201229444 yyuu^iwl 36518twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有’-種追日系統及其追日方法,且 是有關於-種可減少電驗費的追日系統及其追日方法。 【先前技術】 在能源逐漸匱乏且環境保護成為燃眉之急的時代 下,使用太陽能面板發電成為推廣利用的替代來源之—, 且太陽能面板得以搭配高儲電量的蓄電池而有彈性的運用 太陽此產生之電力,而為了提升太陽能發電的效率(亦即提 升實際發電輸出之電量),許多太陽能的推廣研究機構從太 陽能面板的材質與透光率、蓄電池的品質或者太陽能發電 的地點力^改善’然、而還有—影響太陽能發電效率的關鍵 在於太陽旎面板的位置與角度是否可充份的吸收太陽光之 旎量,依據簡單的常識即可理解,當太陽光斜射一物體時, 該物體所吸收的能量較少,而當太陽光直射同一物體時, 該物體所吸收的能量較多,因而太陽能發電系統中的太陽 能面板最好是常態的朝向太陽的方向,盡可能的與太陽光 呈垂直的角度,以求獲取較多的能量。 目月ϋ太/W能電池系統的型式中,以固定角度接受太陽 光照射最為普遍。而隨著太陽運行,固定角度的太陽能系 統’將無法隨著太陽移動而垂直照射於太陽能面板上,進 而降低太~能面板吸收太陽光之照射量’使得系統發電量 降低。 201229444 ^^υυ-ti vy 1 36518twf.doc/n 為使太陽能模組隨時有最大的發電量,結合太陽能模 組與追縱機構所組成的追日型太陽發電系統,是目前應用 在太陽能發電廠等大電力之最適系統。太陽追蹤系統主要 由光感測器及機電伺服機構構成,感測器感測太陽的位置 薆化,然後調整太陽能面板面向太陽,提升太陽能模組接 收太陽光的輻射量。而感測器必須裝設於各個太陽能面板 附近,且架設角度需平行太陽能面板垂直角度,所以需要 精確的=位。此種方式雖可使太陽能面板隨時保持面向最 ,發電量的方向D在天候不良時,將會使太陽能面板的 =整角度出現誤差’且可能出現調整太陽能面板角度所耗 費的能量大於太·面板轉換後所得到 外’。由於太陽位置感測器直接曝露於外,容易^物干^ =貝壞,在各個太陽能面域設制器將會造成保 修的困難。 【發明内容】 時的種追曰系統及其追曰方法,可減少追曰 ^發明提出-種追日系統,包括多個太陽能面板、一 子單元以及一控制單元。其中感測單元用 能量大於或等於臨界輕射能量時:考 201229444 99004! W1 36518twf.doc/n 太陽能面板的仰角以及方位角,當太陽光輻射能量小於臨 界輻射能量時,停止調整上述太陽能面板的仰角以及方位 角。 在本發明之一實施例中,上述之參考數據更包括各太 陽能面板的位置,控制單元依據各太陽能面板的位置、日 期以及目前時間計算各太陽能面板所對應的仰角以及方位 角。 • 在本發明之一實施例中,上述之太陽能面板的位置包 括各太陽能面板所處的經度及緯度。 在本發明之一實施例中,上述之追日系統,更包括至 少一全球衛星定位系統接收器,其耦接控制單元,用以接 收一全球衛星定位系統發出的一定位座標,控制單元依據 定位座標、日期以及目前時間計算各太陽能面板所對應的 仰角以及方位角。其中上述定位座標包括上述多個太陽能 面板中至少一個太陽能面板所處的經度及緯度。 ,本發明之一實施例中,上述之控制單元更判斷目前 時間是否在太陽光微弱的一預設時段内,若目前時間在預 設時段内則停止調整上述太陽能面板的仰角以及方位角。 本發明亦提出一種追日系統的追日方法,其中追曰系 統包括多個太陽能面板,追曰方法步驟包括:感測一太陽 光幸畐射能量,·判斷太陽光輻射能量是否大於或等於一臨界 輕射能量;當太陽光輻射能量大於或等於臨界輻射能量 時,依據一參考數據調整上述太陽能面板的仰角以及方位 角,以及當太陽光輻射能量小於臨界輻射能量時,停止調 201229444 yyuU41W1 36518twf.doc/n 整上述太陽能面板的仰角以及方位角。在本發明之一實施 例中,上述之參考數據包括調整各太陽能面板的調整角度 所對應的消耗能量。 在本發明之一實施例中,上述之臨界輻射能量為調整 上述太陽能面板的仰角以及方位角所需的總能量。 在本發明之一實施例中,上述之調整太陽能面板的仰 角以及方位角的步驟更包括依據各太陽能面板的位置、日 期以及目前時間計算各太陽能面板所對應的仰角以及方位 角。 在本發明之一實施例中,上述之多個太陽能面板是以 開環路(open loop)的方式控制。 在本發明之一貫施例中,上述之調整太陽能面板的仰 角以及方位角的步驟更包括:接收一全球衛星定位系統發 出的一定位座標,而上述定位座標包括上述多個太陽能面 板中至少一個太陽能面板所處的經度及緯度;以及依據定 位座標、日期以及目前時間計算各太陽能面板所對應的仰 角以及方位角。 在本發明之一貫施例中,上述感測太陽光輻射能量後 的步驟更包括:判斷目前時間是否在太陽光微弱的一預設 時段内;以及若目前時間在預設時段内則停止調整上述太 陽能面板的仰角以及方位角。 基於上述,本發明利用控制單元比較太陽光輻射能量 與臨界輻射能量的大小,以在太陽光輻射能量較弱時停止 調整太陽能面板的角度,進而減少追日時的電源浪費情形。 201229444 99004TW1 36518twf.doc/n 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖1繪示為本發明一實施例之追日系統的示意圖。請 參妝圖1 ’追日系統100包括多個太陽能面板1〇2、感測單 兀104、儲存單元106以及控制單元108。其中多個太陽能 • 面板102可例如以陣列的方式排列,且分別被設置於多個 傳動裝置(未繪示)上,且各個傳動&置分別以有線(例如透 過有線網路)或無線的訊號傳輸方式接受控制單元108的 控制,以分別對多個太陽能面板102的仰角以及方位角進 行凋^。在本發明一實施例中,控制單元108以開環路 (open loop)的方式控制上述多個太陽能面板1〇2 ,以調整其 仰^以方位角。因開環路的特性,當太陽能面板102是以 開環路的方式控制時,追日系統100不易受異物干擾,並 可使各個太陽能面板102的架設及維護更為容易。 ,、此,,感測單元104可設置於多個太陽能面板1〇2所 形成的區域巾’用以感測太陽光的輕射能量。儲存單元106 則儲存參考數據。其中參考數據例如包括各太陽能面板 1〇2的位置以及調整各太陽能面板102的調整角度所對應 1消耗靶里。另在本發明一實施例中,上述太陽能面板⑺2 白位置包括各太陽能面板102所處的經度及緯度。 一另卜儲存單元1〇6以及控制單元1〇8可例如以電腦 、 彳一本發明並不以此為限,其他具有資料儲存及運 201229444 99004TW1 36518twf.doc/n 算功能的裝置亦適用。控制單元1〇8用以判斷太陽光的輻 射能量是否大於或等於一臨界輻射能量。其中,在本發^ 一貫施例中,臨界輻射能量被設定為是調整太陽能面板 102的仰角以及方位角時所需的總能量,其可依據儲存單 兀106所儲存之調整太陽能面板1〇2的角度所對應的消耗 能量的資料,以及將各太陽能面板1〇2調整至目前時間所 對應的仰角以及方位角所需的調整角度計算而得。當太陽 光輻射能量大於或等於臨界輻射能量時,控制單元1〇8依 據各太陽能面板102的位置、日期以及目前時間計算各太 陽能面板102所對應的仰角以及方位角,以使各太陽能面 板102可達到最佳的光電轉換效率。而當太陽光輻射能量 小於臨界輻射能量時,則停止調整太陽能面板1〇2的仰角 以及方位角,而可避免發生太陽能面板1〇2當時所產生的 功率不足以用於調整太陽能面板1〇2的情況。 值得注意的是,本實施例之追日系統丨⑻雖僅利用一 感測單元104來彳貞測太陽光的輕射能量,然實際上不以此 為限,當太陽能面板102的分布區域較廣,而使得各個太 1%能面板102間的照度差異過大時,亦可依實際情形增設 更多個感測單元104,以使控制單元1〇8更精確地調整各 個太1%能面板102的角度。另外,亦可設定臨界輻射能量 大於調整太陽能面板102的仰角以及方位角所需的總能量 一特定值時,才停止調整太陽能面板1〇2的仰角以及方位 角,以痛保調整太陽能面板102角度所耗費的能量小於太 陽能面板102轉換太陽輻射能量後所得到的能量。在部分 201229444 990041W1 36518twf.doc/n 實施例中亦可直接設定控制單元1〇8在太陽光較微弱的時 段不對太陽能面板102的角度進行調整,例如日落前i小 時至日出後1小時之間不調整太陽能面板1〇2的角度,以 避免電源的浪費。 如上所述,由於本實施例為依據各太陽能面板1〇2的 位置、日期以及目前時間計算各太陽能面板1〇2所對應的 仰角以及方位角,因此天候不良並不會造成調整角度上的 决差。另外本實施例更比較太陽光輻射能量與臨界輻射能 星的大小來決定是否對太陽能面板1〇2的角度進行調整, 如此一來便可避免如習知技術般在天候不良或太陽光微弱 時,出現調整太陽能面板角度所耗費的能量大於太陽能面 板轉換太陽輻射能量後所得到的能量的情形,從而減少追 曰時的電源浪費。 圖2繪示為本發明一實施例之追曰系統的示意圖。請 參照圖2,本實施例之追日系統2〇〇與圖丨實施例之追曰 系統100的不同之處在於,本實施例之追日系統2〇〇更包 • 括多個全球衛星定位系統接收器202,其耦接控制單元 108,並分別配置於各太陽能面板1〇2上。全球衛星定位系 統接收器202用以接收全球衛星定位系統發出的一定位座 標,而上述定位座標包括上述多個太陽能面板1〇2中至少 一個太陽能面板102所處的經度及緯度。換言之,上述各 太陽能面板102的位置可藉由全球衛星定位系統接收器 202來獲得。控制單元1〇8可依據接收器2〇2所接收到的 定位座標、日期以及目前時間計算各太陽能面板1〇2所對 201229444 99004TW1 36518twf.doc/n 應的仰角以及方位角,以使各太陽能面板1〇2達到最佳的 光電轉換效率。值得注意的是,在部分實施例中亦可僅使 用單一個全球衛星定位系統接收器2〇2,將其配置於其中 一個太面板102上,並依據各個太陽能面板的相 對空間關係來推得其他太陽能面板1〇2的位置。 圖3繪示為本發明一實施例之追日系統的追日方法流 程圖。請參照圖3,歸納上述追日系統的追日方法可包括 下列步驟。首先,感測太陽光輻射能量(步驟S3〇2)。接著, 判斷太陽光輻射能量是否大於或等於臨界輻射能量(步驟 S304),其中臨界輻射能量可例如設定為調整太陽能面板的 仰角以及方位角所需的總能量,其可依據調整太陽能面板 的角度所需的消耗能量以及將各太陽能面板調整至目前時 間所對應的仰角以及方位角所需的調整角度計算而得。當 太陽光輕射能量大於或等於臨界輻射能量時,依據參考數 據調整各個太陽能面板的仰角以及方位角(步驟S306),其 中參考數據例如包括各太陽能面板的位置以及調整各太陽 能面板的調整角度所對應的消耗能量。依據各太陽能面板 的位置、日期以及目前時間計算各太陽能面板所對應的仰 角以及方位角,即可將各太陽能面板轉至具有最佳的光電 轉換效率的角度。當太陽光輻射能量小於臨界輻射能量 時,停止調整各個太陽能面板的仰角以及方位角(步驟 S308) 〇 值得注意的是’在部分實施例中亦可直接設定控制單 元在太陽光較微弱的時段不對太陽能面板的角度進行調 201229444 99004TW1 36518twf.doc/n201229444 yyuu^iwl 36518twf.doc/n VI. Description of the invention: [Technical field to which the invention pertains] The present invention has a '-type chasing day system and a method for chasing the date, and is related to a kind of chasing that can reduce the tasting fee Japanese system and its method of chasing the Japanese. [Prior Art] In an era when energy is scarce and environmental protection is an urgent need, solar panel power generation has become an alternative source of promotion and utilization, and solar panels can be used with high-capacity storage batteries to flexibly use the electricity generated by the sun. In order to improve the efficiency of solar power generation (that is, to increase the power output of actual power generation), many solar energy research institutes have improved the material and light transmittance of solar panels, the quality of batteries, or the location of solar power generation. Also, the key to affecting the efficiency of solar power generation is whether the position and angle of the solar panel can fully absorb the amount of sunlight. According to simple common sense, when the sunlight is obliquely an object, the object absorbs it. The energy is less, and when the sunlight directly hits the same object, the object absorbs more energy, so the solar panel in the solar power generation system is preferably in the normal direction toward the sun, as perpendicular as possible to the sunlight. In order to obtain more energy. Among the types of the Moonlight/W-cell battery system, it is most common to receive sunlight at a fixed angle. With the sun running, the fixed-angle solar system will not be able to illuminate the solar panel vertically as the sun moves, thereby reducing the amount of solar radiation that can be absorbed by the panel. 201229444 ^^υυ-ti vy 1 36518twf.doc/n In order to maximize the amount of power generated by solar modules at any time, a solar-powered solar power system consisting of a solar module and a tracking system is currently used in solar power plants. The most suitable system for large power. The solar tracking system is mainly composed of a light sensor and an electromechanical servo mechanism. The sensor senses the position of the sun, and then adjusts the solar panel to face the sun to enhance the amount of sunlight received by the solar module. The sensor must be installed near each solar panel, and the erection angle needs to be parallel to the vertical angle of the solar panel, so accurate = position is required. Although this way, the solar panel can be kept facing the most at all times, and the direction D of the power generation amount will cause an error in the solar panel's = full angle when the weather is bad, and the energy required to adjust the angle of the solar panel may be greater than that of the panel. Get the outer ' after conversion. Since the sun position sensor is directly exposed to the outside, it is easy to make a dry ^^ beibei, and it is difficult to maintain the heat in each solar area. SUMMARY OF THE INVENTION A novel tracking system and a tracking method thereof can reduce the tracking effect. The invention proposes a tracking system, which includes a plurality of solar panels, a subunit, and a control unit. Where the energy used by the sensing unit is greater than or equal to the critical light energy: test 201229444 99004! W1 36518twf.doc/n The elevation angle and azimuth angle of the solar panel, when the solar radiation energy is less than the critical radiant energy, stop adjusting the solar panel Elevation angle and azimuth. In an embodiment of the invention, the reference data further includes the position of each solar panel, and the control unit calculates the elevation angle and the azimuth angle of each solar panel according to the position, date and current time of each solar panel. • In one embodiment of the invention, the location of the solar panel described above includes the longitude and latitude of each solar panel. In an embodiment of the present invention, the tracking system further includes at least one global satellite positioning system receiver coupled to the control unit for receiving a positioning coordinate issued by a global satellite positioning system, and the control unit is positioned according to the positioning The elevation angle and azimuth angle of each solar panel are calculated from coordinates, date, and current time. The positioning coordinates include a longitude and a latitude of at least one of the plurality of solar panels. In an embodiment of the present invention, the control unit further determines whether the current time is within a preset time period in which the sunlight is weak, and stops adjusting the elevation angle and the azimuth angle of the solar panel if the current time is within the preset time period. The invention also proposes a sun-tracking method of the sun-tracking system, wherein the tracking system comprises a plurality of solar panels, and the tracking method comprises: sensing a solar radiation energy, determining whether the solar radiation energy is greater than or equal to a critical value. Light energy; when the solar radiation energy is greater than or equal to the critical radiation energy, adjust the elevation angle and azimuth angle of the solar panel according to a reference data, and when the solar radiation energy is less than the critical radiation energy, stop adjusting 201229444 yyuU41W1 36518twf.doc /n The elevation angle and azimuth of the above solar panel. In an embodiment of the invention, the reference data includes adjusting the energy consumption corresponding to the adjustment angle of each solar panel. In one embodiment of the invention, the critical radiant energy is the total energy required to adjust the elevation and azimuth of the solar panel. In an embodiment of the invention, the step of adjusting the elevation angle and the azimuth angle of the solar panel further comprises calculating an elevation angle and an azimuth angle of each solar panel according to the position, date and current time of each solar panel. In an embodiment of the invention, the plurality of solar panels are controlled in an open loop manner. In a consistent embodiment of the present invention, the step of adjusting the elevation angle and the azimuth angle of the solar panel further includes: receiving a positioning coordinate issued by a global satellite positioning system, wherein the positioning coordinate comprises at least one of the plurality of solar panels. The longitude and latitude of the panel; and the elevation angle and azimuth corresponding to each solar panel based on the positioning coordinates, date, and current time. In a consistent embodiment of the present invention, the step of sensing the solar radiation energy further comprises: determining whether the current time is within a preset time period in which the sunlight is weak; and stopping the adjustment if the current time is within the preset time period. The elevation angle and azimuth of the solar panel. Based on the above, the present invention uses the control unit to compare the solar radiation energy with the critical radiation energy to stop adjusting the angle of the solar panel when the solar radiation energy is weak, thereby reducing the power waste during the day. 201229444 99004TW1 36518 twf.doc/n The above-described features and advantages of the present invention will become more apparent from the following detailed description. Embodiments FIG. 1 is a schematic diagram of a tracking system according to an embodiment of the present invention. Please refer to FIG. 1 'The tracking system 100 includes a plurality of solar panels 1 2, a sensing unit 104, a storage unit 106, and a control unit 108. The plurality of solar panels 102 may be arranged, for example, in an array, and respectively disposed on a plurality of transmissions (not shown), and each of the transmissions & is respectively wired (for example, through a wired network) or wireless. The signal transmission mode is controlled by the control unit 108 to respectively perform the elevation angle and the azimuth angle of the plurality of solar panels 102. In an embodiment of the invention, the control unit 108 controls the plurality of solar panels 1〇2 in an open loop manner to adjust its azimuth. Due to the characteristics of the open loop, when the solar panel 102 is controlled in an open loop manner, the tracking system 100 is less susceptible to foreign matter interference, and the erection and maintenance of each solar panel 102 can be made easier. The sensing unit 104 can be disposed on the area towel formed by the plurality of solar panels 1〇2 to sense the light energy of the sunlight. The storage unit 106 stores the reference data. The reference data includes, for example, the position of each solar panel 1〇2 and the adjustment angle of each solar panel 102. In another embodiment of the invention, the solar panel (7) 2 white location includes the longitude and latitude of each solar panel 102. The other storage unit 1〇6 and the control unit 1〇8 can be used, for example, in a computer or a third invention, and other devices having data storage and operation functions are also applicable. The control unit 1 8 is for determining whether the radiation energy of the sunlight is greater than or equal to a critical radiant energy. In the consistent embodiment of the present invention, the critical radiant energy is set to be the total energy required to adjust the elevation angle and the azimuth angle of the solar panel 102, and the solar panel can be adjusted according to the storage unit 106 stored in the storage unit 106. The energy consumption data corresponding to the angle and the adjustment angle required to adjust each solar panel 1〇2 to the elevation angle and azimuth angle corresponding to the current time are calculated. When the solar radiant energy is greater than or equal to the critical radiant energy, the control unit 〇8 calculates the elevation angle and the azimuth angle of each solar panel 102 according to the position, date and current time of each solar panel 102, so that each solar panel 102 can be Achieve optimal photoelectric conversion efficiency. When the solar radiation energy is less than the critical radiant energy, the elevation angle and the azimuth angle of the solar panel 1 〇 2 are stopped, and the power generated by the solar panel 1 〇 2 is prevented from being insufficient for adjusting the solar panel 1 〇 2 Case. It is to be noted that the tracking system (8) of the present embodiment uses only one sensing unit 104 to measure the light energy of sunlight, but it is not limited thereto, when the distribution area of the solar panel 102 is compared. If the illuminance difference between each of the 1% energy panels 102 is too large, more sensing units 104 may be added according to actual conditions, so that the control unit 1〇8 can more accurately adjust each of the too 1% energy panels 102. Angle. In addition, when the critical radiant energy is greater than the total energy required to adjust the elevation angle and the azimuth angle of the solar panel 102, the elevation angle and the azimuth angle of the solar panel 1〇2 are stopped, so as to adjust the angle of the solar panel 102. The energy consumed is less than the energy obtained by the solar panel 102 after converting solar radiation energy. In the embodiment 201229444 990041W1 36518twf.doc/n, the control unit 1 8 can also be directly set to not adjust the angle of the solar panel 102 during periods when the sunlight is weak, such as between 1 hour before sunset and 1 hour after sunrise. The angle of the solar panel 1〇2 is not adjusted to avoid waste of power. As described above, since the elevation angle and the azimuth angle of each solar panel 1〇2 are calculated according to the position, date, and current time of each solar panel 1〇2, the weather failure does not cause an adjustment angle. difference. In addition, this embodiment compares the solar radiation energy with the size of the critical radiant energy star to determine whether to adjust the angle of the solar panel 1 〇 2, so as to avoid the bad weather or the weak sunlight when the conventional technology is used. The energy consumed to adjust the angle of the solar panel is greater than the energy obtained by converting the solar radiation energy from the solar panel, thereby reducing power waste during tracking. 2 is a schematic diagram of a tracking system according to an embodiment of the present invention. Referring to FIG. 2, the tracking system of the present embodiment is different from the tracking system 100 of the embodiment of the present invention in that the tracking system of the embodiment includes a plurality of global satellite positioning. The system receiver 202 is coupled to the control unit 108 and disposed on each of the solar panels 1〇2. The global satellite positioning system receiver 202 is configured to receive a positioning coordinate issued by the global satellite positioning system, and the positioning coordinate includes a longitude and a latitude of at least one of the plurality of solar panels 1〇2. In other words, the location of each of the solar panels 102 described above can be obtained by the global satellite positioning system receiver 202. The control unit 1〇8 can calculate the elevation angle and the azimuth angle of the 201229444 99004TW1 36518twf.doc/n of each solar panel 1〇2 according to the positioning coordinates, date and current time received by the receiver 2〇2, so as to make each solar energy Panel 1〇2 achieves the best photoelectric conversion efficiency. It should be noted that in some embodiments, only a single global positioning system receiver 2〇2 may be used, which is disposed on one of the panels 102, and the other spatial panels are used to derive other The position of the solar panel 1〇2. 3 is a flow chart showing a method of chasing the date of the sun tracking system according to an embodiment of the present invention. Referring to FIG. 3, the following method of summarizing the above-mentioned Japanese tracking system may include the following steps. First, the solar radiation energy is sensed (step S3〇2). Next, it is determined whether the solar radiation energy is greater than or equal to the critical radiation energy (step S304), wherein the critical radiation energy can be set, for example, to adjust the total energy required for the elevation angle and the azimuth of the solar panel, which can be adjusted according to the angle of the solar panel. The required energy consumption and the adjustment angle required to adjust each solar panel to the elevation angle and azimuth corresponding to the current time are calculated. When the solar light energy is greater than or equal to the critical radiant energy, the elevation angle and the azimuth angle of each solar panel are adjusted according to the reference data (step S306), wherein the reference data includes, for example, the position of each solar panel and the adjustment angle of each solar panel. Corresponding energy consumption. By calculating the elevation and azimuth of each solar panel based on the position, date, and current time of each solar panel, each solar panel can be turned to an angle with optimal photoelectric conversion efficiency. When the solar radiant energy is less than the critical radiant energy, the elevation angle and the azimuth angle of each solar panel are stopped (step S308). 〇 It is worth noting that in some embodiments, the control unit may be directly set to be in a relatively weak period of sunlight. The angle of the solar panel is adjusted 201229444 99004TW1 36518twf.doc/n
整。如圖4所示之另一實施例的追日系統的追日方法流程 圖,圖4之追日方法的流程圖與圖3之追日方法的流程圖 的不同之處在於,圖4之實施例在感測太陽光輻射能量(步 驟S302)後,更判斷目前時間是否在太陽光微弱的預設時 段内(步驟S402),若目前時間在此預設時段内則停止調整 各個太陽能面板的仰角以及方位角(步驟S308)。若目前時 間不在此預設時段内,則判斷太陽光輻射能量是否大於或 等於臨界輻射能量(步驟S304) ’並接著依據太陽光輻射能 量與臨界輻射能量的大小判斷是否調整各個太陽能面板的 仰角以及方位角。 綜上所述,本發明依據各太陽能面板的位置、日期以 及目前時間計算各太陽能面板所對應的仰角以及方位角, 另外並比較太陽光輻射能量與臨界輻射能量的大小來決定 是否對太陽能面板的角度進行調整。如此一來便可避免如 習知技術般在天候不良或太陽光微弱時,出現調整太陽能 面板角度所耗費的能量大於太陽能面板轉換太陽轄射能量 後所2到的能量的情形,從而減少追日時的電源浪費。在 j刀貫施例巾更可直接在太陽光微弱的預設時段内止調 整太陽能面板的角度’以進一步減少電源的浪費。 ^然本發明已以實施例揭露如上,然其並非用以限定 ,任何所屬技術領域中具有通常知識者,在不脫離 發明之保護範圍當視後附之申請專利範SC;本 11 201229444 yy(JU4IWl 36518twf.doc/n 【圖式簡單說明】 圖1繪示為本發明一實施例之追日系統的示意圖。 圖2繪示為本發明一實施例之追日系統的示意圖。 圖3繪示為本發明一實施例之追日系統的追日方法流 程圖。 圖4繪示為本發明另一實施例之追日系統的追日方法 流程圖。 【主要元將號綱】 ® 100、200 :追日系統 102 :太陽能面板 104 :感測單元 106 :儲存單元 108 :控制單元 202 :全球衛星定位系統接收器 S302〜S308、S402 :追日系統追日方法的流程步驟whole. FIG. 4 is a flow chart of a method for chasing the date of the tracking system according to another embodiment of the present embodiment, and the flowchart of the method for tracking the date of FIG. 4 is different from the flowchart of the method for tracking the date of FIG. 3 in that the implementation of FIG. 4 is implemented. For example, after sensing the solar radiation energy (step S302), it is further determined whether the current time is within a preset time period in which the sunlight is weak (step S402), and if the current time is within the preset time period, the elevation angle of each solar panel is stopped. And an azimuth angle (step S308). If the current time is not within the preset time period, determine whether the solar radiation energy is greater than or equal to the critical radiant energy (step S304)' and then determine whether to adjust the elevation angle of each solar panel according to the magnitude of the solar radiant energy and the critical radiant energy and Azimuth. In summary, the present invention calculates the elevation angle and azimuth angle of each solar panel according to the position, date and current time of each solar panel, and compares the solar radiation energy with the critical radiant energy to determine whether the solar panel is Adjust the angle. In this way, it is possible to avoid the situation that when the weather is poor or the sunlight is weak, the energy consumed to adjust the angle of the solar panel is greater than the energy of the solar panel after converting the solar radiation energy, thereby reducing the time of chasing the sun. The power is wasted. In the j-segmental towel, the angle of the solar panel can be adjusted directly within a preset period of time when the sunlight is weak, to further reduce the waste of the power source. The present invention has been disclosed in the above embodiments, but it is not intended to be limiting, and any person having ordinary knowledge in the art can be attached to the patent application SC without departing from the scope of the invention; this 11 201229444 yy ( BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a solar tracking system according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a solar tracking system according to an embodiment of the present invention. FIG. 4 is a flow chart of a method for chasing the date of the sun-tracking system according to another embodiment of the present invention. FIG. 4 is a flow chart of a method for chasing the date of the sun-tracking system according to another embodiment of the present invention. : Chasing system 102: solar panel 104: sensing unit 106: storage unit 108: control unit 202: global satellite positioning system receiver S302~S308, S402: process steps of chasing the Japanese system tracking method
12 S12 S