[go: up one dir, main page]

TW201127499A - Coating device and method of correcting coating position thereof - Google Patents

Coating device and method of correcting coating position thereof Download PDF

Info

Publication number
TW201127499A
TW201127499A TW099128450A TW99128450A TW201127499A TW 201127499 A TW201127499 A TW 201127499A TW 099128450 A TW099128450 A TW 099128450A TW 99128450 A TW99128450 A TW 99128450A TW 201127499 A TW201127499 A TW 201127499A
Authority
TW
Taiwan
Prior art keywords
gantry
coating
coating head
substrate
slurry
Prior art date
Application number
TW099128450A
Other languages
Chinese (zh)
Other versions
TWI441689B (en
Inventor
Isamu Maruyama
Hideyuki Kawakita
Kouji Ishimaru
Tadao Kosuge
Tsuyoshi Watanabe
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Publication of TW201127499A publication Critical patent/TW201127499A/en
Application granted granted Critical
Publication of TWI441689B publication Critical patent/TWI441689B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Coating Apparatus (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)

Abstract

An objective of the invention is to enable correction of displacement of a gantry or coating head thereof. According to the solution of the invention, the coating heads (5La to 5Lc, 5Ra to 5Rc) are movably installed in a Y axis direction to the respective gantries (3L, 3R) movably installed in an X axis direction in a state of straddling a substrate placing stand (8) on a base (1). Glass substrates (10a,10b) for trial run are installed respectively at the gantries (3L,3R) sides of the substrate placing stand (8), paste marks are drawn on the glass substrates (10a,10b) for trial run with the coating heads (5La to 5Lc, 5Ra to 5Rc) of the gantries (3L,3R), and on the basis of these positions, the displacement of X and Y axial directions between the coating heads (5La to 5Lc) and the coating heads (5Ra to 5Rc) is detected . Furthermore, a reference position mark (9) is formed at the center part of the substrate placing stand (8), and by detecting the travel distance of the gantries (3L,3R) to the reference position mark (9), the displacement of these gantries (3L,3R) in an X axis direction can be detected.

Description

201127499 六、發明說明: 【發明所屬之技術領域】 本發明係關於液晶面板等之平面面板的製造用之塗布 裝置,特別是關於具備設置有可以移動的塗布頭之龍門, 一面使此等塗布頭在X、Y軸方向移動,一面從塗布頭對 基板上塗布接著劑等之漿劑,於基板上描繪特定的漿劑圖 案之塗布裝置及其之塗布位置補正方法。 【先前技術】 於LCD (液晶顯示裝置)面板等之平面面板的領域中 ,爲了謀求該面板的製作效率,以由1片的玻璃基板可以 獲得複數個面板基板之方式,玻璃基板的尺寸朝大型化進 展,伴隨此,爲了製作此種平面面板,對玻璃基板塗布接 著劑等之漿劑用的塗布裝置也隨之大型化。於此種塗布裝 置中,使用設置有複數個塗布頭之龍門,一面使此等塗布 頭同時沿著相同軌跡移動,一面藉由塗布漿劑,可以在相 同玻璃基板上同時形成相同的漿劑圖案。 作爲此種塗布裝置的一習知例,有於架台上設置保持 基板的基板保持部,橫跨此基板,設置有可在一個方向( X軸方向往復移動之2台的龍門,於此等個別的龍門設置排 列於其長度方向(Y方向),且可在該方向移動的複數個 塗布頭,此等塗布頭於龍門的長度方向(Y軸方向)移動 ,藉由個別的龍門在垂直於其長度方向的方向(X軸方向 )移動,此等塗布頭一面吐出漿劑一面沿著相同軌跡移動 201127499 ,在相同基板上描繪複數個相同漿劑圖案之技術(例如, 參照專利文獻1 )。 另外,作爲其他的習知例,雖是設置有2台之設置有 複數個塗布頭的龍門,但將一方的龍門固定,使另一方的 龍門可以移動,藉由使此龍門移動,使得能以特定的間隔 來設置2台龍門,於此狀態下,使基板朝2方向移動,藉由 使從各龍門的塗布頭吐出漿劑,於此基板上可以同時描繪 複數個相同漿劑圖案的塗布裝置被提出(例如參照專利文 獻2)。 另外,於此專利文獻2所記載的塗布裝置中,於每一 設置於龍門的塗布頭,也設置有使其噴嘴朝平行於龍門的 移動方向的方向(Y軸方向)移動的手段,在基板有0軸 方向的偏差的情形,利用此種手段,使各塗布頭對於龍門 朝Y軸方向位移(位置調整),來補償基板的Θ軸方向的 偏差。 進而作爲其他的習知例,於機架(龍門)設置複數個 頭單元(塗布頭),使此等頭單元的噴嘴可在XYZ之3個 方向移動,此種機架爲固定,藉由使基板朝平面上的XY 軸方向移動,來描繪複數個漿劑圖案之漿劑塗布器被提出 (例如參照專利文獻3 )。 於此種專利文獻3所記載的技術中,將X軸方向設爲機 架的長度方向、Y軸方向設爲垂直於機架的長度方向之方 向、Z軸方向爲噴嘴對於基板的高度方向,在頭單元被更 換時,對於被更換的新頭單元,藉由使其之噴嘴朝XY軸 -6- 201127499 方向移動,來補正基於頭單元之更換的新頭單元的噴嘴的 位置偏差。 作爲此種更換噴嘴的位置偏差的補正方法,有:於載 置基板的工作台的特定位置設置量測手段,將複數個噴嘴 中的更換噴嘴以外的1個當成基準噴嘴,將此量測手段朝 特定位置移動,檢測於該位置之量測手段與基準噴嘴的位 置偏差,求得量測手段的補正位置,使量測手段移動至該 補正位置後,使移動至對應更換噴嘴的特定位置,檢測此 特定的位置和更換噴嘴的位置偏差,來求得此更換噴嘴的 補正位置,藉此,不用進行對虛擬基板塗布漿劑的作業, 能夠補正更換噴嘴的位置偏差。 〔先前技術文獻〕 〔專利文獻〕 〔專利文獻1〕日本專利特開2002-346452號公報 〔專利文獻2〕日本專利特開2003-22 5606號公報 〔專利文獻3〕日本專利特開2005-73 93號公報 【發明內容】 〔發明所欲解決之課題〕 爲了 LCD面板等之製造,使用設置於複數個龍門之複 數個塗布頭,對大型的相同基板同時描繪複數個相同漿劑 圖案的情形’由此種基板分割爲複數個面板等之後工程的 作業上’在描繪有漿劑圖案的各基板上,此等漿劑圖案需 要各經常地被描繪於基板上的決定位置。爲此,設置於相 201127499 同龍門之複數個塗布頭間,需要經常被設定爲正確的位置 關係,即使在設置於不同龍門的塗布頭間,也需要經常被 設定爲正確的位置關係,且龍門間也需要經常被正確的位 置關係。因此,在監視各塗布頭的噴嘴位置,產生位置偏 差的情形,需要予以補正。特別是在被收容於塗布頭的注 射管(漿劑收容筒)的漿劑用完,要更換爲新的塗布頭的 情形,於該噴嘴有產生位置偏差的可能性,爲此,噴嘴需 要做位置調整。 對此,於上述專利文獻1,雖揭示有:使用設置有複 數個塗布頭的2台龍門,固定基板,藉由使龍門移動和塗 布頭對於龍門的移動,於此基板上同時描繪複數個相同漿 劑圖案之技術,但關於各塗布頭的噴嘴的位置偏差的調整 ,並無記載,關於龍門間的位置偏差的調整,也沒有記載 〇 另外,記載於上述專利文獻2之技術,設置有將設置 於龍門的塗布頭朝平行基板面,且垂直龍門的長度方向之 方向做位置調整之手段,雖使得塗布頭的位置調整成爲可 能,但此種位置調整,係以塗布頭的排列來補正基板的0 軸方向的偏差,且是依據設置於基板的定位用標記的位置 偏差的檢測結果來進行者。 但是爲了使用塗布裝置,於龍門裝置複數個塗布頭、 進行塗布頭的更換等,會於塗布頭產生位置偏差,雖因應 基板的0軸方向的偏差來調整塗布頭的排列,但在上述專 利文獻2所記載的方法中,關於此種塗布頭間的位置偏差 201127499 ,並沒有加以考慮。 另外,於上述專利文獻2所記載的發明中,固定一方 的龍門,使另一方的龍門可以移動,藉由使此龍門移動, 來設定另一方的龍門對被固定的一方的龍門之位置關係, 關於調整此等龍門間的位置偏差,並沒有加以考慮。 使用設置於複數個龍門的複數個塗布頭,於相同基板 上描繪複數個漿劑圖案的情形,如上述專利文獻1所記載 的技術般,在2台龍門都可以移動的情形,設定此等2台龍 門的位置關係以使各龍門對於基板之位置關係成爲規定的 關係,是非常地困難。 進而,在專利文獻3所記載的技術中,頭單元被更換 時,對於被更換的新頭單元,藉由使該噴嘴(更換噴嘴) 朝XY軸方向移動,來補正更換噴嘴的位置偏差,爲此, 設置有可以移動的量測手段,此量測手段移動至更換噴嘴 的位置,從此量測手段的移動距離檢測此更換噴嘴的位置 偏差,需要量測手段或使其移動的手段、移動處理等。 另外,於專利文獻3所記載的技術中,龍門(機架) 只使用1台,且此龍門被固定,產生龍門間的位置關係的 調整問題。 本發明的目的,在於提供:解決此種問題,使用在漿 劑圖案的描繪時移動的複數台龍門,可以補正此等龍門的 位置關係的偏差或設置於此等龍門的塗布頭間的位置偏差 之塗布裝置,及其塗布位置補正方法。 201127499 〔解決課題之手段〕 爲了達成上述目的,本發明爲一種塗布裝置’係 台上設置有可在第1方向移動的複數個龍門(gantry ) 每一龍門設置有可在沿著龍門的長度方向之第2方向 的複數個塗布頭,藉由龍門之往第1方向的移動’和 頭對龍門的第2方向的移動,塗布頭一面在該第1、f 向移動,一面對被載置於設置在架台之基板載置台的 上塗布漿劑,每一塗布頭於基板上描繪漿劑圖案,其 爲:塗布頭各具備相機,於基板載置台,就每一龍門 於龍門之複數個塗布頭的對位用之打樣用玻璃基板, 置複數個龍門的對位用之基準位置標記,漿劑由相同 門的複數個塗布頭被塗布於打樣用玻璃基板,且描繪 劑標記,且具備有:藉由以相機攝取被描繪於打樣用 基板上之漿劑標記,來檢測漿劑標記的描繪位置,檢 龍門之複數個塗布頭間的位置偏差,因應檢測出的位 差,進行複數個塗布頭相互間的對位之第1手段;及 使複數個各龍門朝該第1方向移動,直到基板載置台 基準位置標記至以相機所攝取的位置,檢測各龍門至 位置標記的位置的移動距離,就各龍門檢測由漿劑圖 繪用之預先決定的待機位置起的第1方向的位置偏差 應檢測出的位置偏差,就各龍門進行對待機位置的對 第2手段。 另外’依據本發明之塗布裝置,基準位置標記, 置於基板載置台中央部附近的基板保持用之吸附孔。 於基 ,於 移動 塗布 I 2方 基板 特徵 設置 且設 的龍 有漿 玻璃 測在 置偏 藉由 上的 基準 案描 ,因 位之 係設 -10- 201127499 進而依據本發明之塗布裝置,塗布頭可以朝龍門移動 的第1方向移動,且可以進行第1方向的對位。 進而,依據本發明之塗布裝置,就每一龍門,以設置 於龍門之複數個塗布頭中的1個爲基準塗布頭,基準塗布 頭對於第1方向爲位置固定,設基準塗布頭以外的塗布頭 可在第1方向移動,設基準塗布頭以外的塗布頭對於基準 塗布頭,可以進行第1方向的對位。 爲了達成上述目的,本發明爲一種塗布裝置之塗布位 置補正方法,係於基台上設置有可在第1方向移動的複數 個龍門,於每一龍門設置有可在沿著龍門的長度方向之第 2方向移動的複數個塗布頭,藉由龍門之往第1方向的移動 ,和塗布頭對龍門的第2方向的移動,塗布頭一面在該第1 、第2方向移動,一面對被載置於設置在架台之基板載置 台的基板上塗布漿劑,每一塗布頭於基板上描繪漿劑圖案 ,其特徵爲:就每一龍門,於基板載置台設置打樣用玻璃 基板,於打樣用玻璃基板上,設置於與其相應之龍門的複 數個每一塗布頭描繪漿劑標記,藉由以相機攝取所描繪之 各漿劑標記,檢測出位置,進而檢測出複數個塗布頭相互 間的位置偏差,以檢測出的位置偏差爲基礎,進行複數個 塗布頭的對位,於基板載置台設置有基準位置標記,使複 數個龍門移動至各基準位置標記的位置,就複數個每一龍 門,檢測由龍門對基準位置標記的位置之事先決定的待機 位置起的第1方向的位置偏差,以檢測出的位置偏差爲基 準,使複數個龍門對位於待機位置。 -11 - 201127499 另外,依據本發明之塗布裝置的塗布位置補正方法, 基準位置標記係設置於基板載置台中央部附近的基板保持 用之吸附孔。 進而,依據本發明之塗布裝置之塗布位置補正方法, 塗布頭可以朝龍門移動的第1方向移動,且可以進行第1方 向的對位。 進而,依據本發明之塗布裝置之塗布位置補正方法, 就每一龍門,以設置於龍門之複數個塗布頭中的1個爲基 準塗布頭,基準塗布頭對於第1方向爲位置固定,設基準 塗布頭以外的塗布頭可在第1方向移動,設基準塗布頭以 外的塗布頭對於基準塗布頭,可以進行第1方向的對位。 〔發明效果〕 如依據本發明,只於基板載置台設置打樣用玻璃基板 ,於此打樣用玻璃基板利用設置於龍門之複數個塗布頭塗 布漿劑標記,可以檢測此等塗布頭間的位置偏差,能在短 時間內正確地檢測各龍門之塗布頭間的位置偏差,予以補 正,另外,以設置於基板載置台之位置基準標記爲基礎, 來檢測各龍門之位置偏差,能在短時間內正確地檢測龍門 間的位置偏差,並補正該位置偏差,因此,能在短時間內 正確地設定全部的龍門之塗布頭間的位置關係,基板的漿 劑圖案的塗布精度可以大幅地提升。 【實施方式】 -12- 201127499 以下,依據圖面來說明本發明的實施型態。 第1圖係表示依據本發明之塗布裝置的一實施型態的 斜視圖’ 1爲架台,1 a爲前面,丨b爲上面,〗C爲右側面, Id爲左側面’ 16爲背面,2a、2b爲線性滑軌,3R、3 L爲龍 門,4Ra、4Rb、4La、4Lb爲線性驅動機構,5Ra〜5Rc、 5La〜5Lc爲塗布頭,6爲注射管(漿劑收容筒),7爲CCD 相機’ 8爲基板搭載台,9爲基準位置標記,i〇a、10b爲打 樣用玻璃基板。 同圖中,此處將平行於架台1的前面la及背面le的方 向設爲X軸方向,平行於架台1的右側面1 c及左側面1 d之方 向設爲Y軸方向,垂直於架台1的上面lb之方向爲Z軸方向 ,於架台1的上面1 b,沿著其前面1 a側之邊,於X軸方向設 置線性滑軌2a,另外,沿著其背面1 e側之邊,於X軸方向 設置線性滑軌2b。此等線性滑軌2a、2b係由右側面1 c延伸 至左側面1 d。 於線性滑軌2a設置有線性驅動機構4Ra、於線性滑軌 2b設置有線性驅動機構4Rb,龍門3R的一端部被載置於線 性驅動機構4Ra,龍門3R的另一端部被載置於線性驅動機 構4Rb,以橫跨此等線性滑軌2a、2b間之方式,設置有龍 門3R。線性驅動機構4Ra、4Rb分別和線性滑軌2a、2b—同 地構成線性電動機(X軸線性電動機),藉由線性驅動機 構4Ra、4Rb沿著線性滑軌2a、2b移動,龍門3R可在X軸方 向移動。在此情形,龍門3R藉由此種移動,即使在X軸方 向的任何位置,都與架台1的右側面1 c平行(即平行於γ軸 -13- 201127499 方向),如此,線性驅動機構4Ra、4Rb經常被位置控制。 同樣地,於線性滑軌2a設置有線性驅動機構4La、於 線性滑軌2b設置有線性驅動機構4Lb,龍門3L的一端部被 載置於線性驅動機構4La,龍門3L的另一端部被載置於線 性驅動機構4Lb,已橫跨此等線性滑軌2a、2b間之方式, 設置有龍門3L。線性驅動機構4La、4Lb分別和線性滑軌2a 、2b—同地構成線性電動機(X軸線性電動機),藉由線 性驅動機構4La、4Lb沿著線性滑軌2a、2b移動,龍門3L可 在X軸方向移動。在此情形,龍門3 L藉由此種移動,即使 在X軸方向的任何位置,都與架台1的左側面1 d平行(即平 行於Y軸方向),如此,線性驅動機構4La、4Lb經常被位 置控制β 因此,龍門3R和龍門3L經常被控制爲在Υ軸方向延伸 之相互平行的狀態。 於龍門3R之面對龍門3L側之面,複數個(此處,3個 )的塗布頭5Ra、5Rb、5Rc被排列於龍門3R的長度方向( Y軸方向),且可以沿著龍門3R移動而設置,同樣地,於 龍門3R之面對龍門3L側之面,與龍門3R相同個數(此處 ,3個)的塗布頭5La、5Lb、5Lc被排列於龍門3L的長度方 向(Y軸方向),且可以沿著龍門3L移動而設置。 此處,來看設置於龍門3 L的塗布頭5 La時,於其設置 有:收容有塗布於基板(未圖示出)之漿劑的注射管6或 攝取以此塗布頭5 L a所塗布的漿劑的狀態用之C C D相機7, 進而雖未圖示出,也設置有:將來自注射管6之漿劑吐出 -14- 201127499 於基板上用之噴嘴或量測噴嘴與基板的間隔之感測器、使 噴嘴於上下方向(z軸方向)移動之z軸驅動機構等。此Z 軸驅動機構係和噴嘴一同地’也使注射管或c C D相機、感 測器等於Z軸方向移動。另外’此C C D相機係和塗布頭5 L a —同地移動。 雖省略說明’但其他的塗布頭5Ra〜5Rc、5Lb、5Lc也 和塗布頭5La同樣地,成爲上述之構造。 於架台1的上面lb,設置有基板(未圖示出)被載置 於線性滑軌2a、2b間的基板載置台8。雖未圖示出,但於 此基板載置台8設置有將被搭載的基板固定於此基板載置 台8用的基板吸附手段,另外,也設置有:調整被搭載的 基板的X、Y軸方向的位置用之未圖示出的XY軸方向位置 調整手段,或補正被搭載的基板的0軸方向的偏差用之未 圖示出的Θ軸方向補正工作台。 第2圖係表示第1圖中之基板搭載台8的一具體例之斜 視圖,8 a爲上面,8 b爲左側面,8 c爲右側面,1 1 a、1 1 b爲 連結構件,1 2a、1 2b爲溝部,對於對應第1圖的部分,賦 予相同的符號》 同圖中,於基板載置台8的上面8a,在面對X軸方向的 左側面8 b側邊和右側面8 c側邊分別設置有打樣用玻璃基板 1 Oa、1 Ob。此等打樣用玻璃基板1 〇 a、1 〇b係相互平行於Y 軸方向’且此等打樣用玻璃基板1 〇a、1 〇b之一方的端部係 藉由連結構件1 1 a被連結,另一方的端部係藉由連結構件 1 1 b被連結。 -15- 201127499 另外,於基板載置台8的上面8a,從右側面8b橫跨左 側面8 c,且以等於2個連結構件1 1 a、1 1 b的間隔之間隔設 置有2個溝部12a、12b。此等溝部12a、12b,彼等之橫剖 面的形狀、尺寸和連結構件1 1 a、1 1 b的橫剖面的形狀、尺 寸相等。 以連結構件11a、lib被連結的打樣用玻璃基板10a、 l〇b,連結構件1 la被嵌入溝部12a、連結構件1 lb被嵌入溝 部1 2 a,藉此被安裝於基板載置台8的上面8 a。在此情形, 以打樣用玻璃基板10a爲沿著此上面8a的左側面8b側邊而 定位,打樣用玻璃基板1 Ob爲沿著此上面8 a的右側面8 c側 邊被定位的方式,連結構件1 la、1 lb個別被嵌入溝部12a 、12b ° 打樣用玻璃基板1 〇a係被使用於檢測設置於第1圖的龍 門3L之塗布頭5La〜5Lc的XY軸方向的位置偏差用者。在 此情形,將此等塗布頭5La〜5 Lc中的其中一個作爲基本塗 布頭(以下,將塗布頭5La設爲龍門3L側的基準塗布頭) ,檢測塗布頭5Lb、5Lc對此基準塗布頭5La之XY軸方向的 位置偏差。此位置偏差的檢測,係以此等塗布頭5La~5Lc 對打樣用玻璃基板1 0a上塗布漿劑,描繪特定的漿劑標記 (例如,十字標記),以設置於基準塗布頭5La之CCD相 機7 (第1圖)攝取此等漿劑標記,藉由檢測此等漿劑標記 的中心位置,將此等中心位置的檢測位置當成塗布頭 5La〜5 Lc的位置(更具體,彼等之噴嘴的漿劑吐出口的位 置),由此等的檢測位置,塗布頭5Lb、5Lc對基準塗布頭 -16- 201127499 5 La之XY軸方向的位置偏差可以檢測出。 打樣用玻璃基板1 Ob係被使用於檢測設置於第1圖的龍 門3R之塗布頭5Ra〜5Rc的XY軸方向的位置偏差用者。在 此情形,也和上述相同,將此等塗布頭5Ra〜5Rc中的其中 一個作爲基準塗布頭(以下,將塗布頭5Ra設爲龍門3R側 的基準塗布頭),以此等塗布頭5Ra〜5Rc對打樣用玻璃基 板l〇b上描繪漿劑標記,以基準塗布頭5Ra之CCD相機攝取 此等漿劑標記,藉由檢測此等漿劑標記的中心位置,和上 述相同,檢測塗布頭5Rb、5Rc對此基準塗布頭5Ra之XY軸 方向的位置偏差。 以上述之位置偏差的檢測結果爲基礎,於龍門3 L之塗 布頭5La〜5Lc之XY軸方向的位置偏差(即塗布頭5Lb、5Lc 對基準塗布頭5La之位置偏差)被補正,在此等塗布頭5La 〜5Lc的噴嘴之漿劑吐出口成爲沿著Y軸方向以特定的間隔 被排列的狀態。同樣地,關於在龍門3R之塗布頭5Ra~5Rc ,也藉由XY軸方向的位置偏差獲得補正,在此等塗布頭 5 Ra〜5 Rc之噴嘴的漿劑吐出口成爲沿著Y軸方向以特定的 間隔被排列的狀態。 於基板載置台8的上面8 a的中心位置,設置有基準位 置標記9。此基準位置標記9係檢測2台的龍門3 L、3 R間的 位置偏差用者。龍門3 L、3R,爲了補正此位置偏差,也可 以個別獨立地在X軸方向移動,爲了補正此位置偏差,於 第1圖中,使龍門3 L從現在的位置往右方向(X軸方向)移 動,且使基準塗布頭5La朝Y軸方向移動,成爲設置於此基 -17- 201127499 準塗布頭5La之CCD相機7攝取基準位置標記9之狀態。然 後攝取此基準位置標記9,求得其之中心位置。移動前的 基準塗布頭5 La的位置和此基準位置標記9的檢測位置之X 軸方向的差,成爲龍門3L對於基準位置標記9的位置(至 龍門3L之距離),與預先所設定的距離之差,得以檢測出 此龍門3L的X軸方向的位置偏差。 同樣地,對於龍門3R,也藉由使用設置於該基準塗布 頭5Ra之CCD相機,可以檢測此龍門3R之X軸方向的位置偏 差。然後,使用如此所檢測出的位置偏差量,來補正龍門 3L、3R的X軸方向的位置偏差,此等龍門3L、3R被位置設 定於以關於基準位置標記9之對稱位置(即以基準位置標 記9爲中心,相互相反側之等距離的位置),且此位置成 爲從基準位置標記9至上述之預先設定的距離,此等龍門 3L、3R間的間隔,成爲作爲以龍門3L的塗布頭5La〜5Lc所 描繪的漿劑圖案和以龍門3R的塗布頭5Ra~5Rc所描繪的漿 劑圖案之X軸方向的間隔所預先決定的距離。 另外,第2圖中,雖未圖示出,但於基板載置台8的上 面8a,設置有複數個從真空泵(未圖示出)被供給負壓之 吸附孔,藉此,如先前說明般,所載置的基板(未圖示出 )被吸附於上面8a,被固定而不會產生位置偏差。 此處,作爲基板載置台8之基準標記9,雖可以是特別 被設置於基板載置台8上者,也可以是此吸附孔中之基板 載置台8的中央位置之吸附孔。 基板係被載置於基板載置台8的上面8a之打樣用玻璃 -18- 201127499 基板10a、10b之間。於此基板上,在其4角落等之特定位 置設置有位置標記,如上述般,此等被進行了位置偏差的 補正之特定的塗布頭(例如塗布頭5La、5Lc、5Ra、5Rc) 之CCD相機7所攝影,藉由其中心位置被檢測出,XY軸方 向或Θ軸方向的位置偏差得以被檢測出,藉由因應此被檢 測出的位置偏差來調整基板載置台8的ΧΥ 0軸方向的位置 ,基板的各邊爲平行於ΧΥ軸方向,且基板對於位置補正 後的龍門3 L、3 R之中心位置,成爲被設定於和基準位置標 記9對於此位置調整前之龍門3 l、3 R之位置爲相同的位置 〇 另外,可以將連結構件11a、lib從溝部12a、12b取下 ’藉由將彼等取下,可以將被使用於位置調整之打樣用玻 璃基板1 〇a、1 〇b和新的打樣用玻璃基板1 〇a、1 〇b更換。 第3圖係表示第1圖中之塗布頭的一具體例的側面圖( 表示一部份剖面),3爲龍門(龍門3 L、3 R的總稱),5爲 塗布頭(塗布頭5La〜5Lc、5Ra〜5Rc的總稱),13爲塗布頭 安裝工作台’ Μ爲Z軸工作台支撐部,14a爲連接部,15爲 Z軸工作台,16a〜16c爲線性導軌機構部,17爲驅動線圈, ^爲線性滑軌’ i9a、19b爲線性球,2〇爲電動機載置部, 21爲X軸驅動電動機,22爲軸,23爲軸承,24爲凸輪,25 爲貫穿孔,26爲Z軸驅動電動機,27爲Z軸驅動部,28爲上 下動工作台,29爲光學測距儀,30爲噴嘴,31爲基板,對 與第1圖對應的部分賦予相同符號。 同圖中’對於龍門3,以覆蓋其上面的一部份和塗布 19- 201127499 頭5側的側面的一部份之方式’設置橫剖面成爲L字狀的塗 布頭安裝工作台13。於此塗布頭安裝工作台13的平面狀部 分的下面側,面對於龍門3的上面在其長度方向(Y軸方向 )延伸設置的線性滑軌1 8而設置有驅動線圈1 7 ’進而’夾 住此驅動線圈1 7,設置各特定個數的線性導軌機構部1 6 a 、1 6b。此處,圖示於驅動線圈1 7的兩側各1個之線性導軌 機構部1 6a、1 6b,但各設置2個以上之個數。此等線性導 軌機構部16a、16b個別具備車輪,此等車輪係處於乘載在 龍門3的上面之狀態。 另外,於此塗布頭安裝工作台1 3的垂直狀部分之龍門 3側面,設置有和線性導軌機構部1 6a、1 6b同樣構造的線 性導軌機構部1 6c,線性導軌機構部1 6c的車輪底接於面對 龍門3的塗布頭安裝工作台1 3之側面。 如上述般,塗布頭安裝工作台1 3介由線性導軌機構部 16a〜16c被安裝爲可在沿著龍門3的Y軸方向移動。另外, 龍門3的線性滑軌1 8和與其對向被設置於塗布頭安裝工作 台1 3的驅動線圈1 7,係構成使塗布頭5沿著龍門3的長度方 向而於Y軸方向移動用的線性電動機(Y軸線性電動機) ,藉由驅動驅動線圈1 7,塗布頭安裝工作台1 3沿著龍門3 在Y軸方向移動。 於塗布頭安裝工作台1 3設置有圖面上剖面形狀呈倒z 字狀的Z軸工作台支撐部Μ。此Z軸工作台支撐部14之上側 的平面狀部分係被安裝於塗布頭安裝工作台13的上述平面 狀部分’此Z軸工作台支撐部14的垂直狀部分係被安裝於 -20- 201127499 塗布頭安裝工作台13的上述垂直狀部分,此z軸 撐部Μ的下側平面狀部分係被安裝於此垂直狀部 部。 於此Ζ軸工作台支撐部1 4的上側設置有同樣 面形狀呈倒Ζ字狀的Ζ軸工作台1 5。於此Ζ軸工作 側平面狀部分的下面側設置有被線性排列的複數 性球)1 9 a,此上側平面狀部分夾住此線性球1 9 a 於Z軸工作台支撐部1 4的上側平面狀部分,另外, 工作台1 5的下側平面狀部分的下面側設置有同樣 1 9b,此下側平面狀部分夾住此線性球1 9b而被藤 工作台支撐部1 4的下側平面狀部分。此Z軸工作 直狀部分係和Z軸工作台支撐部14的垂直狀部分 程度的間隔而被配置。 藉由以上的構造,Z軸工作台15沿著Z軸工作 14而對於龍門3,可以在X軸方向移動地構成。 另外,此種Z軸工作台15之X軸方向的移動, 布頭5之上述X軸方向的位置偏差用者,此補正用 向的位置調整量,爲mm單位。爲此,設置此等 分之上述間隔,使得藉由此種位置調整,Z軸工 部1 4的垂直狀部分和Z軸工作台1 5的垂直狀部分 衝突的程度。 介由連接部14a,於Z軸工作台支撐部14設置 載置部20,於此電動機載置部20設置有X軸驅動 。藉此,此X軸驅動電動機21處於被配置在Z軸工 工作台支 分的下端 圖面上剖 台1 5的上 個球(線 而被配置 於此Z軸 的線性球 !置於ζ軸 台1 5的垂 保有某種 台支撐部 爲補正塗 丨的X軸方 垂直狀部 作台支撐 成爲不會 有電動機 電動機21 作台1 5的 -21 - 201127499 上側之狀態,此X軸驅動電動機21之向下的旋轉軸,被連 結於通過設置於Z軸工作台15的上側平面狀部分之貫穿孔 25,且被設置在Z軸工作台支撐部14的下側平面狀部分的 側面之軸承24與設置於上述的電動機載置部20之未圖示出 的軸承所旋轉支撐的軸22。另外,於此軸22,在面對Z軸 工作台1 5的下側平面狀部分之側面的位置設置有可和此側 面抵接之凸輪24,藉由X軸驅動電動機21啓動,軸22旋轉 ,此凸輪24旋轉,因該位移量,Z軸工作台15對於Z軸工作 台支撐部Μ在X軸方向移動。另外,貫穿孔25爲對於Z軸工 作台15的X軸方向的移動範圍之移動,軸22不和此貫穿孔 25的壁面接觸之程度的大小之直徑的孔(另外,此Z軸工 作台15的X軸方向的移動範圍,爲數mm程度)。 於Z軸工作台15的垂直面狀部分安裝有塗布頭5,藉由 Z軸工作台15之X軸方向的移動,塗布頭5於X軸方向移動 〇 另外,於各龍門3L、3R側之基準塗布頭5La、5Ra不 設置此種X軸驅動電動機21,使得無法對於龍門3L、3R進 行X軸方向的移動。因此,於基準塗布頭5La、5Ra,Z軸 工作台15被固定設置於Z軸工作台支撐部14,成爲塗布頭5 被安裝於此Z軸工作台1 5之構造。但以下說明的構造,關 於基準塗布頭5La、5Ra也相同。 塗布頭5係具備Z軸驅動電動機26,且具備:於Z軸工 作台15的垂直面狀部分安裝有塗布頭5之Z軸驅動部27、及 被安裝於此Z軸驅動部27,藉由Z軸驅動電動機26的驅動, -22- 201127499 於上下方向,即Z軸方向移動之上下動工作台28,成 置有可以和此上下動工作台2 8 —同地上下動地之注身 與CCD相機7與光學測距儀29等之構造。 於注射管6設置有從上側面對被載置於基板載置·^ 第1圖)之基板31之噴嘴30,藉由從外部導入壓縮氣 氮氣或空氣等)至注射管6內,被收容於此注射管6之 從此噴嘴30的前端的漿劑吐出口被吐出。 另外,光學測距儀2 9爲構成測量從噴嘴3 0的漿劑 口至基板3 1的表面的距離(間隔)之間隔測定器,以 學測距儀2 9的間隔測定結果爲基礎,Ζ軸驅動電動機 動,藉此,上下動工作台28上下動,噴嘴30的漿劑吐 至基板3 1的表面的間隔被設定爲規定的間隔。 如上述般設置後,塗布頭5被安裝於龍門3,藉由 動線圈1 7動作,線性電動機動作,可使塗布頭5 (更 爲噴嘴30)朝龍門3的長度方向(Υ軸方向)移動,藉 X軸驅動電動機21動作,可使塗布頭5 (更詳細爲噴嘴 朝對於龍門3的長度方向爲垂直的X軸方向移動,藉白 軸驅動電動機2 6動作,可以使塗布頭5的噴嘴3 0朝上 向(Ζ軸方向)移動。 通常,於塗布裝置被組裝設置的初期狀態時,或 有噴嘴3 0的注射管6的更換等之維護時,噴嘴3 0的位 由規定的位置偏差的情形(將此稱爲塗布頭5的位置 ),爲此,如第1圖說明般,需要調整各塗布頭5的位 差,藉由於對於龍門3,朝X軸方向移動的Ζ軸工作台 爲設 f管6 體( 漿劑 吐出 此光 26啓 出口 使驅 詳細 由使 3 0) 3使Z 下方 具備 置有 偏差 置偏 1 5設 -23- 201127499 置塗布頭5,可以調整塗布頭5的X軸方向的位置偏差。 全部的塗布頭5La〜5Lc、5Ra~5Rc爲如上述的構造(但 基準塗布頭5La、5Ra不具備X軸驅動電動機21 ),藉此, 可以個別地調整塗布頭5Lb、5Lc對於基準塗布頭5La之X 軸方向的位置偏差,塗布頭5Rb、5Rc對於基準塗布頭5Ra 之X軸方向的位置偏差,可以使此等塗布頭5La~5Lc、 5Ra〜5Rc之噴嘴30在Y軸方向排列爲一列。 第4圖係表示控制第1圖及第3圖之各部的動作之控制 系統的一具體例的區塊構成圖,32係主控制部,32a是微 電腦,32b係外部介面,32c是電動機控制器,32d是X軸驅 動器,32e是Y軸驅動器,32f是X-X軸驅動器,33是副控制 部,33a爲微電腦,33b爲外部介面,33c爲電動機控制器 ,33d爲Z軸驅動器,33e爲X軸驅動器,34爲鍵盤,35爲顯 示器裝置,36爲外部記億裝置,37爲畫像處理裝置,38爲 畫像監視器,39爲X軸線性電動機,40爲Y軸線性電動機 ,對於對應之前出現的圖面之部分,賦予同一符號,省略 重複說明。 同圖中,於此實施型態中,具備主控制部3 2與副控制 部3 3,此等爲連動地動作。主控制部3 2爲驅動控制:使龍 門3L、3R朝X軸方向移動用之X軸線性電動機39、及使設 置於此等龍門3L、3R之塗布頭5La〜5Lc、5Ra~5Rc沿著龍 門3L、3R的長度方向在Y軸方向移動之Y軸線性電動機40 、及使基準塗布頭5La、5Ra以外的塗布頭5Lb、5Lc、5Rb 、5Rc之圖3所示的噴嘴30朝X軸方向移動(以下,將此稱 -24 - 201127499 爲使塗布頭朝X軸方向移動)之X軸驅動電動機21者。此 處,X軸線性電動機3 9係於第1圖中,關於龍門3 L,爲由線 性滑軌2 a與驅動線圈所形成的線性驅動機構4 L a、由線性 滑軌2b與驅動線圈所形成的線性驅動機構4Lb,關於龍門 3R,爲由線性滑軌2a與驅動線圈所形成的線性驅動機構 4Ra、由線性滑軌2b與驅動線圈所形成的線性驅動機構4Rb 。Y軸線性電動機4 0係於第3圖中,由各塗布頭5 L a~ 5 L c、 5 Ra~5Rc之驅動線圈1 7與線性滑軌1 8所形成的線性電動機 。副控制部33係驅動控制使各塗布頭5La〜5Lc、5Ra〜5Rc之 第3圖所示的噴嘴30朝Z軸方向移動之Z軸驅動電動機26。 於主控制部32設置有:微電腦32a、外部介面32b及電 動機控制器32c,微電腦32a雖未圖示出,爲具備:儲存主 運算部或進行漿劑塗布描繪用之處理程式的ROM、儲存主 運算部的處理結果或來自外部介面32b或電動機控制器32c 之輸入資料的RAM、與外部介面32b或電動機控制器32c進 行資料交換之輸入輸出部等。 進行儲存於上述之記憶體的資料或程式等之修正等用 的鍵盤34或顯示器裝置35爲介由外部介面32b而連接於此 微電腦3 2 a。於顯示器裝置3 5中,可以顯示儲存於微電腦 3 2 a之記憶體的資料或程式,從鍵盤3 4可以輸入修正其之 資料。另外,從鍵盤34可以輸入漿劑圖案的描繪資料等, 此等的輸入資料係被顯示器裝置3 5所顯示,且被記憶於外 部記憶裝置3 6。 另外’處理來自外部記憶裝置36或CCD相機7之攝影 -25- 201127499 資料,且處理對於畫像監視器38之畫像資料的畫像處理裝 置37也介由外部介面32b被連接於微電腦32a。CCD相機7 攝取打樣用玻璃基板1 0a、1 Ob上的漿劑標記或基板載置台 8之基準位置標記9(第1圖、第2圖)、基板31上的位置標 記等所獲得的畫像資料,在畫像處理裝置37被處理之後, 由畫像監視器38所顯示之同時,也介由外部介面32b而被 供給至微電腦32a。於微電腦32a中,其處理結果作爲控制 資料,被供給至電動機控制器32c,藉此,進行龍門3L、 3R之X軸方向的位置偏差或塗布頭5La~5Lc、5Ra〜5Rc之X 、Y軸方向的位置偏差(即塗布頭5Lb、5Lc、5Rb、5Rc對 於基準塗布頭5La、5Ra之X、Y軸方向的位置偏差)的補 正等之各部的控制。 電動機控制器32c係驅動X軸驅動器32d或Υ軸驅動器 32e或X-X軸驅動器32f。於補正龍門3L、3R的X軸方向的 位置偏差之情形,以基準塗布頭5La、5Ra之CCD相機7攝 取基板載置台8之基準位置標記9 (第1圖、第2圖)所獲得 的畫像資料,係在畫像處理裝置37被處理而被供給至微電 腦3 2a,於該處被處理而被供給至電動機控制器32c。電動 機控制器32c以此被處理的畫像資料爲基礎,控制X軸驅動 器32d,藉由控制驅動X軸線性電動機39,龍門3L、3R的X 軸方向的位置偏差被調整。另外,在補正塗布頭5Lb、5Lc 、5Rb' 5Rc對於基準塗布頭5La、5Ra的Y軸方向之位置偏 差之情形,以基準塗布頭5La、5Ra的CCD相機7攝取形成 於打樣用玻璃基板1 〇a、1 Ob上之漿劑標記的畫像資料,以 -26- 201127499 畫像處理裝置37進行處理而被供給至微電腦32a,於該處 被處理而被供給至電動機控制器32c。電動機控制器32c以 此被處理的畫像資料爲基礎,控制Y軸驅動器32e,藉由控 制驅動Y軸線性電動機40,塗布頭5Lb、5Lc、5Rb、5Rc對 於基準塗布頭5La、5Ra之Y軸方向的位置偏差被調整。進 而在補正塗布頭5Lb、5Lc、5Rb、5Rc對於基準塗布頭5La 、5 Ra之X軸方向的位置偏差的情形時,如上述般,攝取形 成於打樣用玻璃基板1 〇a、1 Ob上的漿劑標記,藉由以畫像 處理裝置37及微電腦32a所被處理的畫像資料被供給至電 動機控制器32c,電動機控制器32c以此被處理的畫像資料 爲基礎,控制X-X軸驅動器32f,藉由控制塗布頭5Lb、5Lc 、5Rb、5Rc的X軸驅動電動機2 1,塗布頭5Lb、5Lc、5Rb 、5Rc對於基準塗布頭5La、5Ra之X軸方向的位置偏差被 調整。 另外,於基板31被載置於基板載置台8之情形,在微 電腦32a的控制下,如上述般,進行此基板31之XY 0軸方 向的位置調整,此處,省略爲此之手段。 另外,於基板上描繪漿劑圖案時,微電腦3 2 a取入被 儲存於外部記憶裝置3 6之漿劑圖案的描繪資料,處理該描 繪資料並供給至電動機控制器32c。電動機控制器32c以此 描繪資料爲基礎,驅動X軸驅動器32d與Y軸驅動器32e,控 制X軸線性電動機3 9,使龍門3 L、3 R,控制Y軸線性電動 機40 ’使塗布頭5La〜5Lc、5Ra~5Rc,於基板上描繪所期 望的漿劑圖案。 -27- 201127499 另外,此時藉由空壓控制系統,控制導入塗布頭5La 〜5 Lc、5 Ra〜5 Rc之注射管6的壓縮氣體,進行來自噴嘴30 的漿劑的吐出控制’關於此點,予以省略。 畐IJ控芾!J部33使塗布頭5La〜5Lc、 5Ra~5RcJt下(Z軸 方向)移動,驅動控制Z軸驅動電動機26,使得此等塗布 頭5的噴嘴30之前端與基板31面的高度成爲預先規定的高 度。副控制部33之微電腦33a,介由外部介面33b以通訊纜 線和主控制部32的外部介面32b連接,藉此,副控制部33 與主控制部32連同動作。另外,微電腦33a介由外部介面 3 3b被連接於光學測距儀29,且與控制驅動塗布頭5La〜 5Lc、5Ra~5Rc的Z軸驅動電動機26之Z軸驅動器33d的電動 機控制器33c連接。 如上述般,在補正塗布頭5La〜5Lc、5Ra~5Rc之X軸 方向的位置偏差的情形時,以基準塗布頭5 L a、5 R a之C C D 相機7攝得藉由塗布頭5La〜5Lc、5Ra~5Rc而被形成於打樣 用玻璃基板l〇a、10b上之漿劑標記,以畫像處理裝置37及 主控制部3 2的微電腦3 2 a所被處理的畫像資料被供給至電 動機控制器32c。電動機控制器32c以此被供給的畫像資料 爲基礎,控制X-X軸驅動器32f,驅動控制X軸驅動電動機 21,補正塗布頭5Lb、5Lc、5Rb、5Rc對於基準塗布頭5La 、5Ra之X軸方向的位置偏差。 另外,於對被載置於基板載置台8上的基板3 1描繪漿 劑圖案時,以光學測距儀29所檢測之塗布頭5La〜5Lc、 5Ra~5Rc的噴嘴30和基板31的表面之間隔的資料,介由外 -28- 201127499 部介面33b被供給至微電腦33a,於該處被處理而被供給至 電動機控制器3 3 c。電動機控制器3 3 c以此被供給的資料爲 基礎,控制Z軸驅動器33d,驅動控制Z軸驅動電動機26, 使塗布頭5La〜5Lc、5Ra~5Rc朝Z軸方向移動,將噴嘴30 和基板3 1的表面之間隔控制爲規定的間隔。 另外,雖於線性電動機39、40或驅動電動機26、21個 別設置有檢測移動量或旋轉用之編碼器,將此等予以省略 〇 如此爲之,藉由以主控制部3 2與副控制部3 3所形成的 控制系統之控制,得以進行塗布頭5La〜5Lc、5Ra〜5Rc之 XY軸方向的位置偏差或龍門3L、3R之X軸方向的位置偏差 的補正等。 第5圖係表示第1圖中之龍門3L、3R與塗布頭5La〜5Lc 、5Ra~5Rc的位置偏差的補正(對位)的步驟之一具體例 的流程圖。以下,參照第1圖〜第4圖,說明此步驟。另外 ,於第5圖中,「塗布頭5」爲全部的塗布頭5La〜5Lc、 5Ra〜5Rc的總稱,「塗布頭5L」爲塗布頭5La〜5Lc的總稱 ,「塗布頭5R」爲塗布頭5Ra〜5Rc的總稱。 第5圖中,龍門3 L、3 R在被收容狀態時,塗布頭 5La〜5 Lc係以位於其之噴嘴30比基板載置台8的打樣用玻璃 基板1 〇a更在基板載置台8的相反側的位置(即噴嘴3 0位於 由打樣用玻璃基板1 〇a偏離的位置)的方式,被定位(將 此位置稱爲龍門3L的收容位置),塗布頭5Ra~5Rc也同樣 地,以位於其之噴嘴3 0比基板載置台8的打樣用玻璃基板 -29- 201127499 10b更在基板載置台8的相反側的位置(即噴嘴30位於由打 樣用玻璃基板1 Ob偏離的位置)的方式,被定位(將此位 置稱爲龍門3 R的收容位置)。如此,龍門3 L、3 R處於被 收容狀態時,能以基板載置台8進行打樣用玻璃基板1 0a、 1 〇b的安裝、卸下。 於此種收容狀態下,藉由X軸線性電動機39被驅動, 龍門3L朝基板載置台8的方向(即X軸方向)只移動事先所 決定的特定的距離,各塗布頭5La〜5Lc的噴嘴30移動至打 樣用玻璃基板10a的正上方,塗布頭5La〜5Lc被定位於此時 的位置(將此位置稱爲龍門3 L的暫定待機位置)。同樣地 ,藉由龍門3R朝基板載置台8的方向(即X軸方向)只移動 事先決定的特定的距離,各塗布頭5Ra~5Rc的噴嘴30移動 至打樣用玻璃基板10b的正上方,塗布頭5Ra〜5Rc被定位於 此時的位置(將此位置稱爲龍門3 L的暫定待機位置)。此 等待機位置的資料被保存於微電腦32a的記憶體。 然後於個別的塗布頭5La〜5Lc、5Ra〜5Rc中,藉由以 光學測距儀29的測定結果爲基礎,Z軸驅動電動機26被驅 動,塗布頭5La〜5Lc的噴嘴30至打樣用玻璃基板10a的高度 和塗布頭5Ra〜5Rc的噴嘴30至打樣用玻璃基板10b的高度完 全相等地被設定爲特定的高度。之後,藉由龍門3L、3R的 X軸線性電動機39和塗布頭5La〜5Lc、5Ra〜5Rc的Y軸線性 電動機40被驅動,塗布頭5La〜5Lc、5Ra~5Rc朝XY軸方向 移動,與此同時,藉由壓縮氣體被送入注射管6,漿劑由 個別的噴嘴30的吐出口被吐出。藉此,針對每一龍門3L側 -30- 201127499 的塗布頭5 La〜5 Lc,於基板載置台8的一側之打樣用玻璃基 板1 〇 a上,描繪出中心位置可以檢測,例如十字狀的漿劑 標記,針對每一龍門3R側的塗布頭5Ra〜5Rc,於基板載置 台8的另一側的打樣用玻璃基板10b上,描繪出同樣形狀的 漿劑標記(步驟100)。 接著,龍門3 L返回上述的暫定待機位置,以設置於此 龍門3L側的塗布頭5La〜5Lc之其中一個,例如基準塗布頭 5La之C CD相機7,攝取藉由此基準塗布頭5 La被描繪於打 樣用玻璃基板1 〇a上的漿劑標記,該畫像資料以畫像處理 裝置3 7進行處理,檢測出其中心點位置,此中心點位置的 資料作爲L側頭基準中心點位置的資料,介由外部介面3 2b 而被供給至微電腦32a,被儲存於該記憶體。同樣地,龍 門3 R返回上述的暫定待機位置,以設置於此龍門3 R側的塗 布頭5Ra〜5Rc之其中一個,例如基準塗布頭5Ra的CCD相機 7,攝取藉由此基準塗布頭5 R a所描繪於打樣用玻璃基板 1 〇b上的漿劑標記,該畫像資料以畫像處理裝置3 7進行處 理,檢測出其中心點位置,此中心點位置的資料作爲R側 頭基準中心點位置的資料,介由外部介面3 2b而被供給至 微電腦32a,被儲存於該記億體(步驟101) « 接著,於龍門3 L側,基準塗布頭5 La以外的塗布頭5 Lb 、5 L c沿著龍門3 L,移動至基準塗布頭5 L a的相反側,抵達 龍門3 L的端部,藉由基準塗布頭5 L a沿著龍門3 L移動,以 設置於此基準塗布頭5La的CCD相機7依序攝取藉由塗布頭 5 Lb、5 Lc被描繪於打樣用玻璃基板1 〇a上的個別之漿劑標 -31 - 201127499 記,彼等畫像資料被以畫像處理裝置3 7所處理,彼等的中 心點位置被檢測出,進而針對每一各塗布頭5 Lb、5 Lc ’求 得已經被求得保存之基準塗布頭5La的L側頭基準中心位置 的X軸方向的位置誤差量△ Xl與Y軸方向的位置誤差量△ Yl,此等X軸方向的位置誤差量與Y軸方向的位置誤 差量△ 之資料介由外部介面32b被供給至微電腦32a,被 儲存保存於其之記憶體。同樣地’於龍門3R側,基準塗布 頭5Ra以外的塗布頭5Rb、5Rc沿著龍門3R,移動至基準塗 布頭5Ra的相反側,抵達龍門3R的端部,藉由基準塗布頭 5Ra沿著龍門3R移動,以設置於此基準塗布頭5Ra的CCD相 機7依序攝取藉由塗布頭5Rb、5Rc被描繪於打樣用玻璃基 板1 Ob上的個別之漿劑標記,彼等畫像資料被以畫像處理 裝置3 7所處理,彼等的中心點位置被檢測出’進而針對每 一各塗布頭5Rb、5Rc’求得已經被求得保存之基準塗布頭 5 Ra的R側頭基準中心位置的X軸方向的位置誤差量△ XR與 Y軸方向的位置誤差量ΔΥκ,此等x軸方向的位置誤差量 △ Xr與Y軸方向的位置誤差量AYR之資料介由外部介面 3 2b被供給至微電腦32a,被儲存保存於其之記憶體(步驟 102)。 藉由以上,龍門3L之塗布頭5Lb、5Lc對於基準塗布頭 5La之X軸方向的位置偏差和Y軸方向的位置偏差,以及龍 門3R之塗布頭5Rb、5Rc對於基準塗布頭5Ra之X軸方向的 位置偏差與Y軸方向的位置偏差個別被檢測出,彼等之檢 測結果被保存於微電腦32a的記億體。 -32- 201127499 接著,使基準塗布頭5La朝Y軸方向,龍門3L朝X軸方 向個別移動,使基準塗布頭5La之噴嘴30與以此基準塗布 頭5 La在打樣用玻璃基板1 0a所描繪的漿劑標記的中心點位 置一致,設定爲L側頭基準中心位置,將此時之龍門3 L的 位置(暫定待機位置)設爲此龍門3 L的基準位置。同樣地 ,使基準塗布頭5Ra朝Y軸方向,龍門3R朝X軸方向個別移 動,使基準塗布頭5Ra之噴嘴30與以此基準塗布頭5Ra在打 樣用玻璃基板1 〇b所描繪的漿劑標記的中心點位置一致, 設定爲R側頭基準中心位置,將此時之龍門3R的位置(暫 定待機位置)設爲此龍門3R的基準位置。 然後,使此龍門3 L從此基準位置朝X軸方向(即基板 載置台8的基準位置標記9的方向)移動,且使基準塗布頭 5 La從此L側頭基準中心位置朝Y軸方向移動,成爲能以此 基準塗布頭5La的CCD相機7攝取此基準位置標記9的狀態 。以此CCD相機7所攝得的畫像資料被供給至畫像處理裝 置37處理,此處理結果被供給至微電腦32a。於微電腦32a 中,以此處理結果,基準位置標記9的畫像資料被檢測出 時’從上述的暫定待機位置至基準位置標記9的龍門3L之 移動距離被算出,進而由此移動距離之事先決定的設定移 動距離(由爲了對於基板的漿劑圖案的描繪,龍門3 L待機 的待機位置至基準位置標記9的X軸方向的距離)的誤差被 算出’作爲龍門3L的設定移動距離起之X軸方向的位置偏 差量,被儲存於微電腦32a的記憶體(步驟103)。 另外’ CCD相機7的攝取影像範圍,係以噴嘴30爲中 -33- 201127499 心的範圍,於此攝取影像範圍內,有基準位置標記9存在 的狀態時,可以求得此基準位置標記9和噴嘴3 0 1的位置關 係。因此,藉由當成CCD相機7攝取此基準位置標記9的狀 態,求得基準位置標記9和噴嘴3 01之間的X軸方向的距離 ,將此當成修正距離,藉由修正由暫定待機位置至成爲此 種狀態爲止的基準塗布頭5La之X軸方向的移動距離,可以 求得基準塗布頭5La之至基準位置標記9的X軸方向的移動 距離,因此從龍門3 L之暫定待機位置至基準位置標記9的X 軸方向的移動距離。 以上,真僞龍門3R也相同,藉由使用基準塗布頭5Ra ,此龍門3R之暫定待機位置至基準位置標記9的移動距離 可被算出,進而由設定移動距離(由爲了對基板之漿劑圖 案的描繪,龍門3R待機的待機位置至基準位置標記9的X軸 方向的距離)之X軸方向的位置偏差量可被算出,被儲存 於微電腦32a的記憶體(步驟104)。 如上述般,針對每一龍門3 L、3 R,由暫定待機位置至 爲了漿劑圖案描繪而待機的待機位置爲止的X軸方向的距 離,作爲X軸方向的位置偏差量可被獲得。 接著,以在步驟102所求得之龍門3L的塗布頭5Lb、 5Lc之X軸方向的位置誤差量△ 與Y軸方向之位置誤差量 △ Yl爲基礎,求得此等塗布頭5Lb、5Lc的X軸方向和Y軸 方向的位置資料,同樣地,以在步驟1 02所求得的龍門3R 之塗布頭5Rb、5Rc之X軸方向的位置誤差量△ XR和Y軸方 向的位置誤差量△ Yr爲基礎,求得此等塗布頭5Rb、5Rc -34- 201127499 之X軸方向與γ軸方向的位置資料(步驟105 )。 然後,此求得的位置資料爲基礎,於龍門3 L中,設定 對於基準塗布頭5La之X軸方向的塗布頭5Lb、5Lc的位置 ,且設定Y軸方向的位置(塗布頭5La~5Lc的間隔)。藉此 ,於龍門3L上,塗布頭5La〜5Lc在Y軸方向以特定間隔被 排列,且此等之噴嘴3 0沿著X軸被排列於一線上。同樣地 ,以上述求得的位置資料爲基礎,於龍門3R中,設定對於 基準塗布頭5Ra之X軸方向的塗布頭5Rb、5Rc的位置,且 設定Y軸方向的位置(塗布頭5Ra〜5Rc的間隔)。藉此, 於龍門3R上,塗布頭5Ra~5Rc在Y軸方向以特定間隔被排 列,且此等之噴嘴3〇沿著X軸被排列於一線上(步驟1 06 ) 〇 另外,使龍門3 L、3 R返回上述之暫定待機位置,以在 步驟103所求得之龍門3L的設定移動距離之X軸方向的位置 偏差量爲基礎,將龍門3L的位置從暫定待機位置予以調整 。藉此,龍門3 L成爲被設定於上述的待機位置。同樣地, 關於龍門3 R ’以在步驟1 0 4所求得的龍門3 R的設定移動距 離之X軸方向的位置偏差量爲基礎,將龍門3R的位置從暫 定待機位置予以調整。藉此’龍門3R成爲被設定於上述的 待機位置(步驟1 0 7 )。 如此爲之’龍門3 L·、3 R在基板載置台8之基準位置標 記9爲相互相反側,成爲被位置設定由此基準位置標記起 分開特定的距離之待機位置,與此同時,於龍門31>中,塗 布頭5 L a〜5 L c以特定的間隔,且沿著X軸被排列於一線的狀 -35- 201127499 態,於龍門3R中,塗布頭5Ra〜5Rc以特定的間隔,且沿著 X軸被排列爲一線的狀態。 此種狀態爲基板31被載置於基板載置台8上之前的狀 態,基板31被載置於基板載置台8上,其ΧΥ0軸方向的偏 差被調整時,龍門3L、3R朝X軸方向移動,被設定爲漿劑 圖案的描繪動作開始位置,針對每一塗布頭5La〜5Lc、 5Ra〜5Rc,進行漿劑吐出壓力或噴嘴30對於基板31之高度 等的初期設定,之後,每一塗布頭5La〜5Lc、5Ra~5Rc對 基板31進行特定的漿劑圖案描繪。 如上述般,於此實施型態中,塗布頭(噴嘴)的對位 調整(弄齊在沿著X軸之一線上),係使用設置於基板載 置台8之打樣用玻璃基板l〇a、10b來進行,龍門3L、3R的 對位調整,係使用事先被設定於基板載置台8的基準位置 標記9來進行,成爲不需要爲了此種調整而將虛擬的玻璃 基板搭載於基板載置台8。 另外,於龍門之塗布頭間的位置偏差的補整,將此種 塗布頭中之1個當成基準塗布頭,補正其他塗布頭對於此 基準塗布頭之位置偏差來進行對位,可以短時間內進行此 種對位。 進而於各別的塗布頭,將噴嘴或注射管、CCD相機等 設爲可在龍門的移動方向的X軸方向也能移動,可以更正 確地進行此種塗布頭的定位。 如上述般,於此實施型態中,可以簡單且短時間地進 行塗布頭的噴嘴間之校正或龍門間的校正’另外’校正誤 -36- 201127499 差也可以降低。 另外’於上述實施型態中,對於上述之基準塗布頭, 不設置X軸方向的移動機構,對於X軸方向當成固定狀態 ,可以降低零件數目。 【圖式簡單說明】 第1圖係表示依據本發明之塗布裝置的一實施型態的 斜視圖。 第2圖係表示第1圖中之基板搭載台8的一具體例的斜 視圖。 第3圖係表示第1圖中之塗布頭的一具體例的側面圖。 第4圖係表示控制第1圖及第3圖的各部的動作之控制 系統的一具體例的區塊構成圖。 第5圖係表示第1圖中之龍門與塗布頭的位置偏差的補 正(對位)的順序的一具體例之流程圖。 【主要元件符號說明】 1 :架台 1 a :前面 lb :上面 1 C :右側面 1 d :左側面 1 e :背面 2a、2b :線性滑軌 -37- 201127499 3、3 R、3 L :龍門 4Ra、4Rb、4La、4Lb :線性驅動機構 5、5Ra〜5Rc、5La〜5Lc:塗布頭 6 :注射管(漿劑收容筒) 7 : CCD相機 8 :基板載置台 9 :基準位置標記 10a、10b :打樣用玻璃基板 1 1 a、1 1 b :連結構件 12a、12b:溝部 1 3 :塗布頭安裝工作台 14: Z軸工作台支撐部 1 4 a :連接部 15 : Z軸工作台 16a〜16c :線性導軌機構部 1 7 :驅動線圈 1 8 :線性滑軌 1 9 a、1 9 b :線性球 20 :電動機載置部 21 : X軸驅動電動機 22 :軸 2 3 :軸承 24 :凸輪 2 5 :貫穿孔 -38- 201127499 26: Z軸驅動電動機 2 7 : Z軸驅動部 2 8 :上下動工作台 2 9 :光學測距儀 30 :噴嘴 3 1 :基板 3 2 :主控制部 3 3 :副控制部201127499 VI. Description of the invention:  [Technical Field] The present invention relates to a coating device for manufacturing a flat panel such as a liquid crystal panel. In particular, there is a gantry that is provided with a coating head that can be moved.  One side of these coating heads in X, Moving in the Y-axis direction, Applying a slurry such as an adhesive to the substrate from the coating head, A coating device for drawing a specific slurry pattern on a substrate and a coating position correction method thereof.  [Prior Art] In the field of flat panels such as LCD (Liquid Crystal Display) panels, In order to achieve the production efficiency of the panel, A plurality of panel substrates can be obtained from one glass substrate, The size of the glass substrate is moving toward large size. Accompanying this, In order to make such a flat panel, The coating device for applying a slurry such as a binder to a glass substrate is also increased in size. In such a coating device, Use a gantry with multiple coating heads, While moving the coating heads along the same trajectory at the same time, By coating the slurry, The same slurry pattern can be formed simultaneously on the same glass substrate.  As a conventional example of such a coating device, a substrate holding portion for holding a substrate on the gantry, Across this substrate, There are two gantry doors that can reciprocate in one direction (X-axis direction, These individual gantry settings are arranged in their length direction (Y direction). And a plurality of coating heads that are movable in this direction, These coating heads move in the longitudinal direction of the gantry (Y-axis direction). By moving individual gantry in a direction perpendicular to its length (X-axis direction), These coating heads spit out the slurry while moving along the same trajectory on the same trajectory 201127499, Techniques for depicting a plurality of identical paste patterns on the same substrate (eg,  Refer to Patent Document 1).  In addition, As other conventional examples, Although there are two sets of gantry equipped with a plurality of coating heads, But fix one of the gantry, Make the other gantry move, By making this gantry move, Enables the setting of 2 gantry at specific intervals. In this state, Move the substrate in 2 directions, By discharging the slurry from the coating head of each gantry, A coating apparatus capable of simultaneously drawing a plurality of identical slurry patterns on the substrate is proposed (for example, refer to Patent Document 2).  In addition, In the coating device described in Patent Document 2, For each coating head set in the gantry, Also provided is a means for moving the nozzle in a direction parallel to the moving direction of the gantry (Y-axis direction), In the case where the substrate has a deviation in the 0-axis direction, Using this means, Displacement of each coating head toward the y-axis in the Y-axis direction (position adjustment), To compensate for the deviation of the substrate in the x-axis direction.  Further, as another conventional example, a plurality of head units (coating heads) are arranged in the frame (gantry), The nozzles of these head units can be moved in three directions of XYZ. This rack is fixed, By moving the substrate toward the XY axis on the plane, A slurry applicator for drawing a plurality of slurry patterns is proposed (for example, refer to Patent Document 3).  In the technique described in Patent Document 3, Set the X-axis direction to the length direction of the rack, The Y-axis direction is set to be perpendicular to the longitudinal direction of the chassis, The Z-axis direction is the height direction of the nozzle to the substrate, When the head unit is replaced, For the replaced new head unit, By moving its nozzle in the direction of XY axis -6- 201127499, To correct the positional deviation of the nozzle of the new head unit based on the replacement of the head unit.  As a method of correcting the positional deviation of such a replacement nozzle, Have: Setting measurement means at a specific position of the table on which the substrate is placed, One of the plurality of nozzles other than the replacement nozzle is used as the reference nozzle. Move this measurement to a specific location, The position of the measuring means detected at the position is offset from the position of the reference nozzle, Find the correction position of the measurement method, After moving the measuring method to the correction position, Move to a specific position corresponding to the replacement nozzle, Detecting this particular position and changing the positional deviation of the nozzle, To find the correction position of this replacement nozzle, With this, There is no need to apply a slurry to the dummy substrate.  It is possible to correct the positional deviation of the replacement nozzle.  [Prior Art Document] [Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A-2002-346452 (Patent Document 2) Japanese Patent Laid-Open No. 2003-22 5606 (Patent Document 3) Japanese Patent Laid-Open No. 2005-73 Publication No. 93 [Summary of the Invention] [Problems to be Solved by the Invention] In order to manufacture an LCD panel or the like, Using a plurality of coating heads arranged in a plurality of gantry, In the case where a plurality of identical slurry patterns are simultaneously drawn on a large-sized identical substrate, 'the work is performed after dividing the substrate into a plurality of panels, etc.' on each of the substrates on which the slurry pattern is drawn, These slurry patterns need to be each determined to be drawn on the substrate at a determined position. to this end, Set in the phase of 201127499 between the multiple coating heads of the same gantry, Need to be set to the correct position relationship often, Even between the coating heads set in different gantry, Also need to be set to the correct positional relationship often. And the gantry also needs to be properly placed in the right position. therefore, Monitoring the nozzle position of each coating head, In the case of a positional deviation, Need to be corrected. In particular, the slurry of the injection tube (slurry storage tube) contained in the coating head is used up, To change to a new coating head, There is a possibility of positional deviation in the nozzle, to this end, The nozzle needs to be adjusted in position.  In this regard, In the above patent document 1, Although revealed: Use 2 gantry doors with multiple coating heads. Fix the substrate, By moving the gantry and spreading the head to the movement of the gantry, a technique of simultaneously drawing a plurality of identical slurry patterns on the substrate, However, regarding the adjustment of the positional deviation of the nozzles of the respective coating heads, Not recorded, Regarding the adjustment of the positional deviation between the gantry, Also not recorded 〇 In addition, The technique described in the above Patent Document 2, There is a coating head that is disposed on the gantry toward the parallel substrate surface. And the means for adjusting the direction of the longitudinal direction of the vertical gantry, Although it makes possible to adjust the position of the coating head, But this position adjustment, Correcting the deviation of the substrate in the 0-axis direction by the arrangement of the coating heads, Further, it is performed based on the detection result of the positional deviation of the positioning mark provided on the substrate.  But in order to use the coating device, Applying a plurality of coating heads to the gantry  Carry out the replacement of the coating head, etc. Will produce a positional deviation in the coating head, Although the arrangement of the coating head is adjusted in accordance with the deviation in the 0-axis direction of the substrate, However, in the method described in the above Patent Document 2, Regarding the positional deviation between such coating heads 201127499 , Did not consider it.  In addition, In the invention described in the above Patent Document 2, Fix the gantry of one side, Make the other gantry move, By making this gantry move,  To set the positional relationship between the other side's gantry and the fixed gantry.  Regarding adjusting the positional deviation between these gantry, Did not consider it.  Using a plurality of coating heads set in a plurality of gantry, a case where a plurality of slurry patterns are drawn on the same substrate, As described in the above Patent Document 1, In the case where both gantry can move, The positional relationship of the two gantry is set such that the positional relationship of each gantry to the substrate becomes a predetermined relationship. It is very difficult.  and then, In the technique described in Patent Document 3, When the head unit is replaced, For the replaced new head unit, By moving the nozzle (replacement nozzle) toward the XY axis, To correct the positional deviation of the replacement nozzle, to this end,  Set up a measuring method that can be moved, This measuring method moves to the position where the nozzle is replaced, The positional deviation of the replacement nozzle is detected from the moving distance of the measuring means, Means of measuring means or moving them, Mobile processing, etc.  In addition, In the technique described in Patent Document 3, Only one gantry (rack) is used. And this gantry is fixed, The adjustment problem of the positional relationship between the gantry is generated.  The purpose of the present invention, It is to provide: Solve this problem, Using a plurality of gantry moving during the depiction of the slurry pattern, A coating device capable of correcting the deviation of the positional relationship of the gantry or the positional deviation between the coating heads of the gantry, And its coating position correction method.  201127499 [Means for Solving the Problem] In order to achieve the above objectives, The present invention provides a coating apparatus having a plurality of gantry movable in a first direction, and each gantry is provided with a plurality of coating heads in a second direction along a longitudinal direction of the gantry. By the movement of the gantry to the first direction and the movement of the head to the second direction of the gantry, The coating head is on the first side f moves, a slurry applied to the substrate mounting table disposed on the gantry, Each coating head draws a slurry pattern on the substrate, It is: The coating heads each have a camera, On the substrate mounting table, a glass substrate for proofing of the alignment of a plurality of coating heads of each gantry in the gantry,  Set the reference position mark for the alignment of several gantry, The slurry is applied to the glass substrate for proofing by a plurality of coating heads of the same door. And depicting the agent mark, And have: By taking a slurry mark drawn on the substrate for proofing with a camera, To detect the location of the slurry mark, Check the positional deviation between the multiple coating heads of the gantry, In response to the detected difference, a first means of performing alignment of a plurality of coating heads; And moving the plurality of gantry toward the first direction, Until the substrate stage is marked with the reference position to the position taken by the camera, Detecting the moving distance of each gantry to the position of the position mark, For each gantry detection, the positional deviation in the first direction from the predetermined standby position for the slurry drawing should be detected. The second means of pairing the standby position with respect to each gantry.  Further, the coating device according to the present invention, Base position mark,  An adsorption hole for holding the substrate in the vicinity of the central portion of the substrate stage.  Yu Ji, For the moving coated I 2 square substrate feature set and set the dragon sizing glass to be measured by the reference drawing Depending on the location of the device -10- 201127499 and further according to the coating device of the present invention, The coating head can move in the first direction of the gantry movement. And the alignment of the first direction can be performed.  and then, a coating device according to the present invention, On every gantry, The coating head is based on one of a plurality of coating heads disposed in the gantry. The reference coating head is fixed in position for the first direction. The coating head other than the reference coating head can be moved in the first direction. A coating head other than the reference coating head is provided for the reference coating head, The alignment in the first direction can be performed.  In order to achieve the above objectives, The present invention is a coating position correction method of a coating device, The base is provided with a plurality of gantry movable in the first direction. Each of the gantry is provided with a plurality of coating heads that are movable in the second direction along the length direction of the gantry. By the movement of the gantry to the first direction, And the movement of the coating head in the second direction of the gantry, The coating head is on the first side, Moving in the second direction, Coating the slurry on the substrate placed on the substrate stage disposed on the gantry, Each coating head draws a slurry pattern on the substrate, Its characteristics are: On every gantry, A glass substrate for proofing is set on the substrate mounting table, On the glass substrate for proofing, Each of the coating heads disposed in the corresponding gantry is marked with a slurry mark, By taking in the various slurry marks depicted by the camera, Detecting the location, Further detecting the positional deviation between the plurality of coating heads, Based on the detected positional deviation, Perform the alignment of a plurality of coating heads, A reference position mark is provided on the substrate stage. Move a plurality of gantry to the position of each reference position mark, For each of the gantry, The positional deviation in the first direction from the predetermined standby position of the position of the reference position mark by the gantry is detected. Based on the detected positional deviation, Put multiple gantry pairs in the standby position.  -11 - 201127499 In addition, a coating position correction method of a coating apparatus according to the present invention,  The reference position mark is an adsorption hole for holding the substrate in the vicinity of the center portion of the substrate stage.  and then, a coating position correction method of a coating device according to the present invention,  The coating head can move in the first direction in which the gantry moves, It is also possible to perform the alignment in the first direction.  and then, a coating position correction method of a coating device according to the present invention,  On every gantry, Coating the head with one of a plurality of coating heads disposed in the gantry, The reference coating head is fixed in position for the first direction. The coating head other than the reference coating head can be moved in the first direction. Set the coating head other than the reference coating head to the reference coating head, The alignment in the first direction can be performed.  [Effect of the Invention] According to the present invention, The glass substrate for proofing is set only on the substrate mounting table. The glass substrate for proofing is coated with a slurry by a plurality of coating heads disposed on the gantry. It is possible to detect the positional deviation between these coating heads. It is possible to correctly detect the positional deviation between the coating heads of the gantry in a short time. To correct it, In addition, Based on the position reference mark set on the substrate stage,  To detect the positional deviation of each gantry, It is possible to correctly detect the positional deviation between the gantry in a short time. And correct the position deviation, therefore, It is possible to correctly set the positional relationship between the coating heads of all the gantry in a short time. The coating accuracy of the slurry pattern of the substrate can be greatly improved.  [Embodiment] -12- 201127499 Below, The embodiment of the present invention will be described based on the drawings.  BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing an embodiment of a coating apparatus according to the present invention. 1 a is the front, 丨b is above, 〗 C is the right side,  Id is the left side, '16 is the back, 2a, 2b is a linear slide, 3R, 3 L is the dragon gate, 4Ra, 4Rb, 4La, 4Lb is a linear drive mechanism, 5Ra~5Rc,  5La~5Lc is the coating head, 6 is a syringe (slurry container), 7 is a CCD camera ’ 8 is a substrate mounting table. 9 is the reference position mark, I〇a, 10b is a glass substrate for proofing.  In the same figure, Here, the direction parallel to the front la and the back le of the gantry 1 is set to the X-axis direction. The direction parallel to the right side surface 1 c and the left side surface 1 d of the gantry 1 is set to the Y-axis direction. The direction perpendicular to the upper surface lb of the gantry 1 is the Z-axis direction. On the top of the stand 1 b, Along the 1 a side of the front, The linear slide 2a is disposed in the X-axis direction, In addition, Along the 1 e side of the back, The linear slide 2b is set in the X-axis direction. These linear slides 2a, 2b extends from the right side 1 c to the left side 1 d.  A linear drive mechanism 4Ra is disposed on the linear slide 2a, A linear drive mechanism 4Rb is disposed on the linear slide 2b, One end of the gantry 3R is placed on the linear drive mechanism 4Ra. The other end of the gantry 3R is placed on the linear drive mechanism 4Rb. To straddle these linear slides 2a, The way between 2b, There is a gantry 3R. Linear drive mechanism 4Ra, 4Rb and linear slide 2a, respectively 2b—the same type of linear motor (X-axis linear motor), With linear drive mechanism 4Ra, 4Rb along the linear slide 2a, 2b mobile, The gantry 3R can be moved in the X-axis direction. In this case, The gantry 3R uses this movement, Even in any position in the X-axis direction, Both are parallel to the right side 1 c of the gantry 1 (ie parallel to the γ axis -13-201127499 direction), in this way, Linear drive mechanism 4Ra, 4Rb is often controlled by location.  Similarly, a linear drive mechanism 4La is disposed on the linear slide 2a, A linear drive mechanism 4Lb is disposed on the linear slide 2b, One end of the gantry 3L is placed on the linear drive mechanism 4La. The other end of the gantry 3L is placed in the linear drive mechanism 4Lb. Has crossed these linear slides 2a, The way between 2b,  There is a gantry 3L. Linear drive mechanism 4La, 4Lb and linear slide 2a, respectively 2b—the same ground constitutes a linear motor (X-axis linear motor), By linear drive mechanism 4La, 4Lb along the linear slide 2a, 2b mobile, The gantry 3L can be moved in the X-axis direction. In this case, With this movement, the Dragon Gate 3 L Even in any position in the X-axis direction, Both are parallel to the left side 1 d of the gantry 1 (i.e., parallel to the Y-axis direction). in this way, Linear drive mechanism 4La, 4Lb is often controlled by position β. Therefore, The gantry 3R and the gantry 3L are often controlled to be parallel to each other in the direction of the x-axis.  On the side of the Longmen 3R facing the gantry 3L side, Multiple (here, 3) coating head 5Ra, 5Rb, 5Rc is arranged in the length direction of the gantry 3R (Y-axis direction). It can be set along the gantry 3R. Similarly, On the side of the Longmen 3R facing the 3L side of the gantry, The same number as the gantry 3R (here, 3) coating head 5La, 5Lb, 5Lc is arranged in the length direction of the gantry 3L (Y-axis direction), And it can be set along the gantry 3L movement.  Here, When looking at the coating head 5 La set in the gantry 3 L, Set in it: The injection tube 6 coated with a slurry applied to a substrate (not shown) or the C C D camera 7 in a state in which the slurry applied by the coating head 5 L a is taken,  Further, although not shown, Also set with: Spraying the slurry from the injection tube 6 -14-201127499 on the substrate for the nozzle or measuring the distance between the nozzle and the substrate, A z-axis drive mechanism that moves the nozzle in the vertical direction (z-axis direction). This Z-axis drive mechanism is also used with the nozzle to make the syringe or c C D camera, The sensor is moved in the direction of the Z axis. In addition, this C C D camera system and the coating head 5 L a are moved in the same place.  Although the description is omitted, the other coating heads 5Ra to 5Rc, 5Lb, 5Lc is also the same as the coating head 5La, Become the above structure.  On the top lb of the stand 1, A substrate (not shown) is disposed on the linear slide 2a, The substrate mounting table 8 between 2b. Although not shown, However, the substrate mounting table 8 is provided with a substrate adsorbing means for fixing the mounted substrate to the substrate mounting table 8. In addition, Also set with: Adjust the X of the substrate to be mounted, The position in the Y-axis direction is used in the XY-axis direction position adjustment means not shown. Alternatively, the deviation of the 0-axis direction of the mounted substrate may be corrected for the x-axis direction correction table which is not shown.  Fig. 2 is a perspective view showing a specific example of the substrate mounting table 8 in Fig. 1 . 8 a is above, 8 b is the left side, 8 c is the right side, 1 1 a, 1 1 b is a connecting member, 1 2a, 1 2b is the ditch, For the part corresponding to Figure 1, Assign the same symbol, in the same figure, On the upper surface 8a of the substrate mounting table 8, A glass substrate for proofing 1 Oa is provided on the side of the left side surface 8 b and the side of the right side surface 8 c facing the X-axis direction, respectively. 1 Ob. These proofing glass substrates 1 〇 a, 1 〇b is parallel to the Y-axis direction and the glass substrate 1 〇a for proofing, The end of one of the 〇b is connected by the connecting member 1 1 a, The other end is joined by the joint member 1 1 b.  -15- 201127499 In addition, On the upper surface 8a of the substrate mounting table 8, From the right side 8b across the left side 8 c, And equal to 2 joint members 1 1 a, There are two groove portions 12a at intervals of 1 1 b, 12b. Such grooves 12a, 12b, The shape of their cross section, Dimensions and connecting members 1 1 a, 1 1 b cross-sectional shape, The dimensions are equal.  With the connecting member 11a, Lib is connected to the proofing glass substrate 10a,  L〇b, The connecting member 1 la is embedded in the groove portion 12a, The joint member 1 lb is embedded in the groove 1 2 a, Thereby, it is attached to the upper surface 8 a of the substrate stage 8 . In this case,  The glass substrate 10a for proofing is positioned along the side of the left side surface 8b of the upper surface 8a. The proofing glass substrate 1 Ob is positioned along the side of the right side surface 8 c of the upper surface 8 a , Connecting member 1 la, 1 lb is individually embedded in the groove portion 12a, The 12b ° proofing glass substrate 1 is used to detect the positional deviation in the XY-axis direction of the coating heads 5La to 5Lc provided in the gantry 3L of Fig. 1 . In this case, One of the coating heads 5La to 5 Lc is used as a basic coating head (hereinafter, The coating head 5La is set as a reference coating head on the side of the gantry 3L), Detecting the coating head 5Lb, 5Lc is a positional deviation of the reference coating head 5La in the XY-axis direction. Detection of this positional deviation, Applying the slurry to the proofing glass substrate 10a by using the coating heads 5La~5Lc, Describe a specific serous marker (for example, Cross mark), The slurry marks are taken up by the CCD camera 7 (Fig. 1) provided in the reference coating head 5La, By detecting the center position of the slurry marks, The detection position of these center positions is taken as the position of the coating head 5La~5 Lc (more specifically, The position of the slurry discharge port of their nozzles), Such detection position, Coating head 5Lb, 5Lc to the reference coating head -16- 201127499 5 La XY axis direction position deviation can be detected.  The glass substrate 1 for proofing is used to detect the positional deviation in the XY-axis direction of the coating heads 5Ra to 5Rc provided in the gantry 3R of Fig. 1 . In this case, Also the same as above, One of the coating heads 5Ra to 5Rc is used as a reference coating head (hereinafter, The coating head 5Ra is set as a reference coating head on the gantry 3R side), The coating heads 5Ra to 5Rc are used to mark the slurry on the glass substrate 10b for proofing. Taking the slurry mark with a CCD camera of the reference coating head 5Ra, By detecting the center position of the slurry marks, Same as above, Detecting the coating head 5Rb, The positional deviation of the 5Rc in the XY-axis direction of the reference coating head 5Ra.  Based on the above detection results of positional deviation, The positional deviation in the XY-axis direction of the coating head 5La~5Lc of the gantry 3 L (ie, the coating head 5Lb, 5Lc is corrected for the positional deviation of the reference coating head 5La), The slurry discharge ports of the nozzles of the coating heads 5La to 5Lc are arranged at a predetermined interval along the Y-axis direction. Similarly, About the coating head 5Ra~5Rc in Longmen 3R, Correction is also obtained by the positional deviation in the XY axis direction. The slurry discharge ports of the nozzles of the coating heads 5 Ra to 5 Rc are arranged at a predetermined interval along the Y-axis direction.  At the center of the upper surface 8 a of the substrate stage 8 The reference position mark 9 is set. This reference position mark 9 detects 2 sets of gantry 3 L, 3 Position difference between R users. Longmen 3 L, 3R, In order to correct this positional deviation, It can also be moved individually and independently in the X-axis direction. In order to correct this positional deviation, In Figure 1, Move the gantry 3 L from the current position to the right (X-axis direction). And moving the reference coating head 5La in the Y-axis direction, The state in which the CCD camera 7 of the quasi-coating head 5La picks up the reference position mark 9 is set as the base -17-201127499. Then ingest this reference position marker 9, Get the center position. The difference between the position of the reference coating head 5 La before the movement and the X-axis direction of the detection position of the reference position mark 9 is The position of the gantry 3L for the reference position mark 9 (the distance to the gantry 3L), The difference from the preset distance, The positional deviation of the gantry 3L in the X-axis direction can be detected.  Similarly, For the Dragon Gate 3R, Also by using a CCD camera provided on the reference coating head 5Ra, The positional deviation of the gantry 3R in the X-axis direction can be detected. then, Using the amount of positional deviation detected as such, To correct the Longmen 3L, Position deviation of the 3R in the X-axis direction, These gantry 3L, 3R is positioned at a symmetrical position with respect to the reference position mark 9 (i.e., centered on the reference position mark 9, Equidistant positions on opposite sides of each other), And this position becomes a predetermined distance from the reference position mark 9 to the above, These gantry 3L, The interval between 3R, The distance between the slurry pattern drawn by the coating heads 5La to 5Lc of the gantry 3L and the interval of the slurry pattern drawn by the coating heads 5Ra to 5Rc of the gantry 3R in the X-axis direction is determined in advance.  In addition, In Figure 2, Although not shown, However, on the upper surface 8a of the substrate stage 8, a plurality of adsorption holes that are supplied with a negative pressure from a vacuum pump (not shown) are provided, With this, As explained earlier, The mounted substrate (not shown) is adsorbed on the upper surface 8a, It is fixed without positional deviation.  Here, As the reference mark 9 of the substrate stage 8, Although it may be provided on the substrate stage 8 in particular, It may be an adsorption hole at the center of the substrate stage 8 in the adsorption hole.  The substrate is placed on the upper surface 8a of the substrate stage 8 and the proofing glass -18-201127499 substrate 10a, Between 10b. On the substrate, Position marks are set at specific positions such as 4 corners, As above, These specific coating heads that have been corrected for positional deviation (for example, coating head 5La, 5Lc, 5Ra, 5Rc) CCD camera 7 is photographed, By detecting its center position, The positional deviation in the XY axis direction or the Θ axis direction is detected. By adjusting the positional deviation of the substrate mounting table 8 in the ΧΥ 0-axis direction, The sides of the substrate are parallel to the x-axis direction, And the gantry 3 L after the substrate is corrected for the position 3 R's central location, It becomes the gantry 3 l which is set to the reference position mark 9 before the adjustment of this position, 3 R positions are in the same position 〇 In addition, The connecting member 11a, Lib from the groove 12a, 12b removed ‘ by removing them, The glass substrate 1 〇a for proofing used for position adjustment can be used. 1 〇b and a new glass substrate for proofing 1 〇a, 1 〇b replacement.  Figure 3 is a side view showing a specific example of the coating head in Figure 1 (indicating a partial cross section), 3 is the Dragon Gate (Longmen 3 L, 3 R's general name), 5 is a coating head (coating head 5La~5Lc, The general name of 5Ra~5Rc), 13 is the coating head. The mounting table' is the Z-axis table support. 14a is the connection part, 15 is the Z-axis table, 16a to 16c are linear guide mechanism parts, 17 is the drive coil,  ^ is a linear slide ' i9a, 19b is a linear ball, 2〇 is the motor mounting part,  21 is an X-axis drive motor, 22 is the axis, 23 is the bearing, 24 is a cam, 25 is a through hole, 26 is a Z-axis drive motor, 27 is the Z-axis drive unit, 28 is the upper and lower moving table, 29 is an optical range finder, 30 is the nozzle, 31 is the substrate, The same reference numerals are given to the portions corresponding to those in Fig. 1.  In the same picture, for Dragon Gate 3, A coating head mounting table 13 having an L-shaped cross section is provided so as to cover a portion of the upper surface and a portion of the side surface of the head 5 side of the coating 19-201127499. Here, the lower side of the planar portion of the coating head mounting table 13 is A drive coil 1 7 ′ and then a drive coil 17 are provided for the linear slide 18 extending from the upper surface of the gantry 3 in the longitudinal direction (Y-axis direction). Setting a specific number of linear guide mechanism portions 1 6 a , 1 6b. Here, One linear guide mechanism portion 16a on each side of the drive coil 17 is shown, 1 6b, However, each number is set to 2 or more. These linear rail mechanism portions 16a, 16b has wheels individually, These wheel systems are in a state of being carried on the top of the gantry 3.  In addition, Here, the side of the gantry 3 of the vertical portion of the coating head mounting table 13 is Provided with a linear guide mechanism portion 16a, 1 6b The same linear guide mechanism unit 1 6c, The wheel bottom of the linear rail mechanism portion 16c is attached to the side of the coating head mounting table 13 facing the gantry 3.  As above, The coating head mounting table 13 is mounted to be movable in the Y-axis direction along the gantry 3 via the linear rail mechanism portions 16a to 16c. In addition,  The linear slide 18 of the gantry 3 and the drive coil 17 disposed opposite to the coating head mounting table 13 are opposed thereto. A linear motor (Y-axis linear motor) for moving the coating head 5 in the Y-axis direction along the longitudinal direction of the gantry 3 By driving the drive coil 17 The coating head mounting table 1 3 moves along the gantry 3 in the Y-axis direction.  A Z-axis table support portion Μ having an inverted z-shaped cross-sectional shape is provided on the coating head mounting table 13 . The planar portion on the upper side of the Z-axis table support portion 14 is attached to the planar portion of the coating head mounting table 13. The vertical portion of the Z-axis table support portion 14 is attached to -20-201127499. The above-mentioned vertical portion of the coating head mounting table 13, The lower planar portion of the z-axis portion is attached to the vertical portion.  On the upper side of the boring table support portion 14 is provided a boring table 15 having the same inverted shape. On the lower side of the planar portion of the working side of the crucible, a linear ball (1 9 a) is arranged. The upper planar portion clamps the linear ball 19 a to the upper planar portion of the Z-axis table support portion 14 . In addition,  The lower side of the lower planar portion of the table 15 is provided with the same 19b, The lower planar portion sandwiches the linear ball 19b and is placed on the lower planar portion of the rattan table support portion 14. This Z-axis operation is arranged such that the straight portion is spaced apart from the vertical portion of the Z-axis table support portion 14.  With the above construction, The Z-axis table 15 operates along the Z axis 14 and for the gantry 3, It can be configured to move in the X-axis direction.  In addition, The movement of the Z-axis table 15 in the X-axis direction,  The positional deviation of the cloth head 5 in the above X-axis direction, This correction is used to adjust the amount of position. In mm units. to this end, Set the interval above for this, With this position adjustment, The extent to which the vertical portion of the Z-axis workpiece 14 and the vertical portion of the Z-axis table 15 collide.  Via the connecting portion 14a, The mounting portion 20 is disposed on the Z-axis table support portion 14, The motor mounting portion 20 is provided with an X-axis drive. With this, The X-axis drive motor 21 is placed on the upper ball of the section 15 on the lower end of the Z-axis table, and the linear ball is arranged on the Z-axis! It is placed on the yoke table 15 and has a certain support portion. The X-axis of the stencil is applied. The vertical portion is supported by the table. The motor is not used. The motor 21 is used as the stage 1 -21 - 201127499 This X-axis drives the downward rotation axis of the motor 21, It is connected to the through hole 25 provided through the upper planar portion of the Z-axis table 15, Further, a bearing 24 provided on the side surface of the lower planar portion of the Z-axis table support portion 14 and a shaft 22 rotatably supported by a bearing (not shown) provided in the above-described motor mounting portion 20 are provided. In addition, On this axis 22, A cam 24 abutting against the side surface is provided at a position facing the side surface of the lower planar portion of the Z-axis table 15. Starting by the X-axis drive motor 21, The shaft 22 rotates, This cam 24 rotates, Due to the amount of displacement, The Z-axis table 15 moves in the X-axis direction with respect to the Z-axis table support portion. In addition, The through hole 25 is a movement range of the movement range in the X-axis direction of the Z-axis table 15, A hole having a diameter that is not in contact with the wall surface of the through hole 25 (in addition, The movement range of the Z-axis table 15 in the X-axis direction, It is a few mm).  A coating head 5 is mounted on a vertical surface portion of the Z-axis table 15 By the movement of the Z-axis table 15 in the X-axis direction, The coating head 5 moves in the X-axis direction 〇 In addition, In each gantry 3L, Reference coating head 5La on the 3R side, 5Ra does not provide such an X-axis drive motor 21, Making it impossible for the Dragon Gate 3L, 3R moves in the X-axis direction. therefore, For the reference coating head 5La, 5Ra, The Z-axis table 15 is fixedly disposed on the Z-axis table support portion 14, The configuration in which the coating head 5 is attached to the Z-axis table 15 is obtained. But the structure described below, Regarding the reference coating head 5La, 5Ra is also the same.  The coating head 5 is provided with a Z-axis drive motor 26, And has: A Z-axis driving portion 27 of the coating head 5 is attached to a vertical surface portion of the Z-axis table 15, And being mounted on the Z-axis drive unit 27, Driven by the Z-axis drive motor 26,  -22- 201127499 In the up and down direction, That is, moving the upper table 28 above the Z-axis direction, There is a structure in which the body can be moved up and down with the up-and-down table 28, the CCD camera 7 and the optical range finder 29, and the like.  The injection tube 6 is provided with a nozzle 30 that faces the substrate 31 placed on the substrate and placed on the substrate from the upper side. By introducing compressed gas, nitrogen or air from the outside into the injection tube 6, The slurry discharge port that is accommodated in the injection tube 6 from the tip end of the nozzle 30 is discharged.  In addition, The optical range finder 29 is an interval measurator constituting a distance (interval) for measuring the distance from the slurry port of the nozzle 30 to the surface of the substrate 31. Based on the results of the interval measurement of the distance measuring device, The Ζ shaft drives the motor, With this, Move the table 28 up and down, The interval at which the slurry of the nozzle 30 is discharged to the surface of the substrate 31 is set to a predetermined interval.  After setting as above, The coating head 5 is mounted on the gantry 3, By moving the coil 1 7 action, Linear motor action, The coating head 5 (more preferably the nozzle 30) can be moved toward the longitudinal direction of the gantry 3 (the x-axis direction). Driving the motor 21 by the X-axis, The coating head 5 (more specifically, the nozzle is moved in the X-axis direction perpendicular to the longitudinal direction of the gantry 3, Driving the motor 2 6 by the white axis, The nozzle 30 of the coating head 5 can be moved upward (in the z-axis direction).  usually, When the coating device is assembled and set in an initial state, Or maintenance of replacement of the injection tube 6 having the nozzle 30, etc. The position of the nozzle 30 is deviated by a predetermined position (this is referred to as the position of the coating head 5), to this end, As illustrated in Figure 1, It is necessary to adjust the difference of the respective coating heads 5, Borrowing for Dragon Gate 3, The boring table that moves in the X-axis direction is set to the body of the f-tube 6 (the slurry discharges the light 26 and the opening is made to make the drive detailed by 3 0) 3 and the lower part of the Z is biased by the deviation 1 5 -23- 201127499 Laying the coating head 5, The positional deviation of the coating head 5 in the X-axis direction can be adjusted.  All coating heads 5La~5Lc, 5Ra~5Rc is the structure as described above (but the reference coating head 5La, 5Ra does not have an X-axis drive motor 21), With this,  The coating head 5Lb can be individually adjusted, 5Lc positional deviation in the X-axis direction of the reference coating head 5La, Coating head 5Rb, 5Rc positional deviation in the X-axis direction of the reference coating head 5Ra, Can make these coating heads 5La~5Lc,  The nozzles 30 of 5Ra to 5Rc are arranged in a line in the Y-axis direction.  Fig. 4 is a block diagram showing a specific example of a control system for controlling the operations of the respective units of Figs. 1 and 3, 32 series main control department, 32a is a microcomputer, 32b is an external interface, 32c is the motor controller, 32d is an X-axis drive, 32e is a Y-axis drive, 32f is an X-X axis drive, 33 is the assistant control department. 33a is a microcomputer, 33b is the external interface, 33c is the motor controller, 33d is the Z-axis drive, 33e is the X-axis drive, 34 is the keyboard, 35 is a display device, 36 is an external recording device, 37 is an image processing device, 38 is a portrait monitor, 39 is an X-axis linear motor, 40 is a Y-axis linear motor, For the part corresponding to the previously appearing surface, Give the same symbol, Omitted Repeat description.  In the same figure, In this embodiment, A main control unit 3 2 and a sub-control unit 33 are provided, These are actions that move in tandem. The main control unit 32 is drive control: Make the Dragon Gate 3L, X-axis linear motor 39 for moving 3R in the X-axis direction, And set the gantry 3L, 3R coating head 5La~5Lc, 5Ra~5Rc along the Dragon Gate 3L, a Y-axis linear motor 40 that moves in the Y-axis direction in the longitudinal direction of the 3R, And the reference coating head 5La, Coating head 5Lb other than 5Ra, 5Lc, 5Rb, The nozzle 30 shown in FIG. 3 of 5Rc moves in the X-axis direction (hereinafter, This is referred to as the X-axis drive motor 21 of -24 - 201127499 for moving the coating head in the X-axis direction. Here, The X-axis linear motor 39 is attached to Figure 1, About Dragon Gate 3 L, a linear drive mechanism 4 L a formed by the linear slide 2 a and the drive coil, a linear drive mechanism 4Lb formed by the linear slide 2b and the drive coil, About Dragon Gate 3R, It is a linear drive mechanism 4Ra formed by the linear slide 2a and the drive coil, A linear drive mechanism 4Rb formed by the linear slide 2b and the drive coil. The Y-axis linear motor 40 is attached to Figure 3, From each coating head 5 L a~ 5 L c,  5 Ra~5Rc drive coil 17 and linear slide 18 formed by linear motor. The sub control unit 33 drives and controls the respective coating heads 5La to 5Lc, The Z-axis drive motor 26 in which the nozzle 30 shown in Fig. 3 of Fig. 3 moves in the Z-axis direction.  The main control unit 32 is provided with: Microcomputer 32a, The external interface 32b and the motor controller 32c, Although the microcomputer 32a is not illustrated, To have: a ROM for storing a main processing unit or a processing program for slurry coating drawing, The processing result of the main arithmetic unit or the RAM of the input data from the external interface 32b or the motor controller 32c, An input/output unit that exchanges data with the external interface 32b or the motor controller 32c.  The keyboard 34 or the display device 35 for correcting data, programs, and the like stored in the above-described memory is connected to the microcomputer 3 2 a via the external interface 32b. In the display device 35, It can display the data or program stored in the memory of the microcomputer 3 2 a. From the keyboard 3 4 you can enter the information to correct it. In addition, The drawing material of the slurry pattern, etc. can be input from the keyboard 34,  These input data are displayed by the display device 35. And it is memorized in the external memory device 36.  In addition, processing the image from the external memory device 36 or the CCD camera 7 -25-201127499, The image processing device 37 for processing the image data of the image monitor 38 is also connected to the microcomputer 32a via the external interface 32b. The CCD camera 7 takes in the glass substrate for proofing 10a, The slurry mark on 1 Ob or the reference position mark 9 of the substrate stage 8 (Fig. 1, Figure 2) Image data obtained by position marks on the substrate 31, etc., After the image processing device 37 is processed,  While being displayed by the portrait monitor 38, It is also supplied to the microcomputer 32a via the external interface 32b. In the microcomputer 32a, The processing results are used as control data. Is supplied to the motor controller 32c, With this, Carry out the Dragon Gate 3L,  Position deviation of the 3R in the X-axis direction or the coating head 5La~5Lc, X of 5Ra~5Rc, Positional deviation in the Y-axis direction (ie, coating head 5Lb, 5Lc, 5Rb, 5Rc for the benchmark coating head 5La, 5Ra X, Control of each part such as correction of positional deviation in the Y-axis direction.  The motor controller 32c drives the X-axis driver 32d or the x-axis driver 32e or the X-X axis driver 32f. In the correction of Longmen 3L, The positional deviation of the 3R in the X-axis direction, Coating head 5La with reference The 5Ra CCD camera 7 takes the reference position mark 9 of the substrate stage 8 (Fig. 1, Figure 2) The image data obtained, The image processing device 37 is processed and supplied to the micro-computer 3 2a. It is processed there and supplied to the motor controller 32c. The motor controller 32c is based on the processed image data. Controlling the X-axis drive 32d, By controlling the driving of the X-axis linear motor 39, Gantry 3L, The positional deviation of the 3R in the X-axis direction is adjusted. In addition, In the correction coating head 5Lb, 5Lc, 5Rb' 5Rc for the benchmark coating head 5La, 5Ra is in a position where the position of the Y-axis is deviated, Coating head 5La with reference The 5Ra CCD camera 7 is taken up and formed on the glass substrate for proofing 1 〇a, 1 On the image of the slurry mark on Ob, The image processing device 37 is processed by -26-201127499 and supplied to the microcomputer 32a. It is processed there and supplied to the motor controller 32c. The motor controller 32c is based on the image data to be processed. Control the Y-axis driver 32e, By controlling the driving of the Y-axis linear motor 40, Coating head 5Lb, 5Lc, 5Rb, 5Rc for the benchmark coating head 5La, The positional deviation of the 5Ra in the Y-axis direction is adjusted. Further, the coating head 5Lb is corrected. 5Lc, 5Rb, 5Rc for the benchmark coating head 5La, 5 Ra when the positional deviation of the X-axis direction is As above, The ingestion is formed on the glass substrate for proofing 1 〇a, 1 slurry mark on Ob, The image data processed by the image processing device 37 and the microcomputer 32a is supplied to the motor controller 32c, The motor controller 32c is based on the processed image data, Control the X-X axis drive 32f, By controlling the coating head 5Lb, 5Lc, 5Rb, 5Rc X-axis drive motor 2 1, Coating head 5Lb, 5Lc, 5Rb, 5Rc for the reference coating head 5La, The positional deviation of the 5Ra in the X-axis direction is adjusted.  In addition, In the case where the substrate 31 is placed on the substrate stage 8, Under the control of the microcomputer 32a, As above, Performing position adjustment of the XY 0-axis direction of the substrate 31, Here, Omit the means for this.  In addition, When the slurry pattern is drawn on the substrate, The microcomputer 3 2 a takes in the depiction data of the slurry pattern stored in the external memory device 36. The drawing data is processed and supplied to the motor controller 32c. The motor controller 32c is based on the data depicted, Driving the X-axis driver 32d and the Y-axis driver 32e, Control X-axis linear motor 3 9, Make the Dragon Gate 3 L, 3 R, The Y-axis linear motor 40' is controlled to make the coating heads 5La to 5Lc, 5Ra~5Rc, The desired slurry pattern is depicted on the substrate.  -27- 201127499 In addition, At this time, by the air pressure control system, Control the introduction of the coating head 5La ~ 5 Lc, 5 Ra~5 Rc injection tube 6 compressed gas, The discharge control of the slurry from the nozzle 30 is performed. Omitted.  畐IJ control! The J portion 33 causes the coating heads 5La to 5Lc,  Moving under 5Ra~5RcJt (Z-axis direction), Driving controls the Z-axis drive motor 26, The height of the front end of the nozzle 30 of the coating head 5 and the surface of the substrate 31 is set to a predetermined height. The microcomputer 33a of the sub-control unit 33, The communication cable is connected to the external interface 32b of the main control unit 32 via the external interface 33b. With this, The sub control unit 33 operates in conjunction with the main control unit 32. In addition, The microcomputer 33a is connected to the optical range finder 29 via the external interface 3 3b. And with the control drive coating head 5La~5Lc, The motor controller 33c of the Z-axis drive 33d of the Z-axis drive motor 26 of 5Ra~5Rc is connected.  As above, In the correction coating head 5La~5Lc, When 5Ra~5Rc is in the positional deviation of the X-axis direction, Coating the head 5 L a with reference 5 R a C C D Camera 7 is taken by the coating head 5La~5Lc, 5Ra~5Rc is formed on the glass substrate l〇a for proofing, Slurry mark on 10b, The image data processed by the image processing device 37 and the microcomputer 3 2 a of the main control unit 32 are supplied to the motor controller 32c. The motor controller 32c is based on the supplied image data. Control the X-X axis drive 32f, Driving controls the X-axis drive motor 21, Correct the coating head 5Lb, 5Lc, 5Rb, 5Rc for the benchmark coating head 5La, Positional deviation of the 5Ra in the X-axis direction.  In addition, When the slurry pattern is drawn on the substrate 3 1 placed on the substrate stage 8, The coating heads 5La to 5Lc detected by the optical range finder 29,  Information on the interval between the nozzles 30 of 5Ra~5Rc and the surface of the substrate 31, The external interface -28-201127499 interface 33b is supplied to the microcomputer 33a, It is processed there and supplied to the motor controller 3 3 c. The motor controller 3 3 c is based on the supplied data, Controlling the Z-axis drive 33d, Driving controls the Z-axis drive motor 26,  Making the coating heads 5La to 5Lc, 5Ra~5Rc moves in the Z axis direction, The interval between the nozzle 30 and the surface of the substrate 31 is controlled to a predetermined interval.  In addition, Although in linear motor 39, 40 or drive motor 26, 21 encoders for detecting the amount of movement or rotation are set. I will omit this 〇 so that By the control of the control system formed by the main control unit 32 and the sub-control unit 33, It is possible to carry out the coating heads 5La to 5Lc, Position deviation of XY axis direction of 5Ra~5Rc or gantry 3L, Correction of the positional deviation of the 3R in the X-axis direction.  Figure 5 shows the gantry 3L in Figure 1 3R and coating head 5La~5Lc, A flowchart of a specific example of the step of correcting (aligning) the positional deviation of 5Ra~5Rc. the following, Referring to Figures 1 to 4, Explain this step. In addition, In Figure 5, "Coating head 5" is all coating heads 5La to 5Lc,  The general name of 5Ra~5Rc, "Coating head 5L" is a general term for coating heads 5La to 5Lc. The "coating head 5R" is a general term for the coating heads 5Ra to 5Rc.  In Figure 5, Longmen 3 L, 3 R is in the state of being contained, The coating heads 5La to 5Lc are located on the opposite side of the substrate mounting table 8 from the sample glass substrate 1A for the nozzles 30 of the substrate mounting table 8 (i.e., the nozzles 30 are located on the glass substrate 1 for proofing). a way of deviating from) Being positioned (this position is referred to as the storage position of the gantry 3L), The same applies to the coating heads 5Ra~5Rc. The position of the nozzle 30 is higher than the proofing glass substrate -29-201127499 10b of the substrate stage 8 on the opposite side of the substrate stage 8 (that is, the nozzle 30 is located at a position deviated from the proof glass substrate 1 Ob). the way, Positioned (this position is referred to as the storage position of the gantry 3 R). in this way, Longmen 3 L, 3 R is in the state of being contained, The glass substrate 10a for proofing can be performed on the substrate stage 8  1 〇b installation, Remove.  In this state of containment, Driven by the X-axis linear motor 39,  The gantry 3L moves only in the direction of the substrate stage 8 (i.e., the X-axis direction) by a specific distance determined in advance. The nozzles 30 of the respective coating heads 5La to 5Lc are moved right above the glass substrate 10a for proofing, The coating heads 5La to 5Lc are positioned at this position (this position is referred to as a tentative standby position of the gantry 3 L). Similarly , Only a predetermined distance determined in advance by the direction in which the gantry 3R faces the substrate stage 8 (ie, the X-axis direction) is moved. The nozzles 30 of the respective coating heads 5Ra to 5Rc are moved directly above the glass substrate 10b for proofing, The coating heads 5Ra to 5Rc are positioned at this position (this position is referred to as a tentative standby position of the gantry 3 L). The data of the waiting machine position is stored in the memory of the microcomputer 32a.  Then in the individual coating heads 5La~5Lc, 5Ra~5Rc, Based on the measurement results of the optical range finder 29, The Z-axis drive motor 26 is driven, The height of the nozzles 30 to 5C of the coating heads 5La to 5Lc to the height of the glass substrate 10a for proofing and the heights of the nozzles 30 to 5Rc of the coating heads 5Ra to 5Rc are set to a specific height. after that, With Longmen 3L, 3R X-axis linear motor 39 and coating heads 5La to 5Lc, The Y-axis linear motor of 5Ra~5Rc is driven, Coating head 5La~5Lc, 5Ra~5Rc moves in the XY direction, at the same time, By the compressed gas being sent to the injection tube 6, The slurry is discharged from the discharge port of the individual nozzles 30. With this, For each gantry 3L side -30- 201127499 coating head 5 La~5 Lc, On the glass substrate 1 〇 a for proofing on the side of the substrate stage 8, Depicting the center position can be detected, Such as a cross-shaped slurry mark, For each of the coating heads 5Ra to 5Rc on the 3R side of the gantry, On the glass substrate 10b for proofing on the other side of the substrate stage 8, A slurry mark of the same shape is depicted (step 100).  then, The gantry 3 L returns to the tentative standby position described above, One of the coating heads 5La to 5Lc provided on the side of the gantry 3L, For example, the reference coating head 5La C CD camera 7, The slurry mark which is drawn on the sample glass substrate 1 〇a by the reference coating head 5 La is taken up by the reference, The image data is processed by the image processing device 37. Detecting its center point position, The data of the center point position is used as the reference point position of the L side head. Is supplied to the microcomputer 32a via the external interface 3 2b, It is stored in this memory. Similarly, The gantry 3 R returns to the tentative standby position described above, One of the coating heads 5Ra to 5Rc disposed on the side of the gantry 3R, For example, the CCD camera 7 of the reference coating head 5Ra Taking up the slurry mark drawn on the glass substrate 1 〇b for proofing by the reference coating head 5 R a , The image data is processed by the image processing device 37. Detecting its center point position, The data of the center point position is used as the reference point position of the R side head. It is supplied to the microcomputer 32a via the external interface 3 2b, Stored in the Billion Body (Step 101) « Next, On the 3 L side of Longmen, Coating head 5 Lb other than the reference coating head 5 La, 5 L c along the gantry 3 L, Move to the opposite side of the reference coating head 5 L a , Arrive at the end of the Longmen 3 L, Moving along the gantry 3 L by the reference coating head 5 L a , The CCD camera 7 provided on the reference coating head 5La is sequentially taken up by the coating head 5 Lb, 5 Lc is depicted on the individual sample mark -31 - 201127499 on the glass substrate 1 〇a for proofing, The image data is processed by the image processing device 37. Their center point positions are detected, Further, for each coating head 5 Lb, 5 Lc ′ to obtain the positional error amount ΔX1 in the X-axis direction and the positional error amount ΔYl in the Y-axis direction of the L-side reference center position of the reference coating head 5La which has been obtained. The information of the positional error amount in the X-axis direction and the positional error amount Δ in the Y-axis direction is supplied to the microcomputer 32a via the external interface 32b. Stored in its memory. Similarly, on the 3R side of the gantry, The coating head 5Rb other than the reference coating head 5Ra, 5Rc along the Dragon Gate 3R, Move to the opposite side of the reference coating head 5Ra, Arrive at the end of the Dragon Gate 3R, By the reference coating head 5Ra moving along the gantry 3R, The CCD camera 7 provided on the reference coating head 5Ra is sequentially taken up by the coating head 5Rb, 5Rc is depicted on the individual slurry mark on the glass substrate 1 Ob for proofing, Their image data are processed by the image processing device 37. Their center point positions are detected' and further for each coating head 5Rb, 5Rc' obtains the position error amount ΔXR in the X-axis direction and the position error amount ΔΥκ in the Y-axis direction of the R-side reference center position of the reference coating head 5 Ra that has been obtained. The position error amount Δ Xr in the x-axis direction and the position error amount AYR in the Y-axis direction are supplied to the microcomputer 32a via the external interface 3 2b. The memory stored in it is stored (step 102).  With the above, Longmen 3L coating head 5Lb, 5Lc positional deviation in the X-axis direction of the reference coating head 5La and positional deviation in the Y-axis direction, And the coating head 5Rb of the gantry 3R, The positional deviation of the 5Rc in the X-axis direction of the reference coating head 5Ra and the positional deviation in the Y-axis direction are individually detected. Their test results are stored in the Jiyuan body of the microcomputer 32a.  -32- 201127499 Next, The reference coating head 5La is oriented in the Y-axis direction, The gantry 3L moves individually toward the X-axis. The nozzle 30 of the reference coating head 5La is aligned with the center point of the slurry mark drawn by the reference coating head 5 La on the glass substrate for proofing 10a. Set to the L-side head reference center position, The position of the gantry 3 L (tentative standby position) at this time is set as the reference position of this gantry 3 L. Similarly , The reference coating head 5Ra is oriented in the Y-axis direction, The gantry 3R moves individually in the X-axis direction. The nozzle 30 of the reference coating head 5Ra is aligned with the center point of the slurry mark drawn by the reference coating head 5Ra on the sample glass substrate 1 〇b.  Set to the R side head reference center position, The position (temporary standby position) of the gantry 3R at this time is set as the reference position of the gantry 3R.  then, The gantry 3 L is moved from the reference position toward the X-axis direction (that is, the direction of the reference position mark 9 of the substrate stage 8). And moving the reference coating head 5 La from the L-side reference center position toward the Y-axis direction, The CCD camera 7 which can coat the head 5La with this reference is in a state in which the reference position mark 9 is taken. The image data taken by the CCD camera 7 is supplied to the image processing device 37 for processing. This processing result is supplied to the microcomputer 32a. In the microcomputer 32a, To process the result, When the image data of the reference position mark 9 is detected, the moving distance from the tentative standby position to the gantry 3L of the reference position mark 9 is calculated. Further, the predetermined moving distance of the moving distance is determined by the drawing of the slurry pattern for the substrate. The error of the distance from the standby position of the gantry 3 L to the X-axis direction of the reference position mark 9 is calculated as the amount of positional deviation in the X-axis direction from the set moving distance of the gantry 3L, The memory is stored in the microcomputer 32a (step 103).  In addition, the image range of the CCD camera 7 is taken, The nozzle 30 is in the range of -33- 201127499 heart, Within the scope of the image taken here, When there is a state in which the reference position mark 9 exists, The positional relationship between the reference position mark 9 and the nozzle 310 can be obtained. therefore, By taking the state of the reference position mark 9 as the CCD camera 7, Finding the distance between the reference position mark 9 and the nozzle 310 in the X-axis direction, Think of this as a correction distance, By correcting the moving distance in the X-axis direction of the reference coating head 5La from the tentative standby position to such a state, The moving distance of the reference coating head 5La to the reference position mark 9 in the X-axis direction can be obtained. Therefore, the moving distance from the tentative standby position of the gantry 3 L to the X-axis direction of the reference position mark 9 is obtained.  the above, The authenticity of the Dragon Gate 3R is also the same. By using the reference coating head 5Ra, The moving distance from the tentative standby position of the gantry 3R to the reference position mark 9 can be calculated. Further by setting the moving distance (by depicting the slurry pattern for the substrate, The amount of positional deviation in the X-axis direction of the standby position of the gantry 3R standby to the X-axis direction of the reference position mark 9 can be calculated. It is stored in the memory of the microcomputer 32a (step 104).  As above, For each gantry 3 L, 3 R, The distance from the tentative standby position to the X-axis direction from the standby position for standby of the slurry pattern drawing, A positional deviation amount as an X-axis direction can be obtained.  then, The coating head 5Lb of the gantry 3L obtained in step 102,  The position error amount Δ of the 5Lc in the X-axis direction and the position error amount Δ Yl in the Y-axis direction are based on Obtain these coating heads 5Lb, 5Lc position information in the X-axis direction and the Y-axis direction, Similarly, The coating head 5Rb of the gantry 3R obtained in step 102, 5Rc is based on the position error amount Δ XR in the X-axis direction and the position error amount Δ Yr in the Y-axis direction. Obtain these coating heads 5Rb, 5Rc -34- 201127499 Position information of the X-axis direction and the γ-axis direction (step 105).  then, Based on the location data obtained, In Longmen 3 L, Setting the coating head 5Lb in the X-axis direction of the reference coating head 5La, 5Lc location, Further, the position in the Y-axis direction (the interval between the coating heads 5La to 5Lc) is set. Take this On Longmen 3L, The coating heads 5La to 5Lc are arranged at a specific interval in the Y-axis direction. And these nozzles 30 are arranged on a line along the X axis. Similarly , Based on the location data obtained above, In Longmen 3R, The coating head 5Rb for the X-axis direction of the reference coating head 5Ra is set, 5Rc location, Further, the position in the Y-axis direction (the interval between the coating heads 5Ra to 5Rc) is set. With this,  On Longmen 3R, The coating heads 5Ra to 5Rc are arranged at specific intervals in the Y-axis direction. And the nozzles 3〇 are arranged on a line along the X axis (step 106) 〇 In addition, Make the Dragon Gate 3 L, 3 R returns to the above tentative standby position, Based on the positional deviation amount in the X-axis direction of the set moving distance of the gantry 3L obtained in step 103, Adjust the position of the gantry 3L from the tentative standby position. With this, The gantry 3 L is set to the above-described standby position. Similarly,  The gantry 3 R ' is based on the positional deviation amount in the X-axis direction of the set moving distance of the gantry 3 R obtained in the step 104. Adjust the position of the gantry 3R from the tentative standby position. Thereby, the 'gantry 3R' is set to the above-described standby position (step 1 0 7).  So for this 'Longmen 3 L·, 3 R is at the opposite side to the reference position mark 9 of the substrate stage 8 . It becomes a standby position that is separated by a specific distance by the position setting by the reference position mark, at the same time, Yulongmen 31> in, The coating head 5 L a~5 L c is at a specific interval, And along the X axis, they are arranged in a line -35-201127499 state, In Longmen 3R, The coating heads 5Ra to 5Rc are at specific intervals, And they are arranged in a line along the X axis.  This state is the state before the substrate 31 is placed on the substrate stage 8, The substrate 31 is placed on the substrate mounting table 8, When the deviation of the ΧΥ0 axis direction is adjusted, Gantry 3L, 3R moves in the X-axis direction, Set to the start position of the drawing action of the slurry pattern, For each coating head 5La~5Lc,  5Ra~5Rc, The initial setting of the slurry discharge pressure or the height of the nozzle 30 with respect to the substrate 31 is performed. after that, Each coating head 5La~5Lc, 5Ra~5Rc performs a specific slurry pattern drawing on the substrate 31.  As above, In this embodiment, Adjustment of the coating head (nozzle) (aligned on one line along the X axis), The glass substrate for proofing provided on the substrate stage 8 is used, 10b to carry out, Gantry 3L, 3R alignment adjustment, This is performed using the reference position mark 9 set in advance on the substrate stage 8. It is not necessary to mount the dummy glass substrate on the substrate stage 8 for such adjustment.  In addition, The finishing of the positional deviation between the coating heads of Longmen, Using one of these coating heads as a reference coating head, Correcting the positional deviation of the other coating heads for this reference coating head to align, This alignment can be performed in a short time.  And in each of the coating heads, Place the nozzle or syringe, The CCD camera or the like is set to be movable in the X-axis direction of the movement direction of the gantry. The positioning of such a coating head can be performed more correctly.  As above, In this embodiment, The correction between the nozzles of the coating head or the correction between the gantry can be carried out simply and in a short time. In addition, the correction error can be reduced by -36-201127499.  In addition, in the above embodiment, For the above reference coating head,  Do not set the moving mechanism in the X-axis direction, For the X-axis direction as a fixed state, You can reduce the number of parts.  BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing an embodiment of a coating apparatus according to the present invention.  Fig. 2 is a perspective view showing a specific example of the substrate mounting table 8 in Fig. 1.  Fig. 3 is a side view showing a specific example of the coating head in Fig. 1.  Fig. 4 is a block diagram showing a specific example of a control system for controlling the operations of the respective units of Figs. 1 and 3.  Fig. 5 is a flow chart showing a specific example of the procedure of the correction (alignment) of the positional deviation of the gantry and the coating head in Fig. 1.  [Main component symbol description] 1 : Stand 1 a : Front lb : Above 1 C : 1 d on the right side: Left side 1 e : Back 2a, 2b : Linear slides -37- 201127499 3, 3 R, 3 L : Dragon Gate 4Ra, 4Rb, 4La, 4Lb: Linear drive mechanism 5Ra~5Rc, 5La~5Lc: Coating head 6 : Injection tube (slurry container) 7 :  CCD camera 8 : Substrate mounting table 9 : Reference position mark 10a, 10b : Glass substrate for proofing 1 1 a, 1 1 b : Connecting member 12a, 12b: Groove 1 3 : Coating head mounting workbench 14:  Z-axis table support 1 4 a : Connection 15 :  Z-axis table 16a~16c: Linear Guide Mechanism Department 1 7 : Drive coil 1 8 : Linear slide 1 9 a, 1 9 b : Linear ball 20 : Motor mounting part 21 :  X-axis drive motor 22 : Axis 2 3 : Bearing 24 : Cam 2 5 : Through hole -38- 201127499 26:  Z-axis drive motor 2 7 :  Z-axis drive unit 2 8 : Move the table up and down 2 9 : Optical range finder 30 : Nozzle 3 1 : Substrate 3 2 : Main control unit 3 3 : Deputy control department

Claims (1)

201127499 七、申請專利範圍: 1.—種塗布裝置,係於基台上設置有可在第1方向移 動的複數個龍門(gantry ),於每一該龍門設置有可在沿 著該龍門的長度方向之第2方向移動的複數個塗布頭,藉 由該龍門之往第1方向的移動,和該塗布頭對該龍門的該 第2方向的移動,該塗布頭一面在該第1、第2方向移動, 一面對被載置於設置在該架台之基板載置台的基板上塗布 漿劑,每一該塗布頭於該基板上描繪漿劑圖案,其特徵爲 該塗布頭各具備相機, 於該基板載置台,就每一該龍門設置於該龍門之複數 個該塗布頭的對位用之打樣用玻璃基板,且設置複數個該 龍門的對位用之基準位置標記, 漿劑由相同的該龍門的複數個該塗布頭被塗布於該打 樣用玻璃基板,且描繪有漿劑標記,且具備有: 藉由以該相機攝取被描繪於該打樣用玻璃基板上之該 漿劑標記,來檢測該漿劑標記的描繪位置,檢測在該龍門 之複數個該塗布頭間的位置偏差,因應檢測出的該位置偏 差,進行複數個該塗布頭相互間的對位之第1手段;及 藉由使複數個各該龍門朝該第1方向移動,直到該基 板載置台上的該基準位置標記至以該相機所攝取的位置, 檢測該各龍門至該基準位置標記的位置的移動距離,就各 該龍門檢測由漿劑圖案描繪用之預先決定的待機位置起的 該第1方向的位置偏差,因應檢測出的該位置偏差,就各 -40- 201127499 該龍門進行對該待機位置的對位之第2手段。 2. 如申請專利範圍第1項所記載之塗布裝置,其中, 前述基準位置標記,係被設置於前述基板載置台之中央部 附近的基板保持用的吸附孔。 3. 如申請專利範圍第1或2項所記載之塗布裝置,其 中,前述塗布頭爲可在前述龍門移動的前述第1方向移動 ,且可以進行前述第1方向的對位。 4. 如申請專利範圍第3項所記載之塗布裝置,其中, 就每一前述龍門,以設置於前述龍門之複數個前述塗布頭 中的1個爲基準塗布頭, 前述基準塗布頭,對於前述第1方向爲位置固定,設 該基準塗布頭以外的前述塗布頭可在前述第1方向移動, 設該基準塗布頭以外的前述塗布頭對於該基準塗布頭 ,可以進行前述第1方向的對位。 5. —種塗布裝置之塗布位置補正方法,係於基台上 設置有可在第1方向移動的複數個龍門,於每一該龍門設 置有可在沿著該龍門的長度方向之第2方向移動的複數個 塗布頭,藉由該龍門之往第1方向的移動,和該塗布頭對 該龍門的往該第2方向的移動,該塗布頭一面在該第】、第 2方向移動,一面對被載置於設置在該架台之基板載置台 的基板上塗布漿劑,每一該塗布頭於該基板上描繪漿劑圖 案,其特徵爲: 就每一該龍門,於該基板載置台設置打樣用玻璃基板 -41 - 201127499 於該打樣用玻璃基板上,設置於與其相應之該龍門的 複數個每一該塗布頭描繪漿劑標記,藉由以相機攝取所描 繪之各該漿劑標記,檢測出該位置,進而檢測出複數個該 塗布頭相互間的位置偏差,以檢測出的該位置偏差爲基礎 ,進行複數個該塗布頭的對位, 於該基板載置台設置有基準位置標記, 使複數個該龍門移動至各該基準位置標記的位置,就 複數個每一該龍門,檢測由該龍門對該基準位置標記的位 置之事先決定的待機位置起的該第1方向的位置偏差,以 檢測出的該位置偏差爲基準,使複數個該龍門對位於該待 機位置。 6-如申請專利範圍第5項所記載之塗布裝置之塗布位 置補正方法,其中,前述基準位置標記,係被設置於前述 基板載置台之中央部附近的基板保持用的吸附孔。 7.如申請專利範圍第5或6項所記載之塗布裝置之塗 布位置補正方法,其中,前述塗布頭爲可在前述龍門移動 的前述第1方向移動,且可以進行前述第1方向的對位。 8 .如申請專利範圍第7項所記載之塗布裝置之塗布位 置補正方法,其中,就每一前述龍門,以設置於前述龍門 之複數個前述塗布頭中的1個爲基準塗布頭, 前述基準塗布頭,對於前述第1方向爲位置固定,設 該基準塗布頭以外的前述塗布頭可在前述第1方向移動, 設該基準塗布頭以外的前述塗布頭對於該基準塗布頭 ,可以進行前述第1方向的對位。 -42-201127499 VII. Patent application scope: 1. A coating device is provided on the abutment with a plurality of gantry movable in the first direction, and each of the gantry is provided with a length along the gantry a plurality of coating heads moving in the second direction of the direction, the movement of the gantry in the first direction, and the movement of the coating head in the second direction of the gantry, the first and second coating heads Moving in a direction, a slurry is applied to a substrate placed on a substrate mounting table disposed on the gantry, and each of the coating heads draws a slurry pattern on the substrate, wherein the coating heads each have a camera, a substrate mounting table, wherein each of the gantry is disposed on the glass substrate for proofing of the plurality of coating heads of the gantry, and a plurality of reference position marks for alignment of the gantry are provided, and the slurry is the same A plurality of the coating heads of the gantry are applied to the glass substrate for proofing, and a slurry mark is drawn, and the slurry mark is drawn by the camera on the glass substrate for proofing. Measuring a drawing position of the slurry mark, detecting a positional deviation between the plurality of coating heads of the gantry, and performing a first means of aligning the plurality of coating heads with each other according to the detected positional deviation; The plurality of the gantry are moved in the first direction until the reference position on the substrate mounting table is marked to a position picked up by the camera, and the moving distance of each gantry to the position of the reference position mark is detected. Each of the gantry detects a positional deviation in the first direction from a predetermined standby position for drawing a slurry pattern, and in response to the detected positional deviation, the gantry performs alignment with the standby position for each -40-201127499 The second means. 2. The coating device according to the first aspect of the invention, wherein the reference position mark is an adsorption hole for holding a substrate in the vicinity of a central portion of the substrate stage. 3. The coating apparatus according to claim 1 or 2, wherein the coating head is movable in the first direction in which the gantry moves, and the alignment in the first direction is possible. 4. The coating apparatus according to claim 3, wherein each of the plurality of coating heads provided in the gantry is a coating head, and the reference coating head is The first direction is fixed in position, and the coating head other than the reference coating head is movable in the first direction, and the coating head other than the reference coating head is capable of performing alignment in the first direction with respect to the reference coating head. . 5. A coating position correction method for a coating device, wherein a plurality of gantry movable in a first direction are provided on a base, and each of the gantry is provided with a second direction along a length direction of the gantry a plurality of moving coating heads, wherein the coating head moves in the first and second directions by the movement of the gantry in the first direction and the movement of the coating head in the second direction by the coating head Facing the slurry coated on the substrate placed on the substrate mounting table of the gantry, each of the coating heads draws a slurry pattern on the substrate, and is characterized in that: for each gantry, the substrate mounting table Providing a glass substrate for proofing-41 - 201127499 On the glass substrate for proofing, a plurality of the coating heads disposed on the gantry corresponding thereto are drawn with a slurry mark, and each of the slurry marks drawn by the camera is taken up by the camera And detecting the position, and detecting a positional deviation between the plurality of coating heads, and performing alignment of the plurality of coating heads based on the detected positional deviation, and the substrate mounting table is provided with a reference position mark for moving a plurality of the gantry to the position of each of the reference position marks, and detecting the first direction from the predetermined standby position of the position of the reference position mark by the gantry for each of the plurality of gantry The positional deviation is based on the detected positional deviation, so that a plurality of the gantry pairs are located at the standby position. The coating position correction method of the coating apparatus according to the fifth aspect of the invention, wherein the reference position mark is an adsorption hole for holding the substrate in the vicinity of a central portion of the substrate stage. 7. The coating position correction method of the coating apparatus according to the fifth or sixth aspect of the invention, wherein the coating head is movable in the first direction in which the gantry moves, and the alignment in the first direction is possible. . The coating position correction method of the coating apparatus according to claim 7, wherein each of the plurality of coating heads provided in the gantry is used as a reference coating head, and the reference is The coating head is fixed in position in the first direction, and the coating head other than the reference coating head is movable in the first direction, and the coating head other than the reference coating head is provided for the reference coating head. The alignment of the 1 direction. -42-
TW099128450A 2009-09-10 2010-08-25 Coating device and its coating position correction method TWI441689B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209547A JP2011056415A (en) 2009-09-10 2009-09-10 Coating apparatus and method of correcting coating position thereof

Publications (2)

Publication Number Publication Date
TW201127499A true TW201127499A (en) 2011-08-16
TWI441689B TWI441689B (en) 2014-06-21

Family

ID=43861272

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099128450A TWI441689B (en) 2009-09-10 2010-08-25 Coating device and its coating position correction method

Country Status (4)

Country Link
JP (1) JP2011056415A (en)
KR (1) KR101141806B1 (en)
CN (1) CN102019254B (en)
TW (1) TWI441689B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI593467B (en) * 2014-10-21 2017-08-01 技鼎股份有限公司 Dispensing device and method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510558B2 (en) * 2011-06-17 2014-06-04 横浜ゴム株式会社 Manufacturing method and manufacturing apparatus for glass panel with glazing gasket
CN109382264B (en) * 2018-10-23 2021-06-04 惠科股份有限公司 Coating mechanism, coating process and display panel
CN110280444B (en) * 2019-07-03 2024-09-13 东莞京创智能科技有限公司 Automatic laminating equipment of fingerprint glass

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100311749B1 (en) * 1999-05-27 2001-10-18 정문술 Module head zero point adjusting device of surface mounting device and a zero point adjusting method thereof
JP4713842B2 (en) * 2004-03-31 2011-06-29 株式会社東芝 Nozzle head controller, nozzle head driving device, a liquid ejecting apparatus, the ejection timing control method of the production apparatus, the nozzle head of the display device, method of driving the nozzle head, a method of manufacturing a display device
JP4419764B2 (en) * 2004-09-13 2010-02-24 株式会社日立プラントテクノロジー Coating device and coating method
WO2007010714A1 (en) * 2005-07-19 2007-01-25 Sharp Kabushiki Kaisha Liquid crystal dripping device and liquid crystal dripping method using such device
JP2007136330A (en) * 2005-11-17 2007-06-07 Sharp Corp Ink ejection apparatus and ink ejection method
JP4749159B2 (en) * 2006-01-13 2011-08-17 大日本スクリーン製造株式会社 Coating device and substrate position adjusting method in coating device
KR100884834B1 (en) * 2006-05-16 2009-02-20 주식회사 탑 엔지니어링 Substrate alignment method of paste applicator
JP5352073B2 (en) * 2007-10-12 2013-11-27 株式会社日立製作所 Inkjet head device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI593467B (en) * 2014-10-21 2017-08-01 技鼎股份有限公司 Dispensing device and method thereof

Also Published As

Publication number Publication date
CN102019254B (en) 2013-03-20
TWI441689B (en) 2014-06-21
CN102019254A (en) 2011-04-20
JP2011056415A (en) 2011-03-24
KR20110027573A (en) 2011-03-16
KR101141806B1 (en) 2012-05-11

Similar Documents

Publication Publication Date Title
KR101367661B1 (en) Apparatus for assembling substrates having adjusting unit for parallel chuck and horizontal chuck
TWI627887B (en) Method and device for automatically adjusting dispensing unit of dispenser
KR101411448B1 (en) Deformable gantry type working apparatus
CN100596266C (en) Electronic component mounting device and mounting method
CN110732857B (en) Multistage abnormal shape FPC binds mechanism
CN111524449B (en) Bonding equipment correction device and method and display panel bonding equipment and method
WO2014069498A1 (en) Work device having a position correction function, and work method
TW201127499A (en) Coating device and method of correcting coating position thereof
TW201102172A (en) Carrier type conveying apparatus and conveying and assembling method of the same
JP4553268B2 (en) Paste coating apparatus and paste coating method
WO2014103027A1 (en) Working machine and positional deviation data acquisition method
CN101859036A (en) Substrate bonding device and substrate bonding method
KR20070041391A (en) Paste Applicator
CN106019646B (en) Base panel assembly apparatus and the substrate assembly method for using the device
CN114522851A (en) Dispensing equipment applied to shading coating process
JP4241339B2 (en) Assembling method of liquid crystal substrate
JP6840866B2 (en) Work work equipment
CN114247601B (en) Chip scaling powder coating device
KR100609897B1 (en) Substrate Manufacturing Equipment
JP2003249794A (en) Camera unit, table unit, method and apparatus for mounting component
KR20090066773A (en) Board Bonding Device
TWI803519B (en) Method of dispensing material and dispensing system for dispensing viscous material on an electronic substrate
CN207466064U (en) Laminating apparatus
JP4038035B2 (en) Quartz crystal assembling equipment
JP2013026370A (en) Device and method for mounting electronic component

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees