TW201208147A - Optical element device and fabricating method thereof - Google Patents
Optical element device and fabricating method thereof Download PDFInfo
- Publication number
- TW201208147A TW201208147A TW99138606A TW99138606A TW201208147A TW 201208147 A TW201208147 A TW 201208147A TW 99138606 A TW99138606 A TW 99138606A TW 99138606 A TW99138606 A TW 99138606A TW 201208147 A TW201208147 A TW 201208147A
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- optical element
- layer
- optical component
- optical
- Prior art date
Links
Landscapes
- Led Device Packages (AREA)
Abstract
Description
201208147 [0009] 本發明透過將螢光體注入於基板凹槽内之方法,提供可 降低螢光體耗損量之光學元件裝置。 [0010] 本發明透過增加光學元件及螢光體與基板之相對接觸面 積’提供可提升光學元件與螢光體之散熱效能之光學元 件裝置。 [0011] 本發明透過以機械及(或)化學處理方式於基板上形成 凹槽,提供具製造容易製程簡單之優點之光學元件裝置 [0012] 本發明透過於基板上形成一鍍銀層或鍍鎳/銀層,提供可 強化焊線(wire bonding)並提升光反射率之光學元件穿 置。 、 [0013] 【解決問題的方法】 [0014] 依本發明製造之光學元件裝置之製造方法包括:形成包 覆金屬板上端面與下端面之模組(Pat tern)層之模組涔 製程;於電鍍外露於前述模組層外之區域後,形成貫穿 前述金屬板之絕緣層,且同a|障金屬板成為具備由前述 絕緣層隔離出之數個區域之基板之絕緣層製程;移除前 述模組層以露出前述基板之移除模組層製程;將光學元 件安裝至前述基板上端之光學元件安裝製程;透過導電 線連結前述光學元件或前述基板之電子連結製程;以及 於如述基板上端形成包覆前述光學元件與導電線之保護 層製程。 其中,上述模組層製程之特點為以遮罩溶液塗佈或以膠 帶黏貼上述基板之上端面與下端面。 099138606 表單編號A0101 第4頁/共82頁 1003064566-0 [0015] 201208147 [0016] [0017] Ο [0018] [0019]201208147 [0009] The present invention provides an optical element device capable of reducing the amount of loss of a phosphor by injecting a phosphor into a recess of a substrate. [0010] The present invention provides an optical element device that enhances the heat dissipation performance of the optical element and the phosphor by increasing the relative contact area of the optical element and the phosphor with the substrate. [0011] The present invention provides an optical component device that is easy to manufacture and has a manufacturing process by forming a groove on a substrate by mechanical and/or chemical treatment. [0012] The present invention forms a silver plating layer or plating on a substrate. The nickel/silver layer provides optical component insertion that enhances wire bonding and enhances light reflectivity. [0014] [Method for Solving the Problem] [0014] A method of manufacturing an optical element device manufactured according to the present invention includes: forming a module process for covering a module layer of an end surface and a lower end surface of a metal plate; After plating is exposed to a region outside the module layer, an insulating layer penetrating the metal plate is formed, and the a|barrier metal plate is an insulating layer process of a substrate having a plurality of regions separated by the insulating layer; The module layer is configured to expose the removal module layer of the substrate; the optical component mounting process for mounting the optical component to the upper end of the substrate; and the electronic bonding process of connecting the optical component or the substrate through the conductive wire; and the substrate The upper end forms a protective layer process for coating the optical element and the conductive line. The module layer process is characterized in that the mask solution is coated or glued to the upper end surface and the lower end surface of the substrate. 099138606 Form No. A0101 Page 4 of 82 1003064566-0 [0015] 201208147 [0016] [0018] [0019]
[0020] [0022] 099138606 又上述絕緣層製程之特點為於上述基板之上端面與下 端面上形成雙圓錐(double咖)狀之絕緣層。 同時’依本㈣之光料件裝置之㈣料包含:以數 個金屬㈣合成金屬板之金屬板製程;於上述金屬板邊 界面形成接著物之接著物製程;透過上述接著物使金屬 板相互堆疊黏著之堆疊製程;以垂直金屬板表面之方向 進仃裁切,使其成為-具有數個由前述接著物區隔且彼 此絕緣之區域之基板之裁切製程;將光學元件安裝至前 述基板上端之光學元件安㈣程;透過導電線連結前述 先學凡件或前述基獻電子連結㈣於前述基板 上端形成包覆_鮮元件解電狀料層製程。 其中,上述金屬板製程可為對金屬板外緣進行陽極處理 又’上述金>1板製程’可透過噴砂、化學關、研磨、 拋光等其卜種方式於上述邊界面上形絲面粗縫度。 且上述接者物製程中之接著物可為液體接著劑或 膠片。 圆依本發明所製造之光學元件裝置包含:貫穿基板 之絕緣層及具備由上述絕緣層隔離出彼此絕緣之數個區 域之基板;安裝於上述基板上端之鮮元件;連接上述 光學元件或基板之導電線;及位於上述基板上端,内部 包覆上述光學元件與導電線之保護層。 其中,於上述基板之任一區域上端,可增加由金、銀、 銅、鋁、鎳、鎢之組合或其中一項材質形成之電極層。 表單編號A0101 第5頁/共82頁 1003064566-0 201208147 [0023] 且,上述基板之絕緣層可於上述基板内部以陽極處裡 (anodizing)升》成之。 [0024] 又,上述基板之絕緣層可為垂直於上述基板之雙圓錐 (double cone)狀。 [0025] 又,上述基板之絕緣層可由形成於上述基板各區域間之 接著劑或絕緣膠片形成之。 [0026] 又,上述基板各區域與上述絕緣層之接觸面可透過喷砂 、化學錄刻、研磨、撤光等其中一種方式形成表面粗縫 度。 [0027] 又,上述光學元件之下端面,可透過導電性接著劑黏著 於上述基板上之一區域中。 [0028] 又,於上述基板之下端可再增加與上述基板之各區域相 對應之金屬層。 [0029] 又,可於上述基板之上端面或下端中增加包覆上述絕緣 層之固定層。 [0030] 又,上述固定層可藉由聚鄰苯二甲醯胺(Poly Phthal[0020] The above-mentioned insulating layer process is characterized in that an insulating layer of a double-concave shape is formed on the upper end surface and the lower end surface of the substrate. At the same time, the (4) material of the light material device according to the present invention includes: a metal plate process for synthesizing a metal plate by a plurality of metals (four); a process for forming an adhesive on the boundary surface of the metal plate; and the metal plates are mutually exchanged through the above-mentioned substrate a stacking process of stacking and bonding; cutting in a direction perpendicular to the surface of the metal plate to form a cutting process of a substrate having a plurality of regions separated by the foregoing substrate and insulated from each other; mounting the optical component to the substrate The upper end of the optical component is (four); the conductive element is connected to the first learning element or the aforementioned electronic connection (4) to form a cladding-fresh component de-energized layer process on the upper end of the substrate. Wherein, the above metal plate process can be anodized on the outer edge of the metal plate and the above-mentioned gold > 1 plate process can be permeable to sandblasting, chemical sealing, grinding, polishing, etc. Sewage. And the substrate in the above process can be a liquid adhesive or film. The optical component device manufactured by the present invention comprises: an insulating layer penetrating through the substrate; and a substrate having a plurality of regions insulated from each other by the insulating layer; a fresh component mounted on the upper end of the substrate; and the optical component or the substrate a conductive wire; and a protective layer on the upper end of the substrate, which internally covers the optical element and the conductive line. Wherein, at the upper end of any of the regions of the substrate, an electrode layer formed of a combination of one of gold, silver, copper, aluminum, nickel, and tungsten or one of the materials may be added. Form No. A0101 Page 5 of 82 1003064566-0 201208147 [0023] Further, the insulating layer of the above substrate may be formed by anodizing the inside of the substrate. [0024] Further, the insulating layer of the substrate may be in the shape of a double cone perpendicular to the substrate. Further, the insulating layer of the substrate may be formed of a subsequent agent or an insulating film formed between the regions of the substrate. Further, the contact surface between each of the regions of the substrate and the insulating layer may form a rough surface by one of sandblasting, chemical recording, polishing, and light removal. Further, the lower end surface of the optical element is adhered to a region on the substrate via a conductive adhesive. [0028] Further, a metal layer corresponding to each region of the substrate may be further added to the lower end of the substrate. Further, a fixing layer covering the insulating layer may be added to the upper end surface or the lower end of the substrate. [0030] Further, the above fixed layer can be obtained by polyphthalamide (Poly Phthal)
Amid,PPA)、環氧樹脂、感光隔層膠或其混合物形成之 〇 [0031] 又,於上述基板之上端可再增加與上述固定層相對應之 上端反射層。 [0032] 同時,依本發明製造之光學元件裝置包含:具有凹槽之 基板;位於上述基板凹槽處之光學元件;連接上述基板 與上述光學元件之導電線;及充填於上述基板凹槽處且 099138606 表單編號A0101 第6頁/共82頁 1003064566-0 201208147 [0033] 0 [0034] [0035] ❹ [0036] [0037] [0038] 包覆上述光學元件與上述導電線之螢光體。 其中,上述基板包括:具上述凹槽之第一面及與第一面 相對之第二面之導電體;位於上述導電體第一面之第一 鍍金層;及位於上述導電體第二面之第二鍍金層。上述 凹槽包括安裝上述光學元件之底面;及自上述底面向上 述第一面傾斜之傾斜面。上述第一鍍金層可由鐘銀或先 鍍鎳再鍍銀之方式形成之。上述第二鍍金層可由金、鎳 、銅、錫之合金或其中之一以電鍍方式形成之。 且,於上述基板凹槽之外侧,可再增加使上述基板以水 平方向區隔出兩個以上區域之絕緣層。光學元件安裝於 以上述絕緣層為中心所區隔出之一侧基板上,另一側基 板則透過導電線與光學元件連结。 又,上述螢光層以透明封口部包覆之。上述導電線延伸 至上述凹槽外側,延伸至上述凹槽外側之導電線以上述 透明封口部包覆之。上述透明封口部上端為凸出狀。 又,於上述基板凹槽内侧可再增製使上述基板以水平方 向區隔出兩個以上區域之絕緣域。上述導電線位於上述 凹槽内側。上述螢光層之上端為凸出狀。 又,上述基板凹槽内至少有兩個光學元件。 又,上述基板至少具備兩個凹槽。於上述各凹槽外侧形 成可於電子上使上述基板水平分離之絕緣層。於上述各 凹槽内側形成可於電子上將上述基板水平分離之絕緣層 099138606 表單編號A0101 第7頁/共82頁 1003064566-0 201208147 [0039] 又,沿上述基板凹槽之周長形成段差。於上述段差上形 成至少一個之凹洞。 [0040] 又,於上述凹槽之底面形成至少一個之凹洞。沿上述基 板凹槽之周長形成段差。於上述段差中形成至少一個之 凹洞。 [0041] 【效果】 [0042] 依本發明製造之光學元件裝置之基本材質為鋁或鋁合金 ,故光學元件所產生之熱能可有效傳遞至基板下端。 [0043] 又,依本發明製造之光學元件裝置,透過使基板分隔為 數個區域且垂直貫穿基板之絕緣層,可防止各區域上端 之第一電極層及第二電極層產生電子上之連結。 [0044] 又,依本發明製造之光學元件裝置透過將光學元件發出 之光源集中後再加以輸出,可提高發光效率。 [0045] 又,依本發明製造之光學元件裝置透過於基板上形成凹 槽,並於其中注入螢光體,可減少螢光體之消耗量。 [0046] 又,依本發明製造之光學元件裝置,透過增加光學元件 及螢光體與基板之相對接觸面積,可提高光學元件及螢 光體之散熱效能。 [0047] 又,依本發明製造之光學元件裝置,透過機械及(或)化 學處理於基板上形成凹槽,因此不需其他結構物即可簡 化生產製程。 [0048] 又,依本發明製造之光學元件裝置,透過於基板上形成 一鑛銀層或鑛鎳/銀層,可強化焊線(wire bonding)並 099138606 表單編號A0101 第8頁/共82頁 1003064566-0 201208147 [0049] [0050] [0051]Ο [0052] [0053]Ο 提升光反射率。 【實施方式】 於本發明所屬之技術領域中,為使具一般相關知識者亦 能輕易的實現本發明,以下將參照本發明之正確實例圖 示,加以詳細說明之。 以下為依本發明實例所製造之光學元件裝置構造之說明 〇 圖1為依本發明實施例製造之光學元件裝置之剖面圖。圖 2為本發明實施例之光學元件裝置上使用之基板之底面圖 〇 參照圖1及圖2,依本發明實例製造之光學元件裝置(100) 包含基板(110)、第一電極層(120)、第二電極層(130) 、隔板(140)、光學元件(150)、導電線(160)、保護層 (170)。 上述基板(110)全部以單一方向形成之板狀物組成之。上 述基板(110)支撐上述光學元件(150)並與外部之PCB等 相連接。 [0054] [0055] [0056] 上述基板(110)包括位於中間之第一區(111)及分隔於第 一區(111)兩側之第二區(112)及第三區(113)。 上述光學元件(150)形成於第一區(111)之上端。因此, 上述光學元件(150)之熱能,可輕易透過上述第一區 (111)傳導至基板(110)之下方。 又,上述第一電極層(120)於第二區(112)之上端,上述 099138606 表單編號Α0101 第9頁/共82頁 1003064566-0 201208147 第二電極層(130)於第三區(113)之上端。又,上述第— 區(Π1)至第三區(113)由金屬形成之,故具優越之的熱 傳導性。上述第一區(111)至第三區(113)之材質為鋁或 銘合金,鋁及鋁合金之導熱係數約為13〇至25〇 κ] ’故可知其具良好之熱傳導性。因此,上述第一區(1Η) 至第三區(113)可有效將安裝於其上端之光學元件(15〇) 之熱能傳導至外部。 [〇〇57]又,絕緣層(114)形成於上述第一區(ill)與第二區 (112)之間及第一區(πΐ)與第三區(113)之間。參考圖 2,上述絕緣層(114)與土述基板(110)垂直且貫穿上述 基板(no),且並列於上述第一區(111)至第三區(113) 之間。因此,上述第一區(U1)至第三區(113)之間彼此 絕緣。上述絕緣層(114)可藉由陽極處理上述鋁或鋁合金 以形成之。即,當上端面與下端面上將形成上述絕緣層 (114)之區域外露時,可透過對鋁或鋁合進行氧化處理以 形成上述絕緣層(114)。因此,於圖!中玉述絕緣層 (114)垂直方向之兩侧為平坦咚铡面,但若同時對上述基 板(110)之上下兩端面進行陽極處理時,則上述絕緣層 (114)即為側面凹陷之雙圓錐(d〇uMe c〇ne)狀。 [0058]上述第一電極層(120)於上述基板(11〇)中第二區(112) 之上端。上述第-電極層(12〇)雖無特別圖*,但可為具 於第二區(112)上方形成之下端電極層,及於下端電極層 上端形成之上端電極層之雙重結構,亦可為僅具下端電 極層或上端電㈣之電極層。此時’上述第一電極層 (120)可利用金(Au)、銀(Ag)、銅(Cu)、銘(Al)、鎳 099138606 表單編號A0101 第忉頁/共82頁 1003064566-0 201208147 [0059] Ο [0060] Ο [0061] (Νΐ)、鶴⑺之組合或其中一項所製成。又,較有效之作 法為以具良好導電性且能反射光學元件(]5〇)發出之光, 進而可提高褒置發光效率之銀(Ag)來形成上述第一電極 層(120)。 上述第二電極層(130)於上述基板(110)令第三區(113) 之上端。上述第二電極層(130)與上述第一電極層(12〇) 相對稱且與上述第一電極層(12〇)具相反之電極。例如, 若上述第一電極層(12〇)與正極相連結,則上述第二電極 層(130)即與負極相連接。同上述第一電極層(12〇),上 述第二電極層(130)應具下端電極層與上端電極層,或其 中之一。因上述第二電極層6130)之構成方式與第一電極 層(120)相同,因此省略詳細說明。 上述隔板(140)分別形成於第一電極層(_)及第二電極 層(130)之上端。上述隔板(14〇)自上述第一電極層 (120)及第二電極層(130)之上端面向上垂直凸起。上述 隔板(140)區隔出可形成上述保護層(17〇)之區域。上述 隔板(140)可以光反射率佳之環氧樹脂、感光隔層膠 (Photosensitive barrib Rib paste,PSR)或其混 合物形成,且依情形之不同亦可使用矽膠形成之。 上述光學元件(150)位於上述基板(no)之上方。上述光 學元件(150)位於上述基板(11〇)區域中之第一區(iu) 上端。且,上述光學元件(150)透過接著劑(151)固定於 上述第一區(111)之上方《上述光學元件(150)可發光並 能將光投射至上述基板(110)之上方。上述光學元件 (150)可由發光二極體(Light Emitting Diode,LED) 099138606 表單編號A0101 第11頁/共82頁 1003064566-0 201208147 升v成。又,上述光學元件(150)透過上述導電線(160)與 上述電極層(120、130)相連接。故’透過上述基板 (110)輸入之電源信號可透過上述電極層(120、13〇)傳 輸至上述光學元件(150)。 [0062] [0063] [0064] 上述導電線(160)使上述電極層(12〇、13〇)分別與上述 光學兀件(150)相連結。為維持上述導電線(16〇)之高導 電性,上述導電線(160)通常以金、銅或鋁形成之。上述 導電線(160)形成時,一端可於上述光學元件(15〇)處形 成球形接合(Ball Bonding)區,另一端則可於上述電極 層(120、130)處,形成針聊式接合(51:1汕1;)〇11(11叫)區 。當然,亦可將上述導電線(160)之一端於上述電極層 (120、130)上形成球形接合區,而另一端則於上述光學 元件(150)上形成針腳式接合區。 上述保護層(170)位於上述基板(11〇)上由上述隔板 (140)所區隔出之區域内。且,主填保護層(17〇)内部包 覆上述光學元件(150)及導電線(160)。上述保護層 (Π0)可保護上述光學元件(15〇)及導電線(16〇)不受外 部壓力破壞。 又,上述保護層(170)可由環氧樹脂混合一般螢光物質形 099138606 成之。上述螢光物質可接受上述光學元件(15〇)產生之可 視光或紫外線,並於使其穩定後轉換為可視光。因此, 由勞光物質形成之上述保護層(17〇)可將自上述光學元件 (150)產生之光轉換為紅綠藍(RGB)光或白色光。因此, 依本發明實例製造之光學元件裝置(_)可當為液晶顯示 面板(Liqiud Crystal Display Panel)之背光模組 表單編號A0101 第12頁/共82頁 1003064566-0 201208147 (Back Light Unit,BLU)來使用。 [0065] 如上所述,依本發明實例製造之光學元件裝置(100)因基 板(110)為熱傳導性良好之鋁或鋁合金材質所構成,故光 學元件(150)所產生之熱可有效的傳導至基板(110)之下 端。且,依本發明實例製造之光學元件裝置(100)可透過 垂直貫穿基板(110)之絕緣層(114)將基板(110)區分為 第一區(111)至第三區(113)等數個區域,故可防止位於 上述第二區(112)及第三區(113)上端之第一電極層 (120)及第二電極層(130)產生電子上之連結。 [0066] 以下為依本發明另一實例所製作之光學元件裝置構成之 說明。 [0067] 圖3為依本發明另一實例所製作之光學元件裝置之剖面圖 。於本實例中,對於與前一實例具相同構造或作用之部 分編予相同之代號,且以下將僅針對與前一實例之差異 點進行說明。 [0068] 如圖3所示,依本發明另一實例製造之光學元件裝置 (200 )包括基板(110)、第一電極層(120)、第二電極層 (130)、光學元件(150)、導電線(160)、保護層(270) [0069] 上述保護層(270)形成於上述基板(110)上端,包覆上述 光學元件(150)與上述導電線(160)。上述保護層(270) 於上述基板(110)上端且具一曲形之外廓。即使裝置中並 無隔層,上述保護層(280)仍可利用高黏度之塗布物質或 金屬製模方式形成之。即,上述保護層(270)不須透過隔 099138606 表單編號 A0101 第 13 頁/共 82 頁 1003064566-0 201208147 板劃分出其形成區域。因此,相較於前一實例,本實例 之光學元件裝置(200)於製造上可省略隔板製層。意即, 本實例中之光學元件裝置(200)可相對縮短製程時間並降 低成本。 [0070] 以下為依本發明另一實例製造之光學元件裝置構造之說 明。 [0071] 圖4為依本發明另一實例製造之光學元件裝置之剖面圖。 [0072] 如圖4所示,依本發明另一實例製造之光學元件裝置 (300)包含基板(110)、第一電極層(120)、第二電極層 (130)、光學元件(150)、導電線(160)、保護層(370 ) 〇 [0073] 上述保護層(370 )位於上述基板(110)上端,且包覆上述 光學元件(150)及導電線(160)。且,上述保護層(370) 垂直於上述基板(110),而其側面與平面約為九十度角。 上述保護層(280)不須以隔板區隔出其形成區域,於將混 合一般螢光物質之環氧樹脂塗佈於上述基板(110)上端並 使其硬化後,依上述基板(110)外型進行裁切(sawing) 即可形成之。故,相較於前述實例,依本發明另一實例 製造之光學元件裝置(300 )之製程較簡單,因此可降低成 本縮短製作時間。 [0074] 以下為依本發明另一實例製造之光學元件裝置構造之說 明。 [0075] 圖5為依本發明另一實例製造之光學元件裝置之剖面圖。 099138606 表單編號A0101 第14頁/共82頁 1003064566-0 201208147 [0076] [0077] [0078] Ο [0079] 〇 [0080] 如圖5所示,依本發明另一實例製造之光學元件裝置 (400)包含基板(410) ’第二電極層(13〇),光學元件 (450),隔板(140),導電線(16〇),保護層(17〇)。 上述基板(410)包含第—區(411),及與上述第一區 (411)相鄰接之第三區(ιι3)。 上述第一區(411)為一具單方向之板狀物。上述第一區 (411)之上端為上述光學元件(45〇)。上述第一區(4ΐι) 之材質為鋁或鋁合金,故可有效將上述光學元件(45〇)之 熱能傳導側至下端。且,上述第一區(411)與上述光學元 件(450)之下端面具電子連結。故,上述第一區(411)透 過位於上述光學元件(450)下端之第一電極提供傳遞訊號 之路控°此時’上述第—區(411)透過絕緣層(114)與上 述第二區(113)具各自獨立之電流,而上述第三區〇13) 可透過導電線(160)與上述光學元件(45〇)之第二電極相 連結。 上述光學元件(450)透過導電性接著劑(451)固定於上述 基板(410)上端。述光學元件(45〇)形成於上述基板 (410)中第一區(411)之上端。上述光學元件(45〇)透過 上述下端區域形成第一電極,如p型;於上端形成第二電 極’如N型。且上述光學元件(45〇)之第一電極透過下端 之導電性接著劑(451)與上述基板(410)之第一區(411) 相連結。上述光學元件(45〇)之第二電極透過上述導電線 (160)與第二電極層(130)相連結。 因此’如上所述’依本發明另一實例製造之光學元件裝 099138606 表單編號A0101 第15頁/共82頁 1003064566-0 201208147 置(400)因可僅具單一電極層,故可縮小裝置之體積。 [0081] 以下為依本發明另一實例製造之光學元件裝置構造之說 明。 [0082] 圖6為依本發明另一實例製造之光學元件裝置之剖面圖。 [0083] 如圖6所示,依本發明另一實例製造之光學元件裝置 (500 )包含基板(110),第一電極層(12〇) ’第二電極層 (130),隔板(14〇) ’下端基板(540),下端固定層 (545) ’上端固定層(546) ’光學元件(15〇),導電線 (160),保護層(170) 6 - f. V::........Further formed of Amid, PPA), epoxy resin, photosensitive interlayer adhesive or a mixture thereof [0031] Further, an upper end reflection layer corresponding to the above-mentioned fixed layer may be further added to the upper end of the substrate. [0032] Meanwhile, the optical element device manufactured according to the present invention comprises: a substrate having a groove; an optical element located at the groove of the substrate; a conductive line connecting the substrate and the optical element; and filling the groove of the substrate And 099138606 Form No. A0101 Page 6 / Total 82 Page 1003064566-0 201208147 [0033] [0035] [0038] [0038] [0038] The optical element covering the optical element and the conductive line described above. The substrate includes: a first surface having the first surface of the recess and a second surface opposite to the first surface; a first gold plating layer on the first surface of the conductive body; and a second surface on the conductive body The second gold plating layer. The recess includes a bottom surface on which the optical element is mounted, and an inclined surface inclined from the bottom surface to the first surface. The first gold plating layer may be formed by silver plating or nickel plating and silver plating. The second gold plating layer may be formed by electroplating by an alloy of gold, nickel, copper, tin or one of them. Further, on the outer side of the substrate recess, an insulating layer which partitions the substrate in two or more regions in the horizontal direction may be further added. The optical element is mounted on one of the side substrates centered on the insulating layer, and the other side substrate is coupled to the optical element through the conductive line. Further, the fluorescent layer is covered with a transparent sealing portion. The conductive wire extends to the outside of the groove, and the conductive wire extending to the outside of the groove is covered by the transparent sealing portion. The upper end of the transparent sealing portion has a convex shape. Further, an insulating region in which the substrate is separated by two or more regions in a horizontal direction can be further formed inside the substrate recess. The above conductive line is located inside the groove. The upper end of the above fluorescent layer is convex. Moreover, there are at least two optical elements in the substrate recess. Further, the substrate has at least two grooves. An insulating layer capable of electrically separating the substrate horizontally is formed outside each of the grooves. An insulating layer capable of electrically separating the substrate horizontally is formed inside each of the grooves 099138606 Form No. A0101 Page 7 of 82 1003064566-0 201208147 [0039] Further, a step is formed along the circumference of the substrate groove. At least one of the holes is formed in the above step. [0040] Further, at least one recess is formed in a bottom surface of the groove. A step is formed along the circumference of the groove of the above substrate. At least one of the cavities is formed in the above step. [Effects] [0042] The basic material of the optical element device manufactured according to the present invention is aluminum or aluminum alloy, so that the thermal energy generated by the optical element can be efficiently transmitted to the lower end of the substrate. Further, according to the optical element device manufactured by the present invention, by separating the substrate into a plurality of regions and vertically penetrating the insulating layer of the substrate, the first electrode layer and the second electrode layer at the upper end of each region can be prevented from being electrically connected. Further, the optical element device manufactured by the present invention can increase the luminous efficiency by concentrating the light source emitted from the optical element and outputting it. Further, the optical element device manufactured according to the present invention can form a concave groove on the substrate and inject a phosphor therein, thereby reducing the amount of consumption of the phosphor. Further, according to the optical element device manufactured by the present invention, by increasing the relative contact area between the optical element and the phosphor and the substrate, the heat dissipation performance of the optical element and the phosphor can be improved. Further, according to the optical element device manufactured by the present invention, grooves are formed on the substrate by mechanical and/or chemical processing, so that the production process can be simplified without requiring other structures. [0048] Moreover, the optical component device manufactured according to the present invention can form a mineral silver layer or a mineral nickel/silver layer through the substrate, and can strengthen the wire bonding and 099138606 Form No. A0101 Page 8 of 82 1003064566-0 201208147 [0049] [0051] [0053] [0053] 提升 Enhance light reflectivity. [Embodiment] In the technical field to which the present invention pertains, the present invention can be easily implemented by a person having ordinary knowledge, and will be described in detail below with reference to the correct example of the present invention. The following is a description of the construction of an optical component device manufactured according to an example of the present invention. Fig. 1 is a cross-sectional view showing an optical component device manufactured according to an embodiment of the present invention. 2 is a bottom view of a substrate used in an optical component device according to an embodiment of the present invention. Referring to FIG. 1 and FIG. 2, an optical component device (100) manufactured according to an example of the present invention includes a substrate (110) and a first electrode layer (120). ), a second electrode layer (130), a separator (140), an optical element (150), a conductive line (160), and a protective layer (170). The above substrate (110) is composed entirely of a plate formed in a single direction. The substrate (110) supports the optical element (150) and is connected to an external PCB or the like. [0055] The substrate (110) includes a first region (111) in the middle and a second region (112) and a third region (113) separated on both sides of the first region (111). The optical element (150) is formed at an upper end of the first region (111). Therefore, the thermal energy of the optical element (150) can be easily conducted to the lower side of the substrate (110) through the first region (111). Moreover, the first electrode layer (120) is at the upper end of the second region (112), the above-mentioned 099138606 form number Α0101, page 9 / total 82 page 1003064566-0 201208147 second electrode layer (130) in the third region (113) Upper end. Further, since the first region (Π1) to the third region (113) are formed of a metal, they have excellent thermal conductivity. The material of the first region (111) to the third region (113) is aluminum or alloy, and the thermal conductivity of aluminum and aluminum alloy is about 13 〇 to 25 Å κ], so that it has good thermal conductivity. Therefore, the first region (1Η) to the third region (113) described above can effectively conduct thermal energy of the optical element (15〇) mounted at the upper end thereof to the outside. Further, an insulating layer (114) is formed between the first region (ill) and the second region (112) and between the first region (πΐ) and the third region (113). Referring to Fig. 2, the insulating layer (114) is perpendicular to the substrate (110) and penetrates the substrate (no), and is juxtaposed between the first region (111) to the third region (113). Therefore, the above first region (U1) to third region (113) are insulated from each other. The insulating layer (114) may be formed by subjecting the above aluminum or aluminum alloy to an anode. That is, when the region on which the insulating layer (114) is formed on the upper end surface and the lower end surface is exposed, the insulating layer (114) can be formed by oxidizing aluminum or aluminum alloy. So, in the picture! The insulating layer (114) is a flat surface on both sides in the vertical direction. However, if the upper and lower surfaces of the substrate (110) are anodized at the same time, the insulating layer (114) is a double-sided recess. Cone (d〇uMe c〇ne) shape. The first electrode layer (120) is at an upper end of the second region (112) of the substrate (11 〇). The first electrode layer (12 〇) may have a double structure in which a lower electrode layer is formed over the second region (112) and an upper electrode layer is formed at the upper end of the lower electrode layer, although there is no special figure*. It is an electrode layer having only the lower electrode layer or the upper terminal (four). At this time, the first electrode layer (120) may be made of gold (Au), silver (Ag), copper (Cu), indium (Al), nickel 099138606, form number A0101, page / total 82 pages 1003064566-0 201208147 [ 0059] Ο [0060] 006 [0061] (Νΐ), a combination of cranes (7) or one of them. Further, it is effective to form the first electrode layer (120) by using light which is excellent in conductivity and capable of reflecting the optical element (5 〇), and further improving the luminous efficiency of silver (Ag). The second electrode layer (130) is disposed at an upper end of the third region (113) on the substrate (110). The second electrode layer (130) is symmetrical to the first electrode layer (12A) and has an opposite electrode to the first electrode layer (12A). For example, when the first electrode layer (12 〇) is connected to the positive electrode, the second electrode layer (130) is connected to the negative electrode. In the same manner as the first electrode layer (12A), the second electrode layer (130) should have a lower electrode layer and an upper electrode layer, or one of them. Since the second electrode layer 6130) is configured in the same manner as the first electrode layer (120), detailed description thereof will be omitted. The spacers (140) are formed on the upper ends of the first electrode layer (_) and the second electrode layer (130), respectively. The spacer (14A) is vertically protruded upward from the upper end faces of the first electrode layer (120) and the second electrode layer (130). The partition (140) is partitioned from a region where the protective layer (17 〇) can be formed. The above separator (140) may be formed of a photoreactive epoxy resin, a photosensitive adhesive (PSR) or a mixture thereof, and may be formed by using a silicone rubber depending on the case. The optical element (150) is located above the substrate (no). The optical element (150) is located at the upper end of the first region (iu) in the region of the substrate (11 〇). Further, the optical element (150) is fixed above the first region (111) through an adhesive (151). The optical element (150) emits light and can project light onto the substrate (110). The optical element (150) can be made up of a Light Emitting Diode (LED) 099138606 Form No. A0101 Page 11 of 82 1003064566-0 201208147. Further, the optical element (150) is connected to the electrode layer (120, 130) through the conductive line (160). Therefore, the power signal input through the substrate (110) can be transmitted to the optical element (150) through the electrode layers (120, 13A). [0064] The conductive wire (160) connects the electrode layers (12A, 13A) to the optical element (150), respectively. In order to maintain the high conductivity of the above conductive wires (16 turns), the above conductive wires (160) are usually formed of gold, copper or aluminum. When the conductive line (160) is formed, one end can form a ball bonding region at the optical element (15 〇), and the other end can form a ball-and-talk joint at the electrode layer (120, 130). 51:1汕1;)〇11 (11) area. Of course, one of the above conductive wires (160) may be formed on the electrode layer (120, 130) to form a ball joint region, and the other end may form a stitch joint region on the optical member (150). The protective layer (170) is located on the substrate (11〇) in a region partitioned by the spacer (140). Further, the main filling protective layer (17 〇) internally covers the optical element (150) and the conductive line (160). The above protective layer (Π0) protects the above optical element (15〇) and the conductive line (16〇) from external pressure. Further, the protective layer (170) may be made of an epoxy resin mixed with a general fluorescent substance type 099138606. The above-mentioned fluorescent substance can receive visible light or ultraviolet light generated by the above optical element (15 Å), and is converted into visible light after being stabilized. Therefore, the above-mentioned protective layer (17〇) formed of the working substance can convert the light generated from the above optical element (150) into red, green and blue (RGB) light or white light. Therefore, the optical component device (_) manufactured according to the example of the present invention can be used as a backlight module of a liquid crystal display panel (Liqiud Crystal Display Panel). Form No. A0101 Page 12 of 82 page 1003064566-0 201208147 (Back Light Unit, BLU ) to use. [0065] As described above, the optical element device (100) manufactured according to the example of the present invention is configured such that the substrate (110) is made of aluminum or aluminum alloy having good thermal conductivity, so that the heat generated by the optical element (150) can be effectively performed. Conducted to the lower end of the substrate (110). Moreover, the optical component device (100) manufactured according to the example of the present invention can divide the substrate (110) into the first region (111) to the third region (113) by the insulating layer (114) penetrating the substrate (110) vertically. The regions prevent the first electrode layer (120) and the second electrode layer (130) located at the upper ends of the second region (112) and the third region (113) from being electronically connected. The following is a description of the constitution of an optical element device fabricated in accordance with another example of the present invention. 3 is a cross-sectional view of an optical element device fabricated in accordance with another example of the present invention. In the present example, the same reference numerals are given to the parts having the same configuration or function as the previous example, and the differences from the previous example will be described below. As shown in FIG. 3, an optical element device (200) manufactured according to another example of the present invention includes a substrate (110), a first electrode layer (120), a second electrode layer (130), and an optical element (150). Conductive wire (160), protective layer (270) The protective layer (270) is formed on the upper end of the substrate (110), and covers the optical element (150) and the conductive wire (160). The protective layer (270) is on the upper end of the substrate (110) and has a curved outer shape. Even if the device has no barrier layer, the protective layer (280) can be formed by using a high-viscosity coating material or a metal molding method. That is, the above protective layer (270) does not have to be divided into its formation area through the form 099138606 Form No. A0101, Page 13 of the 1003064566-0 201208147. Therefore, the optical element device (200) of the present example can omit the spacer layer in manufacturing as compared with the previous example. That is, the optical component device (200) in this example can relatively shorten the process time and reduce the cost. The following is a description of the construction of an optical element device manufactured according to another example of the present invention. 4 is a cross-sectional view of an optical element device fabricated in accordance with another example of the present invention. [0072] As shown in FIG. 4, an optical element device (300) manufactured according to another example of the present invention includes a substrate (110), a first electrode layer (120), a second electrode layer (130), and an optical element (150). The conductive layer (160) and the protective layer (370) 007 [0073] The protective layer (370) is located at the upper end of the substrate (110) and covers the optical element (150) and the conductive line (160). Moreover, the protective layer (370) is perpendicular to the substrate (110), and its side and plane are approximately ninety degrees. The protective layer (280) does not need to be separated by a partition region, and after the epoxy resin mixed with the general fluorescent material is applied to the upper end of the substrate (110) and hardened, according to the substrate (110) The shape can be formed by cutting. Therefore, the optical element device (300) manufactured according to another example of the present invention has a simpler process than the foregoing example, so that the cost can be reduced and the manufacturing time can be shortened. The following is a description of the construction of an optical element device manufactured according to another example of the present invention. 5 is a cross-sectional view of an optical element device manufactured in accordance with another example of the present invention. 099138606 Form No. A0101 Page 14/82 Page 1003064566-0 201208147 [0078] [0079] [0080] As shown in FIG. 5, an optical element device manufactured according to another example of the present invention ( 400) comprising a substrate (410) 'second electrode layer (13 〇), optical element (450), spacer (140), conductive line (16 〇), protective layer (17 〇). The substrate (410) includes a first region (411) and a third region (ιι3) adjacent to the first region (411). The first zone (411) is a unidirectional plate. The upper end of the first region (411) is the above optical element (45 turns). The material of the first region (4ΐι) is aluminum or aluminum alloy, so that the thermal energy of the optical element (45〇) can be effectively conducted to the lower end. Further, the first region (411) is electronically coupled to the lower end mask of the optical element (450). Therefore, the first region (411) provides a path for transmitting a signal through the first electrode located at the lower end of the optical element (450). At this time, the first region (411) transmits the insulating layer (114) and the second region. (113) having independent currents, and the third region 13) is coupled to the second electrode of the optical element (45A) through the conductive line (160). The optical element (450) is fixed to the upper end of the substrate (410) via a conductive adhesive (451). The optical element (45 turns) is formed on the upper end of the first region (411) in the substrate (410). The optical element (45 turns) forms a first electrode such as a p-type through the lower end region, and a second electrode 'such as an N-type at the upper end. Further, the first electrode of the optical element (45 Å) is connected to the first region (411) of the substrate (410) through the conductive adhesive (451) at the lower end. The second electrode of the optical element (45A) is coupled to the second electrode layer (130) through the conductive line (160). Therefore, as described above, the optical component manufactured according to another example of the present invention is equipped with 099138606, Form No. A0101, Page 15 of 82, 1003064566-0 201208147. (400) The size of the device can be reduced because it can have only a single electrode layer. . The following is a description of the construction of an optical element device manufactured according to another example of the present invention. 6 is a cross-sectional view of an optical element device manufactured in accordance with another example of the present invention. As shown in FIG. 6, an optical element device (500) manufactured according to another example of the present invention includes a substrate (110), a first electrode layer (12A), a second electrode layer (130), and a separator (14). 〇) 'Lower substrate (540), lower fixed layer (545) 'Upper fixed layer (546) 'Optical element (15〇), conductive wire (160), protective layer (170) 6 - f. V::.. ......
[0084] 上述下端基板(540)形成於上述基板(no)之下端。上述 下端基板(540)與上述基板(11〇)之第一區(111)、第二 區(112)、第二區(113)相對應’且形成於其下端。將上 述依本發明另一實例製造之光學元件裝置〈5〇〇)連結至 PCB等外部迴路時,於上述下端基板(54〇)下端以焊球 (solder ball)接合,可增加上述基板(1丨〇)與焊球 ....- (solder ball)間之接合力。因扣.,土述下端基板 (5 4 0)可使用與焊劑結合良好之銅材質形成之。 [0085] 上述下端固定層(545)形成於上述基板(11 〇)之下端。上 述下端固定層(545)對應於上述絕緣層(114)之下端,並 延伸至上述絕緣層(11 4)之周圍區域與上述下端基板 (540)接合。即’上述下端固定層(545)以包覆上述絕緣 層(114)之形態與上述下端基板(54〇)接合。故,上述下 端固定層(545)可保護較第一區(iu)、第二區(112)、 第三區(113)不耐久之上述絕緣層(114)免於承受過度壓 099138606 表單編號A0101 第16頁/共82頁 1003064566-0 201208147 [0086] Ο [0087] [0088] 〇 [0089] 力。上述下端固定層(545)可利用聚鄰苯二曱醯胺(Poly Phthal Amid,PPA)、環氧樹脂、感光隔層膠(Photo Sensitive Paste)或其混合物製作而成。 上述上端固定層(546)形成於上述基板(110)之上端。上 述上端固定層(546)包覆上述絕緣層(114),且於上述絕 緣層(114)周邊區域與上述第一區(111)及電極層(120、 130)結合。因此,上述上端固定層(546)與上述下端固 定層(545)相同,可保護上述絕緣層(114)免於承受過度 壓力。且,上述上端固定層(546)可反射上述光學元件 (150)所發出之光至上述基板(110)上端,提高裝置之發 光效率。上述上端固定層(546 )之材質可為聚鄰苯二甲醯 胺(Poly Phthal Amid,PPA)、環氧樹脂、感光隔層膠 (Photo Sensitive Paste)或其混合物。 以下為依本發明另一實例製造之光學元件裝置構造之說 明。 圖7為依本發明另一實例製造之光學元件裝置之剖面圖。 如圖7所示,依本發明另一實例製造之光學元件裝置 (600)包含基板(410)、第二電極層(130)、隔板(140) 、下端基板(640)、下端固定層(645)、上端固定層 (646)、光學元件(450)、導電線(160)、保護層(170) 〇 上述下端基板(640)對應於上述基板(410)之第一區 (411)及第三區(113)。上述下端基板(640)可採用與焊 球結合良好之銅材質形成之。此時,透過位於上述第一 099138606 表單編號A0101 第17頁/共82頁 1003064566-0 [0090] 201208147 區域(411)下端之下端基板(640)可傳遞通過上述光學元 件(450)下方之電子訊號。即,上述下端基板(640)不僅 可散發上述光學元件(450)產生之熱能,亦為可傳遞上述 光學元件(450)之電子信號之路徑。 [0091] 上述下端固定層(645)對應於上述絕緣層(114)之下端, 並延伸至上述絕緣層(114)周圍區域。上述下端固定層 (645) 以包覆上述絕緣層(H4)之狀態與上述下端基板 (640)結合並保護上述絕緣層(114)。因此,上述下端固 定層(645)可保護耐久性較差之上填絕緣層(114)免於承 受外部壓力。上述下端固定廣45)可利用聚鄰笨二曱醯 胺(Poly Phthal Amid,PPA) '環氧樹脂、感光隔層膠 CPSR)或其混合物製成之。 [0〇92]上述上端固定層(646)對應於上述絕緣層(114)上端,並 延伸至上述絕緣層(114)周圍區域。上述上端固定層 (646) 之形狀與上述下端野定餐(a45)相對應。上述上端 固定層(646)與上述下端固定層(645)同時保護上述絕緣 層(114)。且,上述上端固定層(646)可反射上述光學元 件(150)產生之光源提高光效率。上述上端固定層(gw) 可利用聚鄰苯二甲醯胺(Poly Phthal Amid,ppA)、環 氧樹脂 '感光隔層膠(PSR)或其混合物製成之。 [〇〇93]以下為依本發明另一實例製造之光學元件裝置構造之說 明。 [0094] [0095] 099138606 圖8為依本發明另一實例製造之光學元件裝置之剖面圖 如圖8所示,依本發明另—實例製造之光學元件裝置 1003064566-0 表單編號_1 第18頁/共82頁 201208147 (700)包含基板(410)、第一電極層(720)、第二電極層 (130)、隔板(140)、下端基板(640)、下端固定層 (645)、上端固定層(646)、光學元件(150)、導電線 (160)、保護層(170)。 [0096]上述第一電極層(720)形成於上述基板(410)之第一區 (411)。上述第一電極層(720)透過上述絕緣層(114)與 上述第二電極層(130)於電流上各自獨立。上述第一電極 層(720)之上端透過接著劑(ι51)固定上述光學元件 (150)。且’上述第一電極層(72())¾過導電線(16〇)與 上述光學元件(150)相連結》 [0〇97]以下為依本發明另一實例製造之光學岑件裝置構造之說 明。 l -鳥缓Ί? · [0098]圖9為依本發明另一實例製造之光學元林裝置之剖面圖β [0099] 如圖9所示,依本發明另一實例製造之光學元件裝置 (800)包含基板(410)、隔板(14〇)、下端基板(640)、 Q 下端固定層(645)、上端固定層(846)、光學元件(150) 、導電線(860)、保護層(170)。 [0100]上述上端固定層(846)形成於上述基板(410)之上端。上 述上端固定層(846)與上述絕緣層(114)相對應。即,上 述上端固定層(846)包覆上述絕緣層(114)之上端,與上 述下端固定層(645)同時保護上述絕緣層(114)免於承受 外部壓力。且,上述上端固定層(846)可反射上述光學元 件(150)產生之光源提南發光效率。因上述基板(41〇)上 端並無其他電極層,故上述上端固定層(846)直接與上述 1003064566-0 099138606 表單編號Α0101 第19頁/共82頁 201208147 基板(410)相連接。 [0101] 於上述上端固定層(846)未覆蓋之上述基板(410)之第一 區(411)中’利用接著劑(151)固定上述光學元件(15 0) 。且,可透過上述導電線( 860 )將上述光學元件(150)與 上述上端固定層(846)未覆蓋之上述基板(410)之第一區 (411)及第三區(113)相連結。 [0102] 上述導電線(860)連結上述光學元件(150)與上述基板 (410)。上述導電線(860)應以鋁形成之。且於上述基板 (410)亦使用相同之鋁材質製成時,因上述導電線(86〇) 與上述基板(410)可有效接合,故不需另外之電極層即可 容易地與上述基板(410)結合。因此,之h述導電線(860) 與基板(410)同為鋁質或相同材質時,即不需形成額外之 電極層,故可縮減製作費用及時間。 [0103] 以下為依本發明另一實例製造之光學元件裝置構造之說 明0 :.......[0084] The lower end substrate (540) is formed at a lower end of the substrate (no). The lower substrate (540) corresponds to the first region (111), the second region (112), and the second region (113) of the substrate (11) and is formed at a lower end thereof. When the optical element device <5〇〇 manufactured by another example of the present invention is connected to an external circuit such as a PCB, the lower end of the lower substrate (54〇) is joined by a solder ball to increase the substrate (1).丨〇) The bonding force with the solder ball....- (solder ball). Due to the buckle, the lower end substrate (5 4 0) can be formed using a copper material that is well bonded to the flux. [0085] The lower end fixing layer (545) is formed at a lower end of the substrate (11 〇). The lower fixing layer (545) corresponds to the lower end of the insulating layer (114), and extends to the peripheral region of the insulating layer (114) to be bonded to the lower substrate (540). That is, the lower end fixing layer (545) is bonded to the lower end substrate (54) in such a manner as to cover the insulating layer (114). Therefore, the lower fixing layer (545) can protect the insulating layer (114) which is less durable than the first region (iu), the second region (112), and the third region (113) from overpressure 099138606. Form No. A0101 Page 16 of 82 1003064566-0 201208147 [0086] [0088] 〇 [0089] Force. The lower fixing layer (545) may be made of poly Phthal Amid (PPA), epoxy resin, Photo Sensitive Paste or a mixture thereof. The upper fixed layer (546) is formed on the upper end of the substrate (110). The upper fixing layer (546) covers the insulating layer (114), and is bonded to the first region (111) and the electrode layers (120, 130) in a peripheral region of the insulating layer (114). Therefore, the upper fixing layer (546) is the same as the lower fixing layer (545), and the insulating layer (114) can be protected from excessive pressure. Moreover, the upper fixed layer (546) reflects the light emitted by the optical element (150) to the upper end of the substrate (110) to improve the light-emitting efficiency of the device. The material of the upper fixing layer (546) may be poly Phthal Amid (PPA), epoxy resin, Photo Sensitive Paste or a mixture thereof. The following is a description of the construction of an optical element device manufactured according to another example of the present invention. Figure 7 is a cross-sectional view showing an optical element device manufactured in accordance with another example of the present invention. As shown in FIG. 7, an optical element device (600) manufactured according to another example of the present invention includes a substrate (410), a second electrode layer (130), a spacer (140), a lower substrate (640), and a lower fixed layer ( 645), an upper fixed layer (646), an optical element (450), a conductive line (160), and a protective layer (170). The lower end substrate (640) corresponds to the first area (411) of the substrate (410) and Three districts (113). The lower substrate (640) may be formed of a copper material that is well bonded to the solder balls. At this time, the electronic signal under the optical element (450) can be transmitted through the lower substrate (640) located at the lower end of the first (099138606) form number A0101, page 17 / page 82, 1003064566-0 [0090] 201208147 area (411). . That is, the lower end substrate (640) can not only dissipate the thermal energy generated by the optical element (450), but also the path through which the electronic signal of the optical element (450) can be transmitted. [0091] The lower fixing layer (645) corresponds to the lower end of the insulating layer (114) and extends to a region around the insulating layer (114). The lower fixing layer (645) is bonded to the lower end substrate (640) in a state of covering the insulating layer (H4) to protect the insulating layer (114). Therefore, the above-mentioned lower end fixing layer (645) can protect the poorly-filled insulating layer (114) from external pressure. The above-mentioned lower end fixing 45) can be made by using Poly Phthal Amid (PPA) 'epoxy resin, photosensitive interlayer adhesive CPSR) or a mixture thereof. [0〇92] The upper fixed layer (646) corresponds to the upper end of the insulating layer (114) and extends to the area around the insulating layer (114). The shape of the upper end fixing layer (646) corresponds to the lower end field setting (a45). The upper fixing layer (646) and the lower fixing layer (645) simultaneously protect the insulating layer (114). Moreover, the upper fixed layer (646) reflects the light source generated by the optical element (150) to improve light efficiency. The above upper fixing layer (gw) may be made of poly Phthal Amid (ppA), epoxy resin "photosensitive interlayer adhesive (PSR) or a mixture thereof. [0093] The following is a description of the construction of an optical element device manufactured according to another example of the present invention. [0095] FIG. 8 is a cross-sectional view of an optical component device manufactured according to another example of the present invention. As shown in FIG. 8, an optical component device 1003064566-0 manufactured according to another embodiment of the present invention is shown in FIG. Pages / 82 pages 201208147 (700) comprising a substrate (410), a first electrode layer (720), a second electrode layer (130), a separator (140), a lower substrate (640), a lower fixed layer (645), The upper fixed layer (646), the optical element (150), the conductive line (160), and the protective layer (170). The first electrode layer (720) is formed on the first region (411) of the substrate (410). The first electrode layer (720) passes through the insulating layer (114) and the second electrode layer (130) independently of each other in current. The upper end of the first electrode layer (720) is fixed to the optical element (150) through an adhesive (ι 51). And the above-mentioned first electrode layer (72()) 3⁄4 over-conducting wire (16〇) is connected to the above-mentioned optical element (150). [0〇97] The following is an optical element device structure manufactured according to another example of the present invention. Description. l - bird slowing down? [0098] FIG. 9 is a cross-sectional view of an optical elemental device manufactured according to another example of the present invention. [0099] As shown in FIG. 9, an optical element device manufactured according to another example of the present invention ( 800) comprising a substrate (410), a separator (14 〇), a lower substrate (640), a Q lower fixing layer (645), an upper fixing layer (846), an optical element (150), a conductive wire (860), a protective layer (170). [0100] The upper end fixing layer (846) is formed on an upper end of the substrate (410). The upper fixing layer (846) corresponds to the above insulating layer (114). That is, the upper fixing layer (846) covers the upper end of the insulating layer (114), and simultaneously protects the insulating layer (114) from external pressure with the lower fixing layer (645). Moreover, the upper fixed layer (846) reflects the light source illuminating efficiency of the light source generated by the optical element (150). Since the upper end of the substrate (41 〇) has no other electrode layers, the upper fixed layer (846) is directly connected to the above-mentioned 1003064566-0 099138606 form number Α0101 page 19/82 page 201208147 substrate (410). [0101] The optical element (15 0) is fixed by the adhesive (151) in the first region (411) of the substrate (410) not covered by the upper fixing layer (846). Further, the optical element (150) may be coupled to the first region (411) and the third region (113) of the substrate (410) not covered by the upper fixed layer (846) through the conductive line (860). [0102] The conductive wire (860) connects the optical element (150) and the substrate (410). The above conductive wire (860) should be formed of aluminum. When the substrate (410) is also made of the same aluminum material, since the conductive wire (86〇) and the substrate (410) can be effectively joined, the substrate can be easily connected to the substrate without an additional electrode layer ( 410) Combination. Therefore, when the conductive wire (860) and the substrate (410) are made of aluminum or the same material, it is not necessary to form an additional electrode layer, so that the manufacturing cost and time can be reduced. [0103] The following is a description of the construction of an optical element device manufactured according to another example of the present invention: 0.
[0104] 圖1 〇為依本發明另一實例製造之光學元件裝置之剖面圖 [0105]如圖10所示,依本發明另一實例製造之光學元件裝置 (900)包含基板(410)、第一電極層(12〇)、第二電極層 (130)、隔板(140)、下端基板(64〇)、下端固定層 (645)、上端固定層(646)、上端反射層(947)、光學元 件(150)、導電線(160)、保護層(17〇)。 [0106] 上述上端反射層(947)形成於上述基板(41〇)之上端。上 述上端反射層(947)下端不需具備額外之絕緣層。不同於 099138606 表單編號A0101 第20頁/共82頁 1003064566-0 201208147 [0107] [0108]1 is a cross-sectional view of an optical element device manufactured according to another example of the present invention. [0105] As shown in FIG. 10, an optical element device (900) manufactured according to another example of the present invention includes a substrate (410), First electrode layer (12 〇), second electrode layer (130), separator (140), lower end substrate (64 〇), lower end fixing layer (645), upper end fixing layer (646), upper end reflecting layer (947) , optical element (150), conductive wire (160), protective layer (17〇). [0106] The upper end reflection layer (947) is formed on the upper end of the substrate (41 〇). The upper end of the upper reflective layer (947) does not require an additional insulating layer. Unlike 099138606 Form No. A0101 Page 20 of 82 1003064566-0 201208147 [0107] [0108]
[0109] 〇 [0110] 上述上端固定層(646)需與上述絕緣層(114)上端相對應 ,上述上端反射層(947)需可反射上述光學元件(150)產 生之光源。且,因上述上端反射層(947)與上述上端固定 層(646)彼此對稱可提高光反射率,故可提升裝置之發光 效率。 以下為依本發明實例製造光學元件裝置時其製作方法之 說明。 圖11為說明本發明實例中光學元件裝置之製作方法之流 程圖。圖12a至圖12h為本發明實例之光學元件裝置製作 方法之示意圖。 如圖11所示,依本發明實例之光學元件裝置(100)之製作 方法包含:模組層製程(S1)、絕緣層製程(S2)、去除模 組層製程(S3)、封口製程(S4)、電極層製程(S5)、隔板 製程(S6)、光學元件安裝製程(S7)、電子連結製程(S8) 、保護層製程(S9)。以下同時參照圖12a至圖12h說明圖 11之各製程。 參照圖11及圖12a,上述模組層製程(S1)指於金屬板 (110’)之上端面及下端面形成模組層(10)之製作過程。 上述金屬板(110’)以紹或銘合金形成之。且,上述模組 層(10)於塗佈遮罩液體後可透過曝光、顯像或貼黏模組 化膠膜之方式形成之。 參照圖11及圖12b,上述絕緣層製程(S2)指將上述模組 層(10)未覆蓋之區域經陽極(anodizing)處理以形成絕 緣層(114)之製作過程。上述絕緣層(114)垂直貫穿上述 099138606 表單編號A0101 第21頁/共82頁 1003064566-0 [0111] 201208147 金屬板(110’)較厚之一面,且延上述金屬板(110,)長邊 之方向形成之。上述絕緣層(H4)將上述金屬板(u〇,) 區隔出第一區(111)至第三區(113) ’使其成為具備第一 區(111)至第三區(113)及絕緣層(114)之基板(11〇)。 又’圖示中上述絕緣層(114)垂直方向之兩侧為平坦之側 面,但於上述金屬板(Π0,)之上端面及下端面經陽極處 理後’上述絕緣層(114)可為於侧面中央向内凹陷之雙圓 錐(double cone)狀。 [0112] 參照圖11及圖12c,上述移除模組層製赛(S3)指將上述 模組層(1 〇 )自上述基板(I I 〇 )分離去除之鐵程。上述模 組層(ίο)以遮罩液體形成時可透過灰化(ashing)製程去 除之,以膠膜形成時則可將其自上述基板(11〇)上去除之 〇 [0113] 參照圖11,上述封口製程(S4)指將於上述絕緣層製程 (S3)中形成之絕緣層(η”内部之微小氣孔以 BCB(Benzocyclobuten)、絕緣有機丨物 '蒸餾水之混合 物或其中一項將其填滿’或封胜為,述氣孔入口之過程。 此製程乃因上述絕緣膜(114)較易因外部壓力而受損,故 透過以上述物質封填最易損壞之氣孔可提高上述絕緣層 (114)之機械性強度並提升其絕緣效能。 [0114] 且上述氣孔以BCB或絕緣有機物進行封口處理時,可再增 加使其於一定溫度下硬化之熱硬化製程。 [0115] 且,上述封口製程(S4)後,亦可增加去除形成於上述基 板(110)表面之雜質(burr或scratch)之研磨製程。且 099138606 表單編號A0101 第22頁/共82頁 1003064566-0 201208147 [0116] Ο [0117] Ο [0118] ,透過上述研磨製程,可有效反射安裝於上述基板(110) 第一區(111)之光學元件所產生之光源,進而提升光效率 。此研磨製程一般為雜質(buff)研磨。 參照圖11以及圖12d,上述電極層製程(S5)指於上述基 板(no)之第二區(112)上端形成第一電極層(120),及 於第二區(113)上端形成第二電極層(13〇)之製作過程。 上述第一電極層(12〇)及第二電極層(130)可為單層或雙 層。且,上述第一電極層(12〇)及第二電極層(13〇)可以 導電性佳且電黏性強之金、銀、鋼、鋁、鎳、鎢或其合 金形成之。此時,上述第一電極層(12〇)及第二電極層 (130)了透過無電電鑛、電鍵、黏貼、喷塗(電 漿電弧喷塗(Plazma arch spray)、冷噴塗(c〇ld spray))之其中一種方法或其組合以形成之。 例如,後序製程中使用之導電線之材質為金(Au)時,上 述第一電極層(120)及第二電極層(13〇)可利用導電性優 越並能有效反射光學元件之光之銀(Ag)形成之◊又若 上述導電線之材質為ig(A1)時,即使無上述第一電極層 (120)及第二電極層(13〇),鋁質導電線亦可有效地與上 述基板(110)相黏接。 其中,利用無電電鍍或電鍍法形成電極層時,為於上述 基板(110)區域中形成上述第一電極層(120)及第二電極 層(130) ’可另外進行遮罩(Masking)處理。 又,利用上述噴塗法時,可使用遮罩(mask)於基板 (110)之區域上選擇性地形成上述第一電極層(12〇)及第 099138606 表單編號A0101 第23頁/共82頁 1003064566-0 [0119] 201208147 二電極層(130)。 [0120] [0121] [0122] [0123] 參照圖11以及圖〗2e,上述隔板製程(S6)指於上述電極 層(120、130)上端形成隔板(140)之製作過程。上述隔 板(140)各自垂直並突出於上述電極層(12〇、130)之上 端。上述隔板(140)可透過網板印刷(screen print_ ing)或鑄模(m〇id)方式形成之’材質可為聚鄰苯二甲酿 胺(Poly Phthal Amid,PPA)、環氧樹脂、感光隔層膠 (PSR)或其混合物或矽膠。 參照圖11及圖12f,上述安寒光學元件製程指將光 學元件(150)安裝於上述基滅(110)上端之製作過程。如 上所述,上述光學元件(15〇)可為發光二極體(LED)。上 述光學元件(150)可透過下端面之接著劑(151)黏著於上 述基板(110)之第一區(111)上端。 參照圖11及圖12g,上述電子連結製程(S8)指利用導電 線(1 6 0 )連結上述電極層(! 2 〇 v】3 〇 止述光學元件 (150)之製作過程。傳達至上述電接層(12〇、13〇)之外 部信號可透過上述導電線(WO)傳邊至上述光學元件 (150)以控制上述光學元件(15〇)之動作。 參照圖11及圖12h,上述保護層製程(39)指於上述隔板 (1 40 )劃分出之區域内塗布螢光物質以形成保護層(1 7〇 ) 之製作過程。上述保護層(17〇)形成於上述基板(11〇)上 端且包覆上述光學元件(15〇)及導電線(16〇)。上述保護 層(170)保護上述光學元件(15〇)不受外力撞擊。又上 述保護層(170)可將上述光學元件(15〇)產生之光源轉換 099138606 表單編號A0101 第24頁/共82頁 1003064566-0 201208147 [0124] [0125] [0126] Ο [0127] Ο 為白色光。 以下說明本發明另—實例之光學元件裝置之製作方法。 圖13為說明本發明另—實例之光學元件裝置之製作方法 之流程圖。圖14aui4e為說明本發明另—實例之光學 元件裝置之製作方法之示意圖。 參照圖13,依本發明另一實例製作之光學元件裝置之製 作方法包含金屬板製程(S1)、接著劑製程(S2)、堆層製 程(S3)、裁切製程(S4)、電極層製程(S5)、隔板製程 (S6)、光學元件安养製笋(S7)、電子連結裂程(S8)、保 護層製程(S9 )。以下是圖丨3中各製程之說明請同時參照 圖14a至圖14e〇 參照圖13及圖14a,上述金屬板製程(si)指形成三個板 狀金屬板(111,、112,、113’)之製作過程。其中,圖 14a中雖以三塊上述金屬板(111,、112,、113,)為例, 但金屬板之數量並不以此為限,即金屬板之數量可依所 需之基板區域增減之》上述金屬板(111,、112’、113,) 之材質可為鋁、鋁合金、銅、銅合金。且,為提高上述 金屬板(111’、112,、113,)與接著劑間之附著力,並增 加金屬板(111’、112’、113’)之間之絕緣性及耐電壓性 ’可預先對金屬板(111,、112,、113,)表面進行陽極處 理。又,為提升上述金屬板(111,、112,' 113’)與接著 劑之附著力,可對金屬板之邊界面進行喷砂、化學蝕刻 、研磨或拋光處理,使其表面具粗糙度。各金屬板(1U, 、112’、113’)以垂直方向並排以形成所需基板之各個 099138606 表單編號A0101 第25頁/共82頁 1003064566-0 201208147 區域。 [0128] [0129] [0130] [0131] 參照圖1 3以及圖14b,上述接著劑製程(S2)指於上述金 屬板(111 、112’ '113’)之間之邊界面形成接著劑 (114 )之製作過程。上述接著劑(114’)使上述金屬板 (111 、112 、113,)互相黏合,並使上述金屬板(m’ 、112’、113’)各自與其它金屬板絕緣。上述接著劑 (114 )可為液體之接著劑或薄片(sheet)之膠膜。上述 接著劑(114,)即為後序製程中基板之絕緣層。 參照圖13及圖14c,Ji述堆層製程(S3)指以上述接著劑 (114 )為媒界使上述金屬板(m,、丨丨2,、丨13,)進行 堆疊之製作過程。即,於上述金屬板(ln,、112,、 11 3’)之間形成接著劑(114,)使金屬板(111,、112,、 113’)彼此黏合且彼此絕緣。 參照圖13、圖14d及圖14e,上述裁切製程(S4)指以垂直 方向裁切(sawing)透過接著劑(1丨4,)堆層之上述金屬板 (111 、112 、1:13...)以形咸表板'(.11 〇)之製作過程。此 製程將使上述金屬板(111,、1彳2,、113’)形成基板 (110)之第一區(111)、第二區(112)及第三區(113), 且上述接著劑(114 )成為上述基板(ho)之絕緣層 (114)。故,裁切時之水平方向間距即為上述基板 (110)垂直方向之最終厚度。又,於上述裁切製程(S4) 後,可再增加可去除雜質(burr及scratch)使光學元件 之光源更有效反射之研磨製程。 此後再經電極層製程(S5)、隔板製程(S6) '光學元件安 099138606 表單編號A0101 第26頁/共82頁 1003064566-0 201208147 裝製程(S7)、電子連結製程(S8)及保護層製程(S9)即可 製作出依本發明另一實例之光學元件裝置(100)。然,因 上述電極層製程(S5)、隔板製程(S6)、光學元件安裝製 程(S7)、電子連結製程(S8)及保護層製程(S9)與前述實 例相同,故省略上述各製程之詳細說明。 [0132] 以下說明依本發明另一實例製作之光學元件裝置。 [0133] 圖15a、圖15b及圖15c為依本發明另一實例製作之光學 元件裝置之剖面圖及條狀基板之平面圖。 ❹ [0134] 如圖15a所示,依本發明另一實例製作之光學元件裝置 (1101)包括基板(1110)、光學元件(112〇‘;)、導電線 (1130)及螢光體(1140)。且,本發明亦可再包含螢光體 (1140)上端之封口部(115〇)。 ' [0135] 上述基板(111〇)包括具一定大小之凹槽(1111 a)之導電 體(1111)、第一鍍金層(1112)及第二鍍金層(1113)。 上述導電體(1111)具Ji述一定大小之凹槽(1111a)之第 Q 一面(111 ld)及與妻讓第一面(lllld)相對且表面平整之 第一面(lllle)。又,上述基板(mo)亦包含位於上述 凹槽(1111a)外側將上述基板同時以水平方向區 分為兩個以上之區域之絕緣層(1114)。透過此絕緣層 (114)之區隔,上述基板(111〇)於水平方向至少具兩個 以上彼此絕緣之區域。其中,歷來之基板一般皆透過絕 緣層於垂直方向區隔出彼此絕緣之區域,而非水平方向 [0136]上述導電體(11Π)可利用導電和導熱性能優越之金屬板 1003064566- 099138606 表單編號A0101 第27頁/共82頁 201208147 形成之。例如’上述導電體(1 1 1 1 )可由鋁、鋁合金、銅 、銅合金、鐵、鐵合金或等價物形成之◊但,本發明不 受限於上述材質。同時上述導電體(11U)不僅可有效地 將電子信號傳送至上述光學元件(1120),亦可輕易且迅 速地將上述光學元件(1120)產生之熱能排放至裝置外部 。上述一定大小之凹槽(111 la)包括安裝上述光學元件 (1120)之底面(llllb),及由上述底面(iiiib)向上述 第一面(lllld)傾斜之傾斜面(iiiic)。因此,凹槽 (1111a)之形狀約呈碗狀,方便螢光體(114〇)裝填至上 述凹槽(111 la)内侧。即,雖基板(1110)上未具一定厚 度之屏障(dam),螢光體(1'1.40)亦可輕易裝填至所定之 空間内。 [0137] 上述第一鍍金層(1112)依上述凹槽(1 iiia)及上述第一 面(11 lid)以一定之厚度形成之。此時第一鍍金層 (1112)可以鍍銀方式形成之,或先鍍鎳後再鍍銀形成之 。然,本發明不受上述材料之限制,亦可使用其他材質 進行電鍵以形成之。上述銀材質不僅與導電線(113〇)具 良好之焊接性,亦可有效反射光學元件(112〇)及螢光體 (1140)之光源。且,當此種第一鍍金層(1112)經鏡面處 理時,可更有效提高上述反射率,使依本發明實例製造 之光學元件裝置(1101)具備更優益之發光效率。其中, 上述第一鍍金層(1112)亦依上述絕緣層(1114)區分為兩 個彼此絕緣之區域。 上述第二鍍金層(1113)沿上述第二面(lllle)以一定厚 度形成之。此第二鍍金層(1113)可透過電鍍金、鎳、銅 099138606 表單編號A0101 第28頁/共82頁 1003064566-0 [0138] 201208147 、錫或其合金或其等價物以形成之。然,本發明不受上 述材料之限定,亦可使用其他材質進行電鍍以形成之。 且,因上述之金、鎳、銅、錫等焊劑具良好之焊接性, 故可提升依本發明另一實例製造之光學元件裝置(1101) 之可:it裝性。其中,上述第二鑛金層(11 13)亦依上述絕 緣層(1114)區分為兩個彼此絕緣之區域。 [0139] Ο 將上述基板(1110)於水平方向區分為兩個彼此絕緣之區 域之絕緣層(1114)可由一般之絕緣片、p〇lyImide (PI) ' Benzo Cyclo Butene (BCB) ' Poly Benz[0109] The upper fixed layer (646) is required to correspond to the upper end of the insulating layer (114), and the upper reflective layer (947) needs to reflect the light source generated by the optical element (150). Further, since the upper end reflection layer (947) and the upper end fixing layer (646) are symmetrical to each other, the light reflectance can be improved, so that the luminous efficiency of the device can be improved. The following is a description of the manufacturing method of the optical element device according to the example of the present invention. Fig. 11 is a flow chart for explaining a method of fabricating an optical element device in an example of the present invention. 12a to 12h are schematic views showing a method of fabricating an optical element device according to an example of the present invention. As shown in FIG. 11, the manufacturing method of the optical component device (100) according to the example of the present invention includes: a module layer process (S1), an insulation layer process (S2), a module removal process (S3), and a sealing process (S4). ), electrode layer process (S5), separator process (S6), optical component mounting process (S7), electronic bonding process (S8), and protective layer process (S9). The respective processes of Fig. 11 will be described below with reference to Figs. 12a to 12h. Referring to Figures 11 and 12a, the module layer process (S1) refers to a process of forming a module layer (10) on the upper end surface and the lower end surface of the metal plate (110'). The above metal plate (110') is formed of Shao or Ming alloy. Moreover, the module layer (10) can be formed by exposing, developing or sticking the mask film after applying the mask liquid. Referring to Figures 11 and 12b, the insulating layer process (S2) refers to a process in which an area not covered by the module layer (10) is subjected to anodizing treatment to form an insulating layer (114). The insulating layer (114) vertically penetrates the above-mentioned 099138606 Form No. A0101 Page 21 / Total 82 Page 1003064566-0 [0111] 201208147 The metal plate (110') is one side thicker and extends the long side of the metal plate (110,) The direction is formed. The insulating layer (H4) partitions the metal plate (u) from the first region (111) to the third region (113) to have the first region (111) to the third region (113) and The substrate (11 〇) of the insulating layer (114). Further, in the drawing, the two sides of the insulating layer (114) in the vertical direction are flat sides, but after the anode surface is treated on the upper end surface and the lower end surface of the metal plate (Π0,), the insulating layer (114) may be The center of the side is inwardly recessed in the shape of a double cone. Referring to FIGS. 11 and 12c, the removal module layering (S3) refers to an iron process in which the module layer (1 〇 ) is separated from the substrate (I I 〇 ). The module layer (ίο) can be removed by an ashing process when the mask liquid is formed, and can be removed from the substrate (11〇) when the film is formed. [0113] Referring to FIG. 11 The above sealing process (S4) means that the micropores inside the insulating layer (n) formed in the above insulating layer process (S3) are filled with a mixture of BCB (Benzocyclobuten), insulating organic mash "distilled water" or one of them. The process of filling the hole is described as the process of filling the hole. The process is because the above-mentioned insulating film (114) is easily damaged by external pressure, so the above-mentioned insulating layer can be improved by filling the most vulnerable pores with the above substances ( 114) Mechanical strength and improved insulation performance. [0114] When the pores are sealed by BCB or an insulating organic substance, a heat hardening process for hardening at a certain temperature may be further added. [0115] After the process (S4), a polishing process for removing impurities (burr or scratch) formed on the surface of the substrate (110) may be added. And 099138606 Form No. A0101 Page 22 of 82 1003064566-0 201208147 [0116] Ο [ 0117] Ο [0118] Through the above-mentioned polishing process, the light source generated by the optical element mounted on the first region (111) of the substrate (110) can be effectively reflected, thereby improving the light efficiency. The polishing process is generally performed by buff polishing. 11 and 12d, the electrode layer process (S5) means that a first electrode layer (120) is formed on an upper end of the second region (112) of the substrate (no), and a second electrode is formed on an upper end of the second region (113). The first electrode layer (12〇) and the second electrode layer (130) may be a single layer or a double layer, and the first electrode layer (12〇) and the second electrode layer. (13〇) may be formed of gold, silver, steel, aluminum, nickel, tungsten or an alloy thereof which is excellent in electrical conductivity and is highly viscous. At this time, the first electrode layer (12 〇) and the second electrode layer (130) It is formed by one of the methods of electroless ore, electric key, adhesive, spray (Plazma arch spray, cold spray (c〇ld spray)) or a combination thereof. For example, a post-process When the material of the conductive wire used is gold (Au), the first electrode layer (120) and the second electrode (13〇) can be formed by using silver (Ag) which is excellent in conductivity and can effectively reflect the light of the optical element, and if the material of the conductive line is ig(A1), even if the first electrode layer (120) is not provided The second electrode layer (13〇), the aluminum conductive wire can also be effectively bonded to the substrate (110). When the electrode layer is formed by electroless plating or electroplating, it is formed in the region of the substrate (110). The first electrode layer (120) and the second electrode layer (130)' may be additionally subjected to a masking process. Further, when the above-described spraying method is used, the first electrode layer (12 〇) and the 099138606 can be selectively formed on the region of the substrate (110) using a mask. Form No. A0101 Page 23 / Total 82 Page 1003064566 -0 [0119] 201208147 Two electrode layer (130). Referring to FIG. 11 and FIG. 2e, the spacer process (S6) refers to a process of forming the spacer (140) at the upper end of the electrode layer (120, 130). The spacers (140) are each perpendicular and protrude from the upper ends of the electrode layers (12, 130). The above-mentioned separator (140) can be formed by screen printing or mold molding, and the material can be Poly Phthal Amid (PPA), epoxy resin, and photosensitive. A barrier glue (PSR) or a mixture thereof or silicone. Referring to Figures 11 and 12f, the above-described Anhan optical component process refers to a process of mounting an optical component (150) on the upper end of the base (110). As described above, the optical element (15A) may be a light emitting diode (LED). The optical element (150) is adhered to the upper end of the first region (111) of the substrate (110) through an adhesive (151) on the lower end surface. Referring to Fig. 11 and Fig. 12g, the electronic connection process (S8) refers to a process of connecting the electrode layer (! 2 〇 v) 3 〇 to the optical element (150) by a conductive wire (160). The external signal of the bonding layer (12〇, 13〇) can be transmitted to the optical element (150) through the conductive line (WO) to control the operation of the optical element (15〇). Referring to FIG. 11 and FIG. 12h, the above protection The layer process (39) refers to a process of applying a fluorescent substance in a region defined by the separator (1 40) to form a protective layer (17 〇). The protective layer (17 〇) is formed on the substrate (11 〇) The upper end is covered with the optical element (15 〇) and the conductive line (16 〇). The protective layer (170) protects the optical element (15 〇) from external impact. The protective layer (170) can also use the above optical layer. Light source conversion by element (15〇) 099138606 Form No. A0101 Page 24/82 Page 1003064566-0 201208147 [0124] [0126] Ο [0127] Ο is white light. The following describes another example of the present invention. Method of fabricating an optical component device. Figure 13 is a diagram illustrating another embodiment of the present invention. A flow chart of a method for fabricating an optical component device of the example. Fig. 14aui4e is a schematic view illustrating a method of fabricating an optical component device according to another embodiment of the present invention. Referring to Fig. 13, a method of fabricating an optical component device according to another example of the present invention includes Sheet metal process (S1), adhesive process (S2), stack process (S3), cutting process (S4), electrode layer process (S5), separator process (S6), optical component maintenance (S7) ), electronic connection cracking (S8), protective layer process (S9). The following is a description of each process in Figure 3, please refer to Figure 14a to Figure 14e, referring to Figure 13 and Figure 14a, the above metal plate process (si) Refers to the process of forming three plate-shaped metal plates (111, 112, 113'). In the case of FIG. 14a, three metal plates (111, 112, 113) are taken as an example, but the metal plates are used. The quantity is not limited to this, that is, the number of metal plates can be increased or decreased according to the required substrate area. The material of the above metal plates (111, 112', 113,) can be aluminum, aluminum alloy, copper, copper. Alloy, and to improve the above metal plates (111', 112, 113,) The adhesion between the agents and the insulation and voltage resistance between the metal plates (111', 112', 113') can be anodized in advance on the surface of the metal plates (111, 112, 113). In addition, in order to improve the adhesion between the metal plate (111, 112, '113') and the adhesive, the boundary surface of the metal plate may be sandblasted, chemically etched, ground or polished to have a surface roughness. . The metal plates (1U, 112', 113') are arranged side by side in the vertical direction to form each of the desired substrates. 099138606 Form No. A0101 Page 25 / Total 82 Page 1003064566-0 201208147 Area. Referring to FIGS. 13 and 14b, the above-described adhesive process (S2) refers to forming an adhesive on a boundary surface between the above-mentioned metal plates (111, 112' '113') ( 114) The production process. The above-mentioned adhesive (114') bonds the metal plates (111, 112, 113,) to each other, and insulates the metal plates (m', 112', 113') from the other metal plates. The above adhesive (114) may be a film of a liquid adhesive or a sheet. The above-mentioned adhesive agent (114) is an insulating layer of the substrate in the subsequent process. Referring to Fig. 13 and Fig. 14c, the stacking process (S3) of Ji refers to a process of stacking the metal plates (m, 丨丨2, 丨13) by using the above-mentioned adhesive (114) as a medium. Namely, an adhesive (114) is formed between the above metal plates (ln, 112, 11 3') to bond the metal plates (111, 112, 113') to each other and to each other. Referring to Figures 13, 14d and 14e, the above-mentioned cutting process (S4) refers to cutting the above-mentioned metal plates (111, 112, 1:13) through the stack of adhesives (1丨4,) in a vertical direction. ..) The process of making a salty table '(.11 〇). The process will cause the metal plate (111, 1, 2, 113') to form the first region (111), the second region (112) and the third region (113) of the substrate (110), and the above adhesive (114) An insulating layer (114) of the substrate (ho). Therefore, the horizontal direction spacing during cutting is the final thickness of the substrate (110) in the vertical direction. Further, after the above-described cutting process (S4), a polishing process capable of removing impurities (burr and scratch) to more effectively reflect the light source of the optical element can be added. After that, the electrode layer process (S5) and the separator process (S6) 'optical component security 099138606 form number A0101 page 26 / total 82 pages 1003064566-0 201208147 process (S7), electronic connection process (S8) and protective layer The optical component device (100) according to another example of the present invention can be fabricated by the process (S9). However, since the electrode layer process (S5), the spacer process (S6), the optical component mounting process (S7), the electron bonding process (S8), and the protective layer process (S9) are the same as the foregoing examples, the above processes are omitted. Detailed description. [0132] An optical element device fabricated in accordance with another example of the present invention is described below. 15a, 15b and 15c are a cross-sectional view of an optical element device and a plan view of a strip substrate according to another example of the present invention. [0134] As shown in FIG. 15a, an optical element device (1101) fabricated according to another example of the present invention includes a substrate (1110), an optical element (112〇';), a conductive line (1130), and a phosphor (1140). ). Further, the present invention may further comprise a sealing portion (115 〇) at the upper end of the phosphor (1140). [0135] The substrate (111A) includes a conductor (1111) having a groove (1111a) of a certain size, a first gold plating layer (1112), and a second gold plating layer (1113). The conductor (1111) has a Q-th side (111 ld) of a groove (1111a) of a certain size and a first face (lllle) which is opposite to the first face (lllld) and whose surface is flat. Further, the substrate (mo) further includes an insulating layer (1114) which is located outside the groove (1111a) and which is divided into two or more regions in the horizontal direction. Through the partition of the insulating layer (114), the substrate (111〇) has at least two regions insulated from each other in the horizontal direction. Among them, the conventional substrates are generally separated from each other by the insulating layer in the vertical direction, instead of the horizontal direction. [0136] The above-mentioned electric conductor (11Π) can utilize the metal plate with superior electrical and thermal conductivity properties 1003064566- 099138606 Form No. A0101 Page 27 of 82 pages 201208147 formed. For example, the above-mentioned conductor (1 1 1 1 ) may be formed of aluminum, an aluminum alloy, copper, a copper alloy, iron, an iron alloy or the like, but the present invention is not limited to the above materials. At the same time, the above-mentioned electric conductor (11U) can not only efficiently transmit an electronic signal to the optical element (1120), but also can easily and quickly discharge the thermal energy generated by the optical element (1120) to the outside of the apparatus. The groove (111 la) of a certain size includes a bottom surface (1111b) on which the optical element (1120) is mounted, and an inclined surface (iiiic) inclined from the bottom surface (iiiib) toward the first surface (111d). Therefore, the shape of the groove (1111a) is approximately bowl-shaped, facilitating the filling of the phosphor (114〇) to the inside of the above-mentioned groove (111 la). That is, although the substrate (1110) does not have a dam of a certain thickness, the phosphor (1'1.40) can be easily loaded into a predetermined space. [0137] The first gold plating layer (1112) is formed with a certain thickness according to the groove (1 iiia) and the first surface (11 lid). At this time, the first gold plating layer (1112) may be formed by silver plating, or may be formed by plating nickel and then silver plating. However, the present invention is not limited by the above materials, and other materials may be used to form the keys. The above-mentioned silver material not only has good solderability with the conductive wire (113〇), but also effectively reflects the light source of the optical element (112〇) and the phosphor (1140). Moreover, when the first gold plating layer (1112) is mirror-finished, the above reflectance can be more effectively improved, and the optical element device (1101) manufactured according to the example of the present invention has more excellent luminous efficiency. The first gold plating layer (1112) is further divided into two regions insulated from each other according to the insulating layer (1114). The second gold plating layer (1113) is formed to have a certain thickness along the second surface (lllle). The second gold plating layer (1113) can be formed by electroplating gold, nickel, copper 099138606 Form No. A0101, page 28, page 82, 1003064566-0 [0138] 201208147, tin or its alloy or its equivalent. However, the present invention is not limited to the above materials, and may be formed by electroplating using other materials. Further, since the above-mentioned fluxes such as gold, nickel, copper, and tin have good solderability, the optical component device (1101) manufactured according to another example of the present invention can be improved. The second gold layer (11 13) is further divided into two regions insulated from each other according to the insulating layer (1114). [0139] The insulating layer (1114) which divides the above substrate (1110) into two regions insulated from each other in the horizontal direction may be a general insulating sheet, p〇ly Imide (PI) ' Benzo Cyclo Butene (BCB) ' Poly Benz
Oxazole (PBO)、Bismaleimide Triazine (BT)、 phenolicresin、epoxy、矽(Silicone)咸其等價物形 成之,但本發明並不受上述絕緣層(1114)材質限制。再 者’若基板(1110)為銘或銘合金材質時,上述絕緣層 (1114)之材質亦可為將鋁經陽極處理後所形成之鋁質陽 極處理皮膜。 [0140] Ο 上述光學元件(1120)位於上述基板(111〇)之凹槽 (1111a)之底面(1U lb)。:當上述光學元件(1120)之下 端具電接點時,上述光學元件(1120)透過導電性接著劑 (1121)於電路上與上述凹槽(11 iia)之底面(11 lib)相 連結。即,上述光學元件(1120)透過導電性接著劑 (1121)於電路上與上述凹槽(1111a)之底面(1111b)上 之第一鍍金層(1112)相連結。其中,上述導電性接著劑 (1121)可由共炫點焊劑(eutectic solder : Sn37Pb) 、高溶點焊劑(High lead solder : Sn95Pb)、無錯焊 劑(lead-free solder : SnAg、SnAu ' SnCu ' nZn、 099138606 表單編號A0101 第29頁/共82頁 1003064566-0 201208147The equivalents of Oxazole (PBO), Bismaleimide Triazine (BT), phenolicresin, epoxy, and Silicone are formed, but the present invention is not limited by the material of the above insulating layer (1114). Further, when the substrate (1110) is made of Ming or Ming alloy, the material of the insulating layer (1114) may be an aluminum anode treated film formed by anodizing aluminum. [0140] The above optical element (1120) is located on the bottom surface (1U lb) of the groove (1111a) of the substrate (111〇). When the lower end of the optical element (1120) has an electrical contact, the optical element (1120) is electrically connected to the bottom surface (11 lib) of the recess (11 iia) via a conductive adhesive (1121). That is, the optical element (1120) is electrically connected to the first gold plating layer (1112) on the bottom surface (1111b) of the recess (1111a) via the conductive adhesive (1121). Wherein, the conductive adhesive (1121) may be a eutectic solder: a high melting solder (High Lead solder: Sn95Pb), a lead-free solder (lead-free solder: SnAg, a SnAu 'SnCu' nZn). , 099138606 Form No. A0101 Page 29 / Total 82 Page 1003064566-0 201208147
SnZnBi、SnAgCu、SnAgBi等)形成之,本發明並未限制 上述導電性接著劑(1121)之材質。且,上述光學元件 (1120)可為一般之發光二極體(Light Emiuing Di_ ode,LED),於本發明中並未限制上述光學元件(112〇) 之種類。 [0141]上述導電線(1130)使上述基板(111〇)與上述光學元件 (11 2 0 )相互以電流連接。例如,上述導電線(11 3 〇)之一 端以球形焊接(ball bonding)連接上述光學元件 (1120),另一端以針腳式焊接(stitch b〇nding)連接 上述基板(1110)之第一鍍金層(1112)。當然,亦可以相 反方式連接之。其中,上述光學元件(112〇)透過下端之 導電性接著劑(1121)於電流上與以絕緣層(1114)為中心 ,形成於其右方之基板(1110)相連接;上述光學元件 (1120)上端則透過導電線(1130)於電流上與以絕緣層 (1114)為中心,形成於其在侧之基板(111〇)相連接。因 .. ":;:;:·: : ... :..., 此,透過上述右側基板(1110)及左俄基板(111〇)可供應 上述光學元件(1120)不同極性之電源,進而可驅動該光 學元件(1120)。且,因上述導電線(113〇)須自上述光學 元件(1120)延伸至上述左侧基板(11〇),故可延伸至上 述凹槽(1111a)之外侧。因此,於以下亦將說明,當螢光 體(1140)僅形成於凹槽(1Ula)之内側時,上述導電線 (11 30)將延伸至上述螢光體(114〇)之外側。同時,上述 導電線(1130)可為一般之金線、鋁線、銅線或上述材質 之等價物’此處並未限制其材質。 [0142]上述螢光體(11 40)填注於上述具一定大小之凹槽 099138606 表單編號A0101 第30頁/共82頁 1003064566-0 201208147 Ο [0143] ❹ (1111a)中’並完全覆蓋上述光學元件(Π20),但僅覆 盖上述導電線(1130)之部分區域。即,上述榮光體 (1140)完全覆蓋上述凹槽(11118)之底面(1111|:))、傾 斜面(1111c)以及上述光學元件(1120)之表面,但僅覆 蓋上述導電線(1130)之部分區域。此時,因上述螢光體 (114 0 )僅填注至凹槽(1111 a )之内側,故本發明可使上 述螢光體(1140)之使用量降至最低◊即,若螢光體 (1140)不僅覆蓋凹槽(iina)亦同時覆蓋至其外側之基 板(1110)之上端區域,則螢光體(n4〇)之使用量將會大 幅增加。此螢光體(H40)可吸收自光學充件(112〇)放出 …. ... " 之特定波長之光’並轉換為其他波長之光。因此,透過 正確地選擇上述螢光體(1140)乏種類,即可輕易地製作 出具所需顏色之光學元件裝置(Π01)。 上述封口部(1150)形成於上述螢光體(114〇)及上述基板 (1110)之上端。即,上述封口部|(115〇)不僅形成於螢光 體(1140)上端,亦形成於其外側之第一鍍金層(1112)及 絕緣層(1114)之上端。且,上述封口部(115〇)不僅覆蓋 上述螢光體(1140)亦同時覆蓋穿透上述螢光體(114〇)向 外延伸之導電線(113〇)。因此,透過上述封口部(115〇) 可從外部環境保護導電線(1130)之安全。為使上述光學 元件(1120)及螢光體(H40)發出之光於不改變其性質之 形態下輸出至外部,此封口部(11 5 〇 )之材質可為具優益 透光性之透光樹脂,例如矽膠樹脂、環氧樹脂或其等價 物。然,本發明並未限制上述封口部(11 50)之材質。如 上所述,透過上述封口部(115〇)不僅可從外部環境保護 099138606 表單編號A0101 第31頁/共82頁 1003064566-0 201208147 上述導電線(1130)亦可保護上述螢光體(114〇)。 [0144] 此外,如圖15b所示,依本發明實例製作之光學元件裝置 (1102) ’其封口部(1150)上端可為向上凸出之形狀 (1151)。如此,依本發明另一實例製作之光學元件裝置 即可於匯聚光學元件(1120)及螢光體(1140)產生之光後 再將光輸出至外部。當然,此封口部(115〇)除了可為向 上端凸出之形狀(11 51 )外’相反地亦可為凹陷之形狀。 [0145] 且,如圖lc所示,本發明使用之基板可為條狀之板狀物 。即’板上之凹槽(111 la )為·具行與列之矩陣形態,且絕 緣層(1114)為直線狀。此種條狀基板(i u 0_s)可以低價 位大量生產大量光學元件裝置。且,此種條狀基板 (1110—S)於生產製程完成後,可依圖1(:之縱向虛線進行 裁切(sawing)。又,雖於圖面未標示,但上述條狀基板 (1110—S)於生產製程完成後,可同時進行縱向與橫向之 裁切以製成僅具單一凹槽(1.111a)與單一.光學元件 (1120)之光學元件裝置。 [0146] 如上所述,依本發明另一實例製造之光學元件裝置(11〇1 、1102),透過於基板(1110)形成凹槽(mia)使光學 元件(1120)所發出之光匯聚於一定區域後再輸出其光, 因此可提升發光效率。 [0147] 又’依本發明另一實例製造之光學元件裝置(11〇ι、 1102),透過將螢光體(114〇)填注於基板(111〇)之凹槽 (1111a) ’故可減少螢光體(114〇)之消耗量。 [0148] 再者,依本發明另一實例製造之光學元件裝置(11〇1、 099138606 表單編號A0101 第32頁/共82頁 1003064566-0 201208147 [0149] [0150] 〇 [0151] [0152] ❹ [0153] 1102),透過增加光學元件(112〇)及螢光體(114〇)與基 板(11 ίο)之相對接觸面積,可使由光學元件(112〇)及螢 光體(1140)產生之熱能透過基板(111〇)迅速排至外部。 且,依本發明另一實例製造之光學元件裝置(Η 〇1、 1102),因於基板(ι11〇)上再形成一額外之鍍金層,故 可提升焊線之焊接性、光反射率及焊接之接合性。 圖16a、圖16 b及圖16c為依本發明另一實例製造之光學 元件裝置之剖面圖及條狀基板之平面圖。· 如圖16a所示,依本發明另一實例製造之光學元件裝置 (1201)與圖15a之光學元件裝置(11〇1)相似。因此,以 下僅針對其差異點做說明。 如圖16a所示,依本發明另一實例製造之光學元件裝置 (1201),其絕緣層(1214)位於基板(1210)之凹槽 (11113)内側,而非於凹槽(11113)外側9即,絕緣層 (1214)於水平方向區分基板(12ι〇),且絕緣層(丨214) 非形成於凹槽(1111a)之外側,而是形成於凹槽⑴ua) 之内側。更具體來說,因絕緣層(1214)自凹槽(in ia) 之底面(1111b)垂直貫穿至基板(12ι〇)之第二面 (lllle) ’故基板(1210)於水平方向上具彼此獨立之電 流。 此外,因絕緣層(1214)形成於凹槽(ima)内側,故導 電線(12 3 0)不需焊接於凹槽(11 U a )之外側。即,可將 導電線(1230)焊接於凹槽(ni la)之内側。因此,導電 線( 1230)之一端接合於光學元件(112〇),另一端則接合 099138606 表單編號A0101 第33頁/共82頁 1003064566-0 201208147 位於凹槽(1111a)内側之第一鍍金層(1112)。以此,導 電線(1230)之隶大孤而(1 〇〇p height)亦形成於凹槽 (1111a)之内側,故導電線( 1230)之部份區域即不需延 伸至螢光體(1140)外側。 [0154] [0155] [0156] 如此,依本發明另一實例製造之光學元件裝置(丨2 〇丨)即 可具更小之體積。同時,因導電線(123〇)不延伸至螢光 體(1140)外侧,故可不需形成封口部(115〇)。因此,依 本發明另一實例製造之光學元件裝置(丨2 〇丨)不僅可降低 材料費用亦可縮小裝置之厚.度。 ... ... ..:, 此外,如圖16b所示’依本發明另一實例製造之光學元件 裝置(1202)之螢光體(1240)可為向上凸出之形狀 (1241)。如此,依本發明另一實例製造之光學元件裝置 (1 202)即可將光學元件(112〇)及螢光體(124〇)產生之 光匯聚於一定之區域後再傳送至外部。當然,亦可相反 地,螢光體為上端凹陷之形狀。 再者,如圖16c所示,本發明使用之基板可為條狀。即, 板上之凹槽(1111a)為具行與列之起陣形態,且絕緣層 (1214)為直線狀。此種條狀基板(121〇_s)可以低價位大 量生產大ΐ光學元件裝置。且,此種條狀基板(111〇_s) 於生產製粒το成後,可依圖之縱向虛線進行裁切。又 ,雖於圖面未標示,但上述條狀基板(121〇—幻於生產製 耘完成後,1同時進行縱向與橫向之裁切以製成僅具單 一凹槽(1111a)與單—光學元件(112〇)之光學元件裝置 099138606 表單編號A0101 第34頁/共82頁 1003064566-0 201208147 [0157] 圖17a及圖17b為依本發明另一實例製造之光學元件裝置 [0158] ❹ 之製造方法之示意圖。 如圖17a所示,基板(1110)經具底面(1301)及擴張面 (1302)之研磨機(grinder)( 1 300)研磨後,其上會形成 大致呈圓形或橢圓形之凹槽(1111a)。即,形成由絕緣層 (1114)區隔具水平方向彼此絕緣區域之基板(1110),透 過以研磨機(1300)研磨該基板(1110)以形成一定深度之 凹槽(1111a)。其中,研磨機( 1 300)之底面(1301)對應 於凹槽(1111a)之底面(11 lib),研磨機( 1 300)之擴張 面(1 3 0 2)對應凹槽(111 1 a)之傾斜面(1 111 c)。 [0159] 例如,上述研磨機( 1 300)亦可為具底面(1301)及擴張面 (1302)之超硬鑽石工具。超硬鑽石工具較一般被加工材 料(如,鋁或鋁合金)具較高之強度及硬度,可輕易對材 料加工使其變形較少並加工出正確之形狀,且超硬鑽石 工具之壽命較長可延長工具交換時期提升生產性能。 [0160] ❹ 如圖17b所示,凹槽亦可藉由濕式蝕刻方式形成之。濕式 蝕刻方法可於以護膜遮住凹槽以外之區域後,將欲形成 凹槽之區域露出於蝕刻溶液下之方式以形成凹槽。其中 ,上述護膜當使用不會對蝕刻溶液產生反應之材料。且 ,上述濕式蝕刻使用之溶液為可蝕刻鋁或鋁合金之溶液 ,且透過使蝕刻溶液維持一定溫度可準確控制蝕刻率。 [0161] 同時,如圖17b所示,凹槽亦可透過乾式蚀刻形成之。乾 式蝕刻可利用乾式蝕刻裝備,於真空狀態下透過注入之 混合氣體或陶究(plazma)以形成凹槽。當然,此時亦應 099138606 表單編號A0101 第35頁/共82頁 1003064566-0 201208147 以護膜遮蓋凹槽以外之其他區域。 [0162] 又,於本發明實施例中,僅以上述濕式蝕刻方式或乾式 蝕刻方式較不易形成凹槽,故可同時使用此兩種方法形 成之。 [0163] 且,透過濕式蝕刻或乾式蝕刻形成之凹槽之表面相當不 規則,因此於上述製程後,可透過機械加工調整凹槽表 面之粗趟:度(roughness)。 [0164] 圖18a、圖18b、圖18c及圖18d為依本發明另—實例製造 之光學元件裝置之剖面圖及基麵之部分區域之放大平面 圖。 [0165] 圖18a中之光學元件裝置(14〇1)與圖16a之光學元件裝置 (1201)相似;圖18b中之光學元件裝置(u〇2)與圖i6b 之光學元件裝置(12 〇 2 )相似。故,以下僅就其差異點進 行說明。 .;: [0166] 如圖18a所示,依本發明另__實例製造之光學元件裝置 (1401)於基板(141〇)之革一断槽g iiHa)上可裝置多數 個光學元件(1120) ^同時,導電線(1430)可將光學元件 (1120)與基板(1410)做電子連結,或使光學元件 (1120)之間形成電子連接。且,螢光體(144〇)充填於上 述凹槽(111 la)包覆多數個之光學元件(1丨2〇)及多數個 之導電線(1430)。 [〇167]如此’依本發明另一實例製造之光學元件裝置(1401)因 於軍一凹槽(lllla)上具多數個光學元件(112〇)故可提 高光之輸出效率。 099138606 表單編號A0101 第36頁/共82頁 1003064566-0 201208147 [0168] [0169] [0170]Ο [0171] [0172]Ο [0173] [0174] 如圖18b所示,依本發明另一實例製造之光學元件裝置 (1402)其勞光體(1440)為向上端凸出之形狀(丨441)。 如此,依本發明另一實例製造之光學元件裝置(14〇2)可 將光學元件(1120)及螢光體(1440)產生之光匯聚至一定 區域後再輸出至外部。相反的,上述螢光體(144〇)亦可 為上端凹陷之形狀。 此外,如圖18c所示,凹槽(in ia)之平面形狀大致呈橢 圓狀。且,絕緣層(1414)為橫貫上述凹槽(mia)之直 線开》狀。又,多數個光(學元件(112 〇 )位於上述凹槽 (1111 a )之内側6 且,如圖18d所示,凹槽(lllla,)之平面形狀大致呈四 角形。當然,絕緣層(1414,)為橫貫上述凹槽(lllla,) 之直線形狀。且,多數個光學元件(112〇’)位於上述凹槽 (1111a’)之内側。 此外,上述凹槽之平面形狀僅為其中一例,除此之外亦 可為三角形、兵方形、五角形、六角型等各種不同之形 狀,本發明中並未限制上述凹槽之平面形狀。 圖19a、圖19b及圖19c為依本發明另一實例製造之光學 元件裝置之剖面圖。 圖19a之光學元件裝置(1501)與圖15a之光學元件裝置 (1101)相似;圖19b之光學元件裝置(15〇2)與圖16a之 光學元件裝置(1201)相似。故’以下僅就其差異點進行 說明。 099138606 表單蝙號A0101 第37頁/共82頁 1003064566-0 201208147 [0175] 如圖19a所示’依本發明另—實例製造之光學元件裝置 (1 501 )之基板(1 51 〇a)具多數個以一定間距相隔之凹槽 (1111a),且各凹槽(illla)中具一光學元件(112〇)。 且,各凹槽(1111a)之外側有一使基板(151〇a)以水平方 向區分為彼此絕緣之不同區域之絕緣層(1514a)。且,各 光學元件(1120)可透過導電線(113〇)與鄰接之基板 (1510a)相連接。且封口部(115〇)包覆所有螢光體 (1140)及穿透此螢先體延伸至外部之導電線(113〇)。其 中,雖於圖面未畫出,但上述之透明封口部(丨15〇)於與 上述光學元件(11 20)對應之區域可為向上端凸出之形狀 〇 [0176] 如此,依本發明另一實例製造之光學元件裝置(15〇1)之 基板(〗510a)即具多數個凹槽(11Ua)及多數個光學元件 (1120)。因此,本發明另一實例即可提供大面積之光學 元件裝置(1501)。 [0177] 如圖19b所示,依本發明另—實例製造之光學元件裝置 ( 1 502 )之基板('1’51:01>)具多數個.又凹槽(iiHa),於各 凹槽(1111a)内具使基板(151〇b)以水平方向區分為彼此 絕緣之區域之絕緣層(1 514 b )。當然,各凹槽(1111 a )呈 光學元件(1120),且其透過導電線(113〇)與鄰接之基板 (15101))相連結。其中,上述導電線(113〇)並未延伸至 凹槽(1111a)之外側。因此,螢光體(114〇)可充分保護 上述導電線(1130)故可不需另行形成封口部。 [0178] 如上所述’依本發明另一實例製造之光學元件裝置 (1502)之基板(1510b)具多數個之凹槽(iiHa)及光學 099138606 表單編號A0101 第38頁/共82頁 1003064566-0 201208147 元件(11 2 0 ),且不需形成額外之封口部,因此可製造出 結構pel單且輕薄之光學元件裝置(15 〇 2)。 [0179] 如圖19c所示,依本發明另一實例製造之光學元件裝置 (1503),注入於各凹槽(lllla)之螢光體(154〇)為向上 端凸出之形狀(1541)。因此,依本發明另一實例製造之 光學元件裝置(1 503)可將光學元件(1120)及螢光體 (1540)所產生之光匯聚於一定區域後再輸出至外部。當 然’此種螢光體(1540)除為向上端凸出之形狀(1541)外 ^ ’亦可為凹陷之形狀。 .::. .... . ... ....The SnZnBi, SnAgCu, SnAgBi, etc. are formed, and the material of the above-mentioned conductive adhesive (1121) is not limited in the present invention. Further, the optical element (1120) may be a general light emitting diode (LED), and the type of the optical element (112A) is not limited in the present invention. The conductive line (1130) electrically connects the substrate (111〇) and the optical element (11 2 0) to each other. For example, one end of the conductive line (11 3 〇) is connected to the optical element (1120) by ball bonding, and the other end is connected to the first gold plating layer of the substrate (1110) by stitch bonding. (1112). Of course, it can also be connected in the opposite way. The optical element (112〇) is electrically connected to the substrate (1110) formed on the right side of the insulating layer (1114) through the conductive adhesive (1121) at the lower end; the optical element (1120) The upper end is connected to the substrate (111〇) on the side through the conductive line (1130) and the center of the insulating layer (1114). Because .. ":;:;:·: : ... :..., the above-mentioned optical component (1120) can supply the power of different polarities through the right substrate (1110) and the left Russian substrate (111〇). The optical element (1120) can in turn be driven. Further, since the above-mentioned conductive line (113 〇) has to extend from the above-mentioned optical element (1120) to the left side substrate (11 〇), it can extend to the outside of the above-mentioned groove (1111a). Therefore, as will also be explained below, when the phosphor (1140) is formed only inside the recess (1U1a), the above-mentioned conductive line (11 30) will extend to the outside of the above-mentioned phosphor (114 〇). Meanwhile, the above-mentioned conductive wire (1130) may be a general gold wire, an aluminum wire, a copper wire or an equivalent of the above materials. The material is not limited herein. [0142] The above-mentioned phosphor (11 40) is filled in the above-mentioned groove 099138606, the form number A0101, page 30 / page 82, 1003064566-0 201208147 Ο [0143] ❹ (1111a) 'and completely covers the above The optical element (Π20) covers only a portion of the above-mentioned conductive line (1130). That is, the glare body (1140) completely covers the bottom surface (1111|:) of the groove (11118), the inclined surface (1111c), and the surface of the optical element (1120), but covers only the conductive line (1130). partial area. At this time, since the phosphor (114 0 ) is only filled inside the recess (1111 a ), the present invention can minimize the usage of the phosphor (1140), that is, if the phosphor (1140) The amount of use of the phosphor (n4〇) will be greatly increased not only by covering the upper end region of the substrate (1110) covering the groove (iina) at the same time. The phosphor (H40) can be absorbed from the optical charge (112〇) to emit light of a specific wavelength of .... " and converted into light of other wavelengths. Therefore, an optical element device (Π01) having a desired color can be easily produced by properly selecting the type of the above-mentioned phosphor (1140). The sealing portion (1150) is formed at an upper end of the phosphor (114) and the substrate (1110). That is, the sealing portion|(115〇) is formed not only on the upper end of the phosphor (1140) but also on the upper end of the first gold plating layer (1112) and the insulating layer (1114). Further, the sealing portion (115 〇) covers not only the phosphor (1140) but also a conductive line (113 穿透) extending outward through the phosphor (114 〇). Therefore, it is possible to protect the conductive wire (1130) from the outside through the above-mentioned sealing portion (115〇). In order to allow the light emitted by the optical element (1120) and the phosphor (H40) to be output to the outside without changing its properties, the material of the sealing portion (11 5 〇) can be transparent. A light resin such as a silicone resin, an epoxy resin or the like. However, the present invention does not limit the material of the above-mentioned sealing portion (115). As described above, the above-mentioned sealing portion (115〇) can be protected not only from the outside. 099138606 Form No. A0101 Page 31/82 Page 1003064566-0 201208147 The above-mentioned conductive wire (1130) can also protect the above-mentioned phosphor (114〇). . Further, as shown in Fig. 15b, the upper end of the sealing member (1150) of the optical element device (1102) manufactured according to the example of the present invention may have an upwardly convex shape (1151). Thus, the optical element device fabricated according to another example of the present invention can condense the light generated by the optical element (1120) and the phosphor (1140) and then output the light to the outside. Of course, the sealing portion (115 〇) may be a concave shape in addition to the shape (11 51 ) protruding toward the upper end. [0145] Moreover, as shown in FIG. 1c, the substrate used in the present invention may be a strip-shaped plate. That is, the groove (111 la ) on the plate is in the form of a matrix having rows and columns, and the insulating layer (1114) is linear. Such a strip substrate (i u 0_s) can mass produce a large number of optical component devices at a low price. Moreover, after the production process is completed, the strip substrate (1110-S) can be sawed according to the vertical dotted line of Fig. 1. Further, although not shown in the drawing, the above strip substrate (1110) -S) After the production process is completed, the longitudinal and lateral cutting can be simultaneously performed to form an optical component device having only a single groove (1.111a) and a single optical element (1120). [0146] As described above, The optical element device (11〇1, 1102) manufactured according to another example of the present invention, through the substrate (1110), forms a groove (mia), and the light emitted by the optical element (1120) is concentrated in a certain area, and then the light is output. Therefore, the luminous efficiency can be improved. [0147] Further, an optical element device (11〇ι, 1102) manufactured according to another example of the present invention is filled with a phosphor (114〇) on a substrate (111〇). The groove (1111a)' can reduce the consumption of the phosphor (114〇). [0148] Further, an optical element device manufactured according to another example of the present invention (11〇1, 099138606, Form No. A0101, page 32/total 82 pages 1003064566-0 201208147 [0149] [0150] [0151] [0152] ❹ [0153] 1102), through The relative contact area between the optical element (112〇) and the phosphor (114〇) and the substrate (11 ίο) allows the thermal energy generated by the optical element (112〇) and the phosphor (1140) to pass through the substrate (111〇) And the optical component device (Η1, 1102) manufactured according to another example of the present invention can improve the soldering of the bonding wire because an additional gold plating layer is formed on the substrate (ι 11〇). Fig. 16a, Fig. 16b and Fig. 16c are a cross-sectional view of an optical element device and a plan view of a strip substrate manufactured according to another example of the present invention. The optical element device (1201) manufactured by another example of the present invention is similar to the optical element device (11〇1) of Fig. 15a. Therefore, only the differences will be described below. As shown in Fig. 16a, another example according to the present invention The manufactured optical component device (1201) has an insulating layer (1214) located inside the recess (11113) of the substrate (1210) instead of the outer side 9 of the recess (11113), that is, the insulating layer (1214) distinguishes the substrate in the horizontal direction. (12ι〇), and the insulating layer (丨214) is not formed in the groove (111 The outer side of 1a) is formed inside the groove (1) ua). More specifically, since the insulating layer (1214) vertically penetrates from the bottom surface (1111b) of the recess (in ia) to the second surface (lllle) of the substrate (12 )), the substrates (1210) have each other in the horizontal direction. Independent current. Further, since the insulating layer (1214) is formed inside the recess (ima), the conductive wire (12 3 0) does not need to be soldered to the outside of the recess (11 U a ). That is, the conductive wire (1230) can be welded to the inside of the recess (ni la). Therefore, one end of the conductive wire (1230) is bonded to the optical element (112〇), and the other end is joined to 099138606. Form No. A0101 Page 33 / Total 82 Page 1003064566-0 201208147 The first gold plating layer located inside the groove (1111a) ( 1112). Therefore, the conductive line (1230) is also formed inside the groove (1111a), so that part of the conductive line (1230) does not need to extend to the phosphor ( 1140) Outside. Thus, the optical element device (丨2 〇丨) manufactured according to another example of the present invention can have a smaller volume. At the same time, since the conductive wire (123〇) does not extend to the outside of the phosphor (1140), it is not necessary to form the sealing portion (115〇). Therefore, the optical element device (丨2 制造) manufactured according to another example of the present invention can not only reduce the material cost but also reduce the thickness of the device. Further, as shown in Fig. 16b, the phosphor (1240) of the optical element device (1202) manufactured according to another example of the present invention may have an upwardly convex shape (1241). Thus, the optical element device (1 202) manufactured according to another example of the present invention can concentrate the light generated by the optical element (112 〇) and the phosphor (124 汇) in a certain area and then transfer it to the outside. Of course, conversely, the phosphor is in the shape of a concave at the upper end. Further, as shown in Fig. 16c, the substrate used in the present invention may be in the form of a strip. That is, the groove (1111a) on the plate is in the form of a row and a row, and the insulating layer (1214) is linear. Such a strip substrate (121〇_s) can mass produce a large-sized optical element device at a low price. Moreover, the strip substrate (111〇_s) can be cut according to the vertical dotted line of the figure after the production granulation is completed. Moreover, although not shown in the drawing, the above-mentioned strip substrate (121〇- illusion is completed after the production process, 1 simultaneous longitudinal and lateral cutting to make only a single groove (1111a) and single-optical Optical element device 099138606 of the component (112〇) Form No. A0101 Page 34/82 Page 1003064566-0 201208147 [0157] FIGS. 17a and 17b are optical element devices manufactured according to another example of the present invention [0158] Schematic of the method. As shown in Fig. 17a, the substrate (1110) is ground by a grinder (1 300) having a bottom surface (1301) and an expansion surface (1302), and a substantially circular or elliptical shape is formed thereon. a groove (1111a), that is, a substrate (1110) formed by insulating layers (1114) with horizontally insulated regions, and a substrate (1110) polished by a grinder (1300) to form a groove having a certain depth (1111a), wherein the bottom surface (1301) of the grinder (1 300) corresponds to the bottom surface (11 lib) of the groove (1111a), and the expansion surface (1 3 0 2) of the grinder (1 300) corresponds to the groove (1 3 0 2) 111 1 a) inclined surface (1 111 c). [0159] For example, the above grinding machine (1 300) It can be a super-hard diamond tool with a bottom surface (1301) and an expansion surface (1302). The super-hard diamond tool has higher strength and hardness than the general processed material (such as aluminum or aluminum alloy), and can be easily processed for materials. The deformation is less and the correct shape is machined, and the long life of the super-hard diamond tool can prolong the tool exchange period to improve the production performance. [0160] 凹槽 As shown in Fig. 17b, the groove can also be formed by wet etching The wet etching method can form a groove by exposing a region where the groove is to be formed to the etching solution after the film covers the region other than the groove, wherein the film is not etched when used. The solution generates a reaction material, and the solution used in the above wet etching is a solution capable of etching aluminum or aluminum alloy, and the etching rate can be accurately controlled by maintaining the etching solution at a certain temperature. [0161] Meanwhile, as shown in FIG. 17b, The grooves can also be formed by dry etching. The dry etching can be performed by dry etching equipment, and the mixed gas or plazma is injected under vacuum to form a groove. 099138606 Form No. A0101 Page 35 of 82 1003064566-0 201208147 Covering other areas than the groove with a protective film. [0162] Further, in the embodiment of the present invention, only the above-mentioned wet etching method or dry etching method is used. It is difficult to form a groove, so it can be formed by using the two methods at the same time. [0163] Moreover, the surface of the groove formed by wet etching or dry etching is rather irregular, so that after the above process, the concave can be adjusted by machining. Roughness of the groove surface: roughness. 18a, 18b, 18c, and 18d are enlarged cross-sectional views showing a partial cross-sectional view of a portion of a substrate and an optical element device manufactured according to another embodiment of the present invention. [0165] The optical element device (14〇1) in FIG. 18a is similar to the optical element device (1201) of FIG. 16a; the optical element device (u〇2) in FIG. 18b and the optical element device in FIG. i6b (12 〇2) )similar. Therefore, only the differences will be explained below. [0166] As shown in FIG. 18a, an optical component device (1401) manufactured according to another embodiment of the present invention can mount a plurality of optical components (1120) on a substrate (141). At the same time, the conductive line (1430) can electronically connect the optical element (1120) to the substrate (1410) or form an electrical connection between the optical elements (1120). Further, a phosphor (144 Å) is filled in the above-mentioned groove (111 la) to cover a plurality of optical elements (1丨2〇) and a plurality of conductive lines (1430). [〇167] Thus, the optical element device (1401) manufactured according to another example of the present invention can improve the light output efficiency due to the fact that a plurality of optical elements (112 turns) are provided on the military one groove (lllla). 099138606 Form No. A0101 Page 36 / Total 82 Page 1003064566-0 201208147 [0170] [0170] [0171] [0174] As shown in FIG. 18b, another example according to the present invention The optical component device (1402) manufactured has a shape in which the working body (1440) is convex toward the upper end (丨441). Thus, the optical element device (14〇2) manufactured according to another example of the present invention can concentrate the light generated by the optical element (1120) and the phosphor (1440) to a certain area and then output to the outside. On the contrary, the above phosphor (144 〇) may have a shape in which the upper end is recessed. Further, as shown in Fig. 18c, the plane shape of the groove (in ia) is substantially elliptical. Further, the insulating layer (1414) is in the shape of a straight line crossing the above-mentioned groove (mia). Further, a plurality of light elements (112 〇) are located on the inner side 6 of the above-mentioned groove (1111 a ) and, as shown in Fig. 18d, the plane shape of the groove (lllla,) is substantially quadrangular. Of course, the insulating layer (1414) ,) is a linear shape that traverses the groove (lllla,), and a plurality of optical elements (112〇') are located inside the groove (1111a'). Further, the planar shape of the groove is only one example. In addition, various shapes such as a triangle, a square, a pentagon, a hexagon, and the like may be used, and the planar shape of the groove is not limited in the present invention. FIGS. 19a, 19b, and 19c are another example according to the present invention. A cross-sectional view of the manufactured optical component device. The optical component device (1501) of Figure 19a is similar to the optical component device (1101) of Figure 15a; the optical component device (15〇2) of Figure 19b and the optical component device of Figure 16a (1201) The following is only a description of the difference. 099138606 Form bat number A0101 Page 37 / Total 82 page 1003064566-0 201208147 [0175] As shown in FIG. 19a, an optical element device manufactured according to another embodiment of the present invention (1 501 ) The substrate (1 51 〇a) has a plurality of grooves (1111a) spaced apart at a certain interval, and each of the grooves (illla) has an optical element (112〇). Moreover, each groove (1111a) has an outer side The substrate (151〇a) is divided into insulating layers (1514a) of different regions insulated from each other in the horizontal direction, and each optical element (1120) is connectable to the adjacent substrate (1510a) through the conductive line (113〇). The sealing portion (115〇) covers all the phosphors (1140) and the conductive wires (113〇) extending through the phosphor precursor to the outside. The transparent sealing portion (the above-mentioned transparent sealing portion is not shown in the drawing) The area corresponding to the optical element (11 20) may be a shape that protrudes toward the upper end. [0176] Thus, the substrate of the optical element device (15〇1) manufactured according to another example of the present invention ( 510a) has a plurality of grooves (11Ua) and a plurality of optical elements (1120). Therefore, another example of the present invention can provide a large-area optical element device (1501). [0177] As shown in FIG. 19b, The substrate ('1'51:01>) of the optical component device (1 502) manufactured by the other embodiment of the invention has a plurality of. Further, the recess (iiHa) has an insulating layer (1 514 b ) in each of the recesses (1111a) for distinguishing the substrate (151〇b) in a horizontal direction from each other. Of course, each recess (1111 a ) The optical element (1120) is connected to the adjacent substrate (15101) through the conductive line (113〇). Here, the above-mentioned conductive line (113〇) does not extend to the outside of the groove (1111a). Therefore, the phosphor (114 〇) can sufficiently protect the above-mentioned conductive wire (1130), so that it is not necessary to separately form the sealing portion. [0178] As described above, the substrate (1510b) of the optical element device (1502) manufactured according to another example of the present invention has a plurality of grooves (iiHa) and optical 099138606. Form No. A0101, page 38/82, 1003064566- 0 201208147 The component (11 2 0 ), and no additional sealing part is required, so that the optical component device (15 〇 2) with a single structure and a thin structure can be manufactured. [0179] As shown in FIG. 19c, in the optical element device (1503) manufactured according to another example of the present invention, the phosphor (154〇) injected into each of the grooves (111a) has a shape protruding upward (1541). . Therefore, the optical element device (1 503) manufactured according to another example of the present invention can concentrate the light generated by the optical element (1120) and the phosphor (1540) in a certain area and then output to the outside. Of course, the phosphor (1540) may be in the shape of a depression except that it has a shape (1541) that protrudes toward the upper end. .::. .... . . . .
[0180] 圖20a、圖20b森圖20c為板本發明另一實例製造之光學 元件裝置之剖面圖及平面圖。 [0181] 圖20a之光學元件裝置(1601)與圖18a之:考學元件裝置 (1401)相似’圖20b之光學元件裝置(1602)與圖18b之 光學元件裝置( 1402)相似。故,以下僅就其差異點進行 說明。 0 [0182] 如圖20a所示,依本發朋另一實例製造之光學元件裝置 (1601)於基板(1610a)之單一凹槽(1111a)具多數個絕 緣層(1614a)。當然,此絕緣層(1614a)使基板(1610a) 區分為數個彼此絕緣之區域。且,經區分之凹槽(1111a) 之各底面(11 lib)具一光學元件(1120)。又,各光學元 件(1120)透過導電線(1130)及絕緣層(1614a)與鄰接之 基板(1610a)形成電子連結。 [0183] 此外,透過將螢光體(1140)填注至單一凹槽(1111a), 即可包覆凹槽(1111a)内側之所有光學元件(1120)。且 099138606 表單編號A0101 第39頁/共82頁 1003064566-0 201208147 [0184] [0185] [0186] [0187] [0188] ,此螢光體(1140)亦可包覆所有之導電線(113〇)。 因此,依本發明另一實例製造之光學元件裝置(16〇1), 因於單一凹槽(1111a)上具多數個光學元件(112〇),且 於光學兀件(11 20)下端之所有基板(161〇a)皆彼此絕緣 ,故可輕易形成多數個串聯或並聯之光學元件(112〇)。 再者,因於單一凹槽(11Ua)中形成多數個光學元件 (1120 )之排列,故可簡化螢光體(丨14〇)之製程。 如圖20b所示,依本發明另一實例製造之光學元件裝置 (16〇2),其螢光體(164〇)美向上端凸出之形狀(1641) 。如此,依本發明另一實例製造之光學元件裝置(16〇2) 可將光學元件(1120)及螢光難(1 64〇)產生之光源匯聚至 一定區域後再輸出至外部。當然,上述螢光體(164〇)亦 可為上端凹陷之形狀。 如圖20c所示,位於基板(161〇a)上之一大型凹槽 (1111a)可排列3x3個之光學先件(mo)。當然,為使 光學元件(112 0 )與基板(161 〇 a)形成電子連結亦需使用3 X3條導電線(113〇)。且,因ϋ層(16Ua)亦為3條直 線形狀,故基板(1610a)為具4個於水平方向上彼此絕緣 之區域。 如此,本發明之基板(1610a)即具備3串聯3並聯之光學 元件(1120)。故可輕易製造出所需亮度之光學元件裝置 (1 6 0 3)。當然,此光學元件(112 〇)電流之連接型態可做 相當多樣之變更’本發明不受限於圖示之連接形態。 圖21為依本發明另一實例製造之光學元件裝置之剖面圖 099138606 表單編號A010] 第40頁/共82頁 1003064566-0 201208147 [0189] [0190] Ο [0191] [0192] 如圖21所示,依本發明另一實例製造之光學元件裝置 (1700)其絕緣層(1714)可如棋盤之形狀。圖21中之絕緣 層(1714)為3x2條之直線形狀》因此,基板(171〇)即具 12個彼此絕緣之區域。其中,光學元件(π 20)位於其中 9個彼些絕緣之基板(1710)。 如上所述,本發明另一實施例透過適度調整導電線 (1130)之連接位置’可製作出具多數個串聯或並聯之光 學元件(1120)之光學元俥裝置(1700)。 圖22a、圖22b及圖22c為依本發明另一實例製造之光學 元件裝置之剖面圖、平面圖及剖:面圖》 圖22a及圖22b之光學元件裝置(1800)與圖16a之光學元 件裝置(1201)相似。故,以下僅就其差異點進行說明。20a and 20b are diagrams and plan views of an optical element device manufactured by another example of the present invention. The optical component device (1601) of Figure 20a is similar to the test component device (1401) of Figure 18a. The optical component device (1602) of Figure 20b is similar to the optical component device (1402) of Figure 18b. Therefore, only the differences will be explained below. [0182] As shown in Fig. 20a, an optical element device (1601) manufactured according to another example of the present invention has a plurality of insulating layers (1614a) in a single recess (1111a) of the substrate (1610a). Of course, this insulating layer (1614a) divides the substrate (1610a) into a plurality of regions that are insulated from each other. Moreover, each of the bottom surfaces (11 lib) of the differentiated grooves (1111a) has an optical element (1120). Further, each of the optical elements (1120) is electrically connected to the adjacent substrate (1610a) via the conductive line (1130) and the insulating layer (1614a). [0183] Furthermore, by filling the phosphor (1140) into a single recess (1111a), all of the optical elements (1120) inside the recess (1111a) can be covered. And 099138606 Form No. A0101 Page 39 / Total 82 Page 1003064566-0 201208147 [0181] [0187] [0188] [0188] This phosphor (1140) can also cover all the conductive lines (113〇) ). Therefore, the optical element device (16〇1) manufactured according to another example of the present invention has a plurality of optical elements (112〇) on a single groove (1111a) and all at the lower end of the optical element (11 20). The substrates (161〇a) are insulated from each other, so that a plurality of optical elements (112 turns) connected in series or in parallel can be easily formed. Furthermore, since the arrangement of a plurality of optical elements (1120) is formed in a single groove (11Ua), the process of the phosphor (丨14〇) can be simplified. As shown in Fig. 20b, an optical element device (16〇2) manufactured according to another example of the present invention has a shape in which the phosphor (164〇) protrudes toward the upper end (1641). Thus, the optical element device (16〇2) manufactured according to another example of the present invention can concentrate the optical element (1120) and the light source generated by the fluorescent light (1 64 〇) to a certain area and then output to the outside. Of course, the above phosphor (164 〇) may also have a shape in which the upper end is recessed. As shown in Fig. 20c, one of the large grooves (1111a) on the substrate (161〇a) can arrange 3x3 optical precursors (mo). Of course, in order to form an electronic connection between the optical element (112 0 ) and the substrate (161 〇 a ), 3 X 3 conductive lines (113 〇) are used. Further, since the enamel layer (16 Ua) is also in the shape of three straight lines, the substrate (1610a) has four regions which are insulated from each other in the horizontal direction. Thus, the substrate (1610a) of the present invention has three optical elements (1120) connected in series and three in parallel. Therefore, it is easy to manufacture an optical component device of the desired brightness (1,630). Of course, the connection type of the current of the optical element (112 〇) can be varied considerably. The present invention is not limited to the connection form shown. Figure 21 is a cross-sectional view of an optical component device manufactured according to another example of the present invention. 099138606 Form No. A010] Page 40/82 of 1003064566-0 201208147 [0190] [0190] [0192] As shown in FIG. It is shown that the optical element device (1700) manufactured according to another example of the present invention may have an insulating layer (1714) in the shape of a checkerboard. The insulating layer (1714) in Fig. 21 has a linear shape of 3x2". Therefore, the substrate (171〇) has 12 regions insulated from each other. Among them, the optical element (π 20) is located in one of the nine insulating substrates (1710). As described above, another embodiment of the present invention can produce an optical element device (1700) having a plurality of optical elements (1120) connected in series or in parallel by appropriately adjusting the connection position of the conductive lines (1130). 22a, 22b, and 22c are a cross-sectional view, a plan view, and a cross-sectional view of an optical element device manufactured according to another example of the present invention. The optical element device (1800) of Figs. 22a and 22b and the optical element device of Fig. 16a (1201) is similar. Therefore, only the differences will be explained below.
[0193] Ο 如圖22a及圖22b所示,依本發明另一實例製造之光學元 ~ *·' 件裝置(1800),為撻#基板(1810)上之凹槽(111 la)與 螢光體(1140)間之接合力,故於凹槽(lllia)之傾斜面 (1111c)周圍形成具一定深度之段差(11 lid)。當然,上 述段差(lllld)之深度小於上述凹槽(1111a)之深度。且 ,上述段差(111 Id)沿上述凹槽(1111a)傾斜面(1111c) 之周圍形成圓環狀。且,第一鍍金層(1112)亦形成於上 述段差(lllld)之表面。 如上所述,因凹槽(1111a)與螢光體(1140)間之接合面 積擴大,故可提升凹槽(1111a)與螢光體(1140)間之接 099138606 表單編號A0101 第41頁/共82頁 1003064566-0 [0194] 201208147 合力。 [0195] [0196] [0197] [0198] [0199] 如圖22c所示’於依本發明另一實例製造之光學元件裝置 (1801)中’注入於凹槽(nila)之螢光體(184〇)可為上 端向上凸出之形狀(1841)。因此,依本發明另一實例製 造之光學元件裝置(1801)可使光學元件(112〇)及勞光體 (1840)產生之光匯聚於一定區域後再輸出至外部。當然 ’此螢光體(1840)除可為向上端凸出之形狀(1841)外, 亦可為凹陷之形狀。 且,此種凸出或凹陷形狀之榮光艟赤可同樣地適用於以 下圖23a至圖26之光學元件裝置中。 圖2 3 a及圖2 3 b為依本發明另一實例製造之光學元件裝置 之剖面圖及平面圖。 如圖23a及圖23b所示,依本發明另一實例製造之光學元 件裝置(1900),為提升基板(1910)上凹槽(uiia)與榮 ... .... ... :; 光體(1140)之接合力,可梦傾斜备(lnic)與段差 (1111 d)之間形成一俩以上具一定深度之凹洞(1111 e)。 上述凹洞(lllle)之深度可小於或大於上述凹槽(iiHa) 。且,形成於基板(1910)之上述凹洞(uile)可為多數 個或呈一圓環狀。且,第一鐘金層(1112)沿上述段差 (lllld)及凹洞(lllle)之表面形成。 如上所述,凹槽(1111a)與螢光體(114〇)間之接合面積 增加後,可更有效提高凹槽(lllla)與螢光體(114〇)間 之接合力。 [0200] 099138606 圖24a,圖24b及圖24c為依本發明另一實例製造之光學 表單編號A0101 第42頁/共82頁 1003064566-0 201208147 元件裝置之剖面圖及平面圖。 [0201] 如圖24a、圖24b及圖24c所示,依本發明另一實例製造 之光學元件裝置(2000、2000a、2000b)為提升凹槽 (1111a)與螢光體(1140)間之接合力,於凹槽(ima) 底面(1111b)形成具一定深度之凹洞。當然,上 述凹洞(1111〇之深度較凹槽(1111&)之底面(11111))更 深。 [0202] Ο 且,如圖24b所示’形成於凹槽(iina)底面(mib)之 上述凹洞(llllf)可為.多數個,或如圓24c所示為一圓環 狀。圖24c中凹洞以符號π nr標示。當然,於上述凹 洞(1111{、1111厂)表面亦具第一鍍金層(1112)。 [0203] 如此,因凹槽(1111a)與螢光體㈠丨40)間之接合面積增 加,故可提高凹槽(1111a)與螢光體(1140)間之接合力 〇 [0204] Ο [0205] 圖25a、圖25b及圖25c為依本發明另一實例製造之光學 元件裝置之刮面圖及平面圖。 如圖25a、圖25b及圖25c所示,依本發明另一實例製造 之光學元件裝置(2100、2100a、2100b),於基板 (2110)之凹槽(iiila)底面(mib)周圍形成一個以上 之凹洞(llllf),並於凹槽(lllla)傾斜面(llllc)周圍 形成段差(11 lid)。且,形成於底面(11 lib)之上述凹洞 (11 Ilf)可為數個或呈一圓環狀。(以圖面符號丨丨丨^’標 示)又’段差(lllld)形成於傾斜面(11 lie)周圍並大致 呈一圓環狀。當然,上述凹洞(llllf、)及段差 099138606 表單編號A0101 第43頁/共82頁 1003064566-0 201208147 (mid)之表面亦具第一鍍金層(1112)。 [0206]如此,因凹槽(1111a)與螢光體(1140)間之接合面積增 加,故可提高凹槽Uilla)與螢光體(114〇)間之接合力 〇 [〇2〇7]圖26為依本發明另一實例製造之光學元件裝置之剖面圖 0 [〇2〇8]如圖2 6所示,依本發明另一實例製造之光學元件裝置 (2200),於基板(2120)凹槽(iiiia)底面(llllb)形成 一個以上之凹洞(1111 f ),且於傾斜系(1丨丨丨c)之尾端形 成段差(lllld),並於上述段差(UUd)上再形成一個以 上之凹洞(11 lie)。因此,因螢光體(1丨40)可黏著於上 述基板(2120)凹槽(iula)之底面(illlb)、凹洞 (liiif)、傾斜面(11Uc)、段差(lllld)及另一凹洞 (lllle),故可增加螢光體(114〇)與凹槽(1111幻之接 合面積。 [0209]如此,因凹槽(1111 a)與螢光體(η 40)間之接合面積增 加,故可提高凹槽(lllla)與螢光體(114〇)間之接合力 〇 [〇21〇]以上所述,僅為依本發明製作之眾多光學元件裝置及其 製作方法之數例,故本發明並不受限於上述實例。且如 同以下專利申請範圍,於不違背本發明宗旨之情況下, 於本發明所屬領域中,具一般常識者皆可進行不同之變 更等,亦可視為本發明之技術精神。 【圖式簡單說明】 099138606 表單編號A0101 第44頁/共82頁 1003064566-0 .201208147 [0211] 圖1為依本發明實例製造之光學元件裝置之剖面圖。 圖2為依本發明實例製造之光學元件裝置所使用之基板之 底面圖。 圖3為依本發明另一實例製造之光學元件裝置之剖面圖。 圖4為依本發明又一實例製造之光學元件裝置之剖面圖。 圖5為依本發明又一實例製造之光學元件裝置之剖面圖。 圖6為依本發明又一實例製造之光學元件裝置之剖面圖。 圖7為依本發明又一實例製造之光學元件裝置之剖面圖。 圖8為依本發明又一實例製造之光學元件裝置之剖面圖。 〇 圖9為依本發明又一實例製造之光學元件裝置之剖面圖。 圖10為依本發明又一實例製造之光學元件裝置之剖面圖 圖11為說明依本發明實例製造之光學元件裝置之製作方 法之流程圖。 圖12a至圖12h為依本發明實例製造之光學元件裝置之製 作方法之示意圖。 圖1 3為說明依本發明實例製造之光學元件裝置之另一製 〇 v 作方法之流程圖。 圖14a至圖14e為依本發明實例製造之光學元件裝置之另 一製作方法之示意圖。 圖15a、圖15b及圖15c為依本發明另一實例製造之光學 元件裝置之剖面圖及條狀基板之平面圖。 圖16a、圖16b及圖16c為依本發明另一實例製造之光學 元件裝置之剖面圖及條狀基板之平面圖。 圖17a及圖17b為依本發明另一實例製造之光學元件裝置 之製作方法之示意圖。 099138606 表單編號A0101 第45頁/共82頁 1003064566-0 201208147 圖18a、圖18b、圖18c及18d為依本發明另一實例製造之 光學元件裝置之剖面圖及基板之部分區域之放大平面圖 〇 圖19a、圖19b及圖19c為依本發明另一實例製造之光學 元件裝置之剖面圖。 圖20a、圖20b及圖20c為依本發明另一實例製造之光學 元件裝置之剖面圖及平面圖。 圖21為依本發明另一實例製造之光學元件裝置之剖面圖 〇 圖2 2a、圖22b及圖22c為依本發明另一實例製造之光學 元件裝置之剖面圖、平面圖及剖面圖。 圖23a及圖23b為依本發明另一實例製造之光學元件裝置 之剖面圖及平面圖。 圖24a、圖24b及圖24c為依本發明另一實例製造之光學 元件裝置之剖面圖及平面圖。 圖25a、圖25b及圖25c為依本發明另一實例製造之光學 元件裝置之剖面圖及平面圖。 圖26為依本發明另一實例製造之光學元件裝置的剖面圖 [0212] 099138606 【主要元件符號說明】 100~2200 :光學元件裝置 110、410 :基板 112 :第二區 114 :絕緣層 第一電極層 130 :第二電極層 表單編號A0101 第46頁/共82頁 111、411 :第一區 113 :第三區 120 、 720 ' 920 : 140 :隔板 1003064566-0 201208147[0193] As shown in FIG. 22a and FIG. 22b, an optical element device (1800) manufactured according to another example of the present invention is a groove (111 la) and a firefly on a substrate (1810). The bonding force between the light bodies (1140) forms a step depth (11 lid) around the inclined surface (1111c) of the groove (lllia). Of course, the depth of the above step (lllld) is smaller than the depth of the above groove (1111a). Further, the step (111 Id) is formed in an annular shape around the inclined surface (1111c) of the groove (1111a). Further, the first gold plating layer (1112) is also formed on the surface of the above step (lllld). As described above, since the joint area between the groove (1111a) and the phosphor (1140) is enlarged, the connection between the groove (1111a) and the phosphor (1140) can be increased. 099138606 Form No. A0101 Page 41 / Total 82 pages 1003064566-0 [0194] 201208147 Heli. [099] [0199] As shown in FIG. 22c, 'in the optical element device (1801) manufactured according to another example of the present invention, 'a phosphor implanted into a recess (nila) 184〇) can be a shape that protrudes upward from the upper end (1841). Therefore, the optical element device (1801) manufactured according to another example of the present invention allows the light generated by the optical element (112〇) and the polishing body (1840) to be concentrated in a certain area and then output to the outside. Of course, the phosphor (1840) may be in the shape of a depression in addition to the shape of the upward projection (1841). Moreover, such a convex or concave shape glory can be similarly applied to the optical element device of Figs. 23a to 26 below. Fig. 2 3 a and Fig. 2 3 b are a cross-sectional view and a plan view of an optical element device manufactured according to another example of the present invention. As shown in FIG. 23a and FIG. 23b, the optical component device (1900) manufactured according to another example of the present invention is used to lift the uiia and rong on the substrate (1910). The bonding force of the light body (1140) can form more than one recess (1111 e) with a certain depth between the lnic and the step (1111 d). The depth of the above-mentioned recess (lllle) may be smaller or larger than the above-mentioned recess (iiHa). Further, the above-mentioned holes formed on the substrate (1910) may be plural or annular. Further, the first gold layer (1112) is formed along the surface of the step (lllld) and the recess (lllle). As described above, the bonding area between the groove (1111a) and the phosphor (114 turns) is increased, and the bonding force between the groove (111a) and the phosphor (114 turns) can be more effectively improved. 099138606 FIG. 24a, FIG. 24b and FIG. 24c are a cross-sectional view and a plan view of an optical device No. A0101, page 42/82, 1003064566-0 201208147, manufactured according to another example of the present invention. 24a, 24b, and 24c, the optical element device (2000, 2000a, 2000b) manufactured according to another example of the present invention is a junction between the lift groove (1111a) and the phosphor (1140). The force forms a cavity with a certain depth on the bottom surface (1111b) of the groove (ima). Of course, the above-mentioned cavity (1111〇 is deeper than the bottom surface (11111) of the groove (1111&)). Further, as shown in Fig. 24b, the above-mentioned concave holes (ll11f) formed on the bottom surface (mib) of the recess (iina) may be a plurality of or a circular shape as shown by the circle 24c. The hole in Figure 24c is indicated by the symbol π nr. Of course, the surface of the above-mentioned cavity (1111{, 1111) also has a first gold plating layer (1112). [0203] Thus, since the joint area between the groove (1111a) and the phosphor (1) 40) is increased, the bonding force between the groove (1111a) and the phosphor (1140) can be increased [0204] Ο [ Fig. 25a, Fig. 25b and Fig. 25c are a plan view and a plan view of an optical element device manufactured according to another example of the present invention. As shown in FIG. 25a, FIG. 25b and FIG. 25c, an optical element device (2100, 2100a, 2100b) manufactured according to another example of the present invention forms one or more around the bottom surface (mib) of the recess (iiila) of the substrate (2110). The cavity (llllf) forms a step (11 lid) around the inclined surface (llllc) of the groove (lllla). Further, the above-mentioned recesses (11 Ilf) formed on the bottom surface (11 lib) may be several or in a ring shape. (indicated by the surface symbol 丨丨丨^') and the 'segment difference (lllld) is formed around the inclined surface (11 lie) and is substantially annular. Of course, the above holes (llllf,) and the step difference 099138606 Form No. A0101 Page 43 / Total 82 pages 1003064566-0 201208147 (mid) The surface also has a first gold plating layer (1112). [0206] Thus, since the joint area between the groove (1111a) and the phosphor (1140) is increased, the bonding force between the groove Uilla) and the phosphor (114〇) can be increased [〇2〇7] Figure 26 is a cross-sectional view of an optical element device manufactured according to another example of the present invention. [02] The optical element device (2200) manufactured according to another example of the present invention is shown on the substrate (2120). The bottom surface (llllb) of the recess (iiiia) forms one or more recesses (1111f), and forms a step difference (lllld) at the end of the tilting system (1丨丨丨c), and then on the above-mentioned step (UUd) Form more than one hole (11 lie). Therefore, the phosphor (1丨40) can adhere to the bottom surface (illlb), the liiif, the inclined surface (11Uc), the step (lllld), and the other concave of the recess (iula) of the substrate (2120). The hole (lllle) can increase the bonding area between the phosphor (114〇) and the groove (1111). [0209] Thus, the joint area between the groove (1111 a) and the phosphor (η 40) increases. Therefore, the bonding force between the groove (lllla) and the phosphor (114〇) can be increased. [〇21〇] As described above, only a plurality of optical element devices and methods for fabricating the same according to the present invention are used. Therefore, the present invention is not limited to the above examples, and as the scope of the following patent application, without departing from the spirit of the invention, various changes may be made in the field of the invention, and may be considered as The technical spirit of the present invention. [Simple description of the drawing] 099138606 Form No. A0101 Page 44/82. 1003064566-0.201208147 [0211] FIG. 1 is a cross-sectional view of an optical element device manufactured according to an example of the present invention. The bottom surface of the substrate used in the optical component device manufactured according to the example of the present invention Figure 3 is a cross-sectional view of an optical component device made in accordance with another embodiment of the present invention. Figure 4 is a cross-sectional view of an optical component device fabricated in accordance with yet another embodiment of the present invention. Figure 6 is a cross-sectional view of an optical component device manufactured according to still another embodiment of the present invention. Figure 7 is a cross-sectional view of an optical component device manufactured according to still another embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 9 is a cross-sectional view of an optical component device manufactured according to still another example of the present invention. FIG. 10 is a cross-sectional view of an optical component device manufactured according to still another example of the present invention. A flow chart of a method of fabricating an optical component device manufactured according to an embodiment of the present invention. Fig. 12a to Fig. 12h are schematic views showing a method of fabricating an optical component device manufactured according to an example of the present invention. Fig. 13 is a view showing an optical component manufactured according to an example of the present invention. A flow chart of another method of the device. Fig. 14a to Fig. 14e are schematic views showing another manufacturing method of the optical element device manufactured according to the example of the present invention. Figure 15b and Figure 15c are cross-sectional views of a device and a strip substrate of an optical device device according to another embodiment of the present invention. Figures 16a, 16b and 16c are cross-sectional views of an optical device device manufactured according to another example of the present invention. And a plan view of a strip substrate. Fig. 17a and Fig. 17b are schematic views showing a method of fabricating an optical element device manufactured according to another example of the present invention. 099138606 Form No. A0101 Page 45 of 82 1003064566-0 201208147 Fig. 18a, Fig. 18b 18c and 18d are cross-sectional views of an optical element device manufactured according to another example of the present invention and an enlarged plan view of a partial region of the substrate. FIGS. 19a, 19b, and 19c are optical element devices manufactured according to another example of the present invention. Sectional view. 20a, 20b and 20c are a cross-sectional view and a plan view of an optical element device manufactured according to another example of the present invention. Figure 21 is a cross-sectional view showing an optical element device manufactured according to another example of the present invention. Figure 2 2a, Figure 22b and Figure 22c are a cross-sectional view, a plan view and a cross-sectional view of an optical element device manufactured according to another example of the present invention. Figures 23a and 23b are a cross-sectional view and a plan view of an optical element device manufactured in accordance with another example of the present invention. Figures 24a, 24b and 24c are a cross-sectional view and a plan view of an optical element device manufactured in accordance with another example of the present invention. Figures 25a, 25b and 25c are a cross-sectional view and a plan view of an optical element device manufactured in accordance with another example of the present invention. Figure 26 is a cross-sectional view of an optical element device manufactured according to another example of the present invention [0212] 099138606 [Description of main component symbols] 100-2200: optical component device 110, 410: substrate 112: second region 114: insulating layer first Electrode layer 130: second electrode layer form number A0101 page 46/82 pages 111, 411: first area 113: third area 120, 720 '920: 140: partition 1003064566-0 201208147
150、450 :光學元件 線 160、860 :導電 170、270、370 :保護層 基板 540 ' 640 :下端 545、645 :下端固定層 固定層 546、646 :上端 947 :上端反射層 1110 :基板 1111 :導電體 1111 a :凹槽 1111b :底面 1111c :傾斜面 lllld :第一面 lllle :第二面 1112 :第一鍍金層 層 1113 :第二鍍金 1114 :絕緣層 1120 :光學元件 1121 :導電性接著劑 1130 :導電線 1140 :螢光體 1150 :封口部 099138606 表單編號A0101 第47頁/共82頁 1003064566-0 201208147 智專收字第1003064566-0 DTD版本:1.0.2 專利案號 099 38606 11關圓1__»丨 日期:100年02月25日 發明糞利說明書 ㈠<>丨<^ Thereof" ( ^ i2〇io.oi) (2 010,011 以:⑽ ※申請案號:099138606 ※I P C分類: ※申請曰:竹f f, f 〇 一、發明名稱: 光學元件裝置及其製作方法150, 450: optical element lines 160, 860: conductive 170, 270, 370: protective layer substrate 540 '640: lower end 545, 645: lower fixed layer fixed layer 546, 646: upper end 947: upper end reflective layer 1110: substrate 1111: Conductor 1111 a : recess 1111b : bottom surface 1111 c : inclined surface 11111d : first surface lllle : second surface 1112 : first gold plating layer 1113 : second gold plating 1114 : insulating layer 1120 : optical element 1121 : conductive adhesive 1130 : Conductor 1140 : Phosphor 1150 : Sealing part 099138606 Form No. A0101 Page 47 / Total 82 Page 1003064566-0 201208147 智专收字1003064566-0 DTD Version: 1.0.2 Patent Case No. 099 38606 11 1__»丨 Date: February 25, 100, invented manure instruction manual (1) <>丨<^ Thereof" (^ i2〇io.oi) (2 010,011 to: (10) ※Application number: 099138606 ※IPC classification: ※ Application曰: Bamboo ff, f 〇一, invention name: optical component device and its making method
Optical Element Device and Fabricating Method 二、中文發明摘要: 本發、明為揭示可有效散熱並可防止電極短路之光學元件裝置 及其製造方法。 例如,本發明之光學元件裝置包含具貫穿基板之絕緣層及由 前述絕緣層隔離出之數個彼此絕緣之區域之基板;安裝於前 述基板上端之光學元件;連結前述光學元件與基板之導電線 :於前述基板上端包覆光學元件與導電線之保護層。 三、英文發明摘要: ❹ 099138606 表單編號A0101 第1頁/共82頁 1003064566-0Optical Element Device and Fabricating Method II. Abstract of the Invention: The present invention discloses an optical element device which can effectively dissipate heat and prevent short circuit of an electrode, and a method of manufacturing the same. For example, the optical element device of the present invention comprises a substrate having an insulating layer penetrating through the substrate and a plurality of regions insulated from each other by the insulating layer; an optical element mounted on the upper end of the substrate; and a conductive line connecting the optical element and the substrate : coating a protective layer of the optical element and the conductive line on the upper end of the substrate. III. Abstracts of English Invention: ❹ 099138606 Form No. A0101 Page 1 of 82 1003064566-0
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20090110419 | 2009-11-16 | ||
KR1020100107789A KR101191363B1 (en) | 2010-11-01 | 2010-11-01 | Optical Element Device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201208147A true TW201208147A (en) | 2012-02-16 |
TWI555237B TWI555237B (en) | 2016-10-21 |
Family
ID=46762399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099138606A TWI555237B (en) | 2009-11-16 | 2010-11-10 | Optical element device and fabricating method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI555237B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI466336B (en) * | 2012-04-25 | 2014-12-21 | Advanced Optoelectronic Tech | Light-emitting diode manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7866853B2 (en) * | 2004-11-19 | 2011-01-11 | Fujikura Ltd. | Light-emitting element mounting substrate and manufacturing method thereof, light-emitting element module and manufacturing method thereof, display device, lighting device, and traffic light |
KR100650263B1 (en) * | 2005-11-24 | 2006-11-27 | 엘지전자 주식회사 | Light emitting device package and manufacturing method thereof |
TW200845417A (en) * | 2007-05-11 | 2008-11-16 | Billion Bright Optoelectronics Corp | Method for manufacturing light emitting diode package |
TWM363685U (en) * | 2009-03-20 | 2009-08-21 | I Chiun Precision Ind Co Ltd | Light emitting diode structure |
-
2010
- 2010-11-10 TW TW099138606A patent/TWI555237B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI466336B (en) * | 2012-04-25 | 2014-12-21 | Advanced Optoelectronic Tech | Light-emitting diode manufacturing method |
US8921132B2 (en) | 2012-04-25 | 2014-12-30 | Advanced Optoelectronic Technology, Inc. | Method for manufacturing LED package |
Also Published As
Publication number | Publication date |
---|---|
TWI555237B (en) | 2016-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6658723B2 (en) | Light emitting device | |
US20240395786A1 (en) | Light emitting device | |
KR101192181B1 (en) | Optical Element Device and Fabricating Method Thereof | |
JP4875185B2 (en) | Optical semiconductor device | |
TWI593142B (en) | Light-emitting device and manufacturing method thereof | |
JP5242641B2 (en) | Method for manufacturing light emitting device | |
US7866853B2 (en) | Light-emitting element mounting substrate and manufacturing method thereof, light-emitting element module and manufacturing method thereof, display device, lighting device, and traffic light | |
JP6550768B2 (en) | Method of manufacturing light emitting device | |
JP2017117912A (en) | Light-emitting device using wavelength conversion member, and wavelength conversion member and method of manufacturing light-emitting device | |
EP2023407A1 (en) | Light-emitting device mounting substrate and method for producing same, light-emitting device module and method for manufacturing same, display, illuminating device, and traffic signal system | |
KR101191363B1 (en) | Optical Element Device | |
JP5697091B2 (en) | Semiconductor light emitting device | |
KR100780182B1 (en) | Chip coated LED package and manufacturing method thereof | |
JP5837006B2 (en) | Manufacturing method of optical semiconductor device | |
JP5811770B2 (en) | Light emitting device and manufacturing method thereof | |
TW201208147A (en) | Optical element device and fabricating method thereof | |
JP6349953B2 (en) | Method for manufacturing light emitting device | |
JP5932087B2 (en) | Optical semiconductor device | |
JP5364771B2 (en) | Optical semiconductor device and manufacturing method thereof | |
JP2014239263A (en) | Optical semiconductor device | |
JP2022055733A (en) | Method for manufacturing light emitting device and light emitting device | |
TW201533928A (en) | Light emitting diode package and method for forming the same | |
KR101865272B1 (en) | Light emitting diode module and method for manufacturing the same | |
CN119731790A (en) | Chip structure, preparation method thereof and display device | |
TW200428673A (en) | Manufacturing method for light-emitting chips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |