[go: up one dir, main page]

TW201217296A - Bone cement formula and bioresorbable hardened bone cement composites prepared with the same - Google Patents

Bone cement formula and bioresorbable hardened bone cement composites prepared with the same Download PDF

Info

Publication number
TW201217296A
TW201217296A TW99135634A TW99135634A TW201217296A TW 201217296 A TW201217296 A TW 201217296A TW 99135634 A TW99135634 A TW 99135634A TW 99135634 A TW99135634 A TW 99135634A TW 201217296 A TW201217296 A TW 201217296A
Authority
TW
Taiwan
Prior art keywords
csh
paste
bone cement
ttcp
phosphate
Prior art date
Application number
TW99135634A
Other languages
Chinese (zh)
Other versions
TWI453174B (en
Inventor
Jiin-Huey Chern Lin
Chien-Ping Ju
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW099135634A priority Critical patent/TWI453174B/en
Publication of TW201217296A publication Critical patent/TW201217296A/en
Application granted granted Critical
Publication of TWI453174B publication Critical patent/TWI453174B/en

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

The present invention provides a bone cement formula having a powder component and a setting liquid component, wherein the powder component includes a calcium sulfate source and a calcium phosphate source with a weight ratio of the calcium sulfate source less than 65%, based on the total weight of the calcium sulfate source and the calcium phosphate source, and the setting liquid component comprises ammonium ion (NH4+) in a concentration of about 0.5 M to 4 M, wherein the calcium phosphate source includes tetracalcium phosphate (TTCP) and dicalcium phosphate in a molar ratio of TTCP to dicalcium phosphate of about 0.5 to about 2.5, and the calcium sulfate source is calcium sulfate hemihydrate (CSH), calcium sulfate dehydrate (CSD), or anhydrous calcium sulfate.

Description

201217296 六、發明說明: 【發明所屬之技術領域】 本發明的示例性實施方式涉及用於藥物的骨修復物 質°更具體地,本發明的示例性實施方式涉及一種骨水泥 S己方(bone cement formula) 〇 【先前技術】 骨水泥組合物廣泛用於粘結、填充和/或修復受損的天 然骨。骨水泥通常用於矯形、牙齒程式(dental procedures ) 和/或其他醫學應用。儘管具有許多優點,例如優異的生物 相容性、優良的骨傳導性(osteoconductivity)以及增強的 機械強度或物理強度,但是大多數磷酸鈣表現出在臨床上 的生物再吸收速率(bioresorption rate )低。另一方面,硫 酸飼的化合物還顯示較高的溶解速率,對於許多應用,為 了使新的骨細胞在骨腔中快速生長,該溶解速率通常太 高•含有硫酸鈣的複合材料通常具有比含有磷酸鈣的複合 材料更低的機械強度和/或物理強度。 與傳統的骨水泥漿糊相關的另一個問題為延長固化時 間,因而妨礙了對各種應用的適用性。例如,在美國專利 N〇.4,612,053中所述的磷酸鈣(CPC)漿糊通常需要延長固 化時間。 【發明内容】 本發明的實施方式公開了 一種提供鱗酸飼-硫酸約複 4 201217296 合材料的方法’該複合材料表現出增強的強度、優異的生 物相容性、優良的骨傳導性、適當且可調節的生物再吸收 速率。 實施方式的目的是提供一種骨水泥配方、骨水泥漿 糊、由所述漿糊形成的硬化骨水泥複合材料、通過對所述 漿糊加壓同時從所述漿糊中漏出溶液而形成的具有增強的 強度的硬化骨水泥複合材料、以及由所述漿糊形成的多孔 硬化骨水泥複合材料》 本發明的實施方式提供了用於提供骨水泥配方、骨水 泥漿糊、硬化骨水泥複合材料、具有增強的強度的硬化骨 水泥複合材料、以及多孔硬化骨水泥複合材料的方法。 本發明的一種實施方式提供了一種使用示例性實施方 式的骨水泥漿糊填充骨中的孔或腔的方法,該骨水泥漿糊 在需要處理的孔或腔中固化或硬化。本發明的另一種實施 方式提供了一種在處理過程中植入硬化骨水泥複合材料的 方法。 本發明的一種實施方式提供了一種骨水泥配方,該骨 水泥配方含有粉末組份和固化液體組份,其中液體與粉末 的比率為0.20 cc/g至0.50 cc/g (cc為立方釐米,g為克), 優選0.25 cc/g至0.3 5 cc/g。在一個方面,所述粉末組份含 有硫酸鈣源和磷酸鈣源,以所述硫酸鈣源和磷酸鈣源的總 重量為基準,所述硫酸鈣源的重量比小於65。/(^在一個方 面,所述固化液體組份含有濃度為約0 5 Μ至4 Μ的銨離 子(ΝΗ/)。在一個方面,所述磷酸鈣源包括磷酸四鈣^丁^以 201217296 和磷酸二鈣,其中TTCP與磷酸二鈣的摩爾比為約〇 5至約 2.5 ’優選為1.0,並且所述硫酸鈣源為半水合硫酸鈣 (CSH)、脫水硫酸鈣(CSD)或無水硫酸鈣,並優選為csh。 應>主意到’對於不同的醫學跡象,所需的吸收速率可 以不同。因此,更期望的水泥應能夠提供一定範圍的骨再 吸收速率’而不會顯著改變其初級配方、性能和工作時間/ 固化時間。例如’由於硫酸鈣源和磷酸鈣源的共存,植入 的硬化水泥複合材料的吸收速率是可調節的。動物研究表 明,通過調節硫酸鹽/磷酸鹽的比率,可以調節硬化的硫酸 鹽-磷酸鹽水泥複合材料的吸收速率。 在種實施方式中,以所述硫酸約源和麟酸約源粉末 的總重量為基準,所述粉末組份的硫酸鈣源為大於5%,並 優選為10%至55%。在一個方面,所述磷酸鈣源包括磷酸 四角(TTCP)和鱗酸二約’優選為DCPA,其中TTCP與麟酸 二約的摩爾比為約0.5-2.5,優選為約並且所述硫酸 鈣源為半水合硫酸鈣(CSH)、脫水硫酸鈣(CSD)或無水硫酸 鈣,並優選為CSH。 如在對照實施例1 -4中說明或證明的,在以下的實驗 程式部分中關於TTCP、DCPA與CSH的組合的詳細討論是 必要的。由於TTCP、DCPA和CSH可在一定的重量比範圍 内組合或混合,因此可得到各種獨特和不可替代的結果。 另一方面,兩種化合物的混合物(例如TTCp/CSH和 DCPA/CSH)的各種實驗產生了不令人滿意的結果。 雖然通常認為錄為一種較具毒性的組份,但是,以下 201217296 所示的實驗說明,銨不僅提供了在細胞毒性上可接受的水 泥配方’而且還提供了具有空前的性能的水泥配方。當銨 離子的濃度太低時,水泥漿糊可在與液體例如水或體液 (即’也液)接觸時分散,或者其初始機械強度太低以至於 不能保持水泥漿糊的完整性,這樣可導致水泥漿糊過早破 裂。另一方面,當銨離子濃度太高時,水泥漿糊變得毒性 太大,以至於不能用作植入物。 在一種實施方式中,所述固化液體組份含有銨離子 (NH4+) ’其濃度為約ι·〇μ至2.0M,更優選為約1.2M。 在一個實例中’所述固化液雔組份為νη4η2ρο4、 (ΝΗ4)2ΗΡ04、(ΝΗ4)3Ρ〇4.3Η20的溶液或它們的混合物。優 選情況下’所述固化液體組份為水溶液。選擇性地,所述 固化液體組份還含有溶解於其中的檸檬酸或酒石酸。優選 所述固化液體組份的pH值為約7.0至約9.0。 在一種實施方式中,所述粉末組份含有造孔劑 (pore-forming agent ),當將硬化骨水泥複合材料在溶液中 浸潰時,該造孔劑在溶液中溶解。優選情況下,所述造孔 劑選自由 LiCn、KC 卜 NaCn、MgCl2、CaCl2、NaI03、K1、 Na3P〇4、K3P04、Na2C03、胺基酸_納鹽、胺基酸-奸鹽、葡 萄糖、多糖、脂肪酸-鈉鹽、脂肪酸-鉀鹽、酒石酸氫鉀 (khc:4H4〇6)、碳酸鉀、葡萄糖酸鉀(KC6Hu〇7)、酒石酸鈉 鉀(KNaC4H4(V4H2〇)、硫酸鉀(K2S〇4)、硫酸鈉、乳酸鈉和 甘露醇組成的組中。所用的造孔劑的量與硬化骨水泥複合 材料期望得到的孔隙率成比例。 201217296201217296 VI. Description of the Invention: [Technical Field of the Invention] Exemplary embodiments of the present invention relate to a bone restorative substance for a drug. More specifically, an exemplary embodiment of the present invention relates to a bone cement formula (bone cement formula) 〇 [Prior Art] Bone cement compositions are widely used to bond, fill and/or repair damaged natural bone. Bone cement is commonly used for orthopedics, dental procedures, and/or other medical applications. Despite many advantages, such as excellent biocompatibility, excellent osteoconductivity, and enhanced mechanical strength or physical strength, most calcium phosphates exhibit clinically low bioresorption rates. . On the other hand, sulfate-fed compounds also show higher dissolution rates, and for many applications, in order to allow new bone cells to grow rapidly in the bone cavity, the dissolution rate is usually too high. • Composites containing calcium sulfate usually have a specific ratio. The composite of calcium phosphate has lower mechanical strength and/or physical strength. Another problem associated with conventional bone cement pastes is the prolonged cure time, thus impeding applicability to a variety of applications. For example, the calcium phosphate (CPC) paste described in U.S. Patent No. 4,612,053 generally requires an extended curing time. SUMMARY OF THE INVENTION Embodiments of the present invention disclose a method for providing a squaric acid-sulphuric acid compound 4 201217296 composite material. The composite material exhibits enhanced strength, excellent biocompatibility, excellent bone conductivity, and appropriate And adjustable bioresorption rate. It is an object of an embodiment to provide a bone cement formulation, a bone cement paste, a hardened bone cement composite formed from the paste, formed by pressurizing the paste while leaking a solution from the paste Enhanced strength hardened bone cement composite, and porous hardened bone cement composite formed from the paste. Embodiments of the present invention provide for providing a bone cement formulation, a bone cement paste, a hardened bone cement composite, A method of hardening a bone cement composite having enhanced strength, and a porous hardened bone cement composite. One embodiment of the present invention provides a method of filling a hole or cavity in a bone using an exemplary embodiment of a bone cement paste that solidifies or hardens in a hole or cavity that requires treatment. Another embodiment of the present invention provides a method of implanting a hardened bone cement composite during processing. One embodiment of the present invention provides a bone cement formulation comprising a powder component and a solidified liquid component, wherein the ratio of liquid to powder is from 0.20 cc/g to 0.50 cc/g (cc is cubic centimeters, g It is preferably 0.25 cc/g to 0.35 cc/g. In one aspect, the powder component comprises a source of calcium sulfate and a source of calcium phosphate based on the total weight of the source of calcium sulfate and calcium phosphate, the weight ratio of the source of calcium sulfate being less than 65. / (^ In one aspect, the solidified liquid component contains an ammonium ion (ΝΗ/) at a concentration of about 0.5 to 4 Torr. In one aspect, the calcium phosphate source comprises tetracalcium phosphate to be 201217296 and Dicalcium phosphate, wherein the molar ratio of TTCP to dicalcium phosphate is from about 5 to about 2.5', preferably 1.0, and the calcium sulfate source is calcium sulfate hemihydrate (CSH), dehydrated calcium sulfate (CSD) or anhydrous calcium sulfate. And preferably csh. It should be > the idea that 'the rate of absorption required for different medical indications can be different. Therefore, the more desirable cement should be able to provide a range of bone resorption rates' without significantly changing its primary Formulation, performance and working time / curing time. For example, 'the absorption rate of the implanted hardened cement composite is adjustable due to the coexistence of the calcium sulfate source and the calcium phosphate source. Animal studies have shown that by adjusting the sulfate/phosphate The ratio of the absorption rate of the hardened sulfate-phosphate cement composite can be adjusted. In an embodiment, the powder group is based on the total weight of the sulfuric acid source and the linonic acid source powder. The source of calcium sulfate is greater than 5%, and preferably from 10% to 55%. In one aspect, the calcium phosphate source comprises tetragonal tetraphosphate (TTCP) and bisenoate di', preferably DCPA, wherein TTCP is dichotomous with linonic acid The molar ratio is about 0.5-2.5, preferably about and the calcium sulfate source is calcium sulfate hemihydrate (CSH), dehydrated calcium sulfate (CSD) or anhydrous calcium sulfate, and preferably CSH. As in Comparative Example 1 - As explained or demonstrated in 4, a detailed discussion of the combination of TTCP, DCPA and CSH is necessary in the experimental program section below. Since TTCP, DCPA and CSH can be combined or mixed within a certain weight ratio range, it is available. Various unique and irreplaceable results. On the other hand, various experiments with mixtures of two compounds (such as TTCp/CSH and DCPA/CSH) produced unsatisfactory results, although generally considered to be a more toxic group. However, the experiments shown in 201217296 below show that ammonium not only provides a cytotoxic acceptable cement formulation' but also provides a cement formulation with unprecedented performance. When the concentration of ammonium ions is too low, water The paste may be dispersed upon contact with a liquid such as water or a body fluid (i.e., 'also liquid), or its initial mechanical strength is too low to maintain the integrity of the cement paste, which may cause the cement paste to rupture prematurely. In contrast, when the ammonium ion concentration is too high, the cement paste becomes too toxic to be used as an implant. In one embodiment, the solidified liquid component contains ammonium ions (NH4+) at a concentration of From about 1⁄2 to 2.0 M, more preferably about 1.2 M. In one example, the solidified liquid component is a solution of νη4η2ρο4, (ΝΗ4)2ΗΡ04, (ΝΗ4)3Ρ〇4.3Η20 or a mixture thereof. Preferably, the solidified liquid component is an aqueous solution. Optionally, the solidified liquid component further contains citric acid or tartaric acid dissolved therein. Preferably, the solidified liquid component has a pH of from about 7.0 to about 9.0. In one embodiment, the powder component contains a pore-forming agent that dissolves in the solution when the hardened bone cement composite is impregnated in solution. Preferably, the pore forming agent is selected from the group consisting of LiCn, KC, NaCn, MgCl2, CaCl2, NaI03, K1, Na3P〇4, K3P04, Na2C03, amino acid-sodium salt, amino acid-salt salt, glucose, polysaccharide , fatty acid-sodium salt, fatty acid-potassium salt, potassium hydrogen tartrate (khc: 4H4〇6), potassium carbonate, potassium gluconate (KC6Hu〇7), sodium potassium tartrate (KNaC4H4 (V4H2〇), potassium sulfate (K2S〇4) In the group consisting of sodium sulfate, sodium lactate and mannitol, the amount of pore former used is proportional to the desired porosity of the hardened bone cement composite.

在一種實施方式中’所述磷酸鈣源為TTCP和DCPA 的混合物。在一個方面,所述骨水泥配方使得骨水泥漿糊 具有期望的工作時間和固化時間’從而使操作者在漿糊變 硬之前有足夠的時間用所述漿糊來填充孔或腔。應注意 到,已填充的漿糊將形成在可接受的短時間段内處理所需 的最小強度。 在一種實施方式中,所述硬化骨水泥複合材料具有低 毒性,因而,例如,在施用於患者時是安全的。注意到, 硬化骨水泥具有提高的生物可再吸收的速率的高初始強 度的特性。 由以下.所述的詳細描述、圖表和申請專利範圍,本發 明的另外的特徵和益處是顯而易見的。 【實施方式】 本文中在用於製備具有醫藥用增強的生物可再吸收的 速率的硬化骨水泥複合材料的方法、配方、系統和/或過程 的上下文中描述本發明的各實施方式。本領域普通技術人 員認識到’具體實施方式的以下詳細描述僅用於舉例說 明’而不是要以任何方式限制本發明。受益於本發明公開, 專業人員容易提出本發明的其他實施方式。 涉及“一種實施方式”、“一個實施方式”、“實施 例實施方式”、各種實施方式”、“示例性實施方式’’、 一方面”、“一個方面”、“示例性方面”、“各方面” 等等時,說明這樣描述的本發明的具體實施方式可包括某 201217296 -具體的特徵、結構或特性,但是不是每一個實施方式必 =括該具體的特徵、結構或特性。另外,重複使用的短 σ在種實施方式中”不必然指相同的實施方式,但是 也可為相同的實施方式β ,為了清楚起見,不是對所有的實施和/或方法的傳統特 徵都進行了說明和描述。當然,應理解的是,在開發任何 這種實際的實施時,要進行眾多實施_特定性決定,以便達 到開發者的特定目標,例如與應用和業務相關的限制一 致並且這些特定目標可以在不同的實施以及不同的開發 者中變化。此外’應理解的是,這種開發計畫可能複雜且 耗時,但是在受益於本發明公開的本領域普通技術人員常 識性範圍内。 本發明的具體實施方式為適用於各種醫學領域(例如 矯形、脊柱和根管外科手術)的生物可再吸收的骨水泥。所 述生物可再吸收的骨水泥或配方的特性或性能具有方便的 工作環境和固化時間,以形成具有高強度、優異的生物相 容性和優良的骨傳導性以及可調節的(或靈活的)生物再吸 收速率的硬化塊。 為了製備或製得生物可再吸收的骨水泥,該骨水泥具 有靈活的(或方便的)工作環境(或時間)和固化時間的性 能’以形成具有期望的強度和生物相容性的硬化骨水泥複 合材料,本發明的一種實施方式公開了一種骨水泥配方, 該骨水泥配方將在以下更詳細描述。在一個方面,用於製 備硬化骨水泥複合材料的方法或過程包括產生骨水泥漿糊 201217296 以及將所述漿糊放置在該漿糊可固化的環境中。 在一種實施方式中,用於製備骨水泥漿糊的方法包括 通過混合機器(例如攪拌)將粉末組份與固化液體組份混 合°例如’所述粉末組份可包括硫酸鈣源和磷酸鈣源的混 合物°或者’硫酸鈣源和磷酸鈣源可為分離的粉末。在這 種情況下,在與固化液體組份混合之前,可首先將硫酸鈣 源和磷酸鈣源組合,以形成粉末混合物。 前述硫酸鈣源和磷酸鈣源可為磷酸四鈣(TTCP)和/或 無水鱗酸二鈣(DCPA)粉末。應注意到,可使用其他類型的 來源’只要它們具有與TTCP和/或DCPA類似的化學性能 或特性即可。 在一種實施方式中,在大氣環境或體液(例如血液) 圍繞的環境下’所述骨水泥漿糊在固化時間段内變硬或固 化。在操作過程中,操作者或醫生通過切開術經由適當的 工具將骨水泥漿糊放置在受損的骨的孔或腔中。例如,對 於矯形、脊柱或根管處理,當骨水泥漿糊原位變成或固化 成為硬化骨水泥複合材料時,根據預定的生物再吸收速 率,該硬化骨水泥經過一定的時間可被受治療者再吸收。 根據應用,在一種實施方式中,在將骨水泥漿糊植入到受 治療者身體内以修復受損部位(例如骨或牙齒)之前,可 將骨水泥漿糊成形為骨水泥複合材料的剛性塊或半剛性 塊》 在一種實施方式中,可使用矯形漿糊遞送工具(例如在 US 7,325,702 B2中所述的傳統醫學儀器)將骨水泥漿糊注 201217296 射至骨孔或腔中或通過模具成形,其中漿糊將形成硬化骨 水泥複合材料塊。應注意到,矯形遞送工具能將漿糊連續 遞送至骨腔中,直至骨腔被充滿。 根據應用,如果粉末組份不含適當的造孔劑,則可形 成水泥的敏密塊。例如’為了從漿糊中排放或除去一部分 液體’從而降低漿糊的液體/粉末比率,所述緻密塊可通過 在黎糊固化之前對模具中的骨水泥漿糊加壓而形成。在一 個方面’施用於模具中的所述漿糊的壓力為約1兆帕 (MPa”)至 500 MPa ’ 優選為 100 MPa 至 500 MPa。注意到, 該缴密塊具有優良的壓縮強度,其可用作醫學植入物。還 應注意到’用浸潰液體將磷酸鈣水泥的剛性或實心的緻密 塊浸潰預定的時間段,使得與未進行這種浸潰處理的塊相 比’所得到的浸潰過的塊的總壓縮強度提高。在一種實施 方式中’所述浸潰液體為含磷酸鹽的溶液。示例性水溶液 可包括’但不限於,(NH4)3p〇4、(NH4)2HP〇4、ΝΗ4Η2ρ〇4、 Κ3Ρ〇4、Κ2ΗΡ〇4、ΚΗ2Ρ〇4、Na3P〇4、Na2HP04、NaH2P〇4 或Η3Ρ〇4。在一個實例中,所述含磷酸鹽的溶液中磷酸鹽 濃度為約0.1 Μ至約6 Μ,優選為約1 Μ至約3 Μ。 當所述骨水泥配方的粉末組份含有造孔劑時,多孔塊 了用作組織-工程支架(tissue-engineered scaffold )。通過 將模塑塊在沉浸液體中浸潰,使得造孔劑溶解於沉浸液體 中’可將造孔劑從模塑塊中除去。造孔劑可在粉末組份與 固化液體組份的混合過程中加入,或者可在將其放置在模 具_之前加入到所得到的漿糊中。所述沉浸液體例如可為 11 201217296 酸性水溶液、鹼性水溶液、生理溶液、有機溶劑或基本上 純水。在一種實施方式中,該沉浸液體與上述浸漬液體相 同。在一種實施方式中,所述沉浸液體為水。在一個方面, 所述多孔塊的孔隙率為50-90體積%。在一種實施方式中, 根據所述骨水泥配方製備的緻密塊或多孔塊,通過將其浸 溃於活體細胞的懸浮液或生長因數和/或藥物的溶液中可 在活體細胞、生長因數和/或藥物争沉積。在本發明令製備 的緻密塊和多孔塊可被進一步破碎成粒料,用於其他醫學 應用》 經由實驗程式的以下實施例為舉例說明,並且用於說 明本發明的具體實施方式,但是,這些實施例不應看作是 將本發明的實施方式局限於特定的實施方式,而是僅用於 說明和理解,對於本領域技術人員來說,眾多修改和變化 是顯而易見的。 實驗程序 縮寫 TTCP :鐵酸四好 DCPA :無水破酸二約 CSH :半水合硫酸鈣 WT :工作時間 ST :固化時間 L/P比率:液體/粉末比率 cs :屋縮強度 用於表格的符號 12 201217296 # :將粉末與液體混合2分鐘,不能形成漿糊。 *:從模具中移除(距將粉末與液體混合30分鐘)後,當 在Hanks溶液中浸潰1天時,硬化水泥塊崩塌並破裂成粉 末形式。 ※:在Hanks溶液中浸潰1天后,硬化水泥塊破碎(破 裂/斷裂,但未分散成粉末形式)。 TTCP粉末的製備 TTCP 粉末採用 Brown 和 Epstein of the National Bureau of Standards- A Physics and CAem/Wr少6 (1965) 69A 12]提出的方法、由焦麟酸二#5 (Cii2:P2〇7) (Sigma Chem. Co.,St. Louis,MO,USA)和破酸 1¾ (CaC03) (Katayama Chem. Co.,曰本,東京)反應而自製 得到。 TTCP粉末通過將Ca2P207粉末與CaC03粉末均勻混合 12小時而製得。Ca2P207粉末與CaC03粉末的混合比率為 1:1.27 (重量比),並將粉末混合物加熱至1400°C,使兩種 粉末反應,以形成TTCP。 TTCP/DCPA/CSH複合漿糊的製備 將適量的TTCP與DCPA粉末在球磨機中均勻混合, 接著與適量的CSH粉末均勻混合。將所得到的 TTCP/DCPA/CSH混合粉末與期望的固化溶液(例如,0.6M (NH4)2HP04)以期望的L/P比率(例如,0.28 cc/g)均勻混合, 以形成TTCP/DCPA/CSH漿糊。 13 201217296 用於研究的化學物質 化學物質 化學式 製造商 地址 磷酸四鈣 (TTCP) Ca4(P04)20 自製 臺灣 無水磷酸二鈣 (DCPA) CaHP04 ACROS 美國,新澤西州 半水合硫酸鈣 (CSH) CaS04l/2H20 Showa 曰本,東京 破酸氫二敍 (NH4)2HP〇4 Showa 曰本,東京 填酸二氫二敍 NH4H2PO4 Showa 曰本,東京 _酸氫二鉀 K2HPO4 Showa 曰本,東京 酒石酸 c2h2(oh)2(cooh)2 Katayama 日本,大阪 檸檬酸 c6h8o7 Pantreac 西班牙,巴赛隆 蘋果酸 c2h3(oh)(cooh)2 Pantreac 納 複合水泥的壓縮強度測試 為了測定硬化水泥的CS,在混合1分鐘之後,在壓力 為1.4 Mpa下,將水泥衆糊在直徑6 mm、深12 mm的圓柱 形不銹鋼模具中填充30分鐘。從模具中移除後,將硬化水 泥樣品在保持在37°C的Hanks生理溶液中浸潰,並且每天 攪拌以助於保持離子濃度均勻。浸潰後,將樣品從溶液中 移除,用於CS測試,此時樣品仍是濕的(“在濕條件下測 試”)。使用臺式機械測定器(Shimadzu AG-10kNX,日本, 東京),以1.0 mm/min的試驗速度(crosshead speed)進行 201217296 CS測試。測試方法根據ASTM 451-99a方法。 工作時間/固化時間測定 水泥漿糊的工作時間由在該水泥漿糊不再能工作之後 的時間確定。水泥漿糊的固化時間根據在IS〇 1566中所述 的用於牙齒碟酸辞水泥的標準方法來測定。當負載於具有 直徑1 mm尖端的vicat針上的400 g重物不能在水泥的表 面上形成可察覺的圓形印記時,認為該水泥固化。 pH測定 使用 pH 計(Suntex Instruments SP2000,臺灣,臺北) 確定早期階段(在固化過程中)的pH變化,在粉末與固化液 體混合後,立即將該pH計浸入水泥漿糊中。在混合後j 分鐘時,第一次讀數。繼續測定,直至漿糊幾乎變固化。 每秒進行讀數’直至混合後3〇分鐘。之後每6〇秒進行 讀數。 使用相同的pH計監測在其中浸漬水泥漿糊樣品的 Hanks溶液的pH值變化。在粉末與固化溶液混合5分鐘 後,取出2g水泥漿糊’並將其浸潰在2〇mlpH值為7 〇5 的Hanks溶液中,用於測試。在整個測試中溶液保持在 37°C,並且連續攪拌以助於保持溶液的離子濃度均勻。 細胞毒性測試 根據ISO 10993-5進行細胞毒性測試。使用提取方法。 15 201217296 將NIH/3T3成纖維細胞(播種密度5000/孔)在Dulbecco改 性必需培養基(DMEM)中預先培養24小時,該培養基用牛 血清(10%)和PSF (1%)補充。如下製備提取物:使硬化水泥 漿糊以0.1 ( g/ml)的比率在37。〇的培養基中浸渍24小時, 接著通過離心作用收集液體。將提取物加入到96孔微板 (100 μΐ/孔)中,該微板已在37°C的5% C02的潮濕大氣中溫 育》24小時後’吸取提取物,隨後將培養基(1〇〇 μι)和WST-1 (10 μΐ)的混合物加入到孔中,並於371:下溫育1小時。使 用WST-1試樣來測定細胞存活率。這是線粒體脫氫酶活性 的比色測定’其中在450 nm下的吸光度與細胞中的脫氫酶 活性成比例。孵化1小時後,將培養基與WST-1的混合物 轉移至96孔微板,並使用ELISA讀數器來測定在450 nm 下的吸光度。還檢測ai2o3粉末作為對照物。對於每個樣 品測試4次(《=4)。 細胞株資訊In one embodiment, the calcium phosphate source is a mixture of TTCP and DCPA. In one aspect, the bone cement formulation provides the cement paste with the desired working time and cure time&apos; so that the operator has sufficient time to fill the pores or cavities with the paste before the paste becomes hard. It should be noted that the filled paste will form the minimum strength required for processing in an acceptable short period of time. In one embodiment, the hardened bone cement composite has low toxicity and, therefore, is safe, for example, when administered to a patient. It is noted that hardened bone cement has a high initial strength characteristic of increased bioresorbable rate. Further features and benefits of the present invention will be apparent from the following detailed description, drawings and claims. [Embodiment] Embodiments of the present invention are described herein in the context of methods, formulations, systems, and/or procedures for preparing a hardened bone cement composite having a medically enhanced bioresorbable rate. It is to be understood by those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Other embodiments of the invention will be readily apparent to those skilled in the art from this disclosure. Reference is made to "one embodiment", "one embodiment", "embodiment embodiment", various embodiments, "exemplary embodiment", "one aspect", "one aspect", "exemplary aspect", DETAILED DESCRIPTION OF THE INVENTION [0014] </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The short σ used in the embodiments "does not necessarily refer to the same embodiment, but may also be the same embodiment β, for the sake of clarity, not all of the traditional features of the implementation and/or method are described and description. Of course, it should be understood that in developing any such actual implementation, numerous implementation-specific decisions are made to achieve the developer's specific goals, such as application- and business-related restrictions, and these specific goals can be different. Implementation and changes among different developers. Moreover, it should be understood that such development plans may be complex and time consuming, but are within the ordinary skill of ordinary skill in the art having the benefit of the present disclosure. A particular embodiment of the invention is a bioresorbable bone cement suitable for use in a variety of medical fields, such as orthopedic, spinal and root canal surgery. The properties or properties of the bioresorbable bone cement or formulation have a convenient working environment and curing time to form high strength, excellent biocompatibility and excellent osteoconductivity as well as adjustable (or flexible) a hardened block of bioresorption rate. In order to prepare or produce a bioresorbable bone cement, the bone cement has a flexible (or convenient) working environment (or time) and curing time performance to form a hardened bone having the desired strength and biocompatibility. Cement Composite, an embodiment of the present invention discloses a bone cement formulation, which will be described in more detail below. In one aspect, a method or process for making a hardened bone cement composite includes producing a cement paste 201217296 and placing the paste in an environment in which the paste is curable. In one embodiment, a method for preparing a bone cement paste comprises mixing a powder component with a solidified liquid component by a mixing machine (eg, agitation). For example, the powder component can include a calcium sulfate source and a calcium phosphate source. The mixture ° or 'calcium sulfate source and calcium phosphate source can be separate powders. In this case, the calcium sulfate source and the calcium phosphate source may first be combined to form a powder mixture prior to mixing with the solidifying liquid component. The aforementioned calcium sulfate source and calcium phosphate source may be tetracalcium phosphate (TTCP) and/or anhydrous calcium dicalcium phosphate (DCPA) powder. It should be noted that other types of sources may be used as long as they have similar chemical properties or characteristics as TTCP and/or DCPA. In one embodiment, the bone cement paste hardens or solidifies during the curing period in an atmosphere or environment surrounded by body fluids (e.g., blood). During operation, the operator or physician places the bone cement paste in the hole or cavity of the damaged bone via an incision via a suitable tool. For example, for orthopedic, spinal or root canal treatment, when the cement paste becomes or solidifies in situ into a hardened bone cement composite, the hardened bone cement can be treated by the subject for a certain period of time according to a predetermined bioresorption rate. Reabsorb. Depending on the application, in one embodiment, the bone cement paste can be formed into the stiffness of the bone cement composite prior to implanting the bone cement paste into the body of the subject to repair the damaged site (eg, bone or teeth). Block or semi-rigid block In one embodiment, the bone cement paste 201217296 can be shot into a bone hole or cavity or through a mold using an orthopedic paste delivery tool, such as the conventional medical instrument described in US 7,325,702 B2. Forming wherein the paste will form a hardened bone cement composite block. It should be noted that the orthopedic delivery tool is capable of continuously delivering the paste into the bone cavity until the bone cavity is filled. Depending on the application, if the powder component does not contain a suitable pore former, a sensitive mass of cement can be formed. For example, 'in order to discharge or remove a portion of the liquid from the paste' to lower the liquid/powder ratio of the paste, the dense block can be formed by pressurizing the bone cement paste in the mold before the paste is cured. In one aspect, the pressure applied to the paste in the mold is from about 1 MPa to 500 MPa', preferably from 100 MPa to 500 MPa. It is noted that the dense block has excellent compressive strength, Can be used as a medical implant. It should also be noted that 'the impregnated liquid is used to impregnate the rigid or solid dense mass of calcium phosphate cement for a predetermined period of time, so that compared to the block that has not been subjected to such impregnation treatment The total compressive strength of the resulting impregnated block is increased. In one embodiment 'the impregnation liquid is a phosphate-containing solution. Exemplary aqueous solutions may include, but are not limited to, (NH4)3p〇4, (NH4 2HP〇4, ΝΗ4Η2ρ〇4, Κ3Ρ〇4, Κ2ΗΡ〇4, ΚΗ2Ρ〇4, Na3P〇4, Na2HP04, NaH2P〇4 or Η3Ρ〇4. In one example, the phosphate in the phosphate-containing solution The concentration is from about 0.1 Torr to about 6 Torr, preferably from about 1 Torr to about 3 Torr. When the powder component of the bone cement formulation contains a pore former, the porous block is used as a tissue-engineered scaffold (tissue-engineered scaffold) ) by impregnating the molded block in an immersion liquid The agent is dissolved in the immersion liquid. The pore former can be removed from the molding block. The pore former can be added during the mixing of the powder component and the solidified liquid component, or can be added before the mold is placed in the mold. In the obtained paste, the immersion liquid may be, for example, 11 201217296 acidic aqueous solution, alkaline aqueous solution, physiological solution, organic solvent or substantially pure water. In one embodiment, the immersion liquid is the same as the above immersion liquid. In one embodiment, the immersion liquid is water. In one aspect, the porous block has a porosity of 50-90% by volume. In one embodiment, a dense block or a porous block prepared according to the bone cement formulation, The dense cells and porous blocks prepared by the present invention can be further broken by immersing them in a suspension of living cells or a growth factor and/or a solution of the drug in a living cell, a growth factor and/or a drug. Granulating materials for other medical applications. The following examples through experimental procedures are illustrative and are used to illustrate specific embodiments of the invention, however, The embodiments are not to be construed as limiting the embodiments of the present invention to the specific embodiments, but are to be construed as illustrative only. : Ferric acid four good DCPA: anhydrous acid-breaking di-about CSH: calcium sulfate hemihydrate WT: working time ST: curing time L/P ratio: liquid / powder ratio cs : house strength used in the symbol of the table 12 201217296 # : will The powder was mixed with the liquid for 2 minutes and no paste could be formed. *: After being removed from the mold (by mixing the powder with the liquid for 30 minutes), the hardened cement block collapsed and broke into powder when it was immersed in the Hanks solution for 1 day. form. *: After 1 day of immersion in Hanks' solution, the hardened cement block was broken (broken/broken, but not dispersed into a powder form). Preparation of TTCP powder The TTCP powder was prepared by the method proposed by Brown and Epstein of the National Bureau of Standards-A Physics and CAem/Wr less 6 (1965) 69A 12], from the application of pyroic acid #5 (Cii2: P2〇7) ( Sigma Chem. Co., St. Louis, MO, USA) was prepared by reacting with acid-breaking 13⁄4 (CaC03) (Katayama Chem. Co., Sakamoto, Tokyo). The TTCP powder was prepared by uniformly mixing Ca2P207 powder and CaC03 powder for 12 hours. The mixing ratio of the Ca2P207 powder to the CaC03 powder was 1:1.27 (weight ratio), and the powder mixture was heated to 1400 ° C to react the two powders to form TTCP. Preparation of TTCP/DCPA/CSH Composite Paste An appropriate amount of TTCP and DCPA powder were uniformly mixed in a ball mill, and then uniformly mixed with an appropriate amount of CSH powder. The resulting TTCP/DCPA/CSH mixed powder is uniformly mixed with a desired curing solution (for example, 0.6 M (NH 4 ) 2 HP 04 ) at a desired L/P ratio (for example, 0.28 cc/g) to form TTCP/DCPA/. CSH paste. 13 201217296 Chemicals for research Chemicals Chemical manufacturer's address Tetracalcium phosphate (TTCP) Ca4(P04)20 Homemade Taiwan anhydrous calcium phosphate (DCPA) CaHP04 ACROS US, New Jersey hemihydrate calcium sulfate (CSH) CaS04l/2H20 Showa 曰本, Tokyo acid-depleted hydrogen II (NH4) 2HP〇4 Showa 曰本, Tokyo acid dihydrogen II NH4H2PO4 Showa 曰本, Tokyo _ acid hydrogen dipotassium K2HPO4 Showa 曰本, Tokyo tartaric acid c2h2 (oh) 2 (cooh) 2 Katayama Japan, Osaka citric acid c6h8o7 Pantreac Spain, Basilon malic acid c2h3 (oh) (cooh) 2 Pantreac nano composite cement compressive strength test In order to determine the hardening cement CS, after mixing for 1 minute, under pressure For 1.4 Mpa, the cement paste was filled in a cylindrical stainless steel mold with a diameter of 6 mm and a depth of 12 mm for 30 minutes. After removal from the mold, the hardened cement sample was impregnated in a Hanks physiological solution maintained at 37 ° C and stirred daily to help maintain a uniform ion concentration. After the impregnation, the sample was removed from the solution for the CS test and the sample was still wet ("tested under wet conditions"). The 201217296 CS test was conducted using a benchtop mechanical tester (Shimadzu AG-10kNX, Tokyo, Japan) at a crosshead speed of 1.0 mm/min. The test method is according to the ASTM 451-99a method. Working time/cure time determination The working time of the cement paste is determined by the time after the cement paste is no longer working. The curing time of the cement paste was determined according to the standard method for tooth dish acid cement described in IS 1566. The cement was considered to cure when a 400 g weight loaded on a vicat needle having a 1 mm diameter tip could not form a noticeable circular mark on the surface of the cement. pH measurement The pH change in the early stage (during curing) was determined using a pH meter (Suntex Instruments SP2000, Taipei, Taiwan), and the pH meter was immediately immersed in the cement paste after the powder was mixed with the solidified liquid. The first reading is taken at j minutes after mixing. Continue the measurement until the paste hardens. The readings were taken every second until 3 minutes after mixing. The reading is then taken every 6 sec. The pH change of the Hanks solution in which the cement paste sample was impregnated was monitored using the same pH meter. After the powder was mixed with the solidified solution for 5 minutes, 2 g of the cement paste was taken out and immersed in 2 〇ml of a Hanks solution having a pH of 7 〇 5 for testing. The solution was maintained at 37 ° C throughout the test and was continuously agitated to help maintain the ion concentration of the solution uniform. Cytotoxicity test Cytotoxicity test according to ISO 10993-5. Use the extraction method. 15 201217296 NIH/3T3 fibroblasts (seeding density 5000/well) were pre-incubated for 24 hours in Dulbecco's Modified Essential Medium (DMEM) supplemented with bovine serum (10%) and PSF (1%). The extract was prepared by making the hardened cement paste at a ratio of 0.1 (g/ml) at 37. The medium was immersed for 24 hours, and then the liquid was collected by centrifugation. The extract was added to a 96-well microplate (100 μΐ/well) which had been incubated in a humidified atmosphere of 5% CO 2 at 37 ° C. After 24 hours, the extract was aspirated and the medium was subsequently taken (1〇). A mixture of 〇μι) and WST-1 (10 μΐ) was added to the wells and incubated for 1 hour at 371:. The WST-1 sample was used to determine cell viability. This is a colorimetric assay of mitochondrial dehydrogenase activity&apos; where the absorbance at 450 nm is proportional to the dehydrogenase activity in the cell. One hour after incubation, the mixture of medium and WST-1 was transferred to a 96-well microplate and the absorbance at 450 nm was determined using an ELISA reader. Ai2o3 powder was also tested as a control. Test 4 times for each sample ("=4"). Cell line information

細胞名稱 NIH/3T3 細胞數量 BCRC 60008 種類 小鼠NIH/Swiss胚胎 生長性能 依附(adherent) ,5% C02,37°C 形態 成纖維細胞 細胞培養基 90% Dulbecco 改性 Eagle 培養基(DMEM) + 10%小牛 ok 清(cs) 冷凍培養基 93%培養基+ 7% DMSO 201217296 對照1 : TTCP/CSH水泥和(nh4)2hpo4固化溶液 表 1 :與 0.25-0.75M (NH4)2HP04 混合的 TTCP/CSH TTCP/CSH (重量比) (NH4)2HP〇4 濃度(μ) L/P比 率 (cc/g) WT (分鐘) ST (分鐘) ld-CS (MPa) 0.28 - - 氺 0.25 0.33 - ※ 0.35 ※ 0.28 7.4 土 0.6 9.0 士 0.7 3.23 士 0.53 0.50 0.33 10.3±0.6 11.6 土 0.5 2.33±0.56 90/10 0.35 11.0±0.3 12.9±0.2 2.40±0.71 0.28 7.0±0.3 8.5±0.5 3.67 土 0.49 0.60 0.33 10.1±0.5 11.5 士 0.6 3.06±0.44 0.35 11.9 土 0.6 13.0±0.7 3.56 土 0.74 0.28 5.8 士 0.2 7.1±0.5 4.07±1.02 0.75 0.33 8.9 土 0_1 11.0±0.2 4.84 ±0.59 0.35 10.4±0.5 12.2±0.2 3.74±0.19 0.28 - * 75/25 0.25 0.33 氺 0.35 氺 0.28 7.5±0.3 10.1±0.2 4.32±0.11 0.50 0.33 9.7 士 0.3 11.7±0.3 7.01±0.42 0.35 10.7 土 0.3 12.5 士 0.4 7.32±0.38 17 201217296 0.28 6·5 士 0.3 8.2 士 0.2 5.92±0.42 0.60 0.33 7.1±0.3 9.1±0.3 7.63 士 0.28 0.35 9.0±0.2 10_4 土 0.1 8.32±0.31 0.28 6.4±0.2 8.0±0.1 6.64±0.52 0.75 0.33 7.5±0.3 9.0±0.4 9.55±0.25 0.35 8.3 土 0.3 9.9±0.3 10.36 士 0.27 0.28 - 氺 0.25 0.33 本 0.35 氺 0.28 7.1±0.3 9.8±0.3 3.37±0.27 0.50 0.33 9.2±0.2 11.1 士 0.3 5.84±0.37 65/35 0.35 10.5±0.3 12.2±0.4 6.10±0.26 0.28 4.5±0.4 5.3±0.2 3.96±0.12 0.60 0.33 7.0±0.3 9.0±0.4 5.44±0.14 0.35 8.9±0.4 9.8±0.3 6.56±0.12 0.28 6.3±0.2 7.8±0.2 4.41±0.24 0.75 0.33 7.1±0.2 8.4士 0.3 6.43±0.27 0.35 8.2 士 0.3 9.3 土 0.2 7.55 土 0.34 在使用0.25 M (NH4)2HP04製備漿糊的情況下,當在 Hanks溶液中浸潰時模塑塊崩塌和破裂(*),或者在Hanks 溶液中浸潰1天后其壓縮強度無法測得),如表1所示。 至於使用較高濃度的(Nh4)2HP〇4固化溶液製備的漿糊,在 Hanks溶液中浸潰1天(ld_cs)後硬化水泥塊具有非常低的 壓縮強度’如表1所示。顯然,僅具有TTCP和CSH相的 18 201217296 粉末組份不能得到令人滿意的結果。Cell name NIH/3T3 Cell number BCRC 60008 Type mouse NIH/Swiss embryo growth performance adherent (adherent), 5% C02, 37 °C Morphology fibroblast cell culture medium 90% Dulbecco Modified Eagle medium (DMEM) + 10% small Ox ok clear (cs) Freezing medium 93% medium + 7% DMSO 201217296 Control 1: TTCP/CSH cement and (nh4) 2hpo4 curing solution Table 1: TTCP/CSH TTCP/CSH mixed with 0.25-0.75M (NH4)2HP04 (weight ratio) (NH4)2HP〇4 Concentration (μ) L/P ratio (cc/g) WT (minutes) ST (minutes) ld-CS (MPa) 0.28 - - 氺0.25 0.33 - * 0.35 ※ 0.28 7.4 Soil 0.6 9.0 ± 0.7 3.23 ± 0.53 0.50 0.33 10.3 ± 0.6 11.6 Soil 0.5 2.33 ± 0.56 90/10 0.35 11.0 ± 0.3 12.9 ± 0.2 2.40 ± 0.71 0.28 7.0 ± 0.3 8.5 ± 0.5 3.67 Soil 0.49 0.60 0.33 10.1 ± 0.5 11.5 ± 0.6 3.06 ±0.44 0.35 11.9 Soil 0.6 13.0±0.7 3.56 Soil 0.74 0.28 5.8 ± 0.2 7.1 ± 0.5 4.07 ± 1.02 0.75 0.33 8.9 Soil 0_1 11.0 ± 0.2 4.84 ± 0.59 0.35 10.4 ± 0.5 12.2 ± 0.2 3.74 ± 0.19 0.28 - * 75/25 0.25 0.33 氺0.35 氺0.28 7.5± 0.3 10.1±0.2 4.32±0.11 0.50 0.33 9.7 ± 0.3 11.7±0.3 7.01±0.42 0.35 10.7 Soil 0.3 12.5 ± 0.4 7.32±0.38 17 201217296 0.28 6·5 ± 0.3 8.2 ± 0.2 5.92 ± 0.42 0.60 0.33 7.1 ± 0.3 9.1 ± 0.3 7.63 ± 0.28 0.35 9.0 ± 0.2 10_4 Soil 0.1 8.32 ± 0.31 0.28 6.4 ± 0.2 8.0 ± 0.1 6.64 ± 0.52 0.75 0.33 7.5 ± 0.3 9.0 ± 0.4 9.55 ± 0.25 0.35 8.3 Soil 0.3 9.9 ± 0.3 10.36 ± 0.27 0.28 - 氺 0.25 0.33 0.35 氺0.28 7.1±0.3 9.8±0.3 3.37±0.27 0.50 0.33 9.2±0.2 11.1 ± 0.3 5.84±0.37 65/35 0.35 10.5±0.3 12.2±0.4 6.10±0.26 0.28 4.5±0.4 5.3±0.2 3.96±0.12 0.60 0.33 7.0± 0.3 9.0±0.4 5.44±0.14 0.35 8.9±0.4 9.8±0.3 6.56±0.12 0.28 6.3±0.2 7.8±0.2 4.41±0.24 0.75 0.33 7.1±0.2 8.4±0.3 6.43±0.27 0.35 8.2 ±0.3 9.3 Soil 0.2 7.55 Soil 0.34 In use In the case of 0.25 M (NH4)2HP04 preparation paste, the molding block collapses and ruptures (*) when immersed in Hanks solution, or the compressive strength cannot be measured after 1 day of immersion in Hanks solution), as shown in Table 1 is shown. As for the paste prepared using the higher concentration (Nh4)2HP〇4 solidified solution, the hardened cement block had a very low compressive strength after being immersed in the Hanks solution for 1 day (ld_cs) as shown in Table 1. Obviously, only the 18 201217296 powder component having the TTCP and CSH phases did not give satisfactory results.

對照2 : TTCP/CSH水泥和ΝΗ4Η2Ρ04固化溶液 表 2 :與 0.25-0.75M NH4H2P〇4 混合的 TTCP/CSH TTCP/CSH NH4H2PO4 L/P比率 WT ST ld-CS (重量比) 濃度(M) (cc/g) (分鐘) (分鐘) (MPa) 0.28 - 氺 0.25 0.33 - - 氺 0.35 - 氺 0.28 7.4 士 0.6 9.0±0.7 3.23±0.53 0.50 0.33 10.3±0.6 11.6 土 0.5 2.33 士 0.56 90/10 0.35 11.0±0.3 12.9±0.2 2.40±0.71 0.28 7.0±0.3 8_5 土 0.5 3.67 士 0.49 0.60 0.33 10.1±0.5 11.5±0.6 3.06 士 0.44 0.35 11.9 士 0.4 13.0±0.7 3.56 士 0.74 0.28 5.8 土 0.2 7.1 土 0.5 4.07 土 1.02 0.75 0.33 8.9±0.1 11. 士 0.2 4.91 土 0.66 0.35 10.4 土 0.5 12.12±0.2 3.74 士 0.19 0.28 - - * 75/25 0.25 0.33 - - * 0.35 - - 氺 0.28 - - 氺 0.50 0.33 - 氺 0.35 - * 19 201217296 0.28 - 0.60 0.33 - 氺 0.35 - 0.28 氺 0.75 0.33 - ♦ 0.35 - - 0.28 - - 氺 0.25 0.33 - * 0.35 - - ♦ 0.28 He 0.50 0.33 * 0.35 - 氺 65/35 0.28 - _ 氺 0.60 0.33 - - * 0.35 - 氺 0.28 - - 0.75 0.33 - - 氺 0.35 - 氺 表2表明,用於對照2的NH4H2P〇4固化溶液不能改進 用於對照1的(NH4)2HP04固化溶液的工作時間/固化時間和 ld-CS。顯然,僅具有TTCP和CSH相的粉末組份不能得 到令人滿意的結果。 對照3 : DCPA/CSH水泥和(Nh4)2HP〇4固化溶液 20 201217296 表 3 :與 0.25-0.75M (NH4)2HP〇4 混合的 DCPA/CSH DCPA/CSH (NH4)2HP〇4 L/P比率 WT ST ld-CS (重量比) 濃度(μ) (cc/g) (分鐘) (分鐘) (MPa) 0.28 - * 0.25 0.33 - - 本 0.35 - - 本 0.28 - - 0.50 0.33 - ※ 90/10 0.35 - ※ 0.28 - 0.60 0.33 - - ※ 0.35 - - ※ 0.28 - - 0.75 0.33 哪 - ※ 0.35 ※ 0.28 - ※ 75/25 0.25 0.33 - - ※ 0.35 - - ※ 0.28 ※ 0.50 0.33 - ※ 0.35 - - ※ 0.28 - ※ 0.60 0.33 - - ※ 0.35 - - ※ 21 201217296Control 2: TTCP/CSH cement and ΝΗ4Η2Ρ04 curing solution Table 2: TTCP/CSH TTCP/CSH NH4H2PO4 L/P ratio mixed with 0.25-0.75M NH4H2P〇4 WT ST ld-CS (weight ratio) Concentration (M) (cc /g) (minutes) (minutes) (MPa) 0.28 - 氺0.25 0.33 - - 氺0.35 - 氺0.28 7.4 ± 0.6 9.0 ± 0.7 3.23 ± 0.53 0.50 0.33 10.3 ± 0.6 11.6 Soil 0.5 2.33 ± 0.56 90/10 0.35 11.0 ± 0.3 12.9±0.2 2.40±0.71 0.28 7.0±0.3 8_5 Soil 0.5 3.67 ± 0.49 0.60 0.33 10.1±0.5 11.5±0.6 3.06 ± 0.44 0.35 11.9 ± 0.4 13.0 ± 0.7 3.56 ± 0.74 0.28 5.8 Soil 0.2 7.1 Soil 0.5 4.07 Soil 1.02 0.75 0.33 8.9±0.1 11. ±0.2 4.91 Soil 0.66 0.35 10.4 Soil 0.5 12.12±0.2 3.74 ± 0.19 0.28 - - * 75/25 0.25 0.33 - - * 0.35 - - 氺0.28 - - 氺0.50 0.33 - 氺0.35 - * 19 201217296 0.28 - 0.60 0.33 - 氺0.35 - 0.28 氺0.75 0.33 - ♦ 0.35 - - 0.28 - - 氺0.25 0.33 - * 0.35 - - ♦ 0.28 He 0.50 0.33 * 0.35 - 氺65/35 0.28 - _ 氺0.60 0.33 - - * 0.35 - 氺0.28 - - 0.75 0.33 - - 氺0.35 - 氺 Table 2 shows that the NH4H2P〇4 curing solution used for Control 2 does not improve the working time/cure time of the (NH4)2HP04 curing solution for Control 1 and ld-CS. Obviously, only the powder component having the TTCP and CSH phases did not give satisfactory results. Control 3: DCPA/CSH cement and (Nh4)2HP〇4 solid solution 20 201217296 Table 3: DCPA/CSH DCPA/CSH (NH4)2HP〇4 L/P ratio mixed with 0.25-0.75M (NH4)2HP〇4 WT ST ld-CS (weight ratio) Concentration (μ) (cc/g) (minutes) (minutes) (MPa) 0.28 - * 0.25 0.33 - - This 0.35 - - This 0.28 - - 0.50 0.33 - ※ 90/10 0.35 - ※ 0.28 - 0.60 0.33 - - ※ 0.35 - - ※ 0.28 - - 0.75 0.33 Where - ※ 0.35 ※ 0.28 - ※ 75/25 0.25 0.33 - - ※ 0.35 - - ※ 0.28 ※ 0.50 0.33 - ※ 0.35 - - ※ 0.28 - ※ 0.60 0.33 - - ※ 0.35 - - ※ 21 201217296

Hanks溶液時崩塌和破裂(*)’或者在Hanks溶液φ 1 队τ浸漬1 天后它們的壓縮強度無法測得丨※),如表3所示。顯然, 僅具有DCPA和CSH相的粉末組份不能得到令人滿意的結 果。The Hanks solution collapsed and ruptured (*)' or their compressive strength could not be measured after 1 day of immersion in the Hanks solution φ 1 ,*), as shown in Table 3. Obviously, only the powder component having the DCPA and CSH phases did not give satisfactory results.

對照4 : DCPA/CSH水泥和νΗ4Η2Ρ04固化溶液 表 4 :與 0.25-0.75Μ ΝΗ4Η2Ρ〇4 混合的 DCPA/CSH 22 201217296 DCPA/CSH NH4H2P〇4 L/P比率 WT ST ld-CS (重量比) 濃度(μ) (cc/g) (分鐘) (分鐘) (MPa) 0.28 - - ※ 0.25 0.33 ※ 0.35 - ※ 0.28 - ※ 0.50 0.33 - - ※ 90/10 0.35 - - ※ 0.28 - ※ 0.60 0.33 - - ※ 0.35 - - ※ 0.28 - ※ 0.75 0.33 - - ※ 0.35 - - ※ 0.28 ※ 75/25 0.25 0.33 _ 0.35 - ※ 0.28 - - ※ 0.50 0.33 - ※ 0.35 - - ※ 0.28 - - ※ 0.60 0.33 - - ※ 0.35 - - ※ 23 201217296 0.28 - ※ 0.75 0.33 - ※ 0.35 ※ 0.28 - - ※ 0.25 0.33 ※ 0.35 - - ※ 0.28 - - ※ 0.50 0.33 - ※ 65/35 0.35 - - ※ 0.28 - ※ 0.60 0.33 - ※ 0.35 ※ 0.28 - ※ 0.75 0.33 - ※ 0.35 ※ 在Hanks溶液中浸潰1天后由DCPA/CSH水泥製備的 模塑塊的壓縮強度無法測得(※丨,如表4所示。顯然,僅 具有DCPA和CSH相的粉末組份不能得到令人滿意的結 果0 24 201217296 於表5-14中 TTCP/DCPA:CSH (重量比) TTCP:DCPA:CSH (重量比) 90:10 2.69:1:0.41 85:15 · 2.69:1:0.65 80:20 2.69:1:0.92 75:25 2.69:1:1.23 65:35 2.69:1:1.99 55:45 2.69:1:3.02 45:55 2.69:1:4.51 35:65 2.69:1:6.85 25:75 2.69:1:11.07 10:90 2.69:1:33.21 註:在所有條件下,TTCP與DCPA的摩爾比為1:1 25 201217296 實施例1 : (TTCP/DCPA)/CSH水泥和各種固化溶液 表5 : 75重量%的磷酸鹽(TTCP/DCPA)/25重量%的CSH複 合水泥 固化溶液 濃度 (M) 溶液pH 值 WT(分鐘) ST(分鐘) ld-CS (MPa) 1 9.27 1.53 士 0.21 2.72±0.26 15.35 士 0.85 K2HP〇4 0.75 9.20 1.88 土 0.13 3.08 士 0.15 15.46±3.51 (L/P=0.33) 0.5 9.17 2.85±0.13 3.93±0.16 18.39±1.53 0.25 9.15 — — 24.12±6.30 1 8.17 4.88 士 0.13 6.93±0.25 27.77±1.6 (NH4)2HP〇4 0.75 8.09 5.47±0.13 7.45 士 0.16 25.37±0.69 (L/P=0.33) 0.6 7.97 5.77±0.13 7.53±0.27 41.02±3.77 0.5 7.95 7.85 士 0.32 10.05 土 0.33 21.58±1.82 0.25 7.92 13.5±0.5 16·28±1.1 本 1 3.96 4.95±0.5 7.5 士 0.5 * (NH4)H2P〇4 0.75 3.99 6.63±0.38 8.93±0.33 ♦ (L/P=033) 0.5 4.28 9.43±0.416 12.6 土 0.53 * 0.25 4.30 11.42 士 0.5 15.18±0.27 氺 1 3.89 6.5±0.43 9 士 0.33 23.82±3.23 NaH2P04.2H20 0.75 3.97 8.05 士 0.25 11.05±0.75 18.96±1·79 (L/P=0.33) 0.5 4.13 10.72±0.25 14.68±0.28 本 0.25 4.22 12.92±0.67 16.16±1.03 * 由表5中所示的資料可總結如下: 1、k2hpo4-衍生的硬化水泥複合材料的WT/ST太短且 CS低。 2、(NH4)H2P04-衍生的硬化水泥複合材料具有合理的 WT/ST,但是在Hanks溶液中浸潰後分散。 26 201217296 3、 NaH2P04 2H20-衍生的硬化水泥複合材料具有合理 的WT/ST,但是酸性太強且強度低。 4、 在所有測試的固化溶液中,(NH4)2HP04產生最高的 CS ° 5、 在所有的(NH4)2HP〇4濃度中,0.6 Μ得到最高的 CS (41 MPa)。Control 4: DCPA/CSH cement and νΗ4Η2Ρ04 solidified solution Table 4: DCPA/CSH 22 mixed with 0.25-0.75Μ ΝΗ4Η2Ρ〇4 201217296 DCPA/CSH NH4H2P〇4 L/P ratio WT ST ld-CS (weight ratio) Concentration ( () (cc) (0.25) - - ※ 0.28 - ※ 0.75 0.33 - - ※ 0.35 - - ※ 0.28 ※ 75/25 0.25 0.33 _ 0.35 - ※ 0.28 - - ※ 0.50 0.33 - ※ 0.35 - - ※ 0.28 - - ※ 0.60 0.33 - - ※ 0.35 - - ※ 23 201217296 0.28 - ※ 0.75 0.33 - ※ 0.35 ※ 0.28 - - ※ 0.25 0.33 ※ 0.35 - - ※ 0.28 - - ※ 0.50 0.33 - ※ 65/35 0.35 - - ※ 0.28 - ※ 0.60 0.33 - ※ 0.35 ※ 0.28 - ※ 0.75 0.33 - * 0.35 ※ The compressive strength of molded parts prepared from DCPA/CSH cement after 1 day of immersion in Hanks solution cannot be measured (※ 丨, as shown in Table 4. Obviously, only DCPA and CSH phases are present. The final component did not give satisfactory results. 0 24 201217296 TTCP/DCPA: CSH (weight ratio) in Table 5-14 TTCP: DCPA: CSH (weight ratio) 90:10 2.69:1:0.41 85:15 · 2.69 :1:0.65 80:20 2.69:1:0.92 75:25 2.69:1:1.23 65:35 2.69:1:1.99 55:45 2.69:1:3.02 45:55 2.69:1:4.51 35:65 2.69:1 :6.85 25:75 2.69:1:11.07 10:90 2.69:1:33.21 Note: Under all conditions, the molar ratio of TTCP to DCPA is 1:1 25 201217296 Example 1: (TTCP/DCPA)/CSH cement and Various curing solutions Table 5: 75 wt% phosphate (TTCP/DCPA) / 25 wt% CSH composite cement solid solution concentration (M) solution pH WT (minutes) ST (minutes) ld-CS (MPa) 1 9.27 1.53 ± 0.21 2.72 ± 0.26 15.35 ± 0.85 K2HP 〇 4 0.75 9.20 1.88 Soil 0.13 3.08 ± 0.15 15.46 ± 3.51 (L / P = 0.33) 0.5 9.17 2.85 ± 0.13 3.93 ± 0.16 18.39 ± 1.53 0.25 9.15 — — 24.12 ± 6.30 1 8.17 4.88 ± 0.13 6.93 ± 0.25 27.77 ± 1.6 (NH4) 2HP 〇 4 0.75 8.09 5.47 ± 0.13 7.45 ± 0.16 25.37 ± 0.69 (L / P = 0.33) 0.6 7.97 5.77 ± 0.13 7.53 ± 0.27 41.02 ± 3.77 0.5 7.95 7.85 ± 0.32 10.05 Soil 0.33 21. 58±1.82 0.25 7.92 13.5±0.5 16·28±1.1 This 1 3.96 4.95±0.5 7.5 ±0.5 * (NH4)H2P〇4 0.75 3.99 6.63±0.38 8.93±0.33 ♦ (L/P=033) 0.5 4.28 9.43±0.416 12.6 Soil 0.53 * 0.25 4.30 11.42 ± 0.5 15.18 ± 0.27 氺 1 3.89 6.5 ± 0.43 9 ± 0.33 23.82 ± 3.23 NaH2P04.2H20 0.75 3.97 8.05 ± 0.25 11.05 ± 0.75 18.96 ± 1. 79 (L / P = 0.33) 0.5 4.13 10.72 ±0.25 14.68±0.28 0.25 4.22 12.92±0.67 16.16±1.03 * The data shown in Table 5 can be summarized as follows: 1. The WT/ST of k2hpo4-derived hardened cement composite is too short and CS is low. 2. The (NH4)H2P04-derived hardened cement composite has a reasonable WT/ST, but is dispersed after being immersed in Hanks' solution. 26 201217296 3, NaH2P04 2H20-derived hardened cement composite has reasonable WT/ST, but the acidity is too strong and the strength is low. 4. (NH4)2HP04 produced the highest CS ° 5 in all tested solidified solutions, and the highest CS (41 MPa) was obtained at 0.6 Μ in all (NH4)2HP〇4 concentrations.

實施例 2 :與 0.60M (NH4)2HP04 混合的 TTCP/DCPA/CSH 表 6:與 0.60M(NH4)2HP〇4 混合的 TTCP/DCPA/CSH rrCP/DCPA :CSH (重量比) 固化溶液 L/P 比率 (cc/g) ld-CS (MPa) WT/ST (分鐘) 細胞毒性 O.D. (%) (Α12〇3作為對 照物-100%) 90:10 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 45.10±3.50 6.1±0.1/ 7.1±0.1 ---- 86.40±2.2〇 85:15 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 44.50±5.50 5.8±0.1/ 6.9±0.2 — 91.76±4.9〇 80:20 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 40.93±3.98 6·6 土 0·3/ 7·7 土0·3 ----- 89.32±〇.28 75:25 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 40.45±2.39 5.8±0.1/ 7.5±〇.3 ----- 95.49±3.〇4 65:35 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 26.53土 1.57 5.5±0.3/ 7.5±0·4 —— 84.94±2.98 55:45 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 28.07±1.54 5·2 土 0.2/ 6·8 士 0·3 ------ 101.99±〇.74 45:55 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 27.02土 1_29 5.5 士 0.2/ 6·9 士 0·1 ----- 89.29±1〇.44 -- 27 201217296 35:65 0.60 Μ (ΝΉ4)2ΗΡ〇4 0.28 14.10±3.10 4.4±0·3/ 6.4±0.4 97.31±1.91 25:75 0.60 Μ (νη4)2ηρο4 0.28 13.80±1.61 5.1±0.1/ 6.1±0·4 85.97±3.94 10:90 0.60 Μ (νη4)2ηρο4 0.28 9·77±1·15 5.0±0.2/ 7.9±0.2 93.17 土 8.63 在表 6 (與 0.60M (NH4)2HP〇4 混合的 TTCP/DCPA/CSH) 中所示的結果總結: (1) 當在TTCP/DCPA/CSH水泥粉末中CSH含量高於 約65 wt%時,其CS值變得太低(&lt;15 MPa)。在測試條件下, 適當的CSH含量應小於約65重量%。為了得到較高的強度 (CS &gt; 30 MPa),CSH含量應小於約35重量。/〇。 (2) 當0.60 M (NH4)2HP04用作硬化溶液時,對於所有 CSH含量(從約10重量%至約90重量%),所有細胞毒性 值可接受地大於80%。 28 201217296Example 2: TTCP/DCPA/CSH mixed with 0.60M (NH4)2HP04 Table 6: TTCP/DCPA/CSH rrCP/DCPA mixed with 0.60M(NH4)2HP〇4: CSH (weight ratio) Curing solution L/ P ratio (cc/g) ld-CS (MPa) WT/ST (minutes) Cytotoxicity OD (%) (Α12〇3 as control-100%) 90:10 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 45.10± 3.50 6.1±0.1/ 7.1±0.1 ---- 86.40±2.2〇85:15 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 44.50±5.50 5.8±0.1/ 6.9±0.2 — 91.76±4.9〇80:20 0.60 Μ (ΝΗ4 ) 2ΗΡ〇4 0.28 40.93±3.98 6·6 Soil 0·3/ 7·7 Soil 0·3 ----- 89.32±〇.28 75:25 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 40.45±2.39 5.8± 0.1/ 7.5±〇.3 ----- 95.49±3.〇4 65:35 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 26.53 soil 1.57 5.5±0.3/ 7.5±0·4 —— 84.94±2.98 55:45 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 28.07±1.54 5·2 Soil 0.2/ 6·8 士0·3 ------ 101.99±〇.74 45:55 0.60 Μ (ΝΗ4)2ΗΡ〇4 0.28 27.02 1_29 5.5 ± 0.2 / 6 · 9 ± 0 · 1 ----- 89.29 ± 1 〇 . 44 -- 27 201217296 35:65 0.60 Μ (ΝΉ 4) 2 ΗΡ〇 4 0.28 14.10 ± 3.10 4.4 ± 0 · 3 / 6.4 ± 0.4 97.31±1.91 25 :75 0.60 Μ (νη4)2ηρο4 0.28 13.80±1.61 5.1±0.1/ 6.1±0·4 85.97±3.94 10:90 0.60 Μ (νη4)2ηρο4 0.28 9·77±1·15 5.0±0.2/ 7.9±0.2 93.17 8.63 Summary of the results shown in Table 6 (TTCP/DCPA/CSH mixed with 0.60M (NH4)2HP〇4): (1) When the CSH content in TTCP/DCPA/CSH cement powder is higher than about 65 wt% At this time, its CS value becomes too low (&lt;15 MPa). Under the conditions tested, the appropriate CSH content should be less than about 65% by weight. In order to achieve higher strength (CS &gt; 30 MPa), the CSH content should be less than about 35 weight. /〇. (2) When 0.60 M (NH4)2HP04 is used as the hardening solution, all cytotoxicity values are acceptably greater than 80% for all CSH contents (from about 10% by weight to about 90% by weight). 28 201217296

實施例3 :與0.20-3.0 M (NH4)2HP〇4混合的 TTCP/DCPA/CSHExample 3: TTCP/DCPA/CSH mixed with 0.20-3.0 M (NH4)2HP〇4

表 7 :與 0.20-3.00M (NH4)2HP〇4 混合的 TTCP/DCPA/CSH (TTCP/DCPA:CSH = 90:10) 粉末 (NH4)2HP〇4 濃度(Μ) L/P比率 (cc/g) ld-CS (MPa) WT/ST (分鐘) 細胞毒性 O.D.(%) (ai2o3作為對 照物-100%) TTCP/DCPA:CSH (90:10) 0.20 0.28 木 - 0.25 0.28 * 8.1±0.2/ 9.9±0.2 ----- 104.95±6.46 0.50 0.28 32.37±3.10 5.9 土 0.3/ 7.2±0·7 91.31±5.77 0.60 0.28 45.11±3.50 6.1±0.2/ 7.1±0.1 91.61±6.06 0.75 0.28 35.48±1.8 5.9 士 0.3/ 6·9±0·2 86.99±5.13 1.00 0.28 35.79±2.60 5.7±0.1/ 6.3±0.1 ------ 74.09±3.44 2.00 0.28 41.75 土 2.60 4.5±0.5/ 5.9 土 0.3 57.85±4.22 3.00 0.28 42.68±2.60 4·7 士 0.2/ 6·0±0·1 46.80±5.04 在表 7 (與 0.20-3.00M (NH4)2HP〇4 混合的 TTCP/DCPA/CSH (TTCP/DCPA:CSH = 90:10))中所示的結 果總結· (1)當(NH4)2HP〇4濃度太低(在當前測試條件下,0.25 29 201217296 Μ或更低)時,硬化漿糊在Hanks溶液中浸潰時分散,並且 其強度無法測得。 (2) 雖然銨為關鍵的壽命支撐元素,但是為了降低細 胞毒性水準,(NH4)2HP04濃度也不能太高(在當前測試條件 下,2 Μ或更高)。 (3) 適當的(ΝΗ4)2ΗΡ04濃度應為0.25 Μ-2.0 Μ,優選 為0.5Μ-1.0Μ。(或者ΝΗ4 +離子濃度為0.50 Μ-4.0 Μ,優 選為 1.0 Μ-2.0 Μ)。Table 7: TTCP/DCPA/CSH mixed with 0.20-3.00M (NH4)2HP〇4 (TTCP/DCPA: CSH = 90:10) Powder (NH4)2HP〇4 Concentration (Μ) L/P ratio (cc/ g) ld-CS (MPa) WT/ST (minutes) cytotoxicity OD (%) (ai2o3 as control - 100%) TTCP/DCPA: CSH (90:10) 0.20 0.28 wood - 0.25 0.28 * 8.1 ± 0.2/ 9.9±0.2 ----- 104.95±6.46 0.50 0.28 32.37±3.10 5.9 Soil 0.3/ 7.2±0·7 91.31±5.77 0.60 0.28 45.11±3.50 6.1±0.2/ 7.1±0.1 91.61±6.06 0.75 0.28 35.48±1.8 5.9 士士0.3/ 6·9±0·2 86.99±5.13 1.00 0.28 35.79±2.60 5.7±0.1/ 6.3±0.1 ------ 74.09±3.44 2.00 0.28 41.75 Earth 2.60 4.5±0.5/ 5.9 Soil 0.3 57.85±4.22 3.00 0.28 42.68±2.60 4·7 ± 0.2/6·0±0·1 46.80±5.04 In Table 7 (TTCP/DCPA/CSH mixed with 0.20-3.00M (NH4)2HP〇4 (TTCP/DCPA: CSH = 90: Summary of results shown in 10)) (1) When the concentration of (NH4)2HP〇4 is too low (under the current test conditions, 0.25 29 201217296 Μ or lower), when the hardened paste is impregnated in Hanks' solution Dispersed and its strength cannot be measured. (2) Although ammonium is a key life support element, the concentration of (NH4)2HP04 should not be too high (2 Μ or higher under current test conditions) in order to reduce the cytotoxicity level. (3) The appropriate concentration of (ΝΗ4)2ΗΡ04 should be 0.25 Μ-2.0 Μ, preferably 0.5 Μ-1.0 Μ. (Or ΝΗ4 + ion concentration is 0.50 Μ-4.0 Μ, preferably 1.0 Μ-2.0 Μ).

實施例4 :與0.20-3.0 Μ (ΝΗ4)2ΗΡ〇4混合的 TTCP/DCPA/CSH 表 8 :與 0.20-3.00Μ(ΝΗ4)2ΗΡ〇4 混合的 TTCP/DCPA/CSH (TTCP/DCPA:CSH = 75:25) 粉末 (NH4)2HP〇4 濃度(μ) L/P比率 (cc/g) ld-CS (MPa) WT/ST (分鐘) 細胞毒性 〇.D.(%) (ai2o3作為對 照物-l〇〇%&gt; TTCP/DCPA:CSH (75:25) 0.20 0.28 * - 0.25 0.28 氺 13.5±0.5/ 16.3 ±1.1 98.94±3,41 0.50 0.28 21·58±1·82 7.9±0.3/ 10.1 士 0.3 90.83±6.02 0.60 0.28 40.45±2.39 5.8±0.1/ 7.5±0.3 88.17±1.39 30 201217296 0.75 0.28 25·37 士 0.69 5.5 土 0.1/ 7.5 ±0.2 93.32±5.01 1.00 0.28 27.77±1.60 4.9±0.1/ 6.9 士 0.3 91.21 士 1.99 2.00 0.28 24.53 士 1.80 3.6 士 0.5/ 4.8±0.3 74.42±3.25 3.00 0.28 32.86±2.10 2.9±0.1/ 4.2±0.3 59.79±3.23 在表 8 (與 0.20-3.00M (NH4)2HP〇4 混合的 TTCP/DCPA/CSH (TTCP/DCPA:CSH = 75:25))中所示的結 果總結: (1)當(NH4)2HP〇4濃度太低(在當前測試條件下,〇25 Μ或更低)時’硬化漿糊在Hanks溶液中浸潰時分散,並且 其強度無法測得。 ’但是為了降低細 巧(在當前測試條件 (2)雖然敍為關鍵的壽命支樓元素 胞毒性水準,(ΝΗ4)2ΗΡ04濃度也不能太 下,&gt; 2 M) » 2·〇 Μ,優選 Μ-4·〇 μ,優 (3)適當的(NH4)2HP04濃度應為〇.25m 為0.5 Μ·1.〇 Μ。(或者NH4+離子濃度為〇 5〇 選為 1.0 M-2.0 M)。Example 4: TTCP/DCPA/CSH mixed with 0.20-3.0 Μ (ΝΗ4) 2ΗΡ〇4 Table 8: TTCP/DCPA/CSH mixed with 0.20-3.00Μ(ΝΗ4)2ΗΡ〇4 (TTCP/DCPA: CSH = 75:25) Powder (NH4)2HP〇4 Concentration (μ) L/P ratio (cc/g) ld-CS (MPa) WT/ST (minutes) Cytotoxicity 〇.D. (%) (ai2o3 as a control -l〇〇%&gt; TTCP/DCPA:CSH (75:25) 0.20 0.28 * - 0.25 0.28 氺13.5±0.5/ 16.3 ±1.1 98.94±3,41 0.50 0.28 21·58±1·82 7.9±0.3/ 10.1 ± 0.3 90.83±6.02 0.60 0.28 40.45±2.39 5.8±0.1/ 7.5±0.3 88.17±1.39 30 201217296 0.75 0.28 25·37 ±0.69 5.5 Soil 0.1/ 7.5 ±0.2 93.32±5.01 1.00 0.28 27.77±1.60 4.9±0.1/ 6.9 士0.3 91.21 ± 1.99 2.00 0.28 24.53 ± 1.80 3.6 ± 0.5 / 4.8 ± 0.3 74.42 ± 3.25 3.00 0.28 32.86 ± 2.10 2.9 ± 0.1 / 4.2 ± 0.3 59.79 ± 3.23 in Table 8 (mixed with 0.20-3.00M (NH4) 2HP 〇 4 Summary of the results shown in TTCP/DCPA/CSH (TTCP/DCPA: CSH = 75:25): (1) When the concentration of (NH4)2HP〇4 is too low (under current test conditions, 〇25 Μ or more) Low) when the hardened paste is dispersed in the Hanks solution, and its Degree can not be measured. 'But in order to reduce the fineness (in the current test conditions (2), although it is the critical cytotoxicity level of the life-supporting building elements, (ΝΗ4) 2ΗΡ04 concentration can not be too low, &gt; 2 M) » 2·〇 Μ, preferably Μ-4·〇μ, excellent (3) The appropriate concentration of (NH4)2HP04 should be 〇.25m for 0.5 Μ·1.〇Μ (or NH4+ ion concentration is 〇5〇 selected as 1.0 M-2.0 M).

實施例5 :與0.25-1.0 Μ (ΝΗ4)2ΗΡ04混合的 TTCP/DCPA/CSH 31 201217296Example 5: TTCP/DCPA/CSH 31 mixed with 0.25-1.0 Μ (ΝΗ4) 2ΗΡ04 201217296

表 9 :與 0.25-1.0M (NH4)2HP〇4 混合的 TTCP/DCPA/CSH (TTCP/DCPA:CSH = 65:35) 粉末 (NH4)2HP04 濃 L/P 1-d CS 度(Μ) (cc/g) (MPa) 0.35 21.24 土 1.82 0.33 23.12±1.21 1.00 0.30 23.33±1.38 0.28 23.52±1.67 0.35 24.32 士 1.56 0.33 25.62土0.93 0.75 0.30 24.36 士 1·62 0.28 29.54±1.13 0.35 18.36 土 1.45 0.33 22.59 土 1.61 0.50 0.30 26.75 士 1.51 TTCP/DCPA:CSH 0.28 31.37 士 0.81 (65:35) 0.35 34.23±0·61 0.33 30.77±1·57 0.45 0.30 25.01 土 0.56 0.28 22.65 土 1.23 0.35 27.32 土 1.45 0.3 3 32.51±0.72 0.40 0.30 28.77±1.22 0.28 14.16士1.15 0.35 氺 0.33 * 0.25 0.30 本 0.28 * 32 201217296 在表 9 (與 0.25-1.0M (NH4)2HP〇4 混合的 TTCP/DCPA/CSH (TTCP/DCPA:CSH = 65:35))中所示的結 果總結: (1) 當(NH4)2HP04濃度太低(在當前測試條件下, 0.25M或更低),硬化漿糊在Hanks溶液中浸潰時分散,並 且其強度無法測得。Table 9: TTCP/DCPA/CSH mixed with 0.25-1.0M (NH4)2HP〇4 (TTCP/DCPA: CSH = 65:35) Powder (NH4)2HP04 Concentrated L/P 1-d CS Degree (Μ) ( Cc/g) (MPa) 0.35 21.24 Soil 1.82 0.33 23.12±1.21 1.00 0.30 23.33±1.38 0.28 23.52±1.67 0.35 24.32 ± 1.56 0.33 25.62 Soil 0.93 0.75 0.30 24.36 ±1·62 0.28 29.54±1.13 0.35 18.36 Earth 1.45 0.33 22.59 Earth 1.61 0.50 0.30 26.75 ± 1.51 TTCP/DCPA: CSH 0.28 31.37 ± 0.81 (65:35) 0.35 34.23±0·61 0.33 30.77±1·57 0.45 0.30 25.01 Soil 0.56 0.28 22.65 Soil 1.23 0.35 27.32 Soil 1.45 0.3 3 32.51±0.72 0.40 0.30 28.77±1.22 0.28 14.16 ± 1.15 0.35 氺 0.33 * 0.25 0.30 This 0.28 * 32 201217296 In Table 9 (TTCP/DCPA/CSH mixed with 0.25-1.0M (NH4)2HP〇4 (TTCP/DCPA: CSH = 65 Summary of the results shown in :35)): (1) When the concentration of (NH4)2HP04 is too low (0.25M or less under the current test conditions), the hardened paste is dispersed in the Hanks solution, and its The strength cannot be measured.

(2) 除了少數情況外,所有1-d CS值高於20 MPa,並 且,在某些條件下,高於30 Mpa。 實施例6 :與0·40-1·0 Μ (ΝΗ4)2ΗΡ04混合的 TTCP/DCPA/CSH 表 10:與 0.40-1·00Μ(ΝΗ4)2ΗΡΟ4 混合的 TTCP/DCPA/CSH (TTCP/DCPA:CSH = 55:45) 粉末 (NH4)2HP〇4 濃度(Μ) L/P 比率 (cc/g) WT (分鐘) ST (分鐘) 1-d CS (MPa) TTCP/DCPA:CSH 0.35 10.3±0.3 11.9±0.1 28.87±2.52 (55:45) 0.40 0.33 9.3±0.3~ 10.9±0.2 30.46±1.89 0.30 7.9±0.5 9.4±〇.3 26.62±2.23 0.28 6.9±0.4 8.6±0.2 24.96±3.79 0.35 8.9±0.1 10.8±0.2 27.93±2.69 0.45 0.33 7.7±0.3 9.6±0.2 26.22±2.51 0.30 6.6±0.2 8.5±0.3 26.71±1.41 0.28 5.4 士 0.4 7.4±0.4 27.82±2.59 33 201217296 0.35 9.2±0.1 11.2±0.2 24.67士 2.23 0.33 8.4±0_3 10.3 士 0.2 27.86土 2.26 0.50 0.30 7.2±0.2 9.2±〇.3 32.05±3.02 0.28 6.0±0.3 7.5±0.3 34.70±1.52 0.26 5.4±0.2 7.4±0.1 30.50士 3.77 0.35 8·5 土 0·3 10.3±0.3 28.60±1.99 0.60 0.33 7.3±0.3 9.2 士 0.2 27.10±1.28 0.3 6·3 士 0.1 8.4±0.1 25.74土 2.20 0.28 5.2 土 0_2 6.8 士 0.3 28.07±1.54 0.35 6.4±0.4 8.5±〇.2 23.40±3.55 0.75 0.33 5.3 士 0.3 7.5±0.4 29.25土 1.45 0.30 5.2±0.3 7.1 土 0.2 29.59±2.65 0.28 4.7±0.3 6.5±0.3 30.00±2.83 0.35 5.3 士 0.1 7.0±0.2 28.46±3.38 1.00 0.33 4.5 土 0.2 6.2±0.2 30.7U2.76 0.30 3.7±0.3 5.3±0.1 25.71±3.86 0.28 2.9±0.3 4.2 土 0.3 29.58士 1.24 在表 10 (與 0.40-1.00M (NH4)2HP〇4 混合的 丁1^/〇0?八/€811(1'1^/〇€卩八:匚811 = 55:45))中所示的結 果總結: (1)所有1-d CS值高於20 MPa,並且,在某些條件下, 高於30 MPa。 (2)對於較高濃度(1·0Μ)和較低L/P值(低於0.33 cc/g),WT/ST有點太短。 34 201217296(2) With the exception of a few cases, all 1-d CS values are higher than 20 MPa and, in some cases, above 30 Mpa. Example 6: TTCP/DCPA/CSH mixed with 0·40-1·0 Μ (ΝΗ4) 2ΗΡ04 Table 10: TTCP/DCPA/CSH mixed with 0.40-1·00Μ(ΝΗ4)2ΗΡΟ4 (TTCP/DCPA: CSH = 55:45) Powder (NH4)2HP〇4 Concentration (Μ) L/P ratio (cc/g) WT (minutes) ST (minutes) 1-d CS (MPa) TTCP/DCPA: CSH 0.35 10.3±0.3 11.9 ±0.1 28.87±2.52 (55:45) 0.40 0.33 9.3±0.3~ 10.9±0.2 30.46±1.89 0.30 7.9±0.5 9.4±〇.3 26.62±2.23 0.28 6.9±0.4 8.6±0.2 24.96±3.79 0.35 8.9±0.1 10.8± 0.2 27.93±2.69 0.45 0.33 7.7±0.3 9.6±0.2 26.22±2.51 0.30 6.6±0.2 8.5±0.3 26.71±1.41 0.28 5.4 ±0.4 7.4±0.4 27.82±2.59 33 201217296 0.35 9.2±0.1 11.2±0.2 24.67±2.23 0.33 8.4± 0_3 10.3士士 0.2 27.86土2.26 0.50 0.30 7.2±0.2 9.2±〇.3 32.05±3.02 0.28 6.0±0.3 7.5±0.3 34.70±1.52 0.26 5.4±0.2 7.4±0.1 30.50±3.77 0.35 8·5 Soil 0·3 10.3± 0.3 28.60±1.99 0.60 0.33 7.3±0.3 9.2 ± 0.2 27.10±1.28 0.3 6·3 ± 0.1 8.4 ± 0.1 25.74 ± 2.20 0.28 5.2 Soil 0_2 6.8 ± 0.3 28.07 ± 1.54 0.35 6.4 ± 0.4 8.5 ± .2 23.40±3.55 0.75 0.33 5.3 ± 0.3 ± 0.4 29.25 ± 1.45 0.30 5.2 ± 0.3 7.1 Soil 0.2 29.59 ± 2.65 0.28 4.7 ± 0.3 6.5 ± 0.3 30.00 ± 2.83 0.35 5.3 ± 0.1 7.0 ± 0.2 28.46 ± 3.38 1.00 0.33 4.5 0.2 6.2±0.2 30.7U2.76 0.30 3.7±0.3 5.3±0.1 25.71±3.86 0.28 2.9±0.3 4.2 Soil 0.3 29.58 ± 1.24 In Table 10 (Ding 1^/〇 mixed with 0.40-1.00M (NH4)2HP〇4 The results shown in 0?8/€811 (1'1^/〇€卩8:匚811 = 55:45)) are summarized as follows: (1) All 1-d CS values are higher than 20 MPa, and, at some Under these conditions, it is higher than 30 MPa. (2) For higher concentrations (1·0Μ) and lower L/P values (less than 0.33 cc/g), WT/ST is a bit too short. 34 201217296

實施例 7 :與 0.40-0.60 M (NH4)2HP〇4 混合的 TTCP/DCPA/CSHExample 7: TTCP/DCPA/CSH mixed with 0.40-0.60 M (NH4)2HP〇4

表 11 :與 0.40-0.60 M (NH4)2HP04 混合的 TTCP/DCPA/CSH (TTCP/DCPA:CSH = 45:55) 粉末 (nh4)2hpo4 濃度(Μ) L/P 比率 (cc/g) WT (分鐘) ST (分鐘) 1-dCS (MPa) 0.35 8.2 士 0.3 10.7 土 0.2 21.1 士 1.0 0.40 0.33 7.5 士 0.2 9.6±0.3 23.3 士 2.0 0.30 6.1 士 0.3 8.3 士 0.2 27.1 土 2.2 rrCP/DCPA:CSH (45:55) 0.35 7.6±0.3 10.2 士 0.2 22.3±0.5 0.50 0.33 7.0±0.5 9.1±0.2 22.1 士 2.2 0.30 5.8±0.2 7.8 土 0.1 24.1 土 1.6 0.35 7.9 士 0.3 10.0±0.2 21.4±2.0 0.60 0.33 6.6 士 0.4 9.0±0.6 23.8±1.7 0.30 5.5 士 0.1 7.5 土 0.2 23.8±1.7 在表 11 (與 0.40-0.60M (NH4)2HP〇4 混合的 TTCP/DCPA/CSH (TTCP/DCPA:CSH = 45:55))中所示的結 果總結: (1) 所有1-d CS值高於20 Mpa。 (2) 在所有測試條件下,工作時間比5.5分鐘長,並且 固化時間比7.5分鐘長。 35 201217296 (cddw) sus Ksu/vdua/dull 碱 ¥^Εκ-^^ψ趄紱 s5l§ffi^fNI&lt; U 一 Os rn On Pi m in IT) m ON ro a\ ro CN +1 &lt;N m Os yn CN 龙 CN s o oo Xfl U 1 T3 〇〇 &lt;N 卜 f-H rn 寸 a\ m oo 'O CO (N to m &gt;n VO r〇 VO VO f™H -H cs CN CS 屮 KM U 寸 v〇 0Λ 寸· oo m CN CO rn oo m 〇\ 寸· 卜 »n m in CN +1 m oo m r&quot;H &lt;N Λ 00 寸· K/l U ni 卜 rn +1 o CN v〇 思 CN 〇 rn m ζ 寸 OO m yn CN m c^ Λ o 异 Xfl U &quot;ύ m oo 寸· Λ in 〇 m (N 寸· »n 寸 寸 T-H to τ·Η Pi in (N rn »n cs cK m tn i 1 次 v〇 ro m o t—H l〇 On C/} U 1 T3 r-H ro t&gt; i o vo o Os m rj jn o S o CO CN 芝· 〇 CN 衷 od CN s- oo CN 〇 oo (N o oo CN 〇 oo &lt;N 〇 m 〇 m 〇 轶 s 1¾ W (N ^ 3 °I li O &lt;N ^ 3 °I li O cs °I |S sgg °i 1¾ Ο (N ^ 3 °I X (Λ U ♦! ^ Φ1 &amp;H '^ H H 〇 &lt;n t—H &gt;n 00 (N yn rn »〇 jn Cn U^i 201217296 在表12中所示的結果總結: (1)除了 “55:45”複合材料外,所有42d-CS值高於20 M:Pa ’這表明即使在Hanks溶液中浸潰42天后,強度也只 溫和減小。但是,當CSH含量增至45重量%時,複合材料 的CS值非常顯著地下降。 實施例8:有機酸的加入對與i.om (NH4)2HP04混合的 TTCP/DCPA/CSH 的影響 表13:有機酸(酒石酸、檸檬酸和蘋果酸)的加入對與1 Μ (ΝΗ4)2ΗΡ04 混合的 TTCP/DCPA/CSH (TTCP/DCPA:CSH = 75:25)的性能的影響 有機酸 有機酸的濃度 L/P比率 溶液 WT ST ld-CS (M) (cc/g) pH (分鐘) (分鐘) (MPa) 0.4 0.40 5.31 7.8 ±0.2 9.9 ±0.4 20.17±2·20 蘋果酸 0.3 0.40 5.86 8.4 ±0.4 10.5±0.5 24.15±2.73 0.2 0.40 6.39 9.0±0.5 10.50±0.5 23.44±3.79 0.1 0.40 6.98 9.4 ±0.4 10.4 士 0.5 23.90±3.05 0.4 0.33 4.71 2.4 ±0.3 4.0 ±0.3 27.65±3.24 檸檬酸 0.3 0.33 5.28 4.7±0.6 7.1 ±0.1 30.08±1.44 0.2 0.33 5.94 7.0±0.3 10.0±0.4 29.48±1.46 0.1 0.33 6.71 9.2±0.4 10.3 ±0.4 31.66±2.49 0.4 0.33 5.10 3.9 ±0.3 6.8 士 0.2 32.38土2.48 酒石酸 0.35 0.33 5.57 4.2±0.2 7.1 ±0.1 34.60±3.70 0.3 0.33 5.62 6.0 ±0.5 9.8 ±0.2 30.97±2.86 37 201217296 0.2 0.33 6.25 7.2±0.4 10.2 ±0.4 26.04±3.64 0.1 0.33 6.99 9.4±0.4 11.2 土 0.2 27.36±5.31 在表1 3中所示的結果總結: (1) 在1 M (NH4)2HP04固化溶液中加入蘋果酸降低硬 化複合水泥的CS值。 (2) 在1 M (NH4)2HP〇4固化溶液中加入檸檬酸提高硬 化複合水泥的CS值(從約28 MPa至約32 MPa)。 (3) 在1 M (NH4)2HP04固化溶液中加入酒石酸提高硬 化複合水泥的CS值(從約28 MPa至35 MPa)。 TTCP/DCPA/CSH複合材料緻密塊的製備 將適量的TTCP與DCPA粉末在球磨機中均勻混合, 接著與適量的CSH粉末均勻混合。將所得到的 TTCP/DCPA/CSH混合粉末與期望的固化溶液(例如,0.6M (NH4)2HP〇4)以期望的L/P比率(例如,0.28 cc/g)均勻混合, 以形成TTCP/DCPA/CSH漿糊。 在完全硬化之前,在期望的壓力(最大壓力為150、300 或450 Kgf)下,將漿糊放置在模具中,以將一部分液體從 漿糊中擠出。從模具中移除後,將一組硬化複合材料樣品 在防潮容器中放置1天。將另一組樣品在保持在期望的溫 度(37°C)下的浸潰溶液(1M (NH4)2HP〇4或1M K2HP〇4)中再 浸潰1天,接著在50°C的烘箱中乾燥1天。 38 201217296 TTCP/DCPA/CSH複合材料多孔塊的製備 將適量的TTCP與DCPA粉末在球磨機中均勻混合, 接著與適量的CSH粉末均勻混合。將所得到的 TTCP/DCPA/CSH混合粉末與期望的固化溶液(例如,0.6M (NH4)2HP04)以期望的L/P比率(例如,0,28 cc/g)均勻混 合,以形成TTCP/DCPA/CSH漿糊。 隨後將複合漿糊與造孔劑(例如,KC1顆粒)以期望的重 量比(例如,TTCP/DCPA/CSH:KC1 = 1:1 或 1:2)均勻混合, 以形成 TTCP/DCPA/CSH/KC1 漿糊。 在完全硬化之前,在期望的壓力(最大壓力為450 Kgf) 下,將複合漿糊放置在模具中,以將一部分液體從漿糊中 擠出。從模具中移除後,將一組硬化複合材料塊在3 7°C的 去離子水中沉浸3天,使得KC1顆粒溶解,形成多孔複合 材料塊,接著在50t的烘箱中乾燥1天。將另一組樣品在 保持在期望的溫度(37°C)下的浸潰溶液(例如,1M (NH4)2HP04或1M K2HP04)中再浸潰1天,使得多孔塊的 強度提高,接著在50°C的烘箱中乾燥1天。為了從孔内部 除去殘餘的浸潰溶液,將浸潰過的多孔樣品在37°C的去離 子水中進一步漂洗3天。 孔隙率的測定 根據 ASTM C830-00 (2006)方法 “ Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by 39 201217296Table 11: TTCP/DCPA/CSH mixed with 0.40-0.60 M (NH4)2HP04 (TTCP/DCPA: CSH = 45:55) Powder (nh4) 2hpo4 Concentration (Μ) L/P ratio (cc/g) WT ( Minutes) ST (minutes) 1-dCS (MPa) 0.35 8.2 ± 0.3 10.7 Soil 0.2 21.1 ± 1.0 0.40 0.33 7.5 ± 0.2 9.6 ± 0.3 23.3 ± 2.0 0.30 6.1 ± 0.3 8.3 ± 0.2 27.1 Soil 2.2 rrCP/DCPA: CSH (45 :55) 0.35 7.6±0.3 10.2 ± 0.2 22.3±0.5 0.50 0.33 7.0±0.5 9.1±0.2 22.1 ± 2.2 0.30 5.8 ± 0.2 7.8 Soil 0.1 24.1 Soil 1.6 0.35 7.9 ± 0.3 10.0 ± 0.2 21.4 ± 2.0 0.60 0.33 6.6 ± 0.4 9.0 ±0.6 23.8±1.7 0.30 5.5 ± 0.1 7.5 ± 0.2 23.8 ± 1.7 In Table 11 (TTCP/DCPA/CSH (TTCP/DCPA: CSH = 45:55) mixed with 0.40-0.60M (NH4)2HP〇4) The results are summarized as follows: (1) All 1-d CS values are higher than 20 Mpa. (2) Under all test conditions, the working time is longer than 5.5 minutes and the curing time is longer than 7.5 minutes. 35 201217296 (cddw) sus Ksu/vdua/dull Alkali ¥^Εκ-^^ψ趄绂s5l§ffi^fNI&lt; U-Os rn On Pi m in IT) m ON ro a\ ro CN +1 &lt;N m Os yn CN 龙CN so oo Xfl U 1 T3 〇〇&lt;N 卜fH rn inch a\ m oo 'O CO (N to m &gt;n VO r〇VO VO fTMH -H cs CN CS 屮KM U Inch v〇0Λ inch· oo m CN CO rn oo m 〇\ inch· Bu »nm in CN +1 m oo m r&quot;H &lt;N Λ 00 inch · K/l U ni 卜 rn +1 o CN v〇思CN 〇rn m ζ inch OO m yn CN mc^ Λ o Xfl U &quot;ύ m oo inch · Λ in 〇m (N inch · »n inch inch TH to τ·Η Pi in (N rn »n cs cK m tn i 1 time v〇ro mot-H l〇On C/} U 1 T3 rH ro t&gt; io vo o Os m rj jn o S o CO CN 芝 〇 od CN s- oo CN 〇oo ( N o oo CN 〇oo &lt;N 〇m 〇m 〇轶s 13⁄4 W (N ^ 3 °I li O &lt;N ^ 3 °I li O cs °I |S sgg °i 13⁄4 Ο (N ^ 3 ° IX (Λ U ♦! ^ Φ1 &amp; H '^ HH 〇&lt;nt-H &gt;n 00 (N yn rn »〇jn Cn U^i 201217296 Summary of the results shown in Table 12: (1) In addition to Outside the "55:45" composite, all 42d-CS values are higher than 20 M: Pa 'This shows that the strength is only mildly reduced even after 42 days of immersion in Hanks' solution. However, when the CSH content is increased to 45% by weight, the CS value of the composite material drops very significantly. Example 8: Addition of organic acids Effect on TTCP/DCPA/CSH mixed with i.om (NH4)2HP04 Table 13: Addition of organic acids (tartaric acid, citric acid and malic acid) to TTCP/DCPA/CSH mixed with 1 Μ (ΝΗ4) 2ΗΡ04 ( Effect of TTCP/DCPA: CSH = 75:25) Performance of Organic Acids Organic Acids L/P Ratio Solution WT ST ld-CS (M) (cc/g) pH (minutes) (minutes) (MPa) 0.4 0.40 5.31 7.8 ±0.2 9.9 ±0.4 20.17±2·20 Malic acid 0.3 0.40 5.86 8.4 ±0.4 10.5±0.5 24.15±2.73 0.2 0.40 6.39 9.0±0.5 10.50±0.5 23.44±3.79 0.1 0.40 6.98 9.4 ±0.4 10.4 ± 0.5 23.90±3.05 0.4 0.33 4.71 2.4 ±0.3 4.0 ±0.3 27.65±3.24 Citric acid 0.3 0.33 5.28 4.7±0.6 7.1 ±0.1 30.08±1.44 0.2 0.33 5.94 7.0±0.3 10.0±0.4 29.48±1.46 0.1 0.33 6.71 9.2±0.4 10.3 ±0.4 31.66±2.49 0.4 0.33 5.10 3.9 ±0.3 6.8 ± 0.2 32.38 soil 2.48 tartaric acid 0.35 0.33 5.57 4.2 ± 0.2 7.1 ±0.1 34.60±3.70 0.3 0.33 5.62 6.0 ±0.5 9.8 ±0.2 30.97±2.86 37 201217296 0.2 0.33 6.25 7.2±0.4 10.2 ±0.4 26.04±3.64 0.1 0.33 6.99 9.4±0.4 11.2 Soil 0.2 27.36±5.31 In Table 13 The results are summarized as follows: (1) Adding malic acid to the 1 M (NH4)2HP04 solidified solution reduces the CS value of the hardened composite cement. (2) Adding citric acid to the 1 M (NH4)2HP〇4 solidification solution increases the CS value of the hardened composite cement (from about 28 MPa to about 32 MPa). (3) Adding tartaric acid to the 1 M (NH4)2HP04 solidified solution to increase the CS value of the hardened composite cement (from about 28 MPa to 35 MPa). Preparation of TTCP/DCPA/CSH Composite Dense Blocks An appropriate amount of TTCP and DCPA powder were uniformly mixed in a ball mill and then uniformly mixed with an appropriate amount of CSH powder. The obtained TTCP/DCPA/CSH mixed powder is uniformly mixed with a desired solidified solution (for example, 0.6 M (NH 4 ) 2 HP 〇 4 ) at a desired L/P ratio (for example, 0.28 cc / g) to form TTCP / DCPA/CSH paste. Prior to complete hardening, the paste is placed in a mold at a desired pressure (maximum pressure of 150, 300 or 450 Kgf) to squeeze a portion of the liquid out of the paste. After removal from the mold, a set of hardened composite samples were placed in a moisture barrier container for 1 day. Another set of samples was re-impregnated for 1 day in an impregnation solution (1M (NH4)2HP〇4 or 1M K2HP〇4) maintained at the desired temperature (37 °C), followed by an oven at 50 °C. Dry for 1 day. 38 201217296 Preparation of TTCP/DCPA/CSH composite porous block An appropriate amount of TTCP and DCPA powder were uniformly mixed in a ball mill, and then uniformly mixed with an appropriate amount of CSH powder. The obtained TTCP/DCPA/CSH mixed powder is uniformly mixed with a desired solidified solution (for example, 0.6 M (NH 4 ) 2 HP 04 ) at a desired L/P ratio (for example, 0, 28 cc / g) to form TTCP / DCPA/CSH paste. The composite paste is then uniformly mixed with a pore forming agent (for example, KC1 particles) in a desired weight ratio (for example, TTCP/DCPA/CSH: KC1 = 1:1 or 1:2) to form TTCP/DCPA/CSH/ KC1 paste. Prior to complete hardening, the composite paste was placed in a mold at a desired pressure (maximum pressure of 450 Kgf) to squeeze a portion of the liquid out of the paste. After removal from the mold, a set of hardened composite blocks were immersed in deionized water at 37 ° C for 3 days to dissolve the KC1 particles to form a porous composite block, which was then dried in a 50 t oven for 1 day. Another set of samples was re-impregnated for one day in an impregnation solution (eg, 1 M (NH4) 2 HP04 or 1 M K2 HP04) maintained at the desired temperature (37 ° C) to increase the strength of the porous mass, followed by 50 Dry in an oven at °C for 1 day. In order to remove the residual impregnation solution from the inside of the well, the impregnated porous sample was further rinsed for 3 days in deionized water at 37 °C. Porosity Determination according to ASTM C830-00 (2006) “Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by 39 201217296

Vacuum Pressure(用於通過真空壓力的耐火型材的表觀孔 隙率、液體吸收、表觀比重和體積密度的標準測試方法)” 測定各樣品的孔隙率。 實施例9 :緻密的塊 表 14:由與 0.6M(NH4)2HPO4(L/P=0.28cc/g)混合的 TTCP/DCPA/CSH混合粉末製備的TTCP/DCPA/CSH複合材 料緻密塊的壓縮強度(MPa) TTCP/DCPA:CSH (重量比) 未經浸潰處理 在37°C的1Μ (NH4)2HP〇4 中浸溃 1天 在37°C的1M K2HPO4中浸潰1天 模塑壓力(kgf) 模塑壓力(kgf) 模塑壓力(kgf) 150 300 450 150 300 450 150 300 450 42.74 49.21 55.86 101.38 130.83 167.02 111.07 162.96 160.07 90:10 ±3.20 士 3.17 ±1.67 ±9.23 ±6.88 ±7.57 ±6.93 ±8.07 ±4.13 38.11 49.21 53.55 100.26 127.49 162.95 105.78 142.01 150.07 85:15 ±2.51 ±3.69 ±1.14 土 7.06 ±11.21 ±6.26 ±6.81 ±8.92 ±3.25 38.02 46.34 54.78 103.07 121.68 137.99 105.32 129.10 144.90 75:25 ±3.00 ±1.79 ±7.45 ±6.55 土 5.07 ±9.58 ±7.02 ±9.81 ±11.33 36.14 46.32 60.64 101.04 120.53 134.78 98.26 131.78 136.85 65:35 ±1·64 ±8.16 士 2.34 ±4.77 ±7.98 ±9.74 ±10.71 ±6.77 土 8.47 35.59 48.71 54.95 95.14 121.91 128.63 90.18 132.57 140.37 55:45 ±1.32 ±2.80 土 4.70 ±6,06 ±7.68 ±6.92 ±3.63 ±5.28 ±3.45 40 201217296 在表14 (TTCP/DCPA/CSH複合材料緻密塊的壓縮強度) 中所示的結果總結: (1) 在所有條件下,經浸潰-處理過的樣品具有明顯較 高的CS值。 (2) 在所有條件下,隨著模塑壓力的升高,CS值顯著 提高。 實施例10 :多孔塊 表 15:由與 0.6M(NH4)2HPO4(L/P = 0.33cc/g)混合的 TTCP/DCPA/CSH/KC1 (造孔劑)混合粉末製備的 TTCP/DCPA/CSH複合材料多孔塊的孔隙率值(體積%) TTCP/DCPA:CSH (重量比) TTCP/DCPA/CSH:KC1 = 1:1 (重量比) TTCP/DCPA/CSH:KC1 = 1:2 (重量比) 90:10 46.02 土 2.87 81.51 ±6.57 85:15 57.66± 0.98 83.77 ±5.61 75:25 59.82 ±1.16 84.32 ±6.71 65:35 63.02 ±1.41 87.86 ±3.74 55:45 59.98 ±0.87 88.69 ±5.72 在表15 (由與0.6 M (NH4)2HP〇4混合的 TTCP/DCPA/CSH/KC1 (造孔劑)混合粉末製備的 TTCF7DCPA/CSH複合材料多孔塊)中所示的結果總結: (1)在 TTCP/DCPA/CSH:KC1 = 1:1 時,孔隙率值為 41 201217296 46-63%,並且在 TTCP/DCPA/CSH:KC1 = 1:2 時,孔隙率值 為81-8 9%,其可理想地用作組織-工程支架。 (2)隨著複合材料中CSH含量的提高,孔隙率值通常 提高。 42 201217296 #φ^(ί#^?οιυ:χ/:Η8υ/ν(1Ηυα/ΡΗυΙΗ^φ^(&amp;οοο££.ο=&amp;Η/Ί)·&lt;ΐο&lt;ϋ(寸 H£lAt9.0 碟·®:9Ι&lt; 1K 对 ds)_娥紫 ws^_Jtv呤实龙HSu/vdua/duHl 容架鉍&lt; 在37°C的1Μ k2hpo4中浸潰1天 TTCP/DCPA/CSH: KC1 = 1:2(重量比) 1.50±0·30 1.36±0.19 0.93±0.23 0.87±0_09 0.64±0.07 在37°C的1M k2hpo4中浸潰1天 TTCP/DCPA/CSH: KC1= 1:1 (重量比) 8.71±0.93 7.37±〇.98 7.40 土 0_73 5.15±0.70 4.55±0.33 * * S? , ^ ii u S &lt; δ Λ _ K ffi - Q u ΦΗ m X Pi ^ W ^ 1 H 1.62±0.28 1.22±0.19 0.98±0.18 0.91±0.05 0.71±0.10 ^ d ^ V £ 〇 a: ^ υ Λ ®H t- ffi ^ $ U vW IS 8.43±0.73 7.29±0.54 7.03 土 0.49 5.19±0.26 4.01±0.56 未經浸潰 TTCP/DCPA/CSH: KC1= 1:2 (重量比) 0.92 ±0.18 0.82 ± 0.23 0.74 ±0.10 0.51 ±0.07 0.42 ± 0.06 ffi m ί 〇 Λ ®N 5 g ^ Ϊ 4.86 ± 0.43 5.00 土 0.64 4_18 土 0.49 3.74 ± 0.42 2.36 ±0.19 TTCP/DCPA: CSH (重量比) 90:10 I 85:15 75:25 65:35 55:45 201217296 在表16 (由與0.6M (NH4)2HP〇4混合的 TTCP/DCPA/CSH/KC1 (造孔劑)混合粉末製備的 TTCP/DCPA/CSH複合材料多孔塊)中所示的結果總結: (1) 在所有測試條件下,隨著複合材料中CSH含量的 提高,多孔塊的CS強度下降。 (2) 在 TTCP/DCPA/CSH:KC卜 1:1 時,由 TTCP/DCPA/CSH/KC1製備的多孔塊(水/油浸潰處理)的CS 值為約 2-5 Mpa,並且在 TTCP/DCPA/CSH:KC1=1:2 時,CS 值為約 0.4-0.9 Mpa。 (3) 浸潰處理顯著增強多孔塊的強度。在 TTCP/DCPA/CSH:KC1 = 1:1 時,經(NH4)2HP〇4-浸潰過的多 孔塊的CS值顯著增至4.8-8.9 MPa,並且在 TTCP/DCPA/CSH:KC1 = 1:2 時,CS 值顯著增至約 0.5-1.2 MPa。在 TTCP/DCPA/CSH:KC1 = 1:1 時,經 Κ2ΗΡ〇4·浸漬 過的多孔塊的CS值顯著增至4.8-8.8 MPa,並且在 TTCP/DCPA/CSH:KC1 = 1:2 時,CS 值顯著增至約 0.5-1 ·2 MPa。 實施例11 :複合植入物吸收比率的動物研究和測定Vacuum Pressure (Standard Test Method for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Profiles by Vacuum Pressure)" The porosity of each sample was determined. Example 9: Dense Blocks Table 14: Compressive strength (MPa) of TTCP/DCPA/CSH composite dense block prepared from TTCP/DCPA/CSH mixed powder mixed with 0.6M(NH4)2HPO4 (L/P=0.28cc/g) TTCP/DCPA: CSH (weight 1) impregnation in 1 Μ (NH4)2HP〇4 at 37 ° C for 1 day without immersion in 1 M K2HPO 4 at 37 ° C. Molding pressure (kgf) Molding pressure (kgf) Molding Pressure (kgf) 150 300 450 150 300 450 150 300 450 42.74 49.21 55.86 101.38 130.83 167.02 111.07 162.96 160.07 90:10 ±3.20 ±3.17 ±1.67 ±9.23 ±6.88 ±7.57 ±6.93 ±8.07 ±4.13 38.11 49.21 53.55 100.26 127.49 162.95 105.78 142.01 150.07 85:15 ±2.51 ±3.69 ±1.14 Soil 7.06 ±11.21 ±6.26 ±6.81 ±8.92 ±3.25 38.02 46.34 54.78 103.07 121.68 137.99 105.32 129.10 144.90 75:25 ±3.00 ±1.79 ±7.45 ±6.55 Soil 5.07 ±9.58 ±7.02 ± 9.81 ±11.33 36.14 46.32 60.64 101.04 120.53 134.78 98.26 131.78 136.85 65:35 ±1·64 ±8.16 ± 2.34 ±4.77 ±7.98 ±9.74 ±10.71 ±6.77 Earth 8.47 35.59 48.71 54.95 95.14 121.91 128.63 90.18 132.57 140.37 55:45 ±1.32 ±2.80 Earth 4.70 ±6,06 ±7.68 ±6.92 ±3.63 ±5.28 ±3.45 40 201217296 Summary of the results shown in Table 14 (Compressive Strength of TTCP/DCPA/CSH Composite Dense Blocks): (1) Under all conditions, dip The collapsed-treated sample has a significantly higher CS value. (2) Under all conditions, the CS value increases significantly as the molding pressure increases. Example 10: Porous block Table 15: TTCP/DCPA/CSH prepared from a mixed powder of TTCP/DCPA/CSH/KC1 (porogen) mixed with 0.6M(NH4)2HPO4 (L/P = 0.33 cc/g) Porosity value (volume %) of composite porous block TTCP/DCPA: CSH (weight ratio) TTCP/DCPA/CSH: KC1 = 1:1 (weight ratio) TTCP/DCPA/CSH: KC1 = 1:2 (weight ratio) 90:10 46.02 Soil 2.87 81.51 ±6.57 85:15 57.66± 0.98 83.77 ±5.61 75:25 59.82 ±1.16 84.32 ±6.71 65:35 63.02 ±1.41 87.86 ±3.74 55:45 59.98 ±0.87 88.69 ±5.72 In Table 15 ( The results shown in the TTCF7DCPA/CSH composite porous block prepared from a mixed powder of TTCP/DCPA/CSH/KC1 (porogen) mixed with 0.6 M (NH4)2HP〇4 are summarized: (1) in TTCP/DCPA /CSH: KC1 = 1:1, the porosity value is 41 201217296 46-63%, and when TTCP/DCPA/CSH: KC1 = 1:2, the porosity value is 81-8 9%, which is ideally Used as a tissue-engineering scaffold. (2) As the CSH content in the composite increases, the porosity value generally increases. 42 201217296 #φ^(ί#^?οιυ:χ/:Η8υ/ν(1Ηυα/ΡΗυΙΗ^φ^(&amp;οοο££.ο=&Η/Ί)·&lt;ΐο&lt;ϋ(inch H£ lAt9.0 Disc·®: 9Ι&lt; 1K vs ds)_娥紫ws^_Jtv呤实龙HSu/vdua/duHl 容架铋&lt; immersed in 1Μ k2hpo4 at 37°C for 1 day TTCP/DCPA/CSH: KC1 = 1:2 (weight ratio) 1.50±0·30 1.36±0.19 0.93±0.23 0.87±0_09 0.64±0.07 Immersion in 1M k2hpo4 at 37 °C for 1 day TTCP/DCPA/CSH: KC1= 1:1 ( Weight ratio) 8.71±0.93 7.37±〇.98 7.40 Soil 0_73 5.15±0.70 4.55±0.33 * * S? , ^ ii u S &lt; δ Λ _ K ffi - Q u ΦΗ m X Pi ^ W ^ 1 H 1.62± 0.28 1.22±0.19 0.98±0.18 0.91±0.05 0.71±0.10 ^ d ^ V £ 〇a: ^ υ Λ ®H t- ffi ^ $ U vW IS 8.43±0.73 7.29±0.54 7.03 Soil 0.49 5.19±0.26 4.01±0.56 Dipping TTCP/DCPA/CSH: KC1= 1:2 (weight ratio) 0.92 ±0.18 0.82 ± 0.23 0.74 ±0.10 0.51 ±0.07 0.42 ± 0.06 ffi m ί 〇Λ ®N 5 g ^ Ϊ 4.86 ± 0.43 5.00 Earth 0.64 4_18 Soil 0.49 3.74 ± 0.42 2.36 ±0.19 TTCP/DCPA: CSH (weight ratio) 90:10 I 85:15 75:25 65:35 55:45 201217296 in Table 16 (by and 0.6M Summary of results shown in (NH4)2HP〇4 mixed TTCP/DCPA/CSH/KC1 (porogen) mixed powder prepared TTCP/DCPA/CSH composite porous block): (1) Under all test conditions, As the CSH content in the composite increases, the CS strength of the porous block decreases. (2) Porous block prepared by TTCP/DCPA/CSH/KC1 at TTCP/DCPA/CSH: KC 1:1 (water/oil) The CS value of the impregnation treatment is about 2-5 Mpa, and the CS value is about 0.4-0.9 Mpa at TTCP/DCPA/CSH:KC1=1:2. (3) The impregnation treatment significantly enhances the strength of the porous block. At TTCP/DCPA/CSH:KC1 = 1:1, the CS value of the (NH4)2HP〇4-impregnated porous block increased significantly to 4.8-8.9 MPa, and at TTCP/DCPA/CSH:KC1 = 1 At 2, the CS value is significantly increased to approximately 0.5-1.2 MPa. When TTCP/DCPA/CSH: KC1 = 1:1, the CS value of the porous block impregnated by Κ2ΗΡ〇4· is significantly increased to 4.8-8.8 MPa, and when TTCP/DCPA/CSH:KC1 = 1:2, The CS value was significantly increased to approximately 0.5-1 · 2 MPa. Example 11: Animal studies and determination of composite implant absorption ratio

在臺灣台南的國立成功大學醫學院動物中心進行動物 研究。成年(體重2.8-3.5 kg)、健康的雄性新西蘭白兔用作 實驗動物。將兔子單獨封裝在不鎊鋼籠中,兔子可自由接 近食物和水。在收到動物和開始研究之間允許最少7天的 馴化週期。將注射部位剃毛,並用70%乙酵和BetadineTM 44 201217296 (聚維酮碘1 〇%)清潔。所有動物在全身麻醉下操作。戊巴 比妥鈉(0.1ml/100g,TokyoKaseiKogyo,曰本,東京)用 作全身麻醉劑’而利多卡因(Fujisawa Pharmaceutical CO., 曰本’東京)用作局部麻醉劑。為了在股骨的内寐中植入水 泥漿糊’在股骨的前表面上形成縱向切口。將兔子膝關節 的内側切開’以暴露股骨。將股骨暴露之後,使骨膜反射, 並鑽2 mm導向孔。使用具有增加尺寸的鑽使該孔逐漸變 寬,直至達到最終的直徑為5 mm。使用專門的直徑5 mm 的牙鑽(drill burr),並且在深度為⑺爪瓜處插入環,以確 保鑽孔的長度適當(1〇 mm)。 將兩種磷酸鈣/硫酸鈣複合水泥漿糊(9 〇重量% TTCP/DCPA:10 重量 % CSH 和 55 重量 % τ丁Cp/DcpA 45 重 量% CSH)植入準備好的骨腔中。填充漿糊後,將皮下組織 和皮膚用絲線逐層封閉。為了降低手術期間感染的風險, 以40 mg/kg的劑量對兔子進行皮下注射抗生素的處理。在 手術後12周後’動物均死去。 在動物死後’立即切除股骨部分,並除去多餘的組織。 使用單透鏡反射照相機的切片照片和圖像分㈣統來計算 殘餘的植入物的面積。通過以下方程式確定植入物吸收比 率:植入物吸收比率=(初始植入物的橫截面積殘餘植入 物的橫截面積)/初始植入物的橫截面積。 總結: “90/10”和“55/45”樣品的平 在以上提及的照片中看出 45 201217296 均殘餘植入物比率分別為 8 1 · 1 % (吸收比率 67.7% (吸收比率:32.3%)。這意味著,55/45 合速度比90/10植入物的愈合速度快約70%。 :18.9%)和 植入物的愈 46Animal research was conducted at the Animal Center of the National Cheng Kung University School of Medicine in Tainan, Taiwan. Adult male (weight 2.8-3.5 kg), healthy male New Zealand white rabbits were used as experimental animals. The rabbit is individually packaged in a non-pound steel cage and the rabbit is free to access food and water. A minimum of 7 days of acclimation cycle is allowed between receipt of the animal and initiation of the study. The injection site was shaved and cleaned with 70% ethyl yeast and BetadineTM 44 201217296 (Povidone iodine 1%). All animals were operated under general anesthesia. Sodium pentobarbital (0.1 ml/100 g, Tokyo Kasei Kogyo, 曰本, Tokyo) was used as a general anesthetic agent' and lidocaine (Fujisawa Pharmaceutical CO., 曰本 'Tokyo) was used as a local anesthetic. In order to implant a cement paste in the medial malleolus of the femur, a longitudinal incision is made on the anterior surface of the femur. The inside of the rabbit knee was cut open to expose the femur. After exposing the femur, the periosteum was reflected and a 2 mm guide hole was drilled. The hole is gradually widened using a drill having an increased size until a final diameter of 5 mm is reached. Use a special 5 mm diameter drill burr and insert the ring at a depth of (7) claw to ensure proper length of the hole (1 〇 mm). Two calcium phosphate/calcium sulfate composite cement pastes (9 〇 wt% TTCP/DCPA: 10 wt% CSH and 55 wt% τ丁Cp/DcpA 45 wt% CSH) were implanted into the prepared bone cavity. After filling the paste, the subcutaneous tissue and skin are closed with layers of silk. In order to reduce the risk of infection during surgery, rabbits were treated with subcutaneous antibiotics at a dose of 40 mg/kg. The animals died after 12 weeks after surgery. Immediately after the animal dies, the femoral portion is removed and excess tissue is removed. The area of the residual implant is calculated using the sliced photo and image sub-system of the single lens reflex camera. The implant absorption ratio was determined by the following equation: implant absorption ratio = (cross-sectional area of the initial implant residual implant cross-sectional area) / cross-sectional area of the initial implant. Summary: The flats of the "90/10" and "55/45" samples are seen in the photos mentioned above. 45 201217296 Residual implant ratios were 8 1 · 1 % (absorption ratio 67.7% (absorption ratio: 32.3) %). This means that the 55/45 combined speed is about 70% faster than the 90/10 implant. 18.9%) and the implant 46

Claims (1)

201217296 七、申請專利範圍: 1、 一種骨水泥配方,該骨水泥配方含有粉末組份和固 化液體組份,其中液體與粉末的比率為〇 2〇 cc/g至〇 5〇 cc/g,優選為0.25 cc/g至0.35 cc/g,其中,所述粉末組份 含有硫酸轉源和麟酸約源’以所述硫酸約源和雄酸約源的 總重量為基準’所述硫酸弼源的重量比小於6 5 %,並且所 述固化液體組份含有濃度為約〇.5肘至4 M的銨離子,其 中’所述磷酸約源包括填酸四約和碟酸二約,其中鱗酸四 鈣與磷酸二鈣的摩爾比為約〇.5至約2.5,優選為約1.0, 並且所述硫酸鈣源為半水合硫酸鈣、脫水硫酸鈣或無水硫 酸鈣’並優選為半水合硫酸鈣,其中,以所述硫酸鈣源和 磷酸鈣源的總重量為基準,所述粉末組份的硫酸鈣源大於 5%,更優選為1〇%-55%。 2、 如申請專利範圍第1項所述的配方’其中,所述磷 酸二#5為無水峨酸二妈。 3、 如申請專利範圍第1項所述的配方,其中,所述固 化液體組份含有濃度為約1.0 Μ至2·0 M的銨離子。 4、 如申請專利範圍第3項所述的配方,其中,所述固 化液體組份為 NH4H2P〇4、(NH4)2HP〇4、(NH4)3p〇4.3H20 或它們的混合物的溶液。 47 201217296 5、 如申請專利範圍第4項所述的配方’其中,所述固 化液體組份為(NH4)2HP〇4的水溶液。 6、 如申請專利範圍第2項所述的配方,其中,所述磷 酸鈣源由磷酸四鈣和無水磷酸二鈣組成。 7、 如申請專利範圍第1項所述的配方,其中,所述配 方還包括造孔劑,當將由所述配方製備的硬化骨水泥複合 材料浸潰於溶液_時,所述造孔劑溶解於該溶液中。 8、 一種製備硬化骨水泥複合材料的方法,該方法包括 通過將申請專利範圍第丨項中所述的骨水泥配方的粉末組 份與固化液體組份混合,形成骨水泥漿糊;在模具中使所 述漿糊成形;以及移除所述模具,以形成硬化骨水泥複合 材料的塊。 9如申請專利範圍第8項所述的方法,其中,該方法 還包括在所述衆糊固化之前對所述模具中的所述讓糊加 麼以從所述衆糊中除去一部分液趙,使得所述聚糊的液 體與粉末的比率下降’以,施用於所述模具中的所述衆 糊的壓力為約1 λ&gt;Γτι MPa 至 500 MPa ,優選為 100 MPa 至 500 MPa 〇 10、如申請專利範圍第8 項所述的方法,其中,該方 48 201217296 m 法還包括用浸潰液體將所述塊浸漬一段時間,使得與未經 所述浸潰處理的所述塊相比,從所述浸潰液體移除而得到 的浸潰過的塊的壓縮強度提高了。 11、 如申請專利範圍第10項所述的方法,其中,所述 浸溃液體為含磷酸鹽的溶液,其中磷酸鹽的濃度為約〇1M 至約6 Μ,優選為約1 Μ至約3 Μ » 12、 如申請專利範圍第8項所述的方法,其中,所述 骨水泥配方的粉末組份含有造孔劑,或者在混合過程中加 入造孔劑,或者在使模具中的所述漿糊成形之前將造孔劑 與漿糊混合,並且所述方法還包括將所述硬化骨水泥複合 材料的塊浸潰於沉浸液體中,以將所述造孔劑溶解於所述 沉浸液體,在所述塊中產生孔,從而形成多孔塊,並且所 述多孔塊的孔隙率優選為50-90體積%。 13、如申請專利範圍第12項所述的方法,其中,所述 造孔劑為選自由 Lien、Ken、Nacn、MgCl2、Caci2、NaI〇3、 KI,. Na3P04、K3P04、Na2C03、胺基酸-鈉鹽、胺基酸·奸鹽、 葡萄糖、多糖、脂肪酸-鈉鹽、脂肪酸-钟鹽、酒石酸灸奸、 碳酸鉀、葡萄糖酸鉀、酒石酸鈉鉀、硫酸鉀、硫酸鈉、乳 酸納和甘露醇組成的組中。 14、如申請專利範圍第12項所述的方法,其中,所述 49 201217296 沉浸液體為含磷酸鹽的溶液或水’所述磷酸鹽的溶液中碟 酸鹽濃度為約0.1M至約6M,優選為約1M至約3M。 15、如申請專利範圍第12項所述的方法,其中,該方 法還包括用浸潰液體將所述多孔塊浸溃一段時間,使得與 未經所述浸潰處理的所述多孔塊相比,從所述浸潰液想移 除而得到的浸潰過的多孔塊的壓縮強度提高了。 16、 如申請專利範圍第15項所述的方法,其中,所述 浸漬液體為含磷酸鹽的溶液,其中磷酸鹽濃度為約〇ιM 至約6M,優選為約iM至約3M。 17、 如申請專利範圍第8項所述的方法,其中,該方 法還包括將所述塊破碎成粒料。 、 ^ 18如中請專利範圍第iq項所述的方法,,該方 法還包括將所述多孔塊破碎絲料。 、 50 201217296 ' 四、指定代表圖: (一) 本案指定代表圖為:第( )圖。 (二) 本代表圖之元件符號簡單說明: 【無】 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 【無】201217296 VII. Patent application scope: 1. A bone cement formula containing a powder component and a solidified liquid component, wherein the ratio of liquid to powder is 〇2〇cc/g to 〇5〇cc/g, preferably Between 0.25 cc/g and 0.35 cc/g, wherein the powder component contains a source of sulfuric acid and a source of linonic acid, based on the total weight of the source of the sulfuric acid and the source of the male acid. The weight ratio is less than 6 5 %, and the solidified liquid component contains ammonium ions at a concentration of about 肘5 to 4 M, wherein 'the phosphoric acid source includes acid tetrasodium and discic acid di-s, wherein squaric acid The molar ratio of tetracalcium to dicalcium phosphate is from about 0.5 to about 2.5, preferably about 1.0, and the source of calcium sulfate is calcium sulfate hemihydrate, calcium sulfate dehydrate or anhydrous calcium sulfate 'and preferably calcium sulfate hemihydrate. Wherein the calcium component of the powder component is greater than 5%, more preferably from 1% to 55%, based on the total weight of the calcium sulfate source and the calcium phosphate source. 2. The formulation as claimed in claim 1, wherein the phosphoric acid #5 is an anhydrous tannin. 3. The formulation of claim 1, wherein the solidifying liquid component comprises ammonium ions having a concentration of from about 1.0 Torr to about 2.0 M. 4. The formulation of claim 3, wherein the solidifying liquid component is a solution of NH4H2P〇4, (NH4)2HP〇4, (NH4)3p〇4.3H20 or a mixture thereof. 47 201217296 5. The formulation of claim 4, wherein the solidifying liquid component is an aqueous solution of (NH4)2HP〇4. 6. The formulation of claim 2, wherein the calcium phosphate source consists of tetracalcium phosphate and anhydrous dicalcium phosphate. 7. The formulation of claim 1, wherein the formulation further comprises a pore former, and the pore former is dissolved when the hardened bone cement composite prepared from the formulation is impregnated into the solution _ In this solution. 8. A method of preparing a hardened bone cement composite, the method comprising: forming a bone cement paste by mixing a powder component of a bone cement formulation described in the scope of claim 2 with a solidified liquid component; Forming the paste; and removing the mold to form a block of hardened bone cement composite. 9. The method of claim 8, wherein the method further comprises: adding the paste in the mold to remove a portion of the liquid from the paste before the paste is cured; Decreasing the ratio of the liquid to the powder of the poly-paste, so that the pressure applied to the paste in the mold is about 1 λ &gt; Γτι MPa to 500 MPa, preferably 100 MPa to 500 MPa 〇10, such as The method of claim 8 wherein the method further comprises impregnating the block with a dipping liquid for a period of time such that the block is not compared to the block not subjected to the impregnation treatment. The compressive strength of the impregnated block obtained by the removal of the impregnation liquid is increased. 11. The method of claim 10, wherein the impregnation liquid is a phosphate-containing solution, wherein the concentration of the phosphate is from about 1 M to about 6 Torr, preferably from about 1 Torr to about 3 The method of claim 8, wherein the powder component of the bone cement formulation contains a pore former, or a pore former is added during the mixing, or in the mold The pore former is mixed with the paste prior to paste formation, and the method further comprises impregnating the block of the hardened bone cement composite in an immersion liquid to dissolve the pore former in the immersion liquid, A hole is formed in the block to form a porous block, and the porosity of the porous block is preferably from 50 to 90% by volume. The method according to claim 12, wherein the pore forming agent is selected from the group consisting of Lien, Ken, Nacn, MgCl2, Caci2, NaI〇3, KI, Na3P04, K3P04, Na2C03, amino acid - sodium salt, amino acid, salt, glucose, polysaccharide, fatty acid-sodium salt, fatty acid - bell salt, tartaric acid moxibustion, potassium carbonate, potassium gluconate, potassium sodium tartrate, potassium sulfate, sodium sulfate, lactate and nectar In the group consisting of alcohols. 14. The method of claim 12, wherein the 49 201217296 immersion liquid is a phosphate-containing solution or a water solution of the phosphate having a concentration of about 0.1 M to about 6 M. It is preferably from about 1 M to about 3 M. 15. The method of claim 12, wherein the method further comprises impregnating the porous block with a dipping liquid for a period of time such that compared to the porous block not subjected to the impregnation treatment The compressive strength of the impregnated porous block which is desired to be removed from the impregnation solution is improved. The method of claim 15, wherein the impregnating liquid is a phosphate-containing solution, wherein the phosphate concentration is from about 1 M to about 6 M, preferably from about 1 M to about 3 M. 17. The method of claim 8, wherein the method further comprises breaking the block into pellets. The method of claim iq, wherein the method further comprises breaking the porous mass into the porous mass. , 50 201217296 ' IV. Designated representative map: (1) The representative representative of the case is: ( ). (2) A brief description of the symbol of the representative figure: [None] 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: [None]
TW099135634A 2010-10-19 2010-10-19 Bone cement formula and bioresorbable hardened bone cement composites prepared with the same TWI453174B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099135634A TWI453174B (en) 2010-10-19 2010-10-19 Bone cement formula and bioresorbable hardened bone cement composites prepared with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099135634A TWI453174B (en) 2010-10-19 2010-10-19 Bone cement formula and bioresorbable hardened bone cement composites prepared with the same

Publications (2)

Publication Number Publication Date
TW201217296A true TW201217296A (en) 2012-05-01
TWI453174B TWI453174B (en) 2014-09-21

Family

ID=46552165

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099135634A TWI453174B (en) 2010-10-19 2010-10-19 Bone cement formula and bioresorbable hardened bone cement composites prepared with the same

Country Status (1)

Country Link
TW (1) TWI453174B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10225420A1 (en) * 2002-06-07 2003-12-24 Sanatis Gmbh Strontium apatite cement preparations, the cements formed therefrom and the use thereof
ES2260616T3 (en) * 2002-06-19 2006-11-01 Dr.H.C. Robert Mathys Stiftung HYDRAULIC CEMENT BASED WITH CALCIUM PHOSPHATE BASED FOR SURGICAL USE.
GB0311846D0 (en) * 2003-05-23 2003-06-25 Univ Birmingham High strength and injectable apatitic calcium phosphate cements
US7118705B2 (en) * 2003-08-05 2006-10-10 Calcitec, Inc. Method for making a molded calcium phosphate article
US6994726B2 (en) * 2004-05-25 2006-02-07 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
TW201019971A (en) * 2008-11-18 2010-06-01 Shih-Ping Lin Biological-activity containing orthopedic filler

Also Published As

Publication number Publication date
TWI453174B (en) 2014-09-21

Similar Documents

Publication Publication Date Title
US8784551B2 (en) Bone cement formula and bioresorbable hardened bone cement composites prepared with the same
JP5351369B2 (en) Composition for bone mineral substitute for injection
US9833537B2 (en) Calcium-based bone cement formula with enhanced non-dispersive ability
US5145520A (en) Bioactive cement
JP6174684B2 (en) Calcium antibacterial material
KR101654600B1 (en) Composition containing injectable self-hardened apatite cement
KR20110087081A (en) Highly Injectable Calcium Bone Cement Composition
EP2450064B1 (en) Bone Cement Formula and Bioresorbable Hardened Bone Cement Composites Prepared with the Same
US8540815B2 (en) Preparation for magnesium ammonium phosphate cements
TW201217296A (en) Bone cement formula and bioresorbable hardened bone cement composites prepared with the same
US20180264167A1 (en) Cement-forming compositions, apatite cements, implants and methods for correcting bone defects
TW201321033A (en) Calcium-based bone cement formula with extended setting time
RU2609835C1 (en) Calcium-phosphate cement for bone tissue regeneration (versions)
US20120093771A1 (en) Method for preparing a hardened calcium sulfate dihydrate block and use thereof
CN103127547B (en) Reinforced non-disintegrative calcium-based bone cement preparation
WO2012054010A1 (en) Bone cement formula and bioresorbable hardened bone cement composites prepared with the same
RU2679140C1 (en) Calcium phosphate cement for filling bone defects
EP2629600A1 (en) Method for preparing a hardened calcium sulfate dihydrate block and use thereof
JPH0523388A (en) Calcium phosphate porous cement
TW201217297A (en) Method for preparing a hardened calcium sulfate dihydrate block and use thereof