[go: up one dir, main page]

TW201234651A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
TW201234651A
TW201234651A TW100141514A TW100141514A TW201234651A TW 201234651 A TW201234651 A TW 201234651A TW 100141514 A TW100141514 A TW 100141514A TW 100141514 A TW100141514 A TW 100141514A TW 201234651 A TW201234651 A TW 201234651A
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting diode
layers
composition
Prior art date
Application number
TW100141514A
Other languages
Chinese (zh)
Inventor
Noriyuki Aihara
Noriyoshi Seo
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Publication of TW201234651A publication Critical patent/TW201234651A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting diode of the present invention is characterized in that the diode comprises a DBR reflecting layer and an emitting portion on a substrate in this order, and the emitting portion comprises: an active layer having a laminated structure of a well layer represented by the composition formula (Inx1Ga1-x1)As (0 ≤ X1 ≤ 1) and a barrier layer represented by the composition formula (Inx2Ga1-x2)y1In1-y1P (0 ≤ X2 ≤ 1, 0 < Y1 ≤ 1); a first and a second guide layers represented by the composition formula (Alx3Ga1-x3)y2In1-y2P (0 ≤ X3 ≤ 1, 0 < Y2 ≤ 1), wherein the active layer is interposed between the guide layers; and a first and a second cladding layers represented by the composition formula (Alx4Ga1-x4)yIn1-yP (0 ≤ X4 ≤ 1, 0 < Y ≤ 1), wherein the active layer is interposed between the cladding layers via each guide layer.

Description

201234651 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種具有850nm以上、尤其是9〇〇nm 以上之發光峰值波長的紅外線發光二極體。 【先前技術】 紅外線發光二極體已被廣泛利用於紅外線通訊、紅 外線遙控裝置、各種感測器用光源、夜間照明等。 關於具有前述峰值波長左右的二極體,已知有利用 液相絲晶法使含有AlGaAs活性層的化合物半導體層成 長於GaAs基板而成的發光二極體(例如專利文獻i至3)。201234651 VI. Description of the Invention: [Technical Field] The present invention relates to an infrared light-emitting diode having an emission peak wavelength of 850 nm or more, particularly 9 〇〇 nm or more. [Prior Art] Infrared light-emitting diodes have been widely used in infrared communication, infrared remote control devices, various sensor light sources, and night illumination. A light-emitting diode in which a compound semiconductor layer containing an AlGaAs active layer is grown on a GaAs substrate by a liquid crystal filament method is known (for example, Patent Documents 1 to 3).

另一方面’關於機器間之訊息收發所使用的紅外線 通訊方面,例如關於使用85〇至9〇〇nm的紅外線進行紅 外線遙控操作通方面’係使用例如受光部之靈敏度高 的波長帶之880至940nm的紅外線。作為可使用於兼具 紅外線通訊與紅外線遙控操作通訊之兩種功能的行動電 話等終端機用之紅外線通訊與紅外線遙控操作通訊兩者 的紅外線發光二極體而言,已知有使用發光峰值波長為 880至890nm且含有Ge作為有效雜質之A1GaAs活性層 的二極體(專利文獻4)。 S 另外,作為可具有900nm以上之發光峰值波長的紅 外線發光二極體,已知有使用InGaAs活性層的二極體 (專利文獻5)。 先前技術文獻 專利文獻 • 4 - s 201234651 專利文獻1曰本特開平6-2 1 507號公報 專利文獻2日本特開2001-274454號公報 專利文獻3 曰本特開平7-381 48號公報 專利文獻4 日本特開2006-190792號公報 專利文獻5日本特開2002-34401 3號公報 【發明内容】 [發明欲解決之課題] 然而,以專利文獻^3所使用之液相磊晶法使化合 物半導體層成長的方法,難以形成單色性優異的 子構造。 另外,如專利文獻4所示,關於使用含Ge作為有效 雜質的AlGaAs活性層,難以使發光峰值波長成為9〇〇nm 以上(專利文獻4之圖3)。 關於專利文獻5之可具有900nm以上之發光+值波 長且使用InGaAs活性層的紅外線發光二極體,其性能、 即能及成本面的提升不足,基於此等觀點,期望開發出 -種能進-步達成性能提升、節能及改善成本面之發光 效率高的二極體。 本發明係有鑑於上述情況而完成者,目的在於提供 了種高輸出•高效率且發射請nm以上、尤其是9〇〇⑽ 以上之發光峰值波長的紅外光之紅外線發光二極體。 [用以解決課題之手段] —本案發明人為了解決上述問題,反覆致力研究的結 :凡成-種發光二極體’其係藉由作成具備發光部、與 °又置在泫發光部和基板之間的DBR反射層之構造,而形 -5- 201234651 成南輸出•高效率且可發射850nm以上尤其是900nm以上 之發光峰值波長的紅外線發光二極體;其中發光部係具 備活性層與夾著此活性層之四元混晶的AiGalnP坡覆層 ’而該活性層具有多重量子阱構造且包含三元混晶之 InGaAs阱層及四元混晶之A1GaAs阻障層。 研究時,首先,本發明人採用包含InGa As的阱層, 俾使其具有可使用於紅外線通信等之850nm以上尤其是 900nm以上的發光峰值波長。再者,為了提高單色性及 輸出’採用具有多重量子阱構造的活性層。 又’採用一種結晶性佳之四元混晶的AiGalnP,其係 在夾著此三元混晶之阱層的阻障層、和夾著多重量子阱 構造的導引層及彼覆層中,能帶間隙大且對發光波長呈 透明’且不含容易產生缺陷之As。 再者’具有InGaAs層作為阱層之多重量子阱構造, 比起作為基板使用的GaAs,晶格常數較大而成為變形量 子阱構造。此變形量子阱構造之InGaAs的組成及厚度會 對輸出或單色性產生大幅影響。因此,InGaAs之適當的 組成、厚度及成對數的選擇是重要的。在此,本案發明 人發現藉由在阻障層的A1GaInP追加與InGaAs阱層相反 的變形以在里子畔構造整體緩和因InGaAs的成對數増 加所造成的晶格不匹配,可改善高電流區域的發光 特性。 、本發明人基於此見解而進一步研究,結果完成以下 構成所示之本發明。 U)一種發光二極體,其係在基板上依序具備DBR 反射層與發光部之發光二極體,其特徵為: 201234651 前述發光部具備: 的積層構造,該阱 &gt; 1 ),該阻障層包 〇&lt;Yl^1). 活性層’其係具有阱層和阻障層 層包含組成式(InxiGai-xi)As ( OS XI 含(Alx2Ga ι-Χ2)γιΙηι,γιΡ ( 0^X2^ 1 &gt; 述活性層且 ' °&lt;Y2^ 1 第1導引層及第2導引層,其等係夾著前 包含組成式(Alx3Gai.x3)Y2lni.Y2P ( 0$ );以及 第1彼覆層及第2披覆層’其等係分別隔著前述 導引層及第2導引層而夾著前述活性居曰—| 增且包含組成式 (Alx4Ga1-X4)YIn1.YP ( 0 $ Χ4 ^ 1、0&lt;Yg i )。 (2)如前項(1)之發光二極體,其中前述 &lt; Ι7Γ嘈的組成式 所示之XI為0SX1S0.3。 前述阱層的組成式 (3) 如前項(2)之發光二極體,其中 所示之 XI 為 0.1 S XI $ 0.3。 (4) 如前項(1)至(3)項中任一項之發异― 乂尤一極體,其中 前述DBR反射層係交互積層有1〇至5〇對拼細,玄, 巧酊年不同的兩 種層而成的層。 (5) 如前項(4)之發光二極體,其中其中俞 甲别述折射率不 同的兩種層係以下組成彼此不同之兩種層的組&amp; 包含(八1乂11〇&amp;1.乂1^3111113?(〇&lt;乂]1$1、丫1__(^ γ3~〇·5)的層; 和包含(AlxiGaudYsIn^wPi^OSXlS 1、Y3# υ · 3)的層; 兩層之Α1的組成差AX = xh-xl係大於痞堂从 4寺於〇, 5。 (6) 如前項(4)之發光二極體,其中前述拼 何射率不同的 兩種層係包含GalnP的層與包含AllnP的層之纟且人 .201234651 (7) 如前項(4)之發光二極體,其中前逑折射率不同的 兩種層係以下組成彼此不同之兩種層的組合: 包含 AlxiGai.xlAs(0.1&lt;xlSl)的層;和 包含八1?{11〇&amp;1-兀11八3(0.1;^11幺1)的層; 兩層之A 1的組成差ΔΧ=χ1ι-χ 1係大於或等於〇 5。 (8) 如前項(1)至(7)項中任一項之發光二極體,於前 述發光部的面上,在與DBR反射層相反側的面上具備電 流擴散層。 [發明的效果] 根據上述構成,可獲得以下之效果。 本發明之發光二極體係高輸出·高效率,且可發出 8 5〇11111以上、尤其是90〇11111以上之發光峰值波長的紅外光 〇 本發明之發光二極體,由於其活性層係具有包含組 成式(InxiGa^xJAsCO SX1S1)的阱層和包含組成式 (Alx2Gai.X2)Y1Ini-Y1P(0 $ X2 ^ 卜 〇&lt;γι $ 1)的阻障層之多 重牌構造的構成,所以單色性優異。 本發明之發光二極體,由於其彼覆層包含四元混晶 之組成式(AlxGai-jOYinhYPo 各 1 ' 〇&lt;γ$ 1)的構成, 所以與彼覆層包含三元混晶的紅外線發光二極體相比較 ,A1濃度較低且耐濕性提升。 本發明之發光二極體,由於其活性層具有包含組成 式(InxiGa丨.Xi)As(〇SXlg丨)的拼層和包含組成式 (AlX2Ga卜Χ2)Υ1Ιηΐ-Υ1ρ(〇$ 1、〇&lt;γι $ 〇的阻障層之積 層構造的構成’所以適於利用MOCVD法來量產。 -8 - 201234651 由於本發明之發光二極體係在發光層與基板之間具 備DBR反射膜的構成,故可避免因GaAs基板之光的吸权 而造成發光輸出降低的情形。 【實施方式】 [用以實施發明之形態] 以下’參照圖面,針對適用本發明之一實施形態的 發光二極體作詳細說明。又’以下的說明中所使用的圖 面’為使特徵容易被了解’會有權宜地將成為特徵的部 分加以放大顯示的情況,各構成要素的尺寸比例等未必 與實際的相同^ &lt;發光二極體&gt; 圖1為適用本發明之一實施形態之發光二極體的剖 面示意圖。又,圖2係適用本發明之一實施形態之解層與 阻障層的積層構造之剖面示意圖。 如圖1所示,本實施形態的發光二極體1 〇〇係在基板1 上依序具備DBR反射層3、發光部20之發光二極體30。其 特徵為發光部20具備:活性層7,其係具有包含組成式 (Inx丨Gai-X丨)As(0S XI S 1)的阱層15和包含組成式 (Α1χ2〇3ι·χ2)γιΙηι-γιΡ(0$Χ2$1、0&lt;Υ1$1)的阻障層 16 之積層構造;第1導引層及第2導引層,其等係從兩側夾 者活性層7且包含組成式(Alx3Gai-x3)Y2lni-Y2P(0S X3S 1 、〇&lt;Υ2$ 1);第1彼覆層5及第2彼覆層9,其等係分別隔 著前述第1導引層6及第2導引層8而夾著前述活性層7且 包含組成式(Α1χ4〇&amp;ι·χ4)γϊηι-γΡ(〇$Χ4$ 1、〇&lt;Υ$ 1)。 -9 - 201234651 化口物半v組層(亦稱為磊晶成長層係如圖丨所 不具有依序積層有pn接合型的發光部2Q與電流擴散 層10的構造。此化合物半導體層30之構造中,可適時 加入周知的功能層。例如可設置如下之周知的層構造: 用以降低&amp;姆(Ohmic)電;^之接冑冑阻的接觸|、用以使 元件驅動電流平面地擴散至整個發光部之電流擴散層、 相反地用以限制元件驅動電流所流通的區域之電流阻止 層或電抓狹乍層冑。另夕卜,圖(中,雖顯示以發光部2〇 和電流擴散層10作為化合物半導體層3〇,但化合物半 導體層30亦可依需要而含有反射層或緩衝層。 另外,化合物半導體層30係以磊晶成長於GaAs基板 上而形成的層較佳。 如圖1所示’設置於n型基板上的發光部2〇係在例如 DBR反射層3上依序積層η型下部彼覆層(第丨披覆層)5、下 P導引層6 ’舌性層7、上部導引層8、p型上部披覆層( 第2彼覆層)9而構成。亦即,發光部2〇係為了將促使放射 再結合的載子(載體:carrier)及發光「封入」活性層7中 ,而作成所謂的雙異質(英語簡稱為:DH)構造對於獲得 高強度的發光方面是較佳的’其中該雙異質構造係包含 對崎於活f生層7之下側及上側而配置的下部披覆層5 '下 部導引層6及上部導引層8、上部彼覆層9之構造 如圖2所示,活性層7為了控制發光二極體(LED)的發 光波長,而構成量子阱構造。亦即,活性層7係在兩端具 有阻障層(亦稱為障壁層)16之阱層15與阻障層16的多層 構造(積層構造)。 201234651 活性層7的層厚較佳為在0.02〜2μηι的範圍。又,活性 層7的傳導型並未特別限定,亦可選擇未摻雜、ρ型及〇 型的任一者。為了提高發光效率,期望採用結晶性良好 的未摻雜或未滿3xl〇!7cm·3的載子濃度。 DBR(Distributed Bragg Reflector)反射層 3係包含多 層膜,該多層膜係以λ/(4η)的膜厚:應反射之光在真空 中的波長,η:層材料的折射率)交互積層有折射率不同的 兩種層而成。當反射率為2種折射率的差大時,可以較少 的層數的多層膜來獲得高反射率。此種層的特徵在於: 沒有像一般的反射膜那樣在特定面反射,而是在多層犋 的整體基於光的干涉現象而產生反射。 DBR(Distributed Bragg Reflector :分佈布拉格反射 器)反射層3較佳為交互積層有〜5〇對折射率不同的兩 種層而構成。此乃因積層1 〇對以下時,反射率過低,對 輸出的增大沒有幫助,而即便設成50對以上,反射率進 一步的增大的情況也會變小之故。 構成 DBR(Distributed Bragg Reflector :分佈布拉格 反射益)反射層3之折射率不同的兩種層,為了可效率佳 地獲得高反射率,宜選擇自以下三個組合。也就是說, 在可效率佳地獲得高反射率方面’前述兩種層較佳為組 成不同的兩種層,即選擇自以下三種組合中的任一者: 包含組成式(AlxhGai_xh)Y3lni_Y3P(〇&lt;XhS 1,Y3 = 0.5)的層 和包含組成式(Alx丨Ga〗.x丨)υ3Ιγμ-υ3Ρ(〇 S X1&lt;1,Y3 = 〇.5)的 層之對且兩者的Α1的組成差ΔΧ = χΙι-χ1為大於或等於0.5 的組合;或者GalnP與AllnP的組合;或者包含組成式 -11- 201234651On the other hand, regarding the infrared communication used for the transmission and reception of information between devices, for example, the infrared remote control operation using infrared rays of 85 〇 to 9 〇〇 nm is performed using, for example, a wavelength band 880 having a high sensitivity of the light receiving portion. Infrared at 940 nm. As an infrared light-emitting diode that can be used for both infrared communication and infrared remote control operation communication for a terminal such as a mobile phone having both infrared communication and infrared remote control operation communication, it is known to use an emission peak wavelength. A diode of an A1GaAs active layer of 880 to 890 nm and containing Ge as an effective impurity (Patent Document 4). In addition, as the infrared light-emitting diode which can have an emission peak wavelength of 900 nm or more, a diode using an InGaAs active layer is known (Patent Document 5). CITATION LIST Patent Literature PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT LITERATURE [Patent Document 5] Japanese Patent Laid-Open Publication No. JP-A-2002-34401 No. JP-A-2002-34401 No. In the method of layer growth, it is difficult to form a substructure having excellent monochromaticity. In addition, as shown in the patent document 4, it is difficult to make the emission peak wavelength of 9 Å or more in the AlGaAs active layer containing Ge as an effective impurity (Fig. 3 of Patent Document 4). With regard to the infrared light-emitting diode of Patent Document 5 which has an emission + value wavelength of 900 nm or more and an InGaAs active layer, the performance, that is, the improvement of the cost and the cost side are insufficient, and based on these viewpoints, it is desired to develop a kind of energy. - Step to achieve performance improvement, energy saving and cost-effective LEDs with high luminous efficiency. The present invention has been made in view of the above circumstances, and an object thereof is to provide an infrared light-emitting diode of infrared light having a high output and high efficiency and emitting an emission peak wavelength of nm or more, particularly 9 〇〇 (10) or more. [Means for Solving the Problem] - In order to solve the above problems, the inventors of the present invention have repeatedly made efforts to study the knot: the genus-type luminescent diodes are formed by having a luminescent portion and a luminescent portion. The structure of the DBR reflective layer between the substrates, and the shape of the -5-201234651 south output; high efficiency and can emit infrared light-emitting diodes having an emission peak wavelength of 850 nm or more, especially 900 nm or more; wherein the light-emitting portion has an active layer and The AiGalnP slope coating layer of the quaternary mixed crystal of the active layer is present, and the active layer has a multiple quantum well structure and comprises a ternary mixed crystal InGaAs well layer and a quaternary mixed crystal A1 GaAs barrier layer. At the time of the research, the inventors of the present invention used a well layer containing InGa As to have an emission peak wavelength of 850 nm or more, particularly 900 nm or more which can be used for infrared communication or the like. Further, in order to improve monochromaticity and output, an active layer having a multiple quantum well structure is employed. 'AiGalnP is a kind of quaternary mixed crystal with good crystallinity, which is in the barrier layer sandwiching the well layer of the ternary mixed crystal, and the guiding layer and the cladding layer sandwiching the multiple quantum well structure. The band gap is large and transparent to the wavelength of light emission, and does not contain As which is prone to defects. Further, the multiple quantum well structure having the InGaAs layer as the well layer has a larger lattice constant than the GaAs used as the substrate, and becomes a deformed quantum well structure. The composition and thickness of the InGaAs of this deformed quantum well structure can have a large effect on the output or monochromaticity. Therefore, the choice of the appropriate composition, thickness and number of pairs of InGaAs is important. Here, the inventors of the present invention have found that by adding a deformation opposite to the InGaAs well layer in the barrier layer A1GaInP to improve the lattice mismatch caused by the pairwise addition of InGaAs in the lining structure, the high current region can be improved. Luminous properties. The present inventors further studied based on this finding, and as a result, completed the present invention shown in the following constitution. U) A light-emitting diode comprising a DBR reflective layer and a light-emitting diode in a light-emitting portion on a substrate, wherein: the light-emitting portion has a laminated structure: the well > 1) The barrier layer is coated with &lt;Yl^1). The active layer' has a well layer and a barrier layer containing a composition formula (InxiGai-xi) As (OS XI contains (Alx2Ga ι-Χ2) γιΙηι, γιΡ ( 0^ X2^ 1 &gt; describes the active layer and '°&lt;Y2^ 1 first guiding layer and second guiding layer, which are composed of a composition formula (Alx3Gai.x3) Y2lni.Y2P (0$); And the first and second coating layers are formed by sandwiching the active layer and the second guiding layer, respectively, and comprising a composition formula (Alx4Ga1-X4)YIn1. (2) The light-emitting diode according to the above item (1), wherein the XI of the composition formula of the above &lt; Ι7Γ嘈 is 0SX1S0.3. Composition (3) The light-emitting diode of the above item (2), wherein the XI shown is 0.1 S XI $ 0.3. (4) The difference of any one of the items (1) to (3) above - 乂Especially a polar body in which the aforementioned DBR reflective layer interacts The layer has a layer of 1 to 5 〇 for the two layers of the thin, sinuous, and sinuous years. (5) The illuminating diode of the above item (4), in which the yoke is different in refractive index. The two layers are grouped below and composed of two layers different from each other (8 1乂11〇&amp;1.乂1^3111113?(〇&lt;乂]1$1,丫1__(^ γ3~〇·5 The layer of ; and the layer containing (AlxiGaudYsIn^wPi^OSXlS 1, Y3# υ · 3); the difference of the composition of the two layers of AX = xh-xl is greater than that of the temple from 4 Temple Yu, 5. (6) The light-emitting diode according to the above item (4), wherein the two layers having different spelling ratios include a layer of GalnP and a layer containing AllnP and a person. 201234651 (7) The light-emitting diode of the foregoing item (4) a body in which two layers having different refractive indices of the front enthalpy are composed of a combination of two layers different from each other: a layer containing AlxiGai.xlAs (0.1 &lt;xlSl); and a octet comprising 8 1?{11〇&amp;1-兀11 8 3 (0.1; ^11幺1) layer; composition difference ΔΧ=χ1ι-χ 1 of the two layers is greater than or equal to 〇5. (8) As in the above items (1) to (7) a light-emitting diode on the surface of the aforementioned light-emitting portion, reflected with DBR A current diffusion layer is provided on the surface on the opposite side of the layer. [Effects of the Invention] According to the above configuration, the following effects can be obtained. The light-emitting diode of the present invention has high output and high efficiency, and can emit infrared light having an emission peak wavelength of 85 〇 11111 or more, especially 90 〇 11111 or more. The light-emitting diode of the present invention has an active layer A well layer including a composition formula (InxiGa^xJAsCO SX1S1) and a multi-card structure including a barrier layer of a composition formula (Alx2Gai.X2) Y1Ini-Y1P (0 $ X2 ^ 〇 〇 &lt; γι $ 1), so Excellent color. In the light-emitting diode of the present invention, since the coating layer includes a composition formula of a quaternary mixed crystal (AlxGai-jOYinhYPo each 1 ' 〇 &lt; γ$ 1), the infrared ray containing the ternary mixed crystal is included in the coating layer. Compared with the light-emitting diode, the A1 concentration is low and the moisture resistance is improved. The light-emitting diode of the present invention has a layer containing a composition formula (InxiGa丨.Xi)As (〇SXlg丨) and a composition formula containing the composition formula (AlX2GabΧ2)Υ1Ιηΐ-Υ1ρ(〇$1, 〇&lt; Γι $ 构成 构成 构成 ' ' ' ' ' ' ' ' ' ' ' 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于Therefore, it is possible to avoid a decrease in the light-emitting output due to the absorbing of the light of the GaAs substrate. [Embodiment] [Embodiment for Carrying Out the Invention] Hereinafter, a light-emitting diode to which an embodiment of the present invention is applied will be described with reference to the drawings. In the following description, the drawing used in the following description is a case where the feature is easily understood, and the portion to be characterized is appropriately enlarged, and the dimensional ratio of each component is not necessarily the same as the actual one. &lt;Light Emitting Diode&gt; Fig. 1 is a schematic cross-sectional view showing a light-emitting diode according to an embodiment of the present invention. Fig. 2 is a laminated structure of a solution layer and a barrier layer to which an embodiment of the present invention is applied. It As shown in Fig. 1, the light-emitting diode 1 of the present embodiment is provided with a DBR reflective layer 3 and a light-emitting diode 30 of the light-emitting portion 20 in the substrate 1. The light-emitting portion 20 is provided. An active layer 7, which has a well layer 15 containing a composition formula (Inx丨Gai-X丨) As (0S XI S 1) and a composition formula (Α1χ2〇3ι·χ2) γιΙηι-γιΡ (0$Χ2$1, a multilayer structure of the barrier layer 16 of 0 &lt; Υ 1$1); a first guiding layer and a second guiding layer, which are sandwiched from the active layer 7 on both sides and comprising a composition formula (Alx3Gai-x3) Y2lni-Y2P ( 0S X3S 1 , 〇 &lt; Υ 2$ 1); the first sub-layer 5 and the second sub-layer 9 are sandwiched between the first guiding layer 6 and the second guiding layer 8 respectively The active layer 7 also contains a composition formula (Α1χ4〇&amp;ι·χ4)γϊηι-γΡ(〇$Χ4$1,〇&lt;Υ$1). -9 - 201234651 Aperture half-v layer (also known as Lei The crystal growth layer has a structure in which a pn junction type light-emitting portion 2Q and a current diffusion layer 10 are sequentially laminated as shown in Fig. 3. In the structure of the compound semiconductor layer 30, a well-known functional layer can be added as appropriate. Well-known layer structure Manufactured: a contact for reducing the Ohm resistance; a contact for diffusing the element drive current to the entire light-emitting portion, and conversely for limiting the component drive current The current blocking layer or the electric current narrowing layer is in the flow-through region. In addition, although the light-emitting portion 2A and the current diffusion layer 10 are shown as the compound semiconductor layer 3, the compound semiconductor layer 30 can also be used. A reflective layer or a buffer layer is required as needed. Further, the compound semiconductor layer 30 is preferably a layer formed by epitaxial growth on a GaAs substrate. As shown in FIG. 1 , the light-emitting portion 2 disposed on the n-type substrate is sequentially laminated on the DBR reflective layer 3, and the n-type lower cladding layer (the second cladding layer) 5 and the lower P guiding layer 6 ' are sequentially laminated. The lingual layer 7, the upper guiding layer 8, and the p-type upper cladding layer (second covering layer) 9 are formed. In other words, the light-emitting unit 2 is configured to form a so-called double heterogeneous (English abbreviated as: DH) structure in order to obtain a high intensity in order to "enclose" the carrier (carrier) and the light-emitting "recombinant" of the radiation. The light-emitting aspect is preferable, wherein the double heterostructure includes a lower cladding layer 5' and a lower guiding layer 8 and an upper guiding layer 8 disposed on the lower side and the upper side of the living layer 7 The structure of the cladding layer 9 is as shown in FIG. 2. The active layer 7 constitutes a quantum well structure in order to control the emission wavelength of the light-emitting diode (LED). That is, the active layer 7 is a multilayer structure (laminate structure) having the well layer 15 and the barrier layer 16 of the barrier layer (also referred to as a barrier layer) 16 at both ends. 201234651 The layer thickness of the active layer 7 is preferably in the range of 0.02 to 2 μm. Further, the conductivity type of the active layer 7 is not particularly limited, and any of undoped, p-type and 〇-type may be selected. In order to improve the luminous efficiency, it is desirable to use a carrier concentration of undoped or less than 3xl 〇7 cm·3 which is excellent in crystallinity. The DBR (Distributed Bragg Reflector) reflective layer 3 comprises a multilayer film having a film thickness of λ/(4η): a wavelength of light to be reflected in a vacuum, η: a refractive index of a layer material, and an alternating layer of refraction. The two layers are different in rate. When the reflectance is large as the difference between the two refractive indexes, a multilayer film of a small number of layers can be obtained to obtain high reflectance. Such a layer is characterized in that it is not reflected on a specific surface like a general reflection film, but is reflected by the interference phenomenon of light in the entire multilayer 犋. The DBR (Distributed Bragg Reflector) reflective layer 3 is preferably formed by alternately laminating two layers having different refractive indices of ~5 Å. This is because the reflectance is too low for the stacking of 1 〇 or less, which does not contribute to the increase of the output, and even if it is 50 pairs or more, the increase of the reflectance is further reduced. The two layers constituting the DBR (Distributed Bragg Reflector) reflective layer 3 having different refractive indices are preferably selected from the following three combinations in order to obtain high reflectance with high efficiency. That is to say, in terms of efficiently obtaining high reflectance, the above two layers are preferably two layers having different compositions, that is, selected from any of the following three combinations: Containing the composition formula (AlxhGai_xh) Y3lni_Y3P (〇 a layer of &lt;XhS 1, Y3 = 0.5) and a layer comprising a composition formula (Alx丨Ga.x丨)υ3Ιγμ-υ3Ρ(〇S X1&lt;1, Y3 = 〇.5) and both of Composition difference ΔΧ = χΙι-χ1 is a combination of greater than or equal to 0.5; or a combination of GalnP and AllnP; or contains compositional -11- 201234651

AlxiGai .X] As(0.1 ^ xl ^ i)的層與包含組成气 AlxhGai—xhAS(0.1S xhg 1)的層之對且兩者的組成^ △ X = xh-xl為大於或等於〇·5的組合。 組成彼此不同之包含AlGalnP的兩個層的組合,由於 不含容易產生結晶缺陷的As,所以是較佳的。以GaW 與AUnP的組合是其中可取得最大的折射率差,故可減少 反射層的數量,組成的替換亦單純,所以是較佳的。又 ,AlGaAs具有容易取得大折射率差的優點。 其次’針對阱層1 5及阻障層1 6作說明。 _圖3中,將阱層15的In組成(XI)、即阱層的組成式所 示的XI固定在0.1,以顯示阱層的層厚與發光峰值波長的 相關性。表1中顯示圖3所示之點的值。當阱層變厚成3nm 、5nm、711111時,波長單調地變長為 82〇nm、87〇nm、The layer of AlxiGai .X] As (0.1 ^ xl ^ i) and the layer containing the constituent gas AlxhGai-xhAS (0.1S xhg 1) and the composition of both ^ △ X = xh-xl is greater than or equal to 〇·5 The combination. It is preferable to form a combination of two layers containing AlGalnP different from each other because it does not contain As which is liable to cause crystal defects. The combination of GaW and AUnP is one in which the largest refractive index difference can be obtained, so that the number of reflective layers can be reduced, and the composition is replaced simply, so that it is preferable. Further, AlGaAs has an advantage that a large refractive index difference can be easily obtained. Next, the well layer 15 and the barrier layer 16 will be described. In Fig. 3, the In composition (XI) of the well layer 15, i.e., the XI represented by the composition formula of the well layer, is fixed at 0.1 to show the correlation between the layer thickness of the well layer and the emission peak wavelength. The values of the points shown in Fig. 3 are shown in Table 1. When the well layer is thickened to 3 nm, 5 nm, and 711111, the wavelength monotonically becomes 82 〇 nm and 87 〇 nm.

圖4係顯示阱層15的發光峰值波長 '與其In組成(χι) 及啡層1 5的層厚的相關性。圖4係顯示陕層1 $的發光峰值 波長為既定波長時之阱層15的Ιη組成(χι)與層厚的組合 具體而s ,以點和點的連線,表示發光峰值波長分別 成為920nm、960nm之構成之牌層15的In組成(χι)與層厚 的組合。圖4中進一步以其他的發光峰值波長為82〇nm、 87〇nm、985nm及9 95nm時之In組成(XI)與層厚的組合的 顯示。表2顯示圖4所示之點的値。 201234651 表2 820nm 870nm 920nm 960nm In組成 層厚(nm) 層厚(nm) .層厚(run) 層厚(nm) 層厚(nm) 層厚(nm) 0.05 8 0.10 3 5 7 8 ---- 0.20 5 6 0.25 4 5 0.30 λ ΐς 3 5 — ------ 5 上述圖與表亦可明瞭,在發光峰值波長為92〇11111的 情況下’當In組成(X1)從〇 3降至〇. 〇 5時,相對應的層厚 單調地從3nm變厚成8nm。由此得知,只要是同行者,便 可容易發現成為發光峰值波長92〇nmiIn組成與阱層的 層厚之組合。 又,當In組成(XI)為〇1時,層厚變厚為3nm、5nm、 7nm、8nm,對應於此,發光峰值波長變長為82〇nm、87〇nm 、920nm、9 60nm。再者,當In組成(χι)為〇 2時層厚變 厚成5nm、6nm,對應於此,發光峰值波長變長成92〇nm ' 96〇nm。tIn組成(X1)為〇乃時,層厚變厚成4nm、5nm ,對應於此,發光峰值波長變長為92〇nm、96〇nm。再者 ’當In組成(XI)為0.3時’層厚變厚為3nm、5nm,對應於 此,發光峰值波長變長為92〇nm、985ηπ^ 更且,當層厚為511111時,若Ιη組成(χι)增加為〇」、 0.2、0.25、0.3 ’則發光峰值波長變長為87〇nm、92〇nm 、96〇nm、985nm。若1n組成(XI)成為0.35,則發光峰值 波長成為995nm。 於圖4中,顯不連結發光峰值波長分別為92Onm及 96〇nmiIn組成(X1)與層厚之組合時,形成彼此大約平行 的大致直線另外,由圖4的結果可推測,在設85〇nm以 -13- 201234651 上至lOOOnm左右之波長帶為既定發光峰值波長之In組成 (XI)與層厚的組合中,連結In組成(χι)與層厚之組合的 線也成為大致直線狀。還有’推測連結前述組合之線, 其發光峰值波長愈短則位於愈下側,愈長則位於愈上側 〇 依據以上之規則性’能夠容易地發現具有85〇nm以 上lOOOnm以下之所欲發光峰值波長的in組成(χι)與層 厚。 圖5中,顯示將阱層15之層厚固定於5nm時之In組成 (X 1)與發光峰值波長及其發光輸出之相關性。表3係顯示 圖5所示之點的值。 若 In 組成(XI)增加為 〇.12、〇.2、〇.25、0.3、0.35 時’則發光峰值波長(發光波長)變長為87〇nm、920nm、 960nm、985nm、995nm。更詳言之’隨著 In 組成(χι) 從0.12增加至0.3,發光峰值波長大致單調地從87〇nm 增長至985nm。但是’即使將ιη組成(χι)從〇 3增加至 0.35 ’雖然發光峰值波長從985nm變長為995nm,但長 波長的變化率變小。 另外,發光峰值波長為870nm(Xl=0.12)、 920nm(Xl=0.2)、960nm(Xl=0.25)時,發光輸出為較高之 6.0mW值,即使為985nm(Xl=0.3)時,也具有實用上充分 之較高的4.5mW值。然而,當發光峰值波長為 995nm(Xl=0.35)時’發光輸出為較低的UmW值。 201234651 表3 所·層厚度5nm In組成 波長(nm) 輸出imW) 0.12 870 6 〇 0.20 920 6.2 0.25 960 6 0 0.30 985 4 5 _- 0.35 995 1.8 __- 根據圖3至圖5得知,在包含inGaAs的拼層中,啡層 15宜具有(Inx^anOAsCOSXlSOJ)的組成較佳。上述XI 可在此範圍中被調整成所欲之發光波長。 發光峰值波長設為 900nm 以上時,較佳為 0-12X1幺0.3,设為未滿900nm時,較佳為〇€χι&lt;〇·ι。 味層1 5之層厚以3至2〇nm之範圍為合適。更佳為 3至l〇nm之範圍。 阻障層 18係具有(AlX2Gai_X2)Y1In 丨.γ丨1、 〇&lt;Yl S 1)之組成。上述X2較佳為設成能帶間隙較阱層17 大的組成’更佳為0〜0.2之範圍。又,為了緩和因阱層17 的晶格不匹配所產生的變形,γι較佳設成〇 5〜〇 7,更佳 為在〇·52〜0.60的範圍。 阻障層18的層厚以在3〜2〇nm的範圍為合適,以與阱 層17的層厚相等或更厚為較佳。藉此,可提高阱層π的 發光效率。 圖6係顯不阱層15的層厚為511爪、111組成(乂1) = 〇.2(即 (LzGao.dAs)、且阻障層的組成χ2 = 〇 ^、γ卜〇 η時(即 時,阱層及阻障層的成對數座發光 輸出:相關性。阻障層的層厚為1〇_。表4係顯示圖崎 不之資料的値。此等值係使用基板時的値。 201234651 此外,為了顯示阻障層的效果,也同時顯示除了阻 P早層使用Al0.3Ga0_7As之外,其他條件皆相同的例子來作 為比較例。 關於阻I1爭層使用A1Q.3 G a 〇.7 A s的比較例,成對數迄至 1〜5對,發光輸出具有較高之6.0mW以上之値,成對數為 1 〇對時則發光輸出降低至5 · 7m W,成對數為為2〇對時發 光輸出更低。相對於此,本發明中,成對數迄至丨〇對, 維持大致6.0mW以上的高値。如此般,即便增加成對數 亦可維持高發光輸出’是因為(AlX2Gai_X2)YlIni_YlP(組成 乂2-0.1、丫1=〇.55’亦即(入1。.1〇3〇9)〇‘55111。45?)的阻障層 緩和包含組成式(InxlGai_xi)As(〇S Χ1$ 1)的拼層相對於 Ga As基板的變形(即阻障層被賦予了與阱層相反方向的 晶格變形)’而抑制了結晶性的降低之故。進一步參照圖 8,說明變形緩和的效果》 表4 阱層厚度5nm In組成0,2 成對數 輸出(mW) (Al〇.iGa〇.9)〇.55ln〇.45P 阻障層 輸出(mW) -比較例(Al〇.3Ga〇.7As阻障層) 1 6.20 6.10 3 6,20 6.20 5 6.15 6.20 10 6.00 5.70 20 5.50 4.80 — 圖7A係顯示陕層17的層厚為5nm及In組成(Xl) = 0.2( 發光波長920nm)、且阻障層的A1組成(X2) = 0.1、成對數 為5對時,阻障層的Y1 (亦即(AluGaodyli^-yP)與發光輸 出的相關性。阻障層的層厚為l〇nm。表5係顯示圖7所示 之資料的値。此等值係使用GaAs基板時的値。 -16- .201234651 為了 _示阻障;&amp; &lt; a的政果,在圖7 Β中顯示阻障層與上 述本發明相同但啡爲v± 一 &amp;使用與基板相同材料的GaAs層(即 使用不會對基板變形 的味眉》的情況)的例子。 圖A所不之本發明的冑況係顯示發光輸出最大為 6.2mW’而當轉層的γι^·5〜㈣的範圍時發光輸出 為大致6mW。相斜於此 、匕’得知在使用GaAs層作為阱層的 比較例中,發光輸出昜+ * J 35破大為5.9mW,顯示高輸出的範圍 也比本發明的情況還窄。 依據此專結果’本路a 發明中,由於能以阻障層的逆向 變形缓和阱層的變形來抝知从a ^ Λ ρ制結晶性降低,故可理解發光 輸出較高且可顯示高輪出。你β 之阻障層的組成範圍亦廣。相 對於此結果’比較例中,山 ' 由於成為沒有變形的阱層與呈 有變形的阻障層之組合,&amp; …、 所以可理解結果為結晶性降 且發光輸出特性降低。 _ 表5 _丨m成二4 is a graph showing the correlation between the peak wavelength of the luminescence of the well layer 15 and the layer thickness of the In composition (χι) and the morph layer 15. 4 is a combination of the Ιη composition (χι) and the layer thickness of the well layer 15 when the illuminating peak wavelength of the sag layer 1 is a predetermined wavelength, and s, which is a line connecting the point and the point, indicating that the illuminating peak wavelengths are respectively 920 nm. The composition of the In composition (χι) of the card layer 15 composed of 960 nm and the layer thickness. Further, in Fig. 4, the display of the combination of In composition (XI) and layer thickness at other emission peak wavelengths of 82 Å, 87 Å, 985 nm and 999 nm is shown. Table 2 shows the enthalpy of the point shown in Fig. 4. 201234651 Table 2 820nm 870nm 920nm 960nm In composition layer thickness (nm) layer thickness (nm) layer thickness (nm) layer thickness (nm) layer thickness (nm) 0.05 8 0.10 3 5 7 8 --- - 0.20 5 6 0.25 4 5 0.30 λ ΐς 3 5 — ------ 5 The above graph and table can also be understood, when the illuminating peak wavelength is 92〇11111, 'When the In composition (X1) falls from 〇3 To 〇5, the corresponding layer thickness monotonically becomes thicker from 3 nm to 8 nm. From this, it is found that a combination of the composition of the emission peak wavelength of 92〇nmiIn and the layer thickness of the well layer can be easily found as long as it is a counterpart. Further, when the In composition (XI) is 〇1, the layer thickness is increased to 3 nm, 5 nm, 7 nm, and 8 nm, and accordingly, the emission peak wavelength becomes 82 〇 nm, 87 〇 nm, 920 nm, and 960 nm. Further, when the In composition (χι) is 〇 2, the layer thickness is increased to 5 nm and 6 nm, and correspondingly, the luminescence peak wavelength is lengthened to 92 〇 nm '96 〇 nm. When the tIn composition (X1) is ruthenium, the layer thickness is increased to 4 nm and 5 nm, and correspondingly, the luminescence peak wavelength becomes 92 〇 nm and 96 〇 nm. Further, 'when the composition of In (XI) is 0.3, the thickness of the layer is increased to 3 nm and 5 nm. Accordingly, the wavelength of the emission peak is longer than 92 〇 nm and 985 η π ^, and when the layer thickness is 511 111, When the composition (χι) is increased to 〇", 0.2, 0.25, and 0.3', the luminescence peak wavelength becomes 87 〇 nm, 92 〇 nm, 96 〇 nm, and 985 nm. When the 1n composition (XI) is 0.35, the emission peak wavelength is 995 nm. In Fig. 4, when the combination of the peak wavelengths of the illumination and the combination of the composition of the 96 〇nmiIn (X1) and the layer thickness are respectively formed, the substantially straight lines which are approximately parallel to each other are formed, and the result of Fig. 4 is presumed to be 85 〇. In the combination of the In composition (XI) and the layer thickness in which the nm band is from -13 to 201234651 up to about 100 nm, and the combination of the In composition (χι) and the layer thickness is also substantially linear. There is also a line which is presumed to be connected to the above combination, and the shorter the luminescence peak wavelength is, the lower the side, and the longer the ylide is located on the upper side. According to the above regularity, it can be easily found to have a desired luminescence of 85 〇 nm or more and 100 Å or less. The in composition (χι) of the peak wavelength and the layer thickness. Fig. 5 shows the correlation between the In composition (X 1) when the layer thickness of the well layer 15 is fixed at 5 nm and the emission peak wavelength and its light-emitting output. Table 3 shows the values of the points shown in Fig. 5. When the In composition (XI) is increased to 〇.12, 〇.2, 〇.25, 0.3, 0.35', the luminescence peak wavelength (emission wavelength) becomes 87 〇 nm, 920 nm, 960 nm, 985 nm, and 995 nm. More specifically, as the In composition (χι) increases from 0.12 to 0.3, the luminescence peak wavelength increases approximately monotonically from 87 〇 nm to 985 nm. However, even if the ηη composition (χι) is increased from 〇 3 to 0.35 ′, although the luminescence peak wavelength is changed from 985 nm to 995 nm, the rate of change of the long wavelength becomes small. Further, when the luminescence peak wavelength is 870 nm (Xl = 0.12), 920 nm (Xl = 0.2), and 960 nm (Xl = 0.25), the luminescence output is a high 6.0 mW value, and even when it is 985 nm (Xl = 0.3), Practically high and high 4.5mW value. However, when the illuminating peak wavelength is 995 nm (Xl = 0.35), the illuminating output is a lower UmW value. 201234651 Table 3 Layer thickness 5nm In composition wavelength (nm) Output imW) 0.12 870 6 〇0.20 920 6.2 0.25 960 6 0 0.30 985 4 5 _- 0.35 995 1.8 __- According to Figure 3 to Figure 5, included In the inGaAs layer, the composition of the layer 15 preferably has (Inx^anOAsCOSXlSOJ). The above XI can be adjusted to the desired wavelength of light in this range. When the emission peak wavelength is 900 nm or more, it is preferably 0-12X1 幺 0.3, and when it is less than 900 nm, it is preferably 〇 χ &&lt; 〇·ι. The layer thickness of the taste layer 15 is suitably in the range of 3 to 2 〇 nm. More preferably, it is in the range of 3 to 10 nm. The barrier layer 18 has a composition of (AlX2Gai_X2) Y1In 丨.γ丨1, 〇&lt;Yl S 1). The above X2 is preferably set to have a band gap larger than that of the well layer 17 and more preferably in the range of 0 to 0.2. Further, in order to alleviate the deformation caused by the lattice mismatch of the well layer 17, γι is preferably set to 〇 5 to 〇 7, more preferably in the range of 〇·52 to 0.60. The layer thickness of the barrier layer 18 is suitably in the range of 3 to 2 Å, and is preferably equal to or thicker than the layer thickness of the well layer 17. Thereby, the luminous efficiency of the well layer π can be improved. Fig. 6 shows that the layer thickness of the well layer 15 is 511 claws, 111 composition (乂1) = 〇.2 (i.e., (LzGao.dAs), and the composition of the barrier layer χ2 = 〇^, γ 〇 〇 η ( Immediately, the paired wells of the well layer and the barrier layer have a light-emitting output: correlation. The layer thickness of the barrier layer is 1 〇 _. Table 4 shows the 资料 of the data of the map. This value is used when the substrate is used. 201234651 In addition, in order to show the effect of the barrier layer, an example in which all the conditions are the same except for the early layer of the resist P, Al0.3Ga0_7As is used as a comparative example. About the resist I1 layer, use A1Q.3 G a 〇 In the comparison example of .7 A s, the number of pairs is up to 1~5 pairs, and the luminous output has a higher than 6.0mW. When the pair is 1 〇, the luminous output is reduced to 5 · 7m W, and the logarithm is In contrast, in the present invention, the number of pairs is up to 丨〇, and the enthalpy of approximately 6.0 mW or more is maintained. Thus, even if the number of pairs is increased, the high luminescence output can be maintained 'because ( AlX2Gai_X2)YlIni_YlP (composition 乂2-0.1, 丫1=〇.55', that is, (into 1.1〇3〇9)〇'55111.45?) barrier layer And the deformation of the layer containing the composition formula (InxlGai_xi) As (〇S Χ1$ 1) with respect to the Ga As substrate (that is, the barrier layer is imparted with lattice distortion in the opposite direction to the well layer) and the crystallinity is suppressed. Further, referring to Fig. 8, the effect of the relaxation relaxation is explained. Table 4 The thickness of the well layer is 5 nm. In composition 0, 2 The logarithmic output (mW) (Al〇.iGa〇.9) 〇.55ln〇.45P barrier layer Output (mW) - Comparative Example (Al〇.3Ga〇.7As barrier layer) 1 6.20 6.10 3 6,20 6.20 5 6.15 6.20 10 6.00 5.70 20 5.50 4.80 — Figure 7A shows that the layer thickness of the layer 17 is 5 nm and In composition (Xl) = 0.2 (emission wavelength 920 nm), and the barrier composition A1 composition (X2) = 0.1, the pair of pairs is 5 pairs, the barrier layer Y1 (ie (AluGaodyli^-yP) and the light output Correlation: The layer thickness of the barrier layer is l 〇 nm. Table 5 shows the 値 of the data shown in Figure 7. This value is the 値 when using a GaAs substrate. -16- .201234651 &amp;&lt; a political effect, in Figure 7 显示 shows that the barrier layer is the same as the above-described invention, but the morphine is v±-&amp; uses the same material as the substrate GaAs layer (ie, the use does not change the substrate An example of the case of the shape of the taste eyebrows is shown in Fig. A. The case of the present invention shows that the light-emitting output is at most 6.2 mW' and the light-emitting output is approximately 6 mW when the range of γι^·5 to (4) of the layer is changed. In the comparative example in which the GaAs layer is used as the well layer, the light-emitting output 昜+*J 35 is 5.9 mW, and the range in which the high output is displayed is also narrower than in the case of the present invention. According to this special result, in the invention of the present invention, since the deformation of the well layer can be moderated by the reverse deformation of the barrier layer, it is known that the crystallinity is lowered from a ^ Λ ρ, so that it is understood that the light output is high and the high rotation can be displayed. . The composition of your beta barrier layer is also wide. With respect to this result, in the comparative example, "mountain" is a combination of a well layer having no deformation and a barrier layer having deformation, &amp;, so that it is understood that the crystallinity is lowered and the light-emitting output characteristics are lowered. _ Table 5 _丨m into two

.201234651 圖8係顯示對於順向電流與發光輸出的相關性之阱 層及阻P早層的成對數的依存性。圖所示的資料係顯示阱 層 15的層厚為 5nm、In 組成(χι) = 〇2(即(ln。2(}心8)^), 且阻障層的組成χ2 = 〇 ] 、 γι=〇 55(即 (AlojGa&quot;)。5sIn〇 45ρ) ’且成對數為3對及5對的情況。阻 Ρ早層的層厚為l〇nm。表6顯示圖8所示之資料的値。 當順向電流迄至3 0mA為止,成對數在3對及5對之任 :者的情況,均為發光輸出大致與電流的增加成比例地 、加…、:而順向電流為50mA、l〇〇mA時,成對數為 5對的情況,大致維持著發光輸出相對於電流的増加成t'匕 例地增大,而在成對數為3對的情況,電流的增大率減L ,當順向電流分別為5〇111八及10〇111八時,其發光輸出心 對數為5對的情況低1.5mW及8mW。 因此得知,對於大電流•高輸出的發光二極體而言 ,5對比3對還要合適。成對數多者較適合於大電流/高輪 出的原因是因成對數多者,其組成χ2 = 〇1、γι=〇 55(目卩 (AluGa。.9)。^nmp)的阻障層,更能夠緩和包含組成式 的阱層相對於基板的變形,能 進一步抑制結晶性的降低之故。 呢 表6 成對数 3對 5對 電流(mA&gt; 输 tij OnH) -出(mW〉 0.1 0 0 5 1.5 1.4 10 3.3 3.3 20 6.2 6.15 30 9.0 9.0. 50 13. α 14.5· too 20.0 28.0.201234651 Figure 8 shows the dependence of the number of well layers and the early layers of the resist P on the correlation between the forward current and the illuminating output. The data shown in the figure shows that the well layer 15 has a layer thickness of 5 nm, an In composition (χι) = 〇2 (i.e., (ln. 2 (}heart 8)^), and the composition of the barrier layer χ2 = 〇], γι = 〇 55 (ie (AlojGa &quot;). 5sIn 〇 45ρ) ' and the logarithm is 3 pairs and 5 pairs. The layer thickness of the early layer of the barrier layer is l 〇 nm. Table 6 shows the data of the data shown in Figure 8. When the forward current is up to 30 mA, the pairwise number is 3 pairs and 5 pairs: in the case of the case, the illuminating output is approximately proportional to the increase of the current, plus..., and the forward current is 50 mA. l 〇〇 mA, when the number of pairs is 5 pairs, the illuminating output is generally increased with respect to the enthalpy addition t' of the current, and when the number of pairs is 3 pairs, the rate of increase of the current is decreased by L. When the forward currents are 5〇111 8 and 10〇111 8 respectively, the luminous output output has a logarithm of 5 pairs and is 1.5 mW and 8 mW lower. Therefore, it is known that for high current and high output light emitting diodes. It is more appropriate to compare 5 pairs of 3 pairs. The reason why the number of pairs is more suitable for high current/high rotation is due to the number of pairs, the composition of which is χ2 = 〇1, γι=〇55 (AluGa..9 ) The barrier layer of ^nmp) can further alleviate the deformation of the well layer containing the composition layer with respect to the substrate, and can further suppress the decrease in crystallinity. Table 6 Pairs of pairs of 3 pairs of 5 pairs of current (mA > input tij OnH) - out (mW> 0.1 0 0 5 1.5 1.4 10 3.3 3.3 20 6.2 6.15 30 9.0 9.0. 50 13. α 14.5· too 20.0 28.0

-18- S 201234651 味層15與阻障 15與阻障層16之出 夕層構造中,交互積層拼層 根據圖6,較佳為〗對(Pair)數並未特別限定。然而, 以含有1 i 10芦的對以上10對以下。亦即’活性層7 層的牌層15較佳。在此,就可獲得活性 層7之較佳的發光 〃 7 欢车的乾圍而言,阱層15必須為1層 U上,但亦可僅為 層另一方面,阱層15及阻障層 之間存在有具炊T rrr ^ ^ ^ ^ 匹配,且栽子濃度低。因此,一旦 作成許多對,便备姦-18-S 201234651 The taste layer 15 and the barrier layer 15 and the barrier layer 16 are alternately layered. In accordance with Fig. 6, the number of pairs is not particularly limited. However, the pair contains 10 i or less of the above 10 pairs. That is, the card layer 15 of the 'active layer 7' layer is preferred. Here, in order to obtain a preferred luminescent illuminator of the active layer 7, the well layer 15 must be on one layer U, but only the layer, on the other hand, the well layer 15 and the barrier layer. There is a 炊T rrr ^ ^ ^ ^ match between the layers, and the concentration of the plant is low. Therefore, once you have made many pairs, you will be prepared.

S產生、,,口日日缺陷而導致發光效率降低、 順向電壓(VF);t^女。m , I 料、,丁 9 因此’較佳為1 〇對以下,更佳為5 對以下。 及上部導引層8係分別 具體而言,在活性層7 活性層7之上面設置有 如圖2所示,下部導6| ^ 6 設置於活性層7的下面及上面。 之下面設置有下部導引層6,在 上部導引層8。S generates,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, m, I material, and butyl 9 are therefore preferably 1 〇 to the following, more preferably 5 or less. Specifically, the upper guiding layer 8 is provided on the upper surface of the active layer 7 of the active layer 7 as shown in Fig. 2, and the lower portion 6|^6 is disposed on the lower surface and the upper surface of the active layer 7. Below it is provided a lower guiding layer 6, on the upper guiding layer 8.

下部導引層10;» , A 丨續10及上部導引層I2係具有 (Alx3Gai_X3)Y2lni —Μ χ3 $ t㈣^ ^之組成。此等 導引層的上述X3較佳為作成能帶間隙與阻障層i 8的能帶 間隙相等或比阻障層! 8的能帶間隙大的組成’因此,χ3 較佳為在〇·2〜0‘5的範圍…Y2較佳設成〇.4〜0.6。 X3 ’可在能發揮作為導引層的功能且對發光波長呈 透明的範圍作選擇。Y2,由於導引層為厚膜,故可重視 與基板的晶格整合來作選擇,且可在能進行良質的結晶 成長的範圍作選擇。 下部導引層6及上部導引層8係分別用以減低下部彼 覆層5及上部披覆層9與活性層y之間的缺陷的蔓延而設 201234651 置。亦即’本發明中,活性層7的V族構造元素係珅(As) ’相對於此’下部披覆層5及上部彼覆層9之V族構造元素 係磷(P)。所以,在活性層7與下部彼覆層5的界面、及活 性層7與上部披覆層9的界面容易產生缺陷。缺陷傳遞至 活性層7是發光二極體性能降低之原因。為了有效減低此 缺陷之傳遞’下部導引層6及上部導引層8之層厚較佳為 10nm以上,更佳為2〇nm至100nm。 下部導引層6及上部導引層8的傳導型並無特別限 定,可選擇未摻雜、P型及n型中的任一種。為了提高 發光效率’期望採用結晶性良好之未摻雜或未滿 3xl017cm_3之載子濃度。 如圖1所示,下部彼覆層5與上部彼覆層9係分別 設置於下部導引層6之下面及上部導引層8之上面。 下部彼覆層5及上部彼覆層9之材質宜使用 、0&lt; γα)之半導體材料,較 佳為能帶間隙比阻障層丨5之能帶間隙大的材質,更佳為 能帶間隙比下部導引層6及上部導引層8之能帶間隙大 的材貝。就滿足上述條件的材質而言, (AlX4Ga卜Χ4)ΥΙηι·γΡ(0$ Χ4$ 卜 〇&lt;γ$ 1}的 χ4 以 〇 3〜〇刀 較佳。又,Υ以設為0.4〜〇·6較佳。χ4,可在能發揮作 為披覆層的功能且對發光波長呈透明的範圍作選擇。 Υ4,由於披覆層為厚膜,故從與基板的晶格整合的觀點, 可在能進行優質的結晶成長的範圍作選擇。 下部披覆層5及上部彼覆層9係構成為極性彼此不 同。另外,下部彼覆層5及上部披覆層9之載子濃度及 -20- 201234651 厚度可使用習知之合適範圍’較佳為以活性層7 效率提高的方式將條件最適當化。另外,藉由控制下邻 彼覆層5及上部彼覆| 9之組成,可使化合物半導體: 3 0之翹曲減低。 9The lower guiding layer 10;», A continuation 10 and the upper guiding layer I2 have the composition of (Alx3Gai_X3)Y2lni_Μ χ3 $ t(four)^^. Preferably, the X3 of the guiding layers is such that the band gap is equal to or larger than the band gap of the barrier layer i 8! The composition of the energy band gap of 8 is large. Therefore, χ3 is preferably in the range of 〇·2 to 0'5... Y2 is preferably set to 〇.4 to 0.6. X3' can be selected in a range that can function as a guiding layer and is transparent to an emission wavelength. Y2, since the guiding layer is a thick film, it is possible to select a lattice integration with the substrate, and it is possible to select a range in which good crystal growth can be performed. The lower guiding layer 6 and the upper guiding layer 8 are respectively provided for reducing the spread of defects between the lower cladding layer 5 and the upper cladding layer 9 and the active layer y, respectively. That is, in the present invention, the group V structural element of the active layer 7 is argon (As) ′ relative to the lower cladding layer 5 and the V group structural element of the upper cladding layer 9 is phosphorus (P). Therefore, the interface between the active layer 7 and the lower cladding layer 5 and the interface between the active layer 7 and the upper cladding layer 9 are likely to cause defects. The transfer of defects to the active layer 7 is responsible for the reduced performance of the light-emitting diode. In order to effectively reduce the transmission of this defect, the layer thickness of the lower guiding layer 6 and the upper guiding layer 8 is preferably 10 nm or more, more preferably 2 〇 nm to 100 nm. The conduction type of the lower guiding layer 6 and the upper guiding layer 8 is not particularly limited, and any of undoped, P-type, and n-type may be selected. In order to improve the luminous efficiency, it is desirable to use a carrier concentration of undoped or underfilled 3xl017cm_3 which is excellent in crystallinity. As shown in Fig. 1, the lower cladding layer 5 and the upper cladding layer 9 are respectively disposed below the lower guiding layer 6 and above the upper guiding layer 8. The material of the lower cladding layer 5 and the upper cladding layer 9 should preferably use a semiconductor material of 0 &lt; γα), preferably a material having a gap larger than that of the barrier layer ,5, and more preferably a band gap. A material having a larger gap than the lower guiding layer 6 and the upper guiding layer 8. For the material satisfying the above conditions, the χ4 of the (AlX4Ga Χ4) ΥΙηι·γΡ (0$ Χ4$ 卜〇&lt;γ$ 1} is preferably 〇3~〇. Further, Υ is set to 0.4~〇 6 is preferable. χ4 can be selected in a range that can function as a coating layer and is transparent to an emission wavelength. Υ4, since the coating layer is a thick film, from the viewpoint of lattice integration with the substrate, The range of the high-quality crystal growth can be selected. The lower cladding layer 5 and the upper cladding layer 9 are configured to have different polarities, and the carrier concentration of the lower cladding layer 5 and the upper cladding layer 9 is -20. - 201234651 The thickness can be used in a suitable range of 'preferably, the conditions are optimized in such a way that the efficiency of the active layer 7 is improved. Further, by controlling the composition of the lower adjacent layer 5 and the upper layer | Semiconductor: 30% warpage is reduced. 9

Si 具體而言 之 η 型 的 下部披覆層5較佳為使用例如包含摻雜 (AlX4bGa1.x4b)YbIn1.Ybp(〇.3&lt;X4b&lt;〇.7 0KYb&lt;0.6)之半導體材料。 ΙχΙΟ17至1x10丨8cm·3之範圍 之範圍。 另外’載子濃度較佳為在 層厚較佳為在0.1至ΐμηι 另一方面,上部披覆層9較佳為使用例如包含摻雜Specifically, the Si-type lower cladding layer 5 is preferably a semiconductor material containing, for example, doped (AlX4bGa1.x4b)YbIn1.Ybp (〇.3&lt;X4b&lt;〇70KYb&lt;0.6). ΙχΙΟ17 to 1x10丨8cm·3 range. Further, the carrier concentration is preferably at a layer thickness of preferably 0.1 to ΐμηι. On the other hand, the upper cladding layer 9 is preferably made of, for example, doped.

Mg 之 P 型的(AlxhGaujYalh Yap(〇 3$X4a^〇7、 0.kYK〇.6)之半導體材料。另外,載子濃度較佳為在 2xl017至2xl〇,8cm-3之範圍,層厚較佳為在〇」至“江 之範圍。 ^ 此外’下部披覆層5及上部披覆層9的極性可考量 化合物半導體層30的元件構造來選擇。 另外,在發光部2 0之構造層的上方,可任意地役置 用以降低歐姆(Ohmic)電極之接觸電阻的接觸層、用以使 元件驅動電流平面地擴散於發光部整體的電流擴散層、 及相反地用以限制元件驅動電流所流通的區域之電流阻 止層或電流狹窄層等習知的層構造。 如圖1所示,電流擴散層10係設置於發光部2〇的 上方。此電流擴散層10可適當使用對發光部20(活性層 7)之發光波長呈透明的材料,例如可適當使用Gap咬 GalnP。 •21· s 201234651 另外’電流擴散層1 〇 之厚度較佳為在0.5至 0.5 至 20μηιa semiconductor material of P type (AlxhGaujYalh Yap (〇3$X4a^7, 0.kYK〇.6) of Mg. Further, the carrier concentration is preferably in the range of 2xl017 to 2xl〇, 8cm-3, layer thickness The thickness of the lower cladding layer 5 and the upper cladding layer 9 can be selected in consideration of the element structure of the compound semiconductor layer 30. In addition, the structural layer of the light-emitting portion 20 is selected. Above, a contact layer for reducing the contact resistance of the Ohmic electrode, a current diffusion layer for diffusing the element drive current to the entire light-emitting portion, and conversely for limiting the component drive current can be arbitrarily disposed. A conventional layer structure such as a current blocking layer or a current confinement layer in a region to be circulated. As shown in Fig. 1, the current diffusion layer 10 is disposed above the light emitting portion 2A. The current diffusion layer 10 can be suitably used for the light emitting portion. The light-emitting wavelength of 20 (active layer 7) is transparent, and for example, Gap bite GalnP can be suitably used. • 21·s 201234651 In addition, the thickness of the current-diffusion layer 1 is preferably 0.5 to 0.5 to 20 μm.

增加之故。Increased.

或AuZn/Au之合金。另一方面, &quot;Τ使用例如包含AuBe/Au ’η型歐姆電極13可使用 例如包含AuGe、Ni合金/Au之合金。 &lt;發光二極體的製造方法&gt; 接著,參照圖1,說明本實施形態之發光二極體1 〇〇 的製造方法。 (化合物半導體層的形成步驟) 首先’製作圖1所示之化合物半導體層3〇。包含化合 物半導體層30的發光二極體係在GaAs基板1上依序 積層:包含GaAs的緩衝層2、交互積層有4〇對包含GaInp 的層(折射率大的層)3a與包含AllnP的層(折射率小的層 )3b而成的DBR反射層3、摻雜Si的η型下部彼覆層5、下部 導引層6、活性層7、上部導引層8、摻雜Mg的ρ型上部彼 覆層9、包含摻雜Mg的p型GaP之電流擴散層1〇而製得。Or an alloy of AuZn/Au. On the other hand, for example, an alloy containing AuGe, Ni alloy/Au can be used, for example, using the AuBe/Au'n type ohmic electrode 13. &lt;Manufacturing Method of Light Emitting Diode&gt; Next, a method of manufacturing the light emitting diode 1 本 according to the present embodiment will be described with reference to Fig. 1 . (Step of Forming Compound Semiconductor Layer) First, the compound semiconductor layer 3A shown in Fig. 1 was produced. The light-emitting diode system including the compound semiconductor layer 30 is sequentially laminated on the GaAs substrate 1 : a buffer layer 2 including GaAs, and an alternating layer of 4 Å pairs of layers including GaInp (layers having a large refractive index) 3a and layers containing AllnP ( DBR reflective layer 3 made of 3b with small refractive index), n-type lower cladding layer 5 doped with Si, lower guiding layer 6, active layer 7, upper guiding layer 8, and p-type upper portion doped with Mg The cladding layer 9 is made of a current diffusion layer containing Mg-doped p-type GaP.

GaAs基板1可使用以周知的製法所製得之市售製品 的單晶基板。GaAs基板1之供磊晶成長的表面係以平滑 者較佳。GaAs基板1的表面之面方位為易於進行蟲晶成 201234651 長且量產的(100)面及從(100)偏移士 20。以内的基板,在品 λ穩定性方面是理想的。再者,GaAs基板1的面方位的 範圍以從(100)方向朝(〇_][·〇方向偏移15。土5。更佳。 此外’本說明書中,於密勒(MiUer)指數之標示中, 「·」係意指附加於其後的指數之橫線(bar)。 為了改善化合物半導體層30的結晶性,GaAs基板 1的位錯密度係以較低者為佳。具體而言,例如為丨〇,〇〇〇 個c m 以下’期望更佳為1,〇 〇 〇個c m ·2以下。下限亦可 任意地選擇。As the GaAs substrate 1, a single crystal substrate of a commercially available product obtained by a known production method can be used. It is preferable that the surface of the GaAs substrate 1 for epitaxial growth is smooth. The surface orientation of the surface of the GaAs substrate 1 is such that it is easy to carry out the insect crystal formation of 201234651 (100) surface and from (100) offset. The substrate inside is ideal for product λ stability. Further, the range of the plane orientation of the GaAs substrate 1 is shifted from the (100) direction by (〇_][·〇 direction by 15. Soil 5. More preferably. In the present specification, the MiUer index is used. In the designation, "·" means a bar attached to the subsequent index. In order to improve the crystallinity of the compound semiconductor layer 30, the dislocation density of the GaAs substrate 1 is preferably lower. For example, 丨〇, 〇〇〇 cm or less 'expected is preferably 1 and cm cm 2 or less. The lower limit can also be arbitrarily selected.

GaAs基板1可為n型,亦可為p型。GaAs基板1 的載子濃度可從所欲的電性傳導度和元件構造適宜地選 擇。例如,在GaAs基板1是矽摻雜之n型的情況,載 子濃度以在1 X 1 017〜5 X 1 0 18cm-3的範圍較佳。相對地, GaAs基板1是鋅摻雜之p型的情況,載子濃度以在 2χ1018〜5xl019cnT3的範圍較佳。The GaAs substrate 1 may be of an n-type or a p-type. The carrier concentration of the GaAs substrate 1 can be suitably selected from the desired electrical conductivity and element configuration. For example, in the case where the GaAs substrate 1 is an n-type doped with germanium, the carrier concentration is preferably in the range of 1 × 1 017 to 5 × 10 18 cm -3 . On the other hand, the GaAs substrate 1 is a zinc-doped p-type, and the carrier concentration is preferably in the range of 2 χ 10 18 〜 5 x 10 019 cn T 3 .

GaAs基板1的厚度係因應基板的尺寸而有適當的範 圍。若GaAs基板1的厚度薄於適當的範圍,便有在化合 物半導體層30的製造製程中產生破裂之虞。另一方面, 若GaAs基板1的厚度厚於適當的範圍,則材料成本會增 加。因此’在GaAs基板1的基板尺寸大的情況,例如, 當GaAs基板1是直徑75mm之圓形的情況,為了防止搬運 時的破裂’以250〜500μιη的厚度較佳。同樣地,在GaAs 基板1的直徑是50mm的情況,以200〜400μιη的厚度較佳 ,在GaAs基板1的直徑是l〇〇mm的情況,以35〇〜6〇〇μπ^ 厚度較佳。 .201234651 如此-來’藉由因應GaAs基板!的基板尺寸而掸 大基板的厚度,可減少因發光部20所導致之化合物心 體層30的輕曲。藉此 Λ 稭此由於磊晶成長令的溫度分布成為 均一,故能使活性層7的面内之波長分布變小。此外:The thickness of the GaAs substrate 1 has an appropriate range depending on the size of the substrate. If the thickness of the GaAs substrate 1 is thinner than the appropriate range, cracking occurs in the manufacturing process of the compound semiconductor layer 30. On the other hand, if the thickness of the GaAs substrate 1 is thicker than the appropriate range, the material cost increases. Therefore, when the substrate size of the GaAs substrate 1 is large, for example, when the GaAs substrate 1 has a circular shape with a diameter of 75 mm, it is preferable to have a thickness of 250 to 500 μm in order to prevent cracking during transportation. Similarly, in the case where the diameter of the GaAs substrate 1 is 50 mm, the thickness is preferably 200 to 400 μm, and in the case where the diameter of the GaAs substrate 1 is 10 mm, the thickness is preferably 35 〇 to 6 〇〇 μπ. .201234651 So - come' by responding to the GaAs substrate! The thickness of the substrate and the thickness of the substrate can reduce the softness of the compound core layer 30 caused by the light-emitting portion 20. Thereby, since the temperature distribution of the sputum growth is uniform due to the epitaxial growth, the wavelength distribution in the plane of the active layer 7 can be made small. In addition:

GaAs基板丄的形狀未特別限定是圓形亦可為矩形等。 緩衝層(buffer)2係為減少〇aAs基板1和發光部2〇 的構成層之缺陷的蔓延而設置者。因此,只要選擇基板 的品質、磊晶成長條件,則並不一定需要緩衝層2。又, 緩衝層2的材質係以設成和供磊晶成長的基板相同的材 質較佳。因此,本實施形態中,緩衝層2較佳為與GaAs 基板1同樣使用GaAs 〇又,為了減少缺陷的蔓延,緩衝 層2亦可使用包含不同於GaAs基板!之材質的多層膜。 緩衝層2的厚度以設成以上較佳,設成〇2以爪 以上更佳。厚度的上限可任意選擇。緩衝層2亦可當作 化合物半導體層30的一部分來考量。 DBR反射層3係用以反射朝基板方向行進的光而設 置者。DBR反射層3的材質較佳為對發光波長呈透明,另 外’宜選擇構成DBR反射層3之2種材料的折射率差變大The shape of the GaAs substrate 未 is not particularly limited to a circular shape or a rectangular shape. The buffer 2 is provided to reduce the spread of defects in the constituent layers of the 〇aAs substrate 1 and the light-emitting portion 2A. Therefore, the buffer layer 2 is not necessarily required as long as the quality of the substrate and the epitaxial growth conditions are selected. Further, the material of the buffer layer 2 is preferably the same as that of the substrate for epitaxial growth. Therefore, in the present embodiment, it is preferable that the buffer layer 2 is made of GaAs similar to the GaAs substrate 1. Further, in order to reduce the spread of defects, the buffer layer 2 may be used to contain a substrate different from the GaAs substrate! Multilayer film of material. The thickness of the buffer layer 2 is preferably set to be more than the above, and it is more preferable that the thickness of the buffer layer 2 is more than the claw. The upper limit of the thickness can be arbitrarily selected. The buffer layer 2 can also be considered as part of the compound semiconductor layer 30. The DBR reflective layer 3 is provided for reflecting light traveling in the direction of the substrate. The material of the DBR reflective layer 3 is preferably transparent to the wavelength of light emission, and the difference in refractive index between the two materials which are preferably selected to constitute the DBR reflective layer 3 becomes large.

之組合。本實施形態中,將DBR反射層3之材質作成AllnP 與GalnP之組合。但是,也可選擇自組成不同的兩種層之 包含(AlxiGa^x丨)〇 5In〇,5P(〇Sxl &lt; 1)的層、和包含 (AlxhGa^xjOo.sInojPCCX xh&lt;l)的層的組合;另外,也可 選擇自組成不同的兩種層之包含AlxlGai-xlAs(0.lSxl&lt;l)The combination. In the present embodiment, the material of the DBR reflective layer 3 is combined with AllnP and GalnP. However, it is also possible to select a layer containing two layers (AlxiGa^x丨)〇5In〇, 5P (〇Sxl &lt; 1), and a layer containing (AlxhGa^xjOo.sInojPCCX xh&lt;l) Combination; in addition, it is also possible to select AlxlGai-xlAs (0.lSxl&lt;l) from two different layers

的層、和包含AlxhGai-XhAs(0.1&lt;xhSl)的層的組合。DBR 反射層3亦可當作化合物半導體層30的一部分來考量。 -24- 201234651 本實施形態中,形成化合物半導體層3〇時,可適用 分子束蟲晶法(MBE法)或減壓有機金屬化學氣相沉積法 (MOCVD法)等周知的成長方法。其中,以適用量產性優 異的MOCVD法最佳。具體而言,冑用於化合物半導體層 30之磊晶成長的GaAs基板!,最佳為在成長前先實施洗 淨步驟或熱處理等的前處理以去除表面的污染或自然氧 化膜。構成上述化合物半導體層30的各層可以下述方式 構成:將直徑50至150mm的GaAs基板1設置於M〇CVD裝 置内’並同時進行蟲晶成長而積層。另外,M〇Cvd裝置 可採用自公轉型、高速旋轉型等市售的大型裝置。 在使上述化合物半導體層30的各層磊晶成長之 際,作為III族構成元素的原料而言,可使用例如:三曱 基鋁((CHshAl)、三甲基鎵((cH^Ga)及三甲基銦 ((CH3)3In)。又,作為Mg的摻雜原料,可使用例如雙(環 戊一稀)鎮(bis-(C5H5)2Mg)等。又,Si的摻雜原料,可使 用例如二矽烷(Si2H6)等。 又,v族構成元素的原料,可使用膦(ΡίΪ3)、胂(AsH3) 等。 又,各層的成長溫度可任意地選擇,例如,在使用p 型GaP作為電流擴散層1〇之情況,可適用720〜77〇〇c,而 其他各層可適用600〜700。(:。 在使用p型GalnP作為電流擴散層1〇之情況,可適用 600〜700〇C 。 再者’各層的載子濃度及層厚、溫度條件可適宜地 選擇。 -25- .201234651 以此方式製得的化合物 部20,但仍可獲得結晶缺陷 ,化合物半導體層30亦可對 的表面加工。 半導體層30,儘管具有發光 少之良好的表面狀態。另外 應於元件構造來實施研磨等 (名1及弟2電極的形成步驟) '、、將第1電極的P型歐姆電極12及第2電極的 歐姆電極U形成於形成有化合物半導體層的前述基板。 以下以實轭例具體地說明本發明的效果。此外, 本發明並未受此等實施例所限制。 本實施例中,係具體說明製作本發明的發光二極體 之例子。又’本實施例所製得的發光二極體係具有活性 層的紅外線發光二極體’其中該活性層含有包含 的阱層和包含AlGaAs的阻障層之量子阱構造。本實施例 中,為了進行特性評價而製造出將發光二極體晶片安裝 於基板上的發光二極體燈。 (實施例1) 以貫施例1的發光二極體而言,首先,在包含Si摻 雜之π型GaAs單晶的GaAs基板上依序積層化合物半導 體層的層而製作磊晶晶圓。a layer, and a combination of layers comprising AlxhGai-XhAs (0.1 &lt; xhSl). The DBR reflective layer 3 can also be considered as part of the compound semiconductor layer 30. In the present embodiment, when the compound semiconductor layer 3 is formed, a known growth method such as a molecular beam crystallization method (MBE method) or a reduced pressure organometallic chemical vapor deposition method (MOCVD method) can be applied. Among them, the MOCVD method which is excellent in mass productivity is the best. Specifically, 胄 is used for the epitaxial growth of the compound semiconductor layer 30 of the GaAs substrate! It is preferable to carry out a pretreatment such as a washing step or a heat treatment before the growth to remove the surface contamination or the natural oxide film. Each of the layers constituting the compound semiconductor layer 30 may be formed by disposing a GaAs substrate 1 having a diameter of 50 to 150 mm in an M〇CVD apparatus while simultaneously growing the crystallites. In addition, the M〇Cvd device can be used as a large-scale device such as a self-propelled, high-speed rotary type. When the respective layers of the compound semiconductor layer 30 are epitaxially grown, as a raw material of the group III constituent element, for example, trisyl aluminum ((CHshAl), trimethylgallium ((cH^Ga), and three) can be used. Methyl indium ((CH3)3In). Further, as a doping raw material of Mg, for example, bis(cyclopentadiene) (bis-(C5H5)2Mg) or the like can be used. Further, a doping raw material of Si can be used. For example, dioxane (Si2H6), etc. Further, as a raw material of the group v constituent element, phosphine (ΡίΪ3), ruthenium (AsH3), etc. may be used. Further, the growth temperature of each layer may be arbitrarily selected, for example, using p-type GaP as a current. In the case of the diffusion layer 1 720, 720 to 77 〇〇 c can be applied, and the other layers can be applied to 600 to 700. (: In the case of using p-type GalnP as the current diffusion layer 1 600, 600 to 700 〇 C can be applied. Further, the carrier concentration, the layer thickness, and the temperature conditions of each layer can be appropriately selected. -25 - .201234651 The compound portion 20 obtained in this manner, but a crystal defect can still be obtained, and the surface of the compound semiconductor layer 30 can also be used. The semiconductor layer 30 has a good surface state with less luminescence. In the element structure, polishing (such as the formation of the electrode of the first and second electrodes) is performed, and the P-type ohmic electrode 12 of the first electrode and the ohmic electrode U of the second electrode are formed on the substrate on which the compound semiconductor layer is formed. The effects of the present invention will be specifically described below by way of a simplification example. Further, the present invention is not limited by the embodiments. In the present embodiment, an example of fabricating the light-emitting diode of the present invention will be specifically described. The light-emitting diode system obtained in the embodiment has an active layer infrared light-emitting diode 'where the active layer contains a well layer and a quantum well structure including a barrier layer of AlGaAs. In this embodiment, for evaluation of characteristics A light-emitting diode lamp in which a light-emitting diode chip is mounted on a substrate is manufactured. (Embodiment 1) In the case of the light-emitting diode of Example 1, first, a π-type GaAs single containing Si doping is used. An epitaxial wafer is formed by sequentially laminating layers of the compound semiconductor layer on the crystalline GaAs substrate.

GaAs基板為’從(100)面朝(O-1-i)方向傾斜ι5。的面 設為成長面且載子濃度設成2M 018cni·3之基板。GaAs基 板的層厚設成約〇. 5 μηι。又,作為化合物半導體層的層, 係依序積層下述各層來使用:包含摻雜、之GaAs的η型 緩衝層、摻雜Si之AllnP與Galnp的4〇對反覆構造之η -26- •201234651The GaAs substrate is inclined by ι 5 from the (100) plane toward the (O-1-i) direction. The surface of the surface was set to a growth surface and the carrier concentration was set to 2M 018cni·3. The layer thickness of the GaAs substrate is set to about 0.5 μm. Further, as a layer of the compound semiconductor layer, the following layers are sequentially laminated: an n-type buffer layer containing doped GaAs, a Si-doped AllnP, and a Gal〇p 4〇-reversed structure η -26- • 201234651

型DBR反射層、包含摻雜SlqA1〇 7Ga〇 3)〇 5in〇 5p的η 型下部坡覆層、包含(Al0_3Ga〇.7)〇 1In〇 1P的下部導引層、 包含(111。.而。.8)八8/(八10,而。_9)〇5111。51)之3對的阱層&quot;且 障層、包含(Al0.3Ga0.7)0_5In0.5P的上部導引層、包含換雜 厘§之(八10.7〇30.3)0.51110.5?之]:)型上部披覆層、包含 (Al0.5Ga0.5)0.5ln〇.5P之薄膜的中間層、包含換雜…之3 型GaP的電流擴散層。 P 本實施例中,使用減壓有機金屬化學氣相沉積 法(MOCVD裝置),於直徑76_ '厚度⑽㈣的。〜 基板上蟲晶成長化合4勿半導體層而形成有i晶晶圓。在 使磊晶成長層成長之際’作為! j!族構成元素的原料,係 使用三甲基銘((ch3)3ai),三曱基鎵((CH3)3Ga)及三甲基 麵((CH3)3In) X,作為Mg的摻雜原料係使用雙(環戊 一烤)鎮(biS-(C5H5)2Mg)e &quot;5?,/Λτ 4 … ;8)又,作為Si的摻雜原料,係使 用一石夕烧(Si2H6)。又,作為v族構成元素的原料係使 用膦(PH3)、胂(AsH3)。又,在各層的成長溫度方面,包 含P型㈣的變形調整層是在75(rc下成長。其他的各 層則在700°c下成長。 包含GaAs的緩衝層係載子濃度設成約2xi〇iScm 3、 層厚1,成3約0.5’。下部披覆層係載子濃度設成約 1 10 cm |厚3又成約〇 5叫。下部導引層係未摻雜且 詹厚設成約5〇·。附層係未摻雜且層厚約的 (In〇.2Ga〇.8)AS’阻障層係未摻雜且層厚約1〇_的 (Al〇.3Ga0.7)0,5In0.5P。另々L * 障層。上部導引層係未捧 父互地積層有3對阱層與阻 ^雜且層厚設成約50nm。上部披 -27- 1 201234651 覆層係載子濃度設成約8χ 1017cm_3、層厚設成約Ο.#111 ° 中間層係載子濃度設成約8xl017cm·3、層厚設成約5〇nm «包含GaP的電流擴散層係載子濃度設成約3xl〇18cm_3、 層厚設成約1 Ο μ m。 又’ DBR反射層交互地積層有4〇對之載子濃度設成 約lxl018cm·3、層厚設成約71nm的AllnP,以及載子濃度 設成約1 X l〇18cm·3、層厚設成約67nm的GalnP。 接著’在電流擴散層的表面,以使 AuBe成為 0.2 μπι、使Au成為1 μπι的方式利用真空蒸鍍法依序成 膜。之後’利用一般之光刻手段實施圖案化,藉此形成 Ρ型歐姆電極作為第1電極。接著,在屬於電極部以外 之表面的光取出面實施粗面化處理。 接著’在作為第2電極的基板背面,使Au Ge、Ni 之各層厚度成為0.5μιη、使Pt成為〇 2μιη、使Au成為 1 μιη的方式利用真空蒸鍍法依序成膜’而形成^型歐姆 電極。其後’藉由在450〇c下進行分鐘熱處理,將 和Ni和半導體表面部分加以合金化(au〇ying),而形成 低電阻之P型及η型歐姆電極。 接著’使用切割機從化合物半導體層側以3 5〇μιη間 隔進行切斷,予以晶片化。利用硫酸•過氧化氫混合液 來蝕刻去除因切割所造成的破碎層及污垢,而製得實扩 例1之發光二極體。 組裝1〇〇個將利用上述方法所製得之實施例丨的發 二極體晶片安裴於安裝基板上而成的發光二極體燈。 發光二極體燈的安裝係利用晶片接合器支撐(安裝),此 -28- .201234651 以金線將P型歐姆電極和P電極端子進行引線接合後,利 用一般的環氧樹脂密封而製得。 將評價發光二極體(發光二極體燈)之特性的結果顯 示於表7。 如表7所示,在η型及p型歐姆電極間流通電流時,會 射出峰值波長9 2 0 n m的紅外光。於順向流通2 0毫安(m A) 的電流時的順向電壓(Vf)為約1.2伏特。又,順向電流設 成20mA時的發光輸出為6.2mW。 表7 基板材質 發光波長 (nm) 發光輸出 _ 順向電壓 (V) DBR層 實施例1 GaAs 920 6.2 t.2 AlInP/GalnP 實施例2 GaAs 920 6.0 1.2 AIGalnP/AIGalnP 實施例3 QaAs 920 6.5 1.1 AIGaAs/AIGaAs 賣施例4 GaAs 870 6.0 1.2 AlInP/GalnP 實施例5 GaAs 870 5.7 1.2 AIGalnP/AIGalnP 實施例6 GaAs 870 6.2 1.1 AIGaAs/AIGaAs 實施例了 GaAs 960 6.0 1.2 AlInP/GalnP 實施例8 GaAs 960 5.8 1.2 AIGalnP/AIGalnP 實施例9 GaAs 960 6.2 1.1 AIGaAs/AIGaAs 比較例1 GaAs 920 2.0 1.2 無A DBR reflective layer, an n-type lower slope coating comprising doped SlqA1〇7Ga〇3)〇5in〇5p, and a lower guiding layer comprising (Al0_3Ga〇.7)〇1In〇1P, comprising (111. .8) Eight 8/(eight 10, and ._9) 〇 5111. 51) 3 pairs of well layers &quot; and barrier layer, including upper layer of (Al0.3Ga0.7)0_5In0.5P, including replacement Miscellaneous § § (eight 10.7 〇 30.3) 0.51110.5 Å]:) type upper coating layer, intermediate layer containing (Al0.5Ga0.5)0.5ln〇.5P film, containing type 3 Current spreading layer of GaP. In the present embodiment, a reduced pressure organometallic chemical vapor deposition method (MOCVD apparatus) was used at a diameter of 76 Å 'thickness (10) (d). ~ On the substrate, the insect crystal grows and combines with the semiconductor layer to form an i-crystal wafer. At the time when the growth of the epitaxial growth layer is made, ‘! The raw materials of the j! family are made of trimethylamine ((ch3)3ai), trimethylgallium ((CH3)3Ga) and trimethylmethane ((CH3)3In) X, which are used as doping materials for Mg. A double (cyclopenta-baked) town (biS-(C5H5)2Mg) e &quot;5?, /Λτ 4 ...; 8) is used. Further, as a doping material for Si, a stone smelting (Si2H6) is used. Further, as a raw material of the group v constituent element, phosphine (PH3) or hydrazine (AsH3) is used. Further, in terms of the growth temperature of each layer, the deformation-adjusting layer containing P-type (four) was grown at 75 (rc), and the other layers were grown at 700 ° C. The buffer layer-containing carrier concentration including GaAs was set to about 2 xi. iScm 3, layer thickness 1, 3 is about 0.5'. The concentration of the lower coating layer is set to about 1 10 cm | the thickness of 3 is about 5 。. The lower guiding layer is undoped and the thickness is about 5 〇. · The layer of undoped (In〇.2Ga〇.8) AS' barrier layer is undoped and has a layer thickness of about 1〇_(Al〇.3Ga0.7)0,5In0 .5P. Another *L* barrier layer. The upper guiding layer has three pairs of well layers and resistance layers and the layer thickness is set to about 50 nm. The upper layer is -27- 1 201234651. The concentration is set to about 8χ1017cm_3, and the layer thickness is set to about Ο.#111 ° The concentration of the intermediate layer carrier is set to about 8xl017cm·3, and the layer thickness is set to about 5〇nm «The concentration of the current diffusion layer containing the GaP is set. It is about 3xl〇18cm_3, and the layer thickness is set to about 1 Ο μ m. The 'DBR reflection layer is alternately layered with 4〇 pairs of carrier concentrations of about lxl018cm·3, layer thickness of about 71nm AllnP, and The sub-concentration is set to about 1 X l 〇 18 cm · 3 The layer thickness is set to about 67 nm of GalnP. Then, on the surface of the current diffusion layer, AuBe is made 0.2 μm, and Au is made to be 1 μm, and the film is sequentially formed by vacuum evaporation. By performing patterning, a Ρ-type ohmic electrode is formed as the first electrode. Then, the light extraction surface on the surface other than the electrode portion is roughened. Next, 'Uu Ge is placed on the back surface of the substrate as the second electrode. In the case where the thickness of each layer of Ni is 0.5 μm, Pt is 〇2 μm, and Au is formed to be 1 μm, the film is sequentially formed by vacuum deposition to form a ohmic electrode. Thereafter, it is performed at 450 〇c. After minute heat treatment, Ni and semiconductor surface portions are alloyed to form low-resistance P-type and n-type ohmic electrodes. Then 'cut using a cutter from the compound semiconductor layer side at intervals of 3 5 μm When it is broken, it is wafer-formed. The sulfurized hydrogen peroxide mixed solution is used to etch and remove the fracture layer and the dirt caused by the cutting, and the light-emitting diode of the first expansion example is obtained. The light-emitting diode lamp of the embodiment of the present invention is mounted on a mounting substrate. The mounting of the light-emitting diode lamp is supported (mounted) by a wafer bonder. - .201234651 After the P-type ohmic electrode and the P-electrode terminal are wire-bonded by a gold wire, they are obtained by sealing with a general epoxy resin. The results of evaluating the characteristics of the light-emitting diode (light-emitting diode lamp) are shown in Table 7. As shown in Table 7, when a current flows between the n-type and p-type ohmic electrodes, infrared light having a peak wavelength of 920 nm is emitted. The forward voltage (Vf) at a current of 20 mA (m A) in the forward direction is about 1.2 volts. Further, the luminous output when the forward current was set to 20 mA was 6.2 mW. Table 7 Substrate Material Luminous Wavelength (nm) Luminous Output _ Forward Voltage (V) DBR Layer Example 1 GaAs 920 6.2 t.2 AlInP/GalnP Example 2 GaAs 920 6.0 1.2 AIGalnP/AIGalnP Example 3 QaAs 920 6.5 1.1 AIGaAs /AIGaAs Selling Example 4 GaAs 870 6.0 1.2 AlInP/GalnP Example 5 GaAs 870 5.7 1.2 AIGalnP/AIGalnP Example 6 GaAs 870 6.2 1.1 AIGaAs/AIGaAs Example GaAs 960 6.0 1.2 AlInP/GalnP Example 8 GaAs 960 5.8 1.2 AIGalnP/AIGalnP Example 9 GaAs 960 6.2 1.1 AIGaAs/AIGaAs Comparative Example 1 GaAs 920 2.0 1.2

測定電流=20mA (實施例2) 實施例2之發光二極體係除了變更DBR反射層之構 造以外,其餘部分係以與實施例1相同的條件來製作。 具體而言,DBR反射層係交互積層40對之載子濃度 設成約 lxl018cnT3 、 層厚約 71nm 之包含 (AlojGao.do.sIn^P 的層、與載子濃度設成約 lxl018cm·3、層厚約 68nm 之包含(Al〇.2Ga〇.8)〇.5In〇.5P 的 層0 -29- 201234651 評價此發光二極體(發光二極體燈) ^心将性的結果係 如表7所示。射出峰值波長為920nm之红认土 々 义、^外先,發光輸 出(P〇)及順向電壓(VF)分別為6.0mW、i.2v。 (實施例3) 實施例3之發光二極體係除了變更DBR反射層之 外,其餘部分係以與實施例丨相同的條件來^作 造以 對載子濃度設 Ga〇·]As 的層、 64nm 之包含 具體而s ’DBR反射層係交互積層4〇 成約1 X 1018cm_3、層厚約71nm之包含Al〇 9 與載子濃度設成約lxl〇18cm·3、層厚約 Alo」Ga〇.9As 的層。 評價此發光二極體(發光二極體燈)之特性的結果係 如表7所示。射出峰值波長為92〇nm之紅外光發光輸 出(P〇)及順向電壓(VF)分別為6.5mW、1.1V。 ' 】 (實施例4) 實施例4之發光二極體係除了使用包含 (1110.12〇&amp;0.88)八8/(八10.丨〇3。.9)。.5111。.5?之3對阱層/阻障層以 外,其餘部分係以與實施例丨相同的條件來製作。 評價此發光二極體(發光二極體燈)之特性的結果係 如表7所示。射出峰值波長為87〇nm的紅外光發光輸 出(P〇)及順向電壓(Vf)分別為6.〇mW、1.2V。 (實施例5) 貫細例5之發光二極體係除了使用包含 (In〇.i2Ga(K88)As/(Al。丨Ga〇.9)〇.5In〇.5P之 3對阱層 /阻障層以 外,其餘部分係以與實施例2相同的條件來製作。亦即, 除了變更DBR反射層之構成以外,其餘部分係以與實施 例4相同的條件來製作。 201234651 評價此發光二極體(發光二極體燈)之特性的結果係 如表7所示。射出峰值波長為870nm的紅外光,發光輪出 (P〇)及順向電壓(VF)分別為5.7mW、1.2V。 (實施例6) 實施例6之發光二極體係除了使用包含 (In〇,丨2Ga〇.88)As/(Al〇,丨Ga〇.9)〇_5In〇.5P之 3 對阱層 /阻障層以 外,其餘部分係以與實施例3相同的條件來製作。亦即, 除了變更D B R反射層之構成以外,其餘部分係以與實施 例4相同的條件來製作。 評價此發光二極體(發光二極體燈)之特性的結果係 如表7所示。射出峰值波長為87〇11111的紅外光,發光輸出 (P〇)及順向電壓(VF)分別為6.2mW、1.1 v。 (貫施例7) 實施例7之發光二極體係除了使用包含 (In0.25Ga〇.75)AS/(Al0.,Ga0.9)0.5In〇.5P2 3 對牌層 /阻障層以 外,其餘部分係以與實施例丨相同的條件來製作。 評價此發光二極體(發光二極體燈)之特性的結果係 如表7所示。射出峰值波長為96〇nm的紅外光,發光輸出 (P〇)及順向電壓(VF)分別為6.〇mW、ι.2ν。 (實施例8) 實施例8之發光二極體係除了使用包含 (In〇.25Ga〇‘75)As/(A1〇 lGa〇 9)〇 5ln〇 51&gt;之 3對钟層&quot;且障層以 外’其餘部分係以與實㈣2相同的條件來製作。亦即, 除了變更騰反射層之構成以外,其餘部分係以 例7相同的條件來製作。 也Measurement current = 20 mA (Example 2) The light-emitting diode system of Example 2 was produced under the same conditions as in Example 1 except that the structure of the DBR reflection layer was changed. Specifically, the DBR reflective layer is composed of an alternating layer 40 having a carrier concentration of about lxl018cnT3 and a layer thickness of about 71 nm (a layer of AlojGao.do.sIn^P and a carrier concentration of about lxl018cm·3, layer). The thickness of about 68 nm (Al〇.2Ga〇.8) 〇.5In〇.5P layer 0 -29- 201234651 Evaluation of this light-emitting diode (light-emitting diode lamp) ^The result of the heart is as shown in Table 7 As shown in the figure, the emission peak wavelength is 920 nm, and the light emission output (P〇) and the forward voltage (VF) are 6.0 mW and i.2 V, respectively. (Example 3) Example 3 In addition to changing the DBR reflective layer, the light-emitting diode system is made to have a layer with a carrier concentration of Ga〇·]As and a 64 nm specific s 'DBR reflective layer under the same conditions as the embodiment 丨. A layer comprising an alternating layer of about 1 X 1018 cm_3 and a layer thickness of about 71 nm comprising Al〇9 and a carrier concentration of about 1×10 〇18 cm·3 and a layer thickness of about Alo”Ga〇.9As. The results of the characteristics of the (light-emitting diode lamp) are shown in Table 7. The infrared light-emitting output (P〇) and the forward direction of the peak wavelength of 92 〇nm were emitted. The pressure (VF) was 6.5 mW and 1.1 V, respectively. ' 】 (Example 4) The luminescent bipolar system of Example 4 was used except for the use of (1110.12 〇 & 0.88) 八 8 / (eight 10. 丨〇 3. 9 The other parts except the 3 pairs of well layers/barrier layers were fabricated under the same conditions as in Example 。. Evaluation of the characteristics of the light-emitting diode (light-emitting diode lamp) The results are shown in Table 7. The infrared light emission output (P〇) and the forward voltage (Vf) of the peak wavelength of 87 〇nm were 6. 〇mW and 1.2 V, respectively. (Example 5) The light-emitting diode system is the same as the embodiment except that three pairs of well layers/barrier layers including (In〇.i2Ga(K88)As/(Al.丨Ga〇.9)〇.5In〇.5P are used. 2, the same conditions were used. That is, except that the configuration of the DBR reflective layer was changed, the rest was produced under the same conditions as in Example 4. 201234651 Evaluation of the characteristics of the light-emitting diode (light-emitting diode lamp) The results are shown in Table 7. Infrared light having a peak wavelength of 870 nm was emitted, and the light-emitting (P〇) and forward voltage (VF) were 5.7 mW and 1.2 V, respectively. (Example 6) Example 6 The photodiode system except the 3 pairs of well layers/barrier layers containing (In〇,丨2Ga〇.88)As/(Al〇,丨Ga〇.9)〇_5In〇.5P Example 3 was produced under the same conditions. That is, the same portions as those of the fourth embodiment were produced except that the configuration of the BD reflective layer was changed. The results of evaluating the characteristics of this light-emitting diode (light-emitting diode lamp) are shown in Table 7. The infrared light having a peak wavelength of 87〇11111 was emitted, and the light-emitting output (P〇) and the forward voltage (VF) were 6.2 mW and 1.1 v, respectively. (Example 7) The light-emitting diode system of Example 7 was used except for the (In0.25Ga〇.75)AS/(Al0., Ga0.9)0.5In〇.5P2 3 pair of card layer/barrier layer. The rest were produced under the same conditions as in Example 。. The results of evaluating the characteristics of this light-emitting diode (light-emitting diode lamp) are shown in Table 7. The infrared light having a peak wavelength of 96 〇 nm is emitted, and the light-emitting output (P〇) and the forward voltage (VF) are respectively 6. 〇mW and ι.2ν. (Example 8) The light-emitting diode system of Example 8 was used except for the three-layered layer containing (In〇.25Ga〇'75)As/(A1〇lGa〇9)〇5ln〇51&gt; The rest of the section was produced under the same conditions as the real (four) 2. That is, the rest was produced under the same conditions as in Example 7 except that the configuration of the smectic layer was changed. and also

-3 1- S 201234651 評價此發光二極體(發光二極體燈)之特性的結果係 如表7所示。射出峰值波長為960nm的紅外光,發光輸出 (P〇)及順向電壓(VF)分別為5.8mW、1.2V。 (實施例9) 貫施例9之發光二極體係除了使用包含 (In0_25GaQ.75)As/(A1〇 iGa〇 9)〇 5ln〇 5p之 3對阱層 /阻障層以 外’其餘部分係以與實施例3相同的條件來製作。亦即, 除了變更DBR反射層之構成以外,其餘部分係以與實施 例7相同的條件來製作。 評價此發光二極體(發光二極體燈)之特性的結果係 如表7所示。射出峰值波長為紅外光,發光輸出 (P〇)及順向電壓(VF)分別為6.2mW、1.1V。 (比較例1) 比較例1之發光二極體係利用習知技術之液相磊晶 法形成。變更成在GaAs基板上具有以包含AVQiGa。99As 的層作為發光層之雙異質構造之發光部的發光二極體。 具體而言,比較例1之發光二極體的製作係以下述 方式製造。利用液相磊晶法在η型之(100)面的GaAs單 晶基板上依序:將包含Α1〇. ο! Ga〇. 99 As之η型上部彼覆層 設成50μιη、將包含Alo.wGao.wAs之摻雜Si的發光層設 成20μηι、將包含Al〇.7Ga〇.3As之p型下部披覆層設成 20μιη、將對發光波長呈透明且包含i〇.25Ga〇.75As之p型 厚膜層設成60μπι而製得。於此磊晶成長後,去除GaAs 基板。接著’在η型AlGaAs上部彼覆層的表面,以350μιη 的間隔形成直徑ΙΟΟμιη的η型歐姆電極。在ρ型AlGaAs -32- 201234651 厚膜層的背面,以80μιη間隔 雪炻甘4计 ❿珉直佼2〇Pm的ρ型歐姆 電極。/、後,藉由切割機以35〇nm間隔切斷後 除破碎層而製得包含」去 主威姆電極和複數個 姆電極之比較例1的發光二極體晶片。 ^ 將評價安裝有比較例i之發光二極體之發光 燈的特性的結果顯示於表1。 體 如表”斤示,在η型及p型歐姆電極間流通 , 會射出峰值波長92Gnm的紅外光。於順向流通2〇毫安 (mA)的電流時的順向電壓(Vf)為約i 2伏特。又,順向 電流設成20mA時的發光輸出為2mW。再者,比較例° 的任一試樣與本發明的實施例作比較時,輸出均比本發 明的實施例低。 Χ [產業上之可利用性] 本發明之發光二極體可利用作為高輸出•高效率且 發射出850nm以上尤其是900nm以上之發光峰值波長的 紅外光的發光二極體製品。 【圖式簡單說明】 圖1係本發明之一實施形態之發光二極體的俯視圖。 圖2係構成本發明之一實施形態之發光二極體的活 性層之說明圖。 圖3係顯示本發明之一實施形態之發光二極體的牌 層的層厚與發光峰值波長的相關性之圖表。 圖4係本發明之一實施形態之發光二極體的味層的 In组成(XI)和阱層厚度和發光峰值波長的相關性之圖表-3 1- S 201234651 The results of evaluating the characteristics of this light-emitting diode (light-emitting diode lamp) are shown in Table 7. Infrared light having a peak wavelength of 960 nm was emitted, and the light-emitting output (P〇) and the forward voltage (VF) were 5.8 mW and 1.2 V, respectively. (Example 9) The light-emitting diode system of Example 9 was used except for the 3 pairs of well layers/barrier layers including (In0_25GaQ.75)As/(A1〇iGa〇9)〇5ln〇5p. It was produced under the same conditions as in Example 3. That is, the rest was produced under the same conditions as in Example 7 except that the configuration of the DBR reflective layer was changed. The results of evaluating the characteristics of this light-emitting diode (light-emitting diode lamp) are shown in Table 7. The peak wavelength of the emission is infrared light, and the light-emitting output (P〇) and the forward voltage (VF) are 6.2 mW and 1.1 V, respectively. (Comparative Example 1) The light-emitting diode system of Comparative Example 1 was formed by a liquid phase epitaxy method of a conventional technique. Changed to have a GaAs substrate to include AVQiGa. The layer of 99As serves as a light-emitting diode of a light-emitting portion of a double heterostructure having a light-emitting layer. Specifically, the production of the light-emitting diode of Comparative Example 1 was carried out in the following manner. The liquid crystal epitaxy method is performed on the GaAs single crystal substrate of the n-type (100) plane. The η-type upper cladding layer including Α1〇. ο! Ga〇. 99 As is set to 50 μm, and will contain Alo. The light-emitting layer of doped Si of wGao.wAs is set to 20 μm, and the p-type lower cladding layer containing Al〇.7Ga〇.3As is set to 20 μm, which is transparent to the emission wavelength and contains i〇.25Ga〇.75As. The p-type thick film layer was prepared to be 60 μm. After the epitaxial growth, the GaAs substrate is removed. Next, an n-type ohmic electrode having a diameter of ΙΟΟμηη was formed on the surface of the upper cladding layer of the n-type AlGaAs at intervals of 350 μm. On the back side of the thick layer of p-type AlGaAs-32-201234651, the p-type ohmic electrode of the Pm is 以2佼. After that, the light-emitting diode wafer of Comparative Example 1 including the "de-mainum electrode" and the plurality of electrodes was obtained by cutting the separator at intervals of 35 Å to remove the fracture layer. ^ The results of evaluating the characteristics of the light-emitting lamp to which the light-emitting diode of Comparative Example i was mounted are shown in Table 1. The body is shown in the table. It flows between the n-type and p-type ohmic electrodes, and emits infrared light with a peak wavelength of 92Gnm. The forward voltage (Vf) when a current of 2 mA (mA) flows in the forward direction is about Further, the luminous output when the forward current was set to 20 mA was 2 mW. Further, when any of the comparative examples was compared with the embodiment of the present invention, the output was lower than that of the embodiment of the present invention.产业 [Industrial Applicability] The light-emitting diode of the present invention can be used as a light-emitting diode product which has high output and high efficiency and emits infrared light having an emission peak wavelength of 850 nm or more and especially 900 nm or more. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view of a light-emitting diode according to an embodiment of the present invention. Fig. 2 is an explanatory view showing an active layer constituting a light-emitting diode according to an embodiment of the present invention. FIG. 4 is a graph showing the correlation between the layer thickness of the card layer of the light-emitting diode of the embodiment and the peak wavelength of the light emission. FIG. 4 is a view showing the In composition (XI) and the thickness of the well layer of the taste layer of the light-emitting diode according to an embodiment of the present invention. Graph of correlation with luminescence peak wavelength

S -33- 201234651 圖5係本發明之一實施形態之發光二極體 In組成(XI)和發光峰值波長及其發光輸出的相 表。 圖6係本發明之一實施形態之發光二極體 阻障層的成對數與發光輸出的相關性之圖表。 圖7 A係本發明之一實施形態之發光二極體 的組成式所示之Y1與發光輸出的相關性之圖表 圖7 B係顯示比較例之阻障層的組成式所 發光輸出的相關性之圖表。 圖8係本發明一實施形態發光二極體中對 流與發光輸出的相關性之阱層及阻障層的成對 性的圖表。 【主要元件符號說明】 1 GaAs基板 2 緩衝層 3 DBR反射層 3a DBR反射層之第1構造層 3b DBR反射層之第2構造層 5 下部披覆層(第1披覆層) 6 下部導引層(第丨導引層) 7 活性層 8 上部導引層(第2導引層) 9 上部彼覆層(第2披覆層) 1〇 電流擴散層 12 p型歐姆電極(第1電極) -34- 的陣層的 關性之圖 的陕層及 的阻障層 〇 示之Y1與 於順向電 數的依存S-33-201234651 Fig. 5 is a phase diagram of the In composition (XI) of the light-emitting diode and the emission peak wavelength and its light-emitting output according to an embodiment of the present invention. Fig. 6 is a graph showing the correlation between the number of pairs of light-emitting diode barrier layers and the light-emitting output according to an embodiment of the present invention. Fig. 7 is a graph showing the correlation between Y1 and the light-emission output of the composition formula of the light-emitting diode according to the embodiment of the present invention. FIG. 7B shows the correlation of the light-emitting output of the composition formula of the barrier layer of the comparative example. Chart. Fig. 8 is a graph showing the pairing of the well layer and the barrier layer in the correlation between the convection and the light-emitting output in the light-emitting diode according to the embodiment of the present invention. [Description of main component symbols] 1 GaAs substrate 2 Buffer layer 3 DBR reflective layer 3a DBR reflective layer first structural layer 3b DBR reflective layer second structural layer 5 Lower cladding layer (first cladding layer) 6 Lower guide Layer (second guiding layer) 7 active layer 8 upper guiding layer (second guiding layer) 9 upper cladding layer (second cladding layer) 1〇 current diffusion layer 12 p-type ohmic electrode (first electrode) The dependence of the Y1 and the forward electric number on the Shaanxi and the barrier layers of the map of the -34-

S 201234651 13 η型歐姆電極(第2電極) 15 阱層 16 阻障層 20 發光部 30 化合物半導體層 100發光二極體 -3 5-S 201234651 13 n-type ohmic electrode (second electrode) 15 well layer 16 barrier layer 20 light-emitting portion 30 compound semiconductor layer 100 light-emitting diode -3 5-

Claims (1)

201234651 七、申請專利範圍: 1. 一種發光二極體,其係在基板上依序 與發光部之發光二極體,其特徵為: 前述發光部具備: 活性層,其係具有阱層和阻障層 阱層包含組成式(InxlGai_xl)As,其中 障層包含組成式(AlX2Ga丨.Χ2)Υ1Ιηι.γιΡ ' 0&lt;Υ1^ 1 ; 第1導引層及第2導引層,其等係 且包含組成式(Α1χ3〇&amp;ι.χ3)Υ2ΐηι.γ2Ρ, 0&lt;Y2 S 1 ;以及 第1彼覆層及第2披覆層,其等係^ 導引層及第2導引層而夾著前述活性 (Alx4Gai.x4)Yln1-YP,其中 〇$ Χ4$ 1、 2 ·如申請專利範圍第1項之發光二極體, 組成式所示之XI為O^XiSO.3。 3·如申請專利範圍第2項之發光二極體, 組成式所示之XI為O.igXlSOj。 4.如申請專利範圍第1項之發光二極體, 射層係交互積層有1 〇至5 0對折射率不 的層。 5 ·如申請專利範圍第4項之發光二極體, 不同的兩種層係以下組成彼此不同之p 包含(AlXhGai_xh)Y3lni-Y3P 的層, Y3 = 0.5 ;以及 具備DBR反射層 的積層構造,該 〇 S X1 $ 1 ;該阻 ,其中 OS X2S 1 夾著前述活性層 其中 0 S X3 $ 1、 &gt;別隔著前述第1 層且包含組成式 0&lt;γ$ 1 〇 其中前述阱層的 其中前述阱層的 其中前述DBR反 同的兩種層而成 其中前述折射率 白種層的組合: 其中0 &lt;Xhu、 -36- 201234651 包含(AlxiGa^xOnlni-YsP的層,其中 〇$χι&lt;ι、 Y3 = 〇.5 ; 兩層之A1的組成差AX=xh-xl係大於或等於〇 5。 6,如申請專利範圍第4項之發光二極體,其中前述折射率 不同的兩種層係包含Gai np的層與包含All nP的層之組 合0 7_如申請專利範圍第4項之發光二極體,其中前述折射率 不同的兩種層係以下組成彼此不同之兩種層的纪合: 包含AIxlGa丨-x丨As的層,其中O.lsxisl;以及 包含 AlxhGa^xhAs的層,其中 O.lSxhSl ; 兩層之A1的組成差Δχ = χ1ι_χ1係大於或等於〇 $。 8·如申請專利範圍第1項之發光二極體,其中於前述發光 部的面上,在與DBR反射層相反側的面上具備電流擴散 層。201234651 VII. Patent application scope: 1. A light-emitting diode, which is a light-emitting diode sequentially on a substrate and a light-emitting portion, wherein: the light-emitting portion has: an active layer having a well layer and a resistor The barrier layer includes a composition formula (InxlGai_xl) As, wherein the barrier layer comprises a composition formula (AlX2Ga丨.Χ2)Υ1Ιηι.γιΡ '0&lt;Υ1^1; a first guiding layer and a second guiding layer, etc. Including the composition formula (Α1χ3〇&amp;ι.χ3)Υ2ΐηι.γ2Ρ, 0&lt;Y2 S 1 ; and the first and second cladding layers, which are sandwiched by the guiding layer and the second guiding layer The aforementioned activity (Alx4Gai.x4) Yln1-YP, wherein 〇$ Χ4$1, 2 · as in the light-emitting diode of claim 1, the XI of the composition formula is O^XiSO.3. 3. If the light-emitting diode of the second application of the patent scope is applied, the XI represented by the composition formula is O.igXlSOj. 4. In the case of the light-emitting diode of claim 1, the layer of the layer is alternately layered from 1 〇 to 50 Å. 5 · As in the light-emitting diode of the fourth application patent range, the two different layers are different from each other. p consists of a layer of (AlXhGai_xh)Y3lni-Y3P, Y3 = 0.5; and a laminated structure with a DBR reflective layer, The 〇S X1 $1; the resistance, wherein OS X2S 1 sandwiches the active layer, wherein 0 S X3 $1, &gt; is not separated by the first layer and contains a composition of 0 &lt; γ$ 1 〇 Wherein the two layers of the well layer in which the aforementioned DBR are opposite are formed by a combination of the foregoing refractive index white seed layers: wherein 0 &lt;Xhu, -36- 201234651 comprises a layer of (AlxiGa^xOnlni-YsP, wherein 〇$χι&lt; ι, Y3 = 〇.5; the composition difference A1 of the two layers AX=xh-xl is greater than or equal to 〇5. 6. The light-emitting diode according to item 4 of the patent application, wherein the two refractive indexes are different The layer system comprises a combination of a layer of Gainp and a layer comprising All nP. The light-emitting diode of claim 4, wherein the two layers having different refractive indices are composed of two layers different from each other. Ji He: A layer containing AIxlGa丨-x丨As, where O.lsxisl; and the package a layer of AlxhGa^xhAs, wherein O.lSxhSl; a difference in composition of A1 of two layers Δχ = χ1ι_χ1 is greater than or equal to 〇$. 8. The light-emitting diode of claim 1, wherein the surface of the light-emitting portion The current diffusion layer is provided on the surface opposite to the DBR reflection layer.
TW100141514A 2010-11-18 2011-11-15 Light emitting diode TW201234651A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010257868A JP2012109436A (en) 2010-11-18 2010-11-18 Light-emitting diode

Publications (1)

Publication Number Publication Date
TW201234651A true TW201234651A (en) 2012-08-16

Family

ID=46071766

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100141514A TW201234651A (en) 2010-11-18 2011-11-15 Light emitting diode

Country Status (3)

Country Link
JP (1) JP2012109436A (en)
CN (1) CN102468387A (en)
TW (1) TW201234651A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119585A (en) 2010-12-02 2012-06-21 Showa Denko Kk Light-emitting diode, light-emitting diode lamp and luminaire
JP6299955B2 (en) * 2013-12-20 2018-03-28 セイコーエプソン株式会社 Surface emitting laser and atomic oscillator
EP3073538B1 (en) 2015-03-25 2020-07-01 LG Innotek Co., Ltd. Red light emitting device and lighting system
CN105914265B (en) * 2016-05-05 2018-08-31 厦门市三安光电科技有限公司 A kind of GaAs based light-emitting diodes and preparation method thereof
CN105845793B (en) * 2016-06-01 2017-12-22 天津三安光电有限公司 A kind of black light light emitting diode and preparation method thereof
CN109994582B (en) * 2018-01-02 2020-08-25 山东华光光电子股份有限公司 A DBR Structure to Reduce Warpage of GaAs-Based Epitaxial Wafers
JPWO2020031954A1 (en) * 2018-08-07 2021-08-10 昭和電工光半導体株式会社 Semiconductor light emitting element, light transmission device
CN110212409A (en) * 2019-05-31 2019-09-06 度亘激光技术(苏州)有限公司 The preparation method of distribution Bragg reflector based on GaAs substrate
TWI742714B (en) * 2019-06-11 2021-10-11 全新光電科技股份有限公司 Semiconductor laser diode
JP7227357B2 (en) 2019-11-26 2023-02-21 天津三安光電有限公司 infrared light emitting diode
JP7458332B2 (en) * 2021-01-15 2024-03-29 株式会社東芝 semiconductor light emitting device
CN114551672A (en) * 2022-02-21 2022-05-27 厦门士兰明镓化合物半导体有限公司 Infrared LED epitaxial structure and preparation method thereof
WO2023212898A1 (en) * 2022-05-06 2023-11-09 泉州三安半导体科技有限公司 Micro light-emitting diode and display panel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3128788B2 (en) * 1991-07-02 2001-01-29 住友電気工業株式会社 Semiconductor laser
JPH0945959A (en) * 1995-07-28 1997-02-14 Toshiba Corp Light emitting element
JP3482098B2 (en) * 1997-04-16 2003-12-22 株式会社東芝 Semiconductor light emitting device
JP3854053B2 (en) * 2000-09-29 2006-12-06 京セラ株式会社 LED for infrared remote control
US6900467B2 (en) * 2001-05-21 2005-05-31 Stanley Electric Co., Ltd. Semiconductor light emitting device having quantum well layer sandwiched between carrier confinement layers
JP2006040998A (en) * 2004-07-23 2006-02-09 Hitachi Cable Ltd Semiconductor light emitting device, epitaxial wafer for semiconductor light emitting device
CN100502067C (en) * 2005-08-30 2009-06-17 日立电线株式会社 Epitaxial wafer for semiconductor light emitting element, manufacturing method thereof, and semiconductor light emitting element
JP2008091789A (en) * 2006-10-04 2008-04-17 Hitachi Cable Ltd Light emitting diode

Also Published As

Publication number Publication date
JP2012109436A (en) 2012-06-07
CN102468387A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
TW201234651A (en) Light emitting diode
TW575899B (en) Semiconductor light-emitting device and manufacturing method therefor, and LED lamp and LED display
CN101308899B (en) Semiconductor light emitting element
TWI462332B (en) Light-emitting diode, light-emitting diode lamp and lighting device
CN102598318B (en) Light emitting diode, LED light lamp and illuminator
US10756960B2 (en) Light-emitting device
TW200908369A (en) Light-emitting diode and manufacturing method thereof
CN101180743A (en) Nitride semiconductor light emitting element
JP2011082233A (en) Light emitting element
JP2012084692A (en) Light-emitting element
CN102725870B (en) Light-emitting diode, light-emitting diode lamp and lighting device
CN101859854A (en) Light emitting element
TWI518944B (en) Light-emitting diode, light-emitting diode lamp, and lighting device
TWI795364B (en) Light emitting device and method of forming the same
TW201242091A (en) Light emitting diode
JP5538006B2 (en) Light emitting diode
JP2019036629A (en) Deep ultraviolet light emitting diode and electric device equipped with the same
CN102725871B (en) Light-emitting diode, LED light lamp and lighting device
JP2011222950A (en) Light emitting diode
TW201210069A (en) Epitaxial wafer for light emitting diode
JP6921179B2 (en) III-P light emitting device using superlattice
TW200417066A (en) Semiconductor light emitting device and the manufacturing method thereof
JP2024106488A (en) Infrared LED element
JP2011086917A (en) Light emitting diode, light emitting diode lamp, and lighting system
JP2004103711A (en) Semiconductor light emitting device