要特別指出的是,功率元件失效的最可能原因是電 流集中效應。從圖23的直流特性可知,對於本發明的元件 而言,任何局部元胞的VAK增加或閘電壓的增加都能發生更 大的電流、但不是一發不可收拾的電流密度,而且在报高 的電壓下也不至於發生電擊穿。 以上所述的元胞除又指條結構的元胞外,當然還可以 有其他許多結構。圖25(a)中晝出了圖22結構爲六角形密 堆積的一種元胞,這裏把露出於表面的N區110書在六角 形元胞的邊緣’這樣可以獲得較大的開啓元件的能力。圖 25(b)畫出了許多這樣的元胞的密堆積的示意圖。 儘管以上所舉的各種情形是以耐壓區爲N型的。但是 顯而易見’它們也適用免..耐.·廢區爲p型的情形。那時本專 利所述的各種N型區應換爲P區,電極A與電極κ應互相 29 201236139 對調。 以上對本發明的-些例子做了說明。不言而喻,對於 熟悉本領域的技術人員而言’還可以在本發明的思想下, 作出其他許多應用例子而不超過本發明的權利要求。 本發明的描述是爲了示例和描述起見而給出的,而並 不是無遺漏的或者將本發明限於所公開的形式。很多修改 和變化對於本領域的普通技術人員而言是顯然的。選擇和 描述實施例是爲了更好說明本發明的原理和實際應用,並 且使本領域的普通技術人員能夠理解本發明從而設計適於 特定用途的帶有各種修改的各種實施例。 【圖式簡單說明】 圖1(a)是本發明的原理性結構的示意圖。 圖1(b)是圓1(a)的簡單等效電路圖。 圖2(a)是本發明的另一種原理性結構的示意圖。 圖2(b)是圖2(a)的簡單等效電路圖。 圖3(a)是本發明的又一種原理性結構的示意圖。 圖3(b)是圖3(a)的簡單等效電路圖。 圖4是耐壓區下部的幾種結構的示意圖。 圖5(a)是本發明的一種將電流源做在晶片内部 示意圖。 幻、-構 圖5(b)是圖5(a)的簡單等效電路圖。 圖6(a)是本發明的另一種將電流源做在晶片内 構示意圖。 的結 圖6(b)是圖6(a)的簡單等效電路圖。 30 201236139 圖7是一種在圖5(a)或圖6(a)基礎上採用介質隔離的 結構示意圖。 圖8是另一種在圖5(句或圖6(a)基礎上採用介質隔離 的結構示意圖。 圖9是一種在圖5(a)或圖6(a)基礎上採用S|S的方法 的結構示意圖。 圖10是另一種在圖5(a)或圖6(a)基礎上採用S|S的方 法的結構示意圖。 圖11(a)是一種增加了箝位元二極體的結構示意圖。 圖11(b)是圖11(a)的簡單等效電路圖。 圖12⑻是另-種製造圖!⑻和圖2⑻中提供電洞流的 電流源的方法的結構示意圖。 圖12(b)是圖12(a)的簡單等效電路圖。 圖1 3(a)疋一種增加開啓閘以加快開啓速度的結構示 意圖。 圖13(b)是圖13(a)的簡單等效電路圖。 圖14⑻是另_種增加開啓閉以加快開啓速度的結構 示意圖。 圖14(b)是圖14(a)的簡單等效電路圖。 圖15(a)是-種能自動提供開啓閘信號以實現快速開 啓的結構示意圖。 圖15(b)是圖15(a)的簡單等效電路圖。 圖16(a)是一個在圖14⑷的基礎上增加—個夾止閉的 … 結構示意圖。 . ·. ·- 圖16(b)是圖16(a)的簡單等效電路圖。 31 201236139 圖17疋一個在圖16(a)的基礎上去除箝位元二極體的 結構不意圖0 圖18是根據文獻[1]中的圖21的產生低壓電路控制信 號的方法的示意圖。 圖19是一種用於實現陽極短路的低壓電路的原理性示 意圖。 圖2〇是一種製造低壓電路電源的方法的結構示意圖。 圖21 (a)是一種由元件本身産生的相對陰極爲正電壓 的電源的方法的結構示意圖。 圖21(b)是一種控制電路的原理性示意圖。 圖22是圖14利用圖4(e)的結構的示意圖。 圖23是根據圖22的元胞結構採用TMA-MEDICI類比 得到的直流特性圖。 圖24是根據圖22的元胞結構採用tmA-MEDICI類比 得到的開關特性圖。 圖25(a)是六角形密堆積的一個元胞的結構示意圖。 圖25(b)是由圖25(a)密堆積的結果的示意圖。 【主要元件符號說明】 101 P 區 I 03 N 區 II 1 N + 區 122 P 區 080導體 100下部 102 N 區 110 N 區 120 P 區 121 P 區 32 201236139 123 I P區 126 N區 130 N區 131 N區 132 N區 133 P區 140 P區 141 P區 142 N區 143 P區 144 N型區 145 P區 146 N區 161 絕緣層 162 絕緣層 163 絕緣層 171 絕緣槽 172 絕緣槽 173 絕緣體 200 電流源 201 >及極區 202 源極區 260 絕緣層 300 電流源 301 沒極區 302 源極區 360 絕緣層 400 N區 600 P區 601 P區 602 P區 603 N +區 604 N +區 605 P +區 660 絕緣層 661 絕緣層 800 低壓電路區 801 P區 802 N區 803 N +區 810 埠 33The output of the electrode K may include 埠 for the voltage of G... and G2, and may also include 埠 for the P region 120. In this case, the voltages of the outputs are both controlled by an input 埠Gc plus a signal. The following is an analogy result according to Figure 14 (4), the bottom of which uses the method of reading the short circuit of Figure 4 (4) 'The specific structure is as shown in Figure 22, here is the use of the bar graph 'the impurity concentration width used in each area ["m 】 and thickness [/zm] are as follows: 110 area: 1χ1〇ΐ4, 57 3〇〇; ι〇ι area: 3x1〇18, 40, 2; 102 area: 1x1〇19,17,2; 12i area: 5χΐ 〇ΐ6, 20, 10; 122 District: 1Χ1017, 17 10; 130 District: 3χ1〇17,10,2 10; 123 District: 5χ1〇17,13,131 District: 2χ1〇16,1〇,7; .1Χ10,15,4; The distance between 2〇1 and 2〇2 is 〇3, the thickness of 260 is G_Q3; the distance between 3G1 and 302 is 0.3, and the thickness of 36〇 is 0.03; two n_MOS The threshold voltage is 3v; the distance between the 110 area and the 13G area below the area is 5, the thickness of the 162 area is 〇〇3, and the threshold voltage of the n_MOS controlled by G0N is '_4V. Models such as SRH, CONMOB, FLDM0B, and IMpACT are used in the analogy, and the lifetimes of the two carriers are set to 2 〇〇 private s. Figure 23 is a simulation of the DC characteristics "current density of the component Jak _ 200A / cm2, the conduction voltage drop is 彳 35N ^ the breakdown voltage of the component is 1 300V (the short circuit at the anode and the voltage of the three gates are combined with the κ electrode Equal situation). Fig. 24 shows the analogy result of the switching characteristics of the element. As can be seen from the figure, the turn-on time of the component is 〇_45ms (the current rises from 1〇% to 90% of the maximum current), and the clamping time is 4 # δ (the current drops from 9〇0/〇 of the maximum current to 10%). 28 201236139 Here, for the sake of analogy, an n-MOS is added between the electrode A and the electrode b of the element instead of the method of Figs. 18, 19, 2〇. The opening of the component firstly uses V(G0N) and V(G1) simultaneously in synchronization with 〇彳 to linearly increase from 0V to 1QV in s, and then waits for ... 3 to use v(G2) with the heart time 攸0V linear Increase to 10V. The clamping of the component firstly achieves a short circuit between the electrode A and the electrode B in the "〇", at the same time, v(g〇n) uses the time of "〇" "s linearly decreases from 10v to 〇v, and then waits He 1) and V(G2) use 10/ZS time to linearly reduce from 1〇v to 〇ν〇. From the above characteristics, the analogy result of this component is already better than Infineon's IGBT product SIGC156T120R2C (current density 63A/ At cm2, the turn-on voltage drop is 2.5V) and the current density is greater at the same forward voltage drop. It should be stated that 'not the best design given here. It is important to note that the most likely cause of power component failure is the current concentration effect. It can be seen from the DC characteristics of FIG. 23 that for the elements of the present invention, any local cell's VAK increase or gate voltage increase can generate a larger current, but is not an unacceptable current density, and is reported in the high Electrical breakdown does not occur under the voltage. The cells described above, in addition to the cells of the strip structure, can of course have many other structures. Fig. 25(a) shows a cell in which the structure of Fig. 22 is hexagonally densely packed, where the N region 110 exposed on the surface is at the edge of the hexagonal cell, so that a large opening element can be obtained. . Figure 25(b) shows a schematic representation of the close packing of many such cells. Although the various cases mentioned above are N-type with a withstand voltage zone. However, it is obvious that they also apply to the case where the .. waste zone is p-type. At that time, the various N-type regions described in this patent should be replaced with P regions, and electrode A and electrode κ should be reversed to each other. The above examples of the invention have been described. It goes without saying that many other application examples can be made without departing from the scope of the invention by those skilled in the art. The description of the present invention has been presented for purposes of illustration and description. Many modifications and variations will be apparent to those skilled in the art. The embodiment was chosen and described in order to best explain the principles and embodiments of the invention, and, BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1(a) is a schematic view showing the principle structure of the present invention. Figure 1 (b) is a simple equivalent circuit diagram of circle 1 (a). Fig. 2(a) is a schematic view showing another principle structure of the present invention. Fig. 2(b) is a simple equivalent circuit diagram of Fig. 2(a). Fig. 3(a) is a schematic view showing still another principle structure of the present invention. Fig. 3(b) is a simple equivalent circuit diagram of Fig. 3(a). Figure 4 is a schematic illustration of several configurations of the lower portion of the pressure resistant zone. Fig. 5(a) is a schematic view showing the current source in the interior of the wafer of the present invention. Fantasy, - Figure 5 (b) is a simple equivalent circuit diagram of Figure 5 (a). Fig. 6(a) is a schematic view showing another embodiment of the present invention in which a current source is formed in a wafer. Figure 6(b) is a simple equivalent circuit diagram of Figure 6(a). 30 201236139 Figure 7 is a schematic view showing the structure of dielectric isolation based on Figure 5(a) or Figure 6(a). Figure 8 is a schematic view showing another structure in which media isolation is used in Fig. 5 (sentence or Fig. 6(a). Fig. 9 is a method of adopting S|S on the basis of Fig. 5(a) or Fig. 6(a). Figure 10 is a schematic view showing another structure of the method of using S|S on the basis of Fig. 5(a) or Fig. 6(a). Fig. 11(a) is a schematic view showing the structure of the clamped diode. Fig. 11(b) is a simple equivalent circuit diagram of Fig. 11(a) Fig. 12(8) is a schematic diagram showing the structure of a method for providing a current source of a hole flow in (8) and Fig. 2(8). Fig. 12(b) It is a simple equivalent circuit diagram of Fig. 12(a). Fig. 1 3(a) 结构 A structural diagram of increasing the opening gate to speed up the opening speed. Fig. 13(b) is a simple equivalent circuit diagram of Fig. 13(a). Fig. 14(8) Fig. 14(b) is a simple equivalent circuit diagram of Fig. 14(a). Fig. 15(a) is a type of automatic opening switch signal for quick opening. Figure 15 (b) is a simple equivalent circuit diagram of Figure 15 (a). Figure 16 (a) is a structural diagram of the addition of a clip on the basis of Figure 14 (4). - Figure 16 (b) is a simple equivalent circuit diagram of Figure 16 (a). 31 201236139 Figure 17 疋 a structure for removing the clamp diode on the basis of Figure 16 (a) is not intended to be 0 Figure 18 is based on Schematic diagram of a method for generating a low voltage circuit control signal of Fig. 21 in Document [1]. Fig. 19 is a schematic diagram of a low voltage circuit for implementing an anode short circuit. Fig. 2A is a schematic structural view of a method for manufacturing a low voltage circuit power supply. Figure 21 (a) is a schematic structural view of a method of generating a power source with a positive voltage relative to the cathode generated by the component itself. Figure 21 (b) is a schematic diagram of a control circuit. Figure 22 is Figure 14 using Figure 4 (e Fig. 23 is a diagram showing the DC characteristics obtained by using the TMA-MEDICI analogy based on the cell structure of Fig. 22. Fig. 24 is a diagram showing the switching characteristics obtained by using the tmA-MEDICI analogy based on the cell structure of Fig. 22. (a) is a schematic structural view of a cell in which hexagons are densely packed. Fig. 25(b) is a schematic view showing the result of close packing by Fig. 25(a). [Description of main components] 101 P area I 03 N area II 1 N + zone 122 P zone 080 conductor 100 lower 102 N zone 11 0 N zone 120 P zone 121 P zone 32 201236139 123 IP zone 126 N zone 130 N zone 131 N zone 132 N zone 133 P zone 140 P zone 141 P zone 142 N zone 143 P zone 144 N type zone 145 P zone 146 N Zone 161 Insulation 162 Insulation 163 Insulation 171 Insulation Slot 172 Insulation Slot 173 Insulator 200 Current Source 201 > Polar Region 202 Source Region 260 Insulation Layer 300 Current Source 301 Nom Region 302 Source Region 360 Insulation Layer 400 N Zone 600 P Zone 601 P Zone 602 P Zone 603 N + Zone 604 N + Zone 605 P + Zone 660 Insulation 661 Insulation Layer 800 Low Voltage Circuit Zone 801 P Zone 802 N Zone 803 N + Zone 810 埠 33
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110051556 | 2011-02-28 | ||
CN201110089026.4A CN102651392B (en) | 2011-02-28 | 2011-04-11 | Thyristor controlling two current carriers |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201236139A true TW201236139A (en) | 2012-09-01 |
TWI502728B TWI502728B (en) | 2015-10-01 |
Family
ID=46693353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101101918A TW201236139A (en) | 2011-02-28 | 2012-01-18 | Semiconductor device |
Country Status (6)
Country | Link |
---|---|
US (1) | US8994067B2 (en) |
EP (1) | EP2682989A4 (en) |
JP (1) | JP5792323B2 (en) |
CN (1) | CN102651392B (en) |
TW (1) | TW201236139A (en) |
WO (1) | WO2012116566A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8835975B1 (en) | 2013-05-10 | 2014-09-16 | Ixys Corporation | Ultra-fast breakover diode |
US9240444B2 (en) * | 2014-05-26 | 2016-01-19 | Nuvoton Technology Corporation | High-voltage semiconductor device with a termination structure |
DE102015102138B4 (en) * | 2015-02-13 | 2017-02-02 | Infineon Technologies Ag | Semiconductor devices and a method of forming a semiconductor device |
CN105161527B (en) * | 2015-06-26 | 2018-03-02 | 成都成电知力微电子设计有限公司 | Utilize a kind of insulated gate bipolar device of surface structure of voltage-sustaining layer |
TWI737665B (en) * | 2016-07-01 | 2021-09-01 | 日商半導體能源硏究所股份有限公司 | Semiconductor device and method for manufacturing semiconductor device |
CN114792721B (en) * | 2022-06-23 | 2022-09-27 | 南京融芯微电子有限公司 | Thyristor transient voltage suppression device with high sustain voltage and method of making the same |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1817497C3 (en) * | 1968-12-30 | 1981-06-19 | Ibm Deutschland Gmbh, 7000 Stuttgart | Method for setting the current amplification factor of one or more lateral transistor zone sequences of a vertical planar transistor or a planarthyristor with at least two emitter zones |
JPS60172818A (en) * | 1984-02-14 | 1985-09-06 | Nippon Telegr & Teleph Corp <Ntt> | Electronic switch circuit |
JP3297060B2 (en) * | 1990-09-17 | 2002-07-02 | 株式会社東芝 | Insulated gate thyristor |
JPH081953B2 (en) * | 1992-01-16 | 1996-01-10 | 財団法人半導体研究振興会 | MOS compound electrostatic induction thyristor |
JP3163820B2 (en) * | 1992-07-28 | 2001-05-08 | 富士電機株式会社 | Semiconductor device |
JPH07221281A (en) * | 1994-01-28 | 1995-08-18 | Toyota Autom Loom Works Ltd | Semiconductor device |
CN1040814C (en) | 1994-07-20 | 1998-11-18 | 电子科技大学 | A surface withstand voltage region for semiconductor devices |
JP2006332539A (en) * | 2005-05-30 | 2006-12-07 | Sanken Electric Co Ltd | Semiconductor integrated circuit device |
CN100592532C (en) * | 2007-08-28 | 2010-02-24 | 电子科技大学 | Semiconductor device with "U"-shaped drift region |
CN101494239B (en) * | 2009-02-27 | 2010-12-01 | 电子科技大学 | A high-speed IGBT |
CN101521203B (en) * | 2009-04-07 | 2010-08-04 | 电子科技大学 | A semiconductor lateral device and a high voltage device |
CN101719721B (en) * | 2010-01-04 | 2012-06-06 | 电子科技大学 | Low-voltage power supply |
-
2011
- 2011-04-11 CN CN201110089026.4A patent/CN102651392B/en not_active Expired - Fee Related
- 2011-12-08 EP EP11859732.7A patent/EP2682989A4/en not_active Withdrawn
- 2011-12-08 JP JP2013555728A patent/JP5792323B2/en not_active Expired - Fee Related
- 2011-12-08 WO PCT/CN2011/083710 patent/WO2012116566A1/en active Application Filing
-
2012
- 2012-01-18 TW TW101101918A patent/TW201236139A/en not_active IP Right Cessation
-
2013
- 2013-08-27 US US14/011,073 patent/US8994067B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US8994067B2 (en) | 2015-03-31 |
EP2682989A1 (en) | 2014-01-08 |
EP2682989A4 (en) | 2018-01-10 |
JP2014511573A (en) | 2014-05-15 |
CN102651392B (en) | 2014-11-05 |
US20140048843A1 (en) | 2014-02-20 |
CN102651392A (en) | 2012-08-29 |
JP5792323B2 (en) | 2015-10-07 |
WO2012116566A1 (en) | 2012-09-07 |
TWI502728B (en) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8248116B2 (en) | Method of driving reverse conducting semiconductor device, semiconductor device and power supply device | |
US8698229B2 (en) | Transistor with controllable compensation regions | |
TW201236139A (en) | Semiconductor device | |
US8803205B2 (en) | Transistor with controllable compensation regions | |
TWI342070B (en) | Semiconductor device supplying charging current to element to be charged | |
TW200903801A (en) | Double gate insulated gate bipolar transistor | |
US20140264577A1 (en) | Adjustable Transistor Device | |
US20160226477A1 (en) | Method of Operating a Reverse Conducting IGBT | |
CN109155334A (en) | Semiconductor device | |
CN105378931A (en) | IGBT with built-in diode | |
SE533026C2 (en) | Field effect transistor with isolated gate connected in series with a JFET | |
JPH0267766A (en) | Bipolar semiconductor switching device | |
US9431532B1 (en) | System and method for fabricating high voltage power MOSFET | |
KR20150025731A (en) | Power semiconductor device | |
CN105161527B (en) | Utilize a kind of insulated gate bipolar device of surface structure of voltage-sustaining layer | |
JP2017098385A (en) | Semiconductor device | |
US20140210037A1 (en) | Semiconductor device | |
US9400513B2 (en) | Cascode circuit | |
US20090206402A1 (en) | Lateral Trench MOSFET with Bi-Directional Voltage Blocking | |
US20150187918A1 (en) | Power semiconductor device | |
CN105140272B (en) | Include the apparatus and method of superjunction transistor | |
JP2010045218A (en) | Semiconductor device for electric power | |
GB2295051A (en) | Semiconductor device | |
JP2006526272A (en) | Power supply device having high switching speed and method for manufacturing the same | |
CN103377920A (en) | Insulated gate bipolar transistor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |