201234394 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種積層陶瓷電子元件,特別是指積層 陶瓷壓敏電阻元件。 【先前技術】 參閱圖1 ’現有的積層陶瓷壓敏電阻元件包含一個積層 本體11、二個端電極12,及一組内電極單元13。該積層本 體11具有多數分別由陶瓷材料構成並依序堆疊的本體層 111,該二個端電極12以導電材料形成在該積層本體丨丨的 相反兩側部,該内電極單元13具有多數以導電材料印刷形 成在每一本體層lu上並交錯地分別與該二端電極12接觸 而電連接的電極層131 ’且任一電極層131反向於連接該一 端電極12的端部的正投影涵蓋相鄰的次一電極層131反向 於其連接該一端電極12的端部的區域而構成電容,藉由該 等交錯式電極層131的設計確保其電容值範圍,以及其他電 性的穩定,並將電路中的電壓箝制於一個相對固定的電壓值 範圍,避免暫態電壓突波產生時對後級電路(圖未示出)的傷 害。 目前的積層陶瓷壓敏電阻元件確實可以依左右交錯式 的電極層131的設計,而在靜電放電(ESD)或突波電流產生 時’崩潰導通而使多餘的電壓或電流經由接地方式旁通掉 (bypass) ’因而箝制電壓在系統電路可以承受的狀態持續維 持運作’以達到保護後級電路的目的。 參閱圖2,但是,受限於電容正比於相鄰二電極層131 201234394 的對應面積,及反比於相鄰二電極層131的距離的物理特 性’因此’現有的交錯式電極層131結構的積層陶£壓敏電 阻元件要將預設電容值降低至最小時,其結構會成如圖2 所示的左、右各僅有單—電極層131的態樣,而此種最簡單 結構的積層陶竟壓敏電阻S件雖㈣將電容值設計降低至 lpf以下’但部無法維持預設的耐靜電放電和耐突波電流的 能力’且易產生漏電流而無法量得崩潰電壓,因此,目前的 積層陶瓷壓敏電阻元件需要改善。 【發明内容】 因此本發明之目的,即在提供一種具有低電容且可量 得崩潰電壓的積層陶瓷壓敏電阻元件。 於疋,本發明一種積層陶瓷壓敏電阻元件包含一個積層 本體、二個端電極,及二組内電極單元。 該積層本體具有多數分別由陶竞材料構成並依序堆疊 的本體層。 a玄一端電極以導電材料分別形成在該積層本體的相反 二側部。 。亥一内電極單兀以導電材料形成在該積層本體中並呈 上下間隔地別與該二端電極連接,且分別具有多數個別形 成在名等本體層其中之_上且側邊與對應的該—端電極接 觸而電連接的側電極層,該二内電極單元中最相鄰的側電極 層的部分結構正投影彼此重疊而形成電容。 車义佳地n内電極單元具有二層分別印刷形成在對 應的本體層上且彼此不接觸的側電極層。 201234394 較佳地,該每一内電極單元還具有多數分別形成在該等 本體層其中之一上且側邊與對應的該另一端電極接觸而電 連接的輔助側電極層,每一輔助側電極層相反於接觸該端電 極的側邊投影不超過該另一内電極單元的側電極層側邊。 較佳地’構成該等本體層的陶瓷材料的主成分是氧化鋅 UnO),副成分是選自三氧化二鉍(Μ"3)、三氧化二銻 (Sb2〇〇、氧化始(c〇3〇4)、氧化猛(Mn〇2)、氧化録(驗)、氧 化鉍(Bi〇2)、二氧化二鉻(Cr2〇3)、氫氧化鋁(μ(⑽)3),及 此等之一組合。 較佳地,每一内電極單元的構成材料是選自導電金屬, 或導電合金,如鈀(Pd)、鉑(pt)、金(Au)、銀(Ag),及此等 之一組合。 本發明之功效在於:以左、右二側上下間隔的二内電極 皁兀’以及每一内電極單元都具有至少二層以上的侧電極層 的結構’可以在維持預設的耐靜電放電和耐突波電流的能力 =提要求I’將電容值設計降低至㈤以下,並且防止漏 電流而可確實地量得崩潰電壓。 【實施方式】 ^本發明之則述及其他技術内容、特點與功效,在以 .己&考圖式之三個較佳實施例料細說明中,將可清楚 的呈現。 參閱圖3,本發明_種積層陶变壓敏電阻元件的一 較佳實施例’包含—個積層本體21、二個端電極 _ 組内電極單元23。 201234394 該積層本體21具有多數分別由陶瓷材料構成並依序堆 疊的本體層211。較佳地,構成該等本體層的陶瓷材料的主 成分是氧化辞,副成分是選自三氧化二鉍(β“〇3)、三氧化 二録(SbzCh)、氧化結(C〇3〇4)、氧化猛(MnCh)、氧化娣(sb〇2)、 氧化祕(Bi〇2)、三氧化二鉻(Cr2〇3)、氫氧化鋁(A1(〇H)3), 及此等之一組合。 s玄一個端電極22以導電材料分別形成在該積層本體2 j 的相反兩側部。201234394 VI. Description of the Invention: [Technical Field] The present invention relates to a laminated ceramic electronic component, and more particularly to a laminated ceramic varistor component. [Prior Art] Referring to Fig. 1, the conventional laminated ceramic varistor element comprises a laminated body 11, two terminal electrodes 12, and a set of internal electrode units 13. The laminated body 11 has a plurality of body layers 111 each formed of a ceramic material and sequentially stacked, and the two terminal electrodes 12 are formed of conductive materials on opposite sides of the laminated body ,, and the internal electrode unit 13 has a plurality of The conductive material is printed on each of the body layers lu and alternately electrically connected to the two end electrodes 12 and electrically connected to the electrode layer 131' and any of the electrode layers 131 is opposite to the orthographic projection of the end portion connecting the one end electrodes 12. The adjacent second electrode layer 131 is opposite to the region of the end portion of the one end electrode 12, and the capacitance is formed by the design of the interdigitated electrode layer 131, and other electrical stability is ensured. And clamp the voltage in the circuit to a relatively fixed range of voltage values to avoid damage to the rear stage circuit (not shown) when the transient voltage surge is generated. The current laminated ceramic varistor component can indeed be designed to be connected to the left and right staggered electrode layer 131, and collapses during electrostatic discharge (ESD) or surge current generation to bypass excess voltage or current through grounding. (bypass) 'The clamp voltage thus continues to operate in a state that the system circuit can withstand' to achieve the purpose of protecting the downstream circuit. Referring to FIG. 2, however, the capacitance is proportional to the corresponding area of the adjacent two-electrode layer 131 201234394, and the physical property inversely proportional to the distance of the adjacent two-electrode layer 131. Therefore, the existing structure of the interleaved electrode layer 131 is laminated. When the varistor element is to minimize the preset capacitance value, the structure will be as shown in Fig. 2, and the left and right sides have only the single-electrode layer 131, and the simplest structure is laminated. Although the ceramic varistor S piece (4) reduces the capacitance value design to below lpf 'but the part can not maintain the preset resistance to electrostatic discharge and surge current resistance' and is prone to leakage current and can not measure the breakdown voltage, therefore, Current laminated ceramic varistor components need to be improved. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a laminated ceramic varistor element having a low capacitance and capable of measuring a breakdown voltage. In the present invention, a laminated ceramic varistor device of the present invention comprises a laminated body, two terminal electrodes, and two sets of internal electrode units. The laminated body has a plurality of body layers each composed of a ceramic material and sequentially stacked. A black end electrode is formed of a conductive material on opposite sides of the laminated body, respectively. . The inner electrode unit is formed of a conductive material in the laminated body and is connected to the two end electrodes in a vertically spaced manner, and each of the plurality of electrodes is formed on the _ of the body layer and the side and the corresponding one. a side electrode layer in which the terminal electrodes are in contact and electrically connected, and a partial structure orthographic projection of the most adjacent side electrode layers of the two internal electrode units overlap each other to form a capacitance. The inner electrode unit of Cheyijia has two layers of side electrode layers respectively formed on the corresponding body layers and not in contact with each other. 201234394 Preferably, each of the internal electrode units further has a plurality of auxiliary side electrode layers respectively formed on one of the body layers and the side edges are electrically connected to the corresponding other end electrodes, and each of the auxiliary side electrodes The layer projecting opposite to the side contacting the end electrode does not exceed the side of the side electrode layer of the other inner electrode unit. Preferably, the main component of the ceramic material constituting the body layers is zinc oxide UnO, and the accessory component is selected from the group consisting of antimony trioxide (Μ3), antimony trioxide (Sb2〇〇, oxidation start (c〇) 3〇4), oxidized (Mn〇2), oxidized (test), bismuth oxide (Bi〇2), chromium dioxide (Cr2〇3), aluminum hydroxide (μ((10))3), and Preferably, the constituent material of each internal electrode unit is selected from a conductive metal, or a conductive alloy such as palladium (Pd), platinum (pt), gold (Au), silver (Ag), and the like. The combination of the present invention is that the two internal electrode saponins ' spaced apart from each other on the left and right sides and the structure of each of the inner electrode units having at least two or more side electrode layers can maintain the preset Ability to withstand electrostatic discharge and surge current resistance = Requirement I' reduces the capacitance value design to (5) or less, and prevents leakage current and can reliably measure the breakdown voltage. [Embodiment] ^The present invention relates to other The technical content, features and functions will be clear in the detailed description of the three preferred embodiments of the model. Referring to Fig. 3, a preferred embodiment of the laminated ceramic varistor element of the present invention comprises a laminated body 21 and two terminal electrodes _ group internal electrode unit 23. 201234394 The laminated body 21 has Most of the body layers 211 are respectively composed of ceramic materials and are sequentially stacked. Preferably, the main component of the ceramic material constituting the body layers is an oxidation word, and the accessory component is selected from the group consisting of antimony trioxide (β "〇3), SbzCh, oxidized (C〇3〇4), oxidized (MnCh), yttrium oxide (sb〇2), oxidized secret (Bi〇2), chromium oxide (Cr2〇3), Aluminum hydroxide (A1(〇H)3), and one of these combinations. The sinoidal one end electrode 22 is formed on the opposite side portions of the laminated body 2j with a conductive material.
該二組内電極單元23以導電材料形成在該積層本體21 中,並呈上下間隔地分別與該二端電極22接觸而電連接, 該二内電極單元23分別具有二層側電極層231,每一側電 極層231形成在該等本體層211其中之一上且側邊與對應的 該一端電極22接觸而電連接,同時,該二内電極單元23 中最相鄰的側_ 231的部分結構正投影彼此重疊而形 成預定值的電容。㈣地’每—側電極層的構成材料是選自 導電金屬’如鈀⑽、鉑⑽、金(Au)、銀(Ag),又由此些 導電金屬所成的合金。 所述的積層陶錢敏電阻元件,藉由上、下正投影互相 交錯的最相鄰側電極層231的部分結構形成預定值的電 容,並配合另一側電極層23卜而在受到高電壓、突波、靜 電放電時形成崩潰導通,進而使電路斷路,以確保電性的穩 定,而可將電路中的電壓㈣於—個相對固定的電壓值範 圍,避免對後級f路的傷害,並可在料職㈣靜電放電 和耐突波電流的能力要求下’將電容值設計降低至W以 201234394 下;同時,單邊具有二層側電極層231的内電極單元23的 結構可以防止漏電流而確保崩潰電壓的可被量測。 參閱圖4,本發明一種積層陶瓷壓敏電阻元件的一第二 較佳實施例,是與上例相似,其不同處僅在於每一内電極單 元23包含多數層側電極層23卜在圖式中緣示三層側電極 層231作說明,藉由每一内電極單元23的多數層側電極層 31的、口構’可以更確保漏電流不會發生而可維持最低電 容設計值並確保崩潰電壓可被量測。 參閲圖5’本發明一種積層陶瓷壓敏電阻元件的一第三 較佳實施例’疋與该第一較佳實施例相似’不同處僅在於該 每-内電極單元23還具有多數分別形成在該等本體層2ιι 其中之-上且側邊與對應的該另—端電極22接觸而電連接 的辅助側電極層232’每-辅助側電極層232相反於接觸該 端電極22的側邊投影不超過該另—内電極單㈣的側電極 層23i側邊,整體而言是屬業界所稱的可變網版印刷結構, 藉此可在確保漏電流不會發生的前提下,更進一步地降低電 容設計值並確保崩潰電壓可被量測。 、不上所述’本發明主要是提出_種新的積層陶錢敏電 阻兀件,藉由内電極單元23上下間隔且彼此遠離地與端電 極22連接,以及每一内電極單元23具有多數層側電極層 231的結構設計,而在不影響耐靜電放電、突波、降低籍制 電麼的電性功能前提下,降低電容至lpf以下,同時防止漏 電流而確保崩潰電壓的可被量測’故確實能達成本發明之目 201234394 准以上所述者,僅為本發明之較佳 實施例而已,當不能 X此限疋本發明實施之範圍,即大凡依本發明申請專利範圍 及發明說明内容所作之簡單的等效變化貞修飾,皆仍屬本發 明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一剖視示意圖,說明現有的積層陶瓷壓敏電阻元 件; 圖2是一剖視示意圖,說明現有的具有最低阻值設計的 積層陶瓷壓敏電阻元件; 圖3是一剖視示意圖,說明本發明一種積層陶瓷壓敏電 阻元件的一第一較佳實施例; 圖4是一剖視示意圖,說明本發明一種積層陶瓷壓敏電 阻元件的一第二較佳實施例;及 圖5是一剖視示意圖,說明本發明一種積層陶瓷壓敏電 阻元件的一第三較佳實施例。 201234394 【主要元件符號說明】 11… • ••積層本體 211 • · ••本體層 111 · _ • ••本體層 22 · • · · ·端電極 12… …·端電極 23 · • · · ·内電極單元 13 · ·. ••内電極單元 231 • · · ·側電極層 131 · …·電極層 232 ••…輔助側電極層 21 · ·. • · ·積層本體The two sets of inner electrode units 23 are formed of a conductive material in the laminated body 21, and are electrically connected to the two end electrodes 22 at intervals, and the two inner electrode units 23 respectively have two side electrode layers 231. Each of the side electrode layers 231 is formed on one of the body layers 211 and the side edges are in electrical contact with the corresponding one end electrode 22, and at the same time, the most adjacent side of the two inner electrode units 23 is 231 The structure orthographic projections overlap each other to form a capacitance of a predetermined value. (4) The constituent material of each of the side-side electrode layers is an alloy selected from a conductive metal such as palladium (10), platinum (10), gold (Au), silver (Ag), and thus a conductive metal. The laminated ceramic-sensitive resistive element is formed by a partial structure of the most adjacent side electrode layer 231 in which the upper and lower orthographic projections are interlaced to form a capacitor of a predetermined value, and is subjected to a high voltage in cooperation with the other side electrode layer 23 When a surge or electrostatic discharge forms a crash conduction, the circuit is opened to ensure electrical stability, and the voltage in the circuit can be quadrupled to a relatively fixed voltage range to avoid damage to the rear stage f. The capacity value design can be reduced to W at 201234394 under the requirements of the (4) electrostatic discharge and surge current resistance requirements. Meanwhile, the structure of the inner electrode unit 23 having the two-layer side electrode layer 231 on one side can prevent leakage. The current ensures that the breakdown voltage can be measured. Referring to FIG. 4, a second preferred embodiment of a laminated ceramic varistor component of the present invention is similar to the above example except that each inner electrode unit 23 includes a plurality of layers of side electrode layers 23 in the drawing. The middle edge shows the three-layer side electrode layer 231. By the mouth structure of the majority-layer side electrode layer 31 of each internal electrode unit 23, it is possible to ensure that the leakage current does not occur and the minimum capacitance design value can be maintained and the collapse is ensured. The voltage can be measured. Referring to Figure 5, a third preferred embodiment of a laminated ceramic varistor component of the present invention is similar to the first preferred embodiment. The only difference is that the per-internal electrode unit 23 also has a plurality of separate formations. The auxiliary side electrode layer 232' per-the auxiliary side electrode layer 232 is electrically oppositely connected to the side of the body layer 2, and the side is in contact with the corresponding side electrode 22, and is opposite to the side contacting the terminal electrode 22. The projection does not exceed the side of the side electrode layer 23i of the other inner electrode unit (four), and is generally referred to as a variable screen printing structure in the industry, thereby further ensuring that leakage current does not occur. Ground down the capacitor design value and ensure that the breakdown voltage can be measured. In the present invention, the present invention mainly proposes a new laminated ceramic-sensitive resistor element, which is connected to the terminal electrode 22 by the inner electrode unit 23 spaced apart from each other and away from each other, and each inner electrode unit 23 has a majority The structural design of the layer side electrode layer 231, while not affecting the electrostatic discharge resistance, the surge, and the electrical function of reducing the power generation, reducing the capacitance to below lpf, while preventing leakage current and ensuring the amount of breakdown voltage It is to be understood that the present invention is intended to achieve the above-mentioned purpose of the present invention, which is only the preferred embodiment of the present invention, and is not limited to the scope of the present invention, that is, the scope and invention of the invention according to the present invention. The simple equivalent changes and modifications made to the description are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a conventional laminated ceramic varistor component; FIG. 2 is a cross-sectional view showing a conventional laminated ceramic varistor component having the lowest resistance design; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a cross-sectional view showing a second preferred embodiment of a laminated ceramic varistor component of the present invention. FIG. And FIG. 5 is a cross-sectional view showing a third preferred embodiment of a laminated ceramic varistor element of the present invention. 201234394 [Description of main component symbols] 11... • ••Laminated body 211 • ·•• Body layer 111 · _ • • • Body layer 22 · • · · · Terminal electrode 12 ... ... · Terminal electrode 23 · • · · · Electrode unit 13 · ··••Internal electrode unit 231 • · · · Side electrode layer 131 · ... · Electrode layer 232 ••...Auxiliary side electrode layer 21 · ·· • · · Multilayer body
1010