TW201121696A - Ultra-precision piezoelectric positioning platform - Google Patents
Ultra-precision piezoelectric positioning platform Download PDFInfo
- Publication number
- TW201121696A TW201121696A TW098145187A TW98145187A TW201121696A TW 201121696 A TW201121696 A TW 201121696A TW 098145187 A TW098145187 A TW 098145187A TW 98145187 A TW98145187 A TW 98145187A TW 201121696 A TW201121696 A TW 201121696A
- Authority
- TW
- Taiwan
- Prior art keywords
- movable portion
- micro
- positioning platform
- fixing
- movable
- Prior art date
Links
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
- Micromachines (AREA)
Abstract
Description
201121696 六、發明說明: 【發明所屬之技術領域】 本發明係丽於一種定位平台,詳言乏,係關於一種超精 密壓電定位平台。 【先前技術】 參考中華民國專利公告第589240號,其揭示一種具奈/ 微米旋動功能之非直線旋動微調裝置,該習知非直線旋動 微調裝置包含一具弧形或圓形旋動檯、至少一組裝設於旋 動檯内部的位移驅動元件組以及導引或支撐該旋動檯產生 旋動之弧形基檯或樞軸’使對應基檯或樞軸產生微動,藉 此’以令該圓形或弧形旋動檯作非直線的奈/微米級位 移。 參考中華民國專利公告第567122號,其揭示一種具奈/ 微米旋動功能的萬向滾動微調裝置,該習知萬向滾動微調 裝置包含一形成有球面凹室的支撐座、一具有球面的球形 旋動檯及至少六組設置於該球形旋動棱内的位移驅動元件 组。其中’該球形旋動檯依χγ、χζ、丫2三平面方向將位 移驅動疋件裝入其中,並將球形旋動檯球面置於該支撐座 的凹室中,使得球形旋動楼於支標座上產生奈/微米級的 移動。 处成寺專利之習知微調裝 及非線性之微動者。此外,“知技術中’::: =該; 專利=知微調裝置,乡自由度超精密定位平台不僅佔空 間'4亦非常昂# ’且組裝零件多、結構複雜、拆卸不 144499.doc IS1 201121696 便且不易維修。 因此,實有必要提供—種 〜 - 裡創新且具進步性的超精密壓電 疋位平台,以解決上述問題。 -- 【發明内容】 本發明提供-種超精密壓電定位平台,其包括—第一微 動模組、一第二微動模組、— 乐一儆動模組及—載體。該 第一微動模組具有二第—朽動里 卜 乐微動早兀,母一第一微動單元係 提供一第-軸向位移,每一第一微動單元具有一第一固定 部、-第-活動部、二第一連桿及至少一第一壓電元件, 其中一第-微動單元之第一固定部及第一活動部係分別盘 第一微動單元之第一固定部及第一活動部相對設置, 忒等第一連桿連接該第一固定部及該第一活動部,使該第 一固定部及該第一活動部係為平行,該至少一第一壓電元 件設置於該第一固定部與該第一活動部之間。該第二微動 模組具有二第二微動單元,每一第二微動單元係提供一第 軸6位移,δ玄第一軸向垂直該第一軸向,每一第二微動 單元具有一第二固定部、一第二活動部、二第二連桿及至 少一第二壓電元件’該等第二固定部分別垂直地連接該等 第一活動部之相對二端以形成一載體設置區域,且該等第 一活動部接近該等第一固定部,每一第二微動單元之該等 第二連桿連接該第二固定部及該第二活動部,使該第二固 定部及該第二活動部係為平行’每一苐二微動單元之該至 少一第二壓電元件設置於該第二固定部與該第二活動部之 間。該第三微動模組具有二第三固定部、至少三萬向撓性 144499.doc .4- 201121696 元件及設置於該等萬向撓性元件中之至少三第三壓電元 件,該等第三固定部分別垂直地連接該等第二活動部之相 對二端,該等萬向戒性元#分別設—置於該等第三固定部, 且該等萬向撓性元件面對該載體設置區域,每一第三壓電 元件係提供一第三軸向位移,該第三軸向垂直該第一軸向 及該第二軸向。該載體設置於該載體設置區域且連接該等 萬向撓性元件。 透過該第-微動模組、該第二微動模組及該第三微動模 組之配合,使該超精密壓電定位平台可進行多軸向、非等 圓及非線性之微動調整機能,並達到高精密度定位之功 效。並且,該第一微動模組、該第二微動模組及該第三微 _組係以反層疊組合方式結合,更扁平化該超精密壓電 疋位平台,故有效簡化該超精密壓電定位平台之體積與言 度。再者,模組化的設計,使得該超精密壓電定位平台门 組裝零件少、拆卸方便且易於維修。 之 【實施方式】 圖1顯示本發明較佳實施例之超精密壓電定位平台之立 體分解示;t ® ;圖2顯示本發明較佳實施例之 定位平台之第-微動模組之第一微動單元側視圖;= 不本發明較佳實施例之超精密壓電定位平台之 组之第二微動單元側視圖;圖4顯示本發明較佳實:模 超精密壓電定位平台之第三微動模組之立體分解示意^ 圖5顯不本發明較佳實施例之超精密壓 , 示意圖。 丁《之組合201121696 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a positioning platform, which is lacking in detail, and relates to an ultra-precision piezoelectric positioning platform. [Prior Art] Referring to the Republic of China Patent Publication No. 589240, which discloses a non-linear rotary fine adjustment device having a nano/micro-rotation function, the conventional non-linear rotary fine adjustment device includes a curved or circular rotation a table, at least one assembly of displacement drive elements disposed inside the rotary table, and a curved abutment or pivot that guides or supports the rotary table to cause a corresponding base or pivot to cause micro-motion, thereby In order to make the circular or curved rotating table a non-linear nano/micron displacement. Referring to the Republic of China Patent Publication No. 567122, which discloses a universal rolling fine adjustment device having a nano/micro-rotation function, the conventional universal rolling fine adjustment device comprising a support seat formed with a spherical alcove and a spherical shape having a spherical surface The rotating table and at least six sets of displacement driving elements disposed in the spherical rotating rib. Wherein the spherical rotating table is loaded with the displacement driving element in the three plane directions of γ, χζ, 丫2, and the spherical rotating billiard surface is placed in the concave chamber of the supporting seat, so that the spherical rotating floor is supported by the branch The nano/micron movement occurs on the target. The fine-tuning of the patents of the temples and the non-linear micro-actuators. In addition, "know technology"::: =; patent = know fine-tuning device, township degree of freedom ultra-precision positioning platform not only takes up space '4 is also very expensive # ' and has many assembled parts, complex structure, disassembly is not 144499.doc IS1 201121696 is not easy to repair. Therefore, it is necessary to provide an innovative and progressive ultra-precision piezoelectric clamping platform to solve the above problems. [Invention] The present invention provides an ultra-precision pressure. The electric positioning platform comprises: a first micro-motion module, a second micro-motion module, a music-moving module and a carrier. The first micro-motion module has two first--------------------- The first first micro-motion unit provides a first-axis displacement, and each of the first micro-motion units has a first fixing portion, a first-moving portion, two first links, and at least one first piezoelectric element, one of which The first fixing portion and the first movable portion of the first micro-motion unit are respectively disposed opposite to the first fixing portion and the first movable portion of the first micro-motion unit, and the first connecting rod is connected to the first fixing portion and the first The active part, the first fixed part and the first The movable portion is parallel, and the at least one first piezoelectric element is disposed between the first fixed portion and the first movable portion. The second micro-motion module has two second micro-motion units, and each second micro-motion unit Providing a first axis 6 displacement, the δ first axis is perpendicular to the first axis, and each second micro-motion unit has a second fixing portion, a second movable portion, two second links, and at least a second The second fixing portions of the piezoelectric elements are vertically connected to opposite ends of the first movable portions to form a carrier setting region, and the first movable portions are adjacent to the first fixing portions, each second The second connecting rods of the micro-motion unit are connected to the second fixing portion and the second movable portion, so that the second fixing portion and the second movable portion are parallel to the at least one second of each of the two micro-motion units The piezoelectric element is disposed between the second fixing portion and the second movable portion. The third micro-motion module has two third fixing portions, at least three-dimensional flexible 144499.doc.4-201121696 components, and is disposed thereon At least three third piezoelectric elements of a universal flexible element, such The three fixed portions are respectively perpendicularly connected to the opposite ends of the second movable portions, and the universal joint elements are respectively disposed at the third fixed portions, and the universal flexible members face the carrier a third region, each of the third piezoelectric elements provides a third axial displacement, the third axis is perpendicular to the first axial direction and the second axial direction. The carrier is disposed in the carrier setting region and connects the tens of thousands The flexible element is coupled to the first micro-motion module, the second micro-motion module and the third micro-motion module to enable multi-axial, non-equal and nonlinear The micro-motion adjustment function achieves the effect of high-precision positioning, and the first micro-motion module, the second micro-motion module and the third micro-group are combined in a reverse stacking manner to flatten the ultra-precision pressure. The electric clamping platform effectively simplifies the volume and the degree of the ultra-precision piezoelectric positioning platform. Moreover, the modular design makes the ultra-precision piezoelectric positioning platform door assembly parts less, easy to disassemble and easy to maintain. [Embodiment] FIG. 1 is a perspective exploded view showing an ultra-precision piezoelectric positioning platform according to a preferred embodiment of the present invention; FIG. 2 shows the first of the first-micro-motion module of the positioning platform of the preferred embodiment of the present invention. Side view of the micro-motion unit; = side view of the second micro-motion unit of the ultra-precision piezoelectric positioning platform of the preferred embodiment of the present invention; FIG. 4 shows a preferred embodiment of the present invention: the third micro-motion of the mode ultra-precision piezoelectric positioning platform 3D exploded view of the module. Fig. 5 shows an ultra-precision pressure, schematic view of a preferred embodiment of the present invention. Ding's combination
Si 144499.doc 201121696 配合參考圖1及圖2,該超精密壓電定位平台丨包括一第 一微動模組10、一第二微動模組2〇、_第三微動模組3〇及 一載體40。該第一微動模組1〇具有二第一微動單元11,每 一第一微動單兀11係提供一第一軸向(圖丨中之χ軸向)位 移。在本實施例中,每一第一微動單元"具有一第一固定 部ill、一第一活動部112、二第一連桿113 '至少一第一 壓電元件114、一第一彈性元件丨15及二第一調整組件 116(參考圖2)。 在本實施例中,其中一第一微動單元丨丨之第一固定部 111及第一活動部112係分別與另一第一微動單元u之第一 固定部111及第一活動部丨12相對設置。該等第一微動單元 11之該等第一固定部111係為平行且相對設置,該等第一 活動部112係為平行且相對設置。 在本實施例中,每一第一固定部ιη包括一第一固定部 本體nil及二第一固定部凸塊η 12,每一第一活動部112 包括一第一活動部本體1121及一第一活動部凸塊1122,其 中每一第一活動部本體1121之二端分別具有一缺角1123。 該等第一固定部凸塊1112及該第一活動部凸塊1122位於該 S) 第一固定部本體1111與該第一活動部本體i i 2丨之間,該第 一活動部凸塊1122設置於該等第一固定部凸塊丨1丨2之間。 在本實施例中’每一第一固定部111之二第一固定部凸 塊1112係分別螺設於第一固定部本體丨丨丨丨,且每一第一活 動部Π2之第一活動部凸塊丨122亦係螺設於第一活動部本 體1121。在其他應用中,每一第一固定部m之二第一固 144499.doc 201121696 定部凸塊111 2係分別螺設於第一固定部本體丨丨u,每一第 一活動部112之第一活動部本體1121及第一活動部凸塊 1122係可為一體成型。每一第一固定部lu之二第一固定 部凸塊1112分別具有一第一設置孔丨丨13,每一第一活動部 112之第一活動部凸塊1122具有二第一凹槽1124,該等第 一凹槽11 24係分別相對該等第一設置孔丨丨丨3。 每一第一微動單元11之該等第一連桿113連接該第一固 定部111及該第一活動部丨12,使該第一固定部丨丨丨及該第 一活動部112係為平行。在本實施例中,每一第一連桿ιΐ3 於連接該第一固定部!丨丨及該第一活動部丨12之處具有一第 一頸縮部1131。該等第一連桿113可確保每一第一微動單 兀11之第一固定部111及第一活動部丨12間之相對關係(如平 行度)’以達到精密之位移及定位。 該至少一第一壓電元件丨14設置於該第一固定部丨11與該 第一活動部112之間。在本實施例中,該至少一第一壓電 兀件114設置於其中一第一固定部凸塊1112(圖2中左側之 第一固定部凸塊1112)之第一設置孔丨丨13與該第一活動部凸 塊1122之相應第一凹槽1124間。當施加一電壓於該至少一 第一壓電το件114時,該至少一第一壓電元件114產生第一 軸向之變形,且頂推相應第一活動部凸塊U22產生移動, 使得第一活動部112進行第一軸向之位移。 其中,當施加於每一第一微動單元〗丨之第一壓電元件 114之電壓相同時,每—第一壓電元件會產生相同之第 轴向之爻形里,因此頂推相應第一活動部凸塊112 2之位 I44499.doc 201121696 移s相同,使得該超精密壓電定位平台1可進行該第一軸 向之位移,當施加於每一第一微動單元11之第一壓電元件 114之電壓不同時,每一棄一鏖電元件114會產生不同之第 一軸向之變形量,因此頂推相應第一活動部凸塊1122之位 移量不同,使得該超精密壓電定位平台1可進行一第一角 度方向θ之旋轉(平行圖1中之χ-y平面之旋轉)。Si 144499.doc 201121696 With reference to FIG. 1 and FIG. 2, the ultra-precision piezoelectric positioning platform includes a first micro-motion module 10, a second micro-motion module 2〇, a third micro-motion module 3〇, and a carrier. 40. The first micro-motion module 1 has two first micro-motion units 11, and each of the first micro-motion units 11 provides a first axial direction (the axial direction in the figure). In this embodiment, each of the first micro-motion units has a first fixing portion ill, a first movable portion 112, two first links 113', at least one first piezoelectric element 114, and a first elastic element.丨15 and two first adjustment components 116 (refer to FIG. 2). In this embodiment, the first fixing portion 111 and the first movable portion 112 of one of the first micro-motion units are respectively opposite to the first fixing portion 111 and the first movable portion 丨12 of the other first micro-motion unit u. Settings. The first fixing portions 111 of the first micro-motion units 11 are parallel and oppositely disposed, and the first movable portions 112 are parallel and oppositely disposed. In this embodiment, each of the first fixed portions 1n includes a first fixed portion body nil and two first fixed portion protrusions η 12 , and each of the first movable portions 112 includes a first movable portion body 1121 and a first portion A movable portion bump 1122 has a notch 1123 at each end of each of the first movable portion bodies 1121. The first fixing portion protrusions 1112 and the first movable portion protrusions 1122 are located between the S) first fixing portion body 1111 and the first movable portion body ii 2丨, and the first movable portion protrusions 1122 are disposed. Between the first fixing portion bumps 丨1丨2. In the embodiment, the first first fixing portion protrusions 1112 of each of the first fixing portions 111 are respectively screwed on the first fixing portion body 丨丨丨丨, and the first movable portion of each of the first movable portions Π2 The bump 丨 122 is also screwed to the first movable portion body 1121. In other applications, the first fixed portion m of each of the first fixed portions m 144499.doc 201121696 fixed portion bumps 111 2 are respectively screwed on the first fixed portion body 丨丨u, the first movable portion 112 A movable portion body 1121 and a first movable portion bump 1122 may be integrally formed. Each of the first fixing portion protrusions 1112 of each of the first fixing portions lu has a first insertion hole 13 , and the first movable portion protrusion 1122 of each first movable portion 112 has two first grooves 1124 . The first grooves 11 24 are respectively disposed opposite to the first holes 3 . The first connecting rod 113 of each of the first micro-motion units 11 is connected to the first fixing portion 111 and the first movable portion 丨12 such that the first fixed portion 丨丨丨 and the first movable portion 112 are parallel. . In this embodiment, each of the first links ιΐ3 is connected to the first fixing portion! And the first movable portion 12 has a first neck portion 1131. The first links 113 ensure the relative relationship (e.g., the degree of parallelness) between the first fixed portion 111 and the first movable portion 12 of each first micro-motion unit 11 to achieve precise displacement and positioning. The at least one first piezoelectric element 丨 14 is disposed between the first fixed portion 丨11 and the first movable portion 112. In this embodiment, the at least one first piezoelectric element 114 is disposed on the first mounting hole 1312 of the first fixing portion protrusion 1112 (the first fixing portion protrusion 1112 on the left side in FIG. 2) Between the corresponding first grooves 1124 of the first movable portion bumps 1122. When a voltage is applied to the at least one first piezoelectric element 114, the at least one first piezoelectric element 114 generates a first axial deformation, and the corresponding first movable portion protrusion U22 is pushed to move, so that A movable portion 112 performs a displacement of the first axial direction. Wherein, when the voltage applied to the first piezoelectric element 114 of each of the first micro-motion units is the same, each of the first piezoelectric elements generates the same first axial shape, so the first push is correspondingly The movable portion bump 112 2 is located at the same level as I44499.doc 201121696, so that the ultra-precision piezoelectric positioning platform 1 can perform the displacement of the first axial direction when the first piezoelectric element is applied to each of the first micro-motion units 11. When the voltages of the components 114 are different, each of the discarded electrical components 114 will have a different first axial deformation amount, so the displacement of the corresponding first movable portion bumps 1122 is different, so that the ultra-precision piezoelectric positioning is performed. The platform 1 can perform a rotation of the first angular direction θ (parallel to the rotation of the χ-y plane in Fig. 1).
該第一彈性元件11S設置於另一第一固定部凸塊1112(圖 2中右側之第-固定部凸塊1112)之第-設置孔1113與該第 一活動部凸塊1122之相應第一凹槽1124間,且其相對於該 至 > 一第一壓電元件丨14。較佳地,該第一彈性元件丨丨5係 為彈簧。該等第一調整組件116係分別於相對第一設置孔 1"3之側面穿固於相對之第一固定部凸塊1112並分別接觸 μ至 第壓電元件114及該第一彈性元件丨丨5。較佳 地’該等第-調整組件116係為内多角螺絲',例如内六角 螺絲。較佳地,該至少一第一壓電元件114與相應第一調 整組件116之間係設有塾材117,以確保該相應第一調整組 件116與該至少一第一壓電元件丨14接觸之均勻及緊密性, 較佳地,該墊材117之材質為銅。 該等第一調整組件116用以抵掣固定相應之第—壓電> 件m,調整控制該至少-第一壓電元件114與相應第一^ 槽U24間之力量’以4保其接觸之緊密性,且確保該超米 密壓電定位平台1之精密度;以及該等第一調整組件丨16月 以頂抵相應之第一彈性元件115,用以調整控制施加於才丨 應第一活動部凸塊1122之回復力’以回復變形後之第一禮 144499.doc 201121696 動單元11。 其中,透過該第一彈性a件115及該等第一調整組件ιΐ6 之配合調整後,使得每一第一壓電元件丨14之變形推力大 於(>)相應第-彈性元件! 15之回復力大於(>)相應二第一連 桿113之變形抵抗力。如此,每一第一壓電元件"4可推動 相應第一活動部112,每一第一彈性元件〗15可將相應第一 活動部112回復至未變形時之位置。 φ 配合參考圖1及圖3,該第二微動模組20具有二第二微動 單元21,每一第二微動單元21係提供一第二軸向(圖1中之 y軸向)位移,該第一軸向垂直該第一軸向。在本實施例 中,母一第二微動單元21具有一第二固定部211、一第二 活動部212、二第二連桿213、至少一第二壓電元件214、 一第二彈性元件215及二第二調整組件216(參考圖3)。 該等第二固定部211分別垂直地連接該等第一活動部112 之相對二端以形成一載體設置區域5〇(參考圖5),且該等第 φ 二活動部212接近該等第一固定部111。每一第二微動單元 21之該等第二連桿213連接該第二固定部211及該第二活動 部212,使該第二固定部211及該第二活動部212係為平 行0 在本實施例中,每一第二固定部211包括一第二固定部 本體2111及二第二固定部凸塊2112’每一第二微動單元21 之第二固定部211之長度係大於第二活動部212之長度。每 一第二固定部211之二端分別係設置於該等第一活動部112 間之相對二缺角1123(參考圖2),使該第二微動模組2〇與該 144499.doc 201121696 第一微動模組1 〇作反向層疊之結合,以減少該超精密壓電 定位平台1之體積與高度。每一第二活動部212包括一第二 活動部本體2121及一第二活動部凸塊2122,該等第二固定 部凸塊2112及該第二活動部凸塊2122位於該第二固定部本 體2111與該第二活動部本體2121之間,該第二活動部凸塊 2 1 22設置於該等第二固定部凸塊2丨丨2之間。 在本實施例中,每一第二固定部211之二第二固定部凸 塊211 2係分別螺設於第二固定部本體2111,且每一第二活 動部212之第二活動部凸塊2122亦係螺設於第二活動部本 體2121。在其他應用中,每一第二固定部211之二第二固 定部凸塊2 112係可分別螺設於第二固定部本體2丨丨丨,而每 一第二活動部212之第二活動部本體212丨及第二活動部凸 塊2122係為一體成型。每一第二固定部211之二第二固定 部凸塊2Η2分別具有一第二設置孔2113,每一第二活動部 212之第二活動部凸塊2122具有二第二凹槽〕^,該等第 一凹槽2 12 3係分別相對該等第二設置孔2 11 3。 每一第二微動單元21之該等第二連桿213連接該第二固 定部211及該第二活動部212,使該第二固定部2ιι及該第 二活動部212係為平行。在本實施例中,每一第二連桿213 於連接該第二固定部2Π及該第二活動部212之處具有一第 頸縮。卩2131。6玄等第二連桿213可確保每一第二微動單 =21之第二固定部211及第二活動部212間之相對關係(如 平行度)’以達到精密之位移及定位。 該至少一第二壓電元件214設置於該第二固定部211與該 144499.doc -10· 201121696 第二活動部212之間。在本實施例中,該至少一第二壓電 兀件214設置於其中一第二固定部凸塊2112(圖3中左側之 第二固定部凸塊2112)之第二設置孔2113與該第二活動部 凸塊2122之相應第二凹槽2123間。當施加一電壓於該至少 一第二壓電元件214時’該至少一第二壓電元件214產生第 二軸向之變形’且頂推相應第二活動部凸塊2丨22產生移 動使付第一活動部2 12進行第二轴向之位移。 其中,當施加於每一第二微動單元21之第二壓電元件 214之電壓相同時,每一第二壓電元件214會產生相同之第 二轴向之變形量,因此頂推相應第二活動部凸塊2122之位 移量相同,使得該超精密壓電定位平台可進行該第二軸向 之位移;當施加於每一第二微動單元21之第二壓電元件 214之電壓不同時,每一第二壓電元件214會產生不同之第 二軸向之變形量,因此頂推相應第二活動部凸塊2122之位 移量不同’使得該超精密壓電定位平台1可進行該第一角 度方向Θ之旋轉(平行圖1中之x_y平面之旋轉)。 該第二彈性元件215設置於另一第二固定部凸塊2ii2(圖 3中右側之第二固定部凸塊2 n 2)之第二設置孔2 11 3與該第 二活動部凸塊2122之相應第二凹槽2123間且相對於該至少 :第二壓電元件214。較佳地,該第二彈性元件215係為彈 簧5亥等第二調整組件216係分別於相對第二設置孔2113 J面穿固於相對之第二固定部凸塊2丨丨2並分別接觸該至 ’苐一壓電元件214及該第二彈性元件2 1 5。較佳地,該 等第二調整組件216係為内多角螺絲,例如内六角螺絲。 I44499.doc 201121696 較佳地,該至少-第二壓電元件214與相應第二調整組件 21 6之間係设有塾材217,以確保該相應第二調整組件216 與該至少一第二壓電元件214接觸之均句及_緊密性,較佳 地’該墊材217之材質為銅。 該等第二調整組件216用以抵掣固定相應之第二壓電元 件214,調整控制該至少—第二壓電元件214與相應第二凹 槽2123間之力量,以確保其接觸之緊密性,且確保該超精 密壓電定位平台!之精密度。該等第二調整組件216頂抵相 應之第二彈性元件215,用以調整控制施加於相應第二活 動部凸塊2122之回復力,以回復變形後之第二微動單元 21 〇 其中,透過該第二彈性元件215及該等第二調整組件216 之配&調'^後,使得每一第二壓電元件214之變形推力大 於(>)相應第二彈性元件215之回復力大於(>)相應二第二連 桿213之變形抵抗力。如此,每一第二壓電元件214可推動 相應第二活動部212,每一第二彈性元件215可將相應第二 活動部2 12回復至未變形時之位置。 配合參考圖1、圖4及圖5,該第三微動模組3〇具有二第 口疋。卩31、至少二萬向撓性元件32及設置於該等萬向撓 性元件32中之至少三第三壓電元件33。該等第三固定部^ 分別垂直地連接該等第二活動部212之相對二端,該等萬 向撓性元件32之一端分別設置於該等第三固定部3丨,且該 等萬向撓性元件32面對該載體設置區域5〇。在本實施例 中,該等萬向撓性元件32係設置於該等第三固定部3〗及該 144499.doc 201121696 載體40之間且呈三角形分佈。每一第三壓電元件33係提供 一第二軸向(圖1中之z軸向)位移’其中該第三軸向垂直該 第一軸向及該第二軸向。每一壓電元件33具有一弧狀頂面 3 3 1 ’該孤狀頂面3 3 1經由相應之萬向撓性元件3 2之一開孔 321突出於外’且實質上以點接觸方式與該載體4〇連接, 而該載體40藉由鎖固件(圖中未示)結合該等萬向撓性元件 32之固定孔322,以固定於該等萬向撓性元件32。於本實The first elastic member 11S is disposed on the first first fixing portion protrusion 1112 (the first fixing portion protrusion 1112 on the right side in FIG. 2) and the first corresponding hole 1113 and the first movable portion convex portion 1122 are correspondingly first. Between the grooves 1124, and relative to the first > a first piezoelectric element 丨14. Preferably, the first elastic member 丨丨5 is a spring. The first adjusting components 116 are respectively fixed to the opposite first fixing portion bumps 1112 on the side opposite to the first setting holes 1 " 3 and respectively contact the μ to the piezoelectric element 114 and the first elastic member 丨丨5. Preferably, the first adjustment assemblies 116 are internal multi-angle screws, such as hexagon socket screws. Preferably, a coffin 117 is disposed between the at least one first piezoelectric element 114 and the corresponding first adjustment component 116 to ensure that the corresponding first adjustment component 116 is in contact with the at least one first piezoelectric component 丨14. The uniformity and tightness of the mat 117 are preferably copper. The first adjusting component 116 is configured to resist the fixing of the corresponding first piezoelectric device, and adjust and control the force between the at least first piezoelectric element 114 and the corresponding first slot U24 to maintain contact with Tightness, and ensuring the precision of the ultra-mild piezoelectric positioning platform 1; and the first adjusting components are slid into the corresponding first elastic member 115 in 16 months for adjusting the control applied to the 丨 第The rest force ' of the movable portion bump 1122' is restored to the first 144499.doc 201121696 moving unit 11. The deformation of each of the first piezoelectric elements 丨 14 is greater than (>) the corresponding first-elastic elements by the adjustment of the first elastic a member 115 and the first adjustment members ι 6; The restoring force of 15 is greater than (>) the deformation resistance of the corresponding two first links 113. Thus, each of the first piezoelectric elements "4 can push the corresponding first movable portion 112, and each of the first elastic members 15 can return the corresponding first movable portion 112 to the position when it is not deformed. With reference to FIG. 1 and FIG. 3, the second micro-motion module 20 has two second micro-motion units 21, and each of the second micro-motion units 21 provides a second axial direction (y-axis in FIG. 1). The first axis is perpendicular to the first axis. In this embodiment, the second micro-motion unit 21 has a second fixing portion 211, a second movable portion 212, two second links 213, at least one second piezoelectric element 214, and a second elastic member 215. And two second adjustment components 216 (refer to FIG. 3). The second fixing portions 211 are perpendicularly connected to the opposite ends of the first movable portions 112 to form a carrier setting region 5 (refer to FIG. 5), and the first φ second movable portions 212 are close to the first The fixing portion 111. The second link 213 of each second micro-motion unit 21 is connected to the second fixing portion 211 and the second movable portion 212 such that the second fixing portion 211 and the second movable portion 212 are parallel to each other. In the embodiment, each second fixing portion 211 includes a second fixing portion body 2111 and two second fixing portion protrusions 2112'. The second fixing portion 211 of each second micro-motion unit 21 has a length greater than the second movable portion. The length of 212. The two ends of each of the second fixing portions 211 are respectively disposed at the opposite two corners 1123 (refer to FIG. 2) between the first movable portions 112, so that the second micro-motion module 2〇 and the 144499.doc 201121696 A micro-motion module 1 is combined as a reverse stack to reduce the volume and height of the ultra-precision piezoelectric positioning platform 1. Each of the second movable portions 212 includes a second movable portion body 2121 and a second movable portion convex portion 2122. The second fixed portion convex portions 2112 and the second movable portion convex portion 2122 are located at the second fixed portion body. Between the 2111 and the second movable portion body 2121, the second movable portion protrusion 2 1 22 is disposed between the second fixed portion bumps 2丨丨2. In this embodiment, the second fixing portion protrusions 2112 of each of the second fixing portions 211 are respectively screwed on the second fixing portion body 2111, and the second movable portion protrusions of each second movable portion 212 are respectively 2122 is also screwed to the second movable part body 2121. In other applications, the second fixing portion protrusions 2 112 of each of the second fixing portions 211 can be respectively screwed on the second fixing portion body 2丨丨丨, and the second activity of each second movable portion 212. The body portion 212 and the second movable portion bump 2122 are integrally formed. Each of the second fixing portions 2b of the second fixing portion 211 has a second setting hole 2113, and the second movable portion 2122 of each second movable portion 212 has two second grooves. The first grooves 2 12 3 are respectively opposite to the second setting holes 2 11 3 . The second links 213 of each of the second micro-motion units 21 are connected to the second fixing portion 211 and the second movable portion 212 such that the second fixing portion 2 and the second movable portion 212 are parallel. In this embodiment, each of the second links 213 has a necking at a position where the second fixing portion 2 and the second movable portion 212 are connected. The second link 213 such as 玄2131.6 can ensure the relative relationship (such as parallelism) between the second fixed portion 211 and the second movable portion 212 of each second micro-motion single=21 to achieve precise displacement and positioning. . The at least one second piezoelectric element 214 is disposed between the second fixing portion 211 and the second movable portion 212 of the 144499.doc -10·201121696. In this embodiment, the at least one second piezoelectric element 214 is disposed on the second mounting hole 2112 of the second fixing portion protrusion 2112 (the second fixing portion protrusion 2112 on the left side in FIG. 3) and the second portion Between the corresponding second grooves 2123 of the two movable portion bumps 2122. When a voltage is applied to the at least one second piezoelectric element 214, 'the at least one second piezoelectric element 214 generates a second axial deformation' and pushing the corresponding second movable portion bump 2丨22 to move The first movable portion 2 12 performs displacement of the second axial direction. Wherein, when the voltage applied to the second piezoelectric element 214 of each of the second micro-motion units 21 is the same, each of the second piezoelectric elements 214 generates the same amount of deformation of the second axial direction, so the push-up corresponding second The displacement of the movable portion bumps 2122 is the same, so that the ultra-precision piezoelectric positioning platform can perform the displacement of the second axial direction; when the voltage applied to the second piezoelectric element 214 of each of the second micro-motion units 21 is different, Each of the second piezoelectric elements 214 generates a different amount of deformation of the second axial direction, and thus the displacement of the corresponding second movable portion bumps 2122 is different, so that the ultra-precision piezoelectric positioning platform 1 can perform the first Rotation of the angular direction 平行 (parallel to the rotation of the x_y plane in Figure 1). The second elastic member 215 is disposed on the second second fixing portion protrusion 2ii2 (the second fixing portion protrusion 2 n 2 on the right side in FIG. 3) and the second movable portion protrusion 2122 Corresponding to the second recess 2123 and relative to the at least: second piezoelectric element 214. Preferably, the second elastic member 215 is a spring, and the second adjusting component 216 is respectively fixed to the second fixing portion protrusion 2丨丨2 and is respectively contacted with respect to the second fixing hole 2113. The first piezoelectric element 214 and the second elastic element 2 15 are formed. Preferably, the second adjustment components 216 are internal multi-angle screws, such as hexagon socket screws. I44499.doc 201121696 Preferably, a coffin 217 is disposed between the at least-second piezoelectric element 214 and the corresponding second adjustment component 216 to ensure the corresponding second adjustment component 216 and the at least one second pressure The electrical component 214 is in contact with the mean and _ tightness, preferably the material of the mat 217 is copper. The second adjusting component 216 is configured to fix the corresponding second piezoelectric component 214, and adjust the force between the at least the second piezoelectric component 214 and the corresponding second recess 2123 to ensure the tightness of the contact. And ensure the ultra-precision piezoelectric positioning platform! Precision. The second adjusting component 216 abuts against the corresponding second elastic component 215 for adjusting the restoring force applied to the corresponding second movable portion bump 2122 to recover the deformed second micro-motion unit 21 The second elastic member 215 and the second adjusting member 216 are matched and adjusted so that the deformation thrust of each of the second piezoelectric members 214 is greater than (>) the restoring force of the corresponding second elastic member 215 is greater than ( >) deformation resistance of the corresponding two second links 213. Thus, each of the second piezoelectric elements 214 can push the respective second movable portions 212, and each of the second elastic members 215 can return the corresponding second movable portions 2 12 to the undeformed position. Referring to Figures 1, 4 and 5, the third micro-motion module 3 has two apertures.卩 31, at least 20,000 flexible elements 32, and at least three third piezoelectric elements 33 disposed in the universal flexible elements 32. The third fixing portions are respectively perpendicularly connected to the opposite ends of the second movable portions 212, and one ends of the universal flexible members 32 are respectively disposed on the third fixing portions 3丨, and the universal joints The flexible member 32 faces the carrier setting region 5A. In the present embodiment, the universal flexible members 32 are disposed between the third fixed portion 3 and the 144499.doc 201121696 carrier 40 and have a triangular distribution. Each of the third piezoelectric elements 33 provides a second axial direction (z-axis in Figure 1) in which the third axis is perpendicular to the first axis and the second axis. Each of the piezoelectric elements 33 has an arcuate top surface 3 3 1 '. The isolated top surface 3 3 1 protrudes out of the opening 321 through one of the corresponding universal flexible elements 32 and is substantially in point contact manner The carrier 40 is connected to the carrier 4, and the carrier 40 is coupled to the fixing holes 322 of the universal flexible members 32 by fasteners (not shown) to be fixed to the universal flexible members 32. Yu Shishi
施例,該等萬向撓性元件32係為撓性聯軸器。 在本實施例中,每一第三固定部31之二端具有一缺角 311,每一第二活動部212之二端分別係設置於該等第三固 疋4 3 1間之相對二缺角3丨丨,使該第三微動模組川與該第 二微動模組20作反向層疊之結合,以減少該超精密壓電定 位平台1之體積與高度。 —第三微動模組3〇之第三壓電元件”之電壓相 $時,每一第三壓電元件”會產生相同之第三軸向之變形 量’因此每-第三遂電元件33頂推該載體4()之位移量相 同.,使得該超精密壓電定位平台】可進行該第三抽向之位 移,當施加於該第三微動模組3〇之第三壓電元件^之電壓 不=時,每-第三壓電元件33會產生不同之第三抽向之變 形量’因此每一第三壓電元件33頂推該載體40之位移量不 =由控制該等第三壓電元件33之變形量,可使該超精 汝壓電疋位平台1進行一第二角度方向《之旋轉(平行圖艸 之^平面之旋轉)及-第三角度方向β之旋轉(平行圖】中之 y-z平面之旋轉)。By way of example, the universal flexible elements 32 are flexible couplings. In this embodiment, the two ends of each of the third fixing portions 31 have a notch 311, and the two ends of each of the second movable portions 212 are respectively disposed opposite to each other between the third solids 43 1 The corner 3丨丨 combines the third micro-motion module and the second micro-motion module 20 to reduce the volume and height of the ultra-precision piezoelectric positioning platform 1. - when the voltage phase of the third piezoelectric element of the third micro-motion module 3" is $, each third piezoelectric element "generates the same amount of deformation of the third axial direction" so that each third-third electrical component 33 Pushing the carrier 4 () to the same amount of displacement, so that the ultra-precision piezoelectric positioning platform can perform the displacement of the third pumping direction, when the third piezoelectric element is applied to the third micro-motion module 3 When the voltage is not =, each third piezoelectric element 33 generates a different amount of deformation of the third pumping direction 'so that each third piezoelectric element 33 pushes the displacement amount of the carrier 40 not = by controlling the first The amount of deformation of the tri-piezoelectric element 33 allows the super-precision piezoelectric clamping platform 1 to perform a rotation in a second angular direction (rotation of the parallel plane) and a rotation of the third angular direction β ( Parallel map] the rotation of the yz plane).
144499.doc LSI 201121696 該載體40設置於該載體設置區域5且連接該等萬向撓性 兀件32。較佳地,該載體4〇之周圍與該第一微動模組及 該第二微動模組20之間具有一間隙,以提供該載體扣調整 定位之活動空間。在本實施例中,該載體4〇包括一框架Μ 及一基板42,該框架41連接該等萬向撓性元件32,該基板 42固設於該框架41中。其中,依據該基板42所承載之^件 之加工或製造需求,該基板42係可為一透明基板。 本發明之超精密壓電定位平台丨可應用於自動化產業、 半導體產業(例如:微機電系統(MEMS)、小型晶圓廠或 LED蟲晶廠)、光電產業。 舉例而言,本發明超精密壓電定位平台丨應用在曝光微 影製程中之光罩系統,可大幅降低因光罩更換時所發生之 精度誤差與調整問題。由於,如何降低因產品種類切換所 產生之延宕,就等於提升產業競爭力,故除了提升產品種 類更換速度,更可以將對位之精度大幅的提高。 透過該第一微動模組10、該第二微動模組2〇及該第三微 動模組30之配合,使該超精密壓電定位平台丨可進行該第 軸向、该第二軸向、該第三軸向、該第一角度方向㊀、 。玄第一角度方向(X、該第三角度方向P之多軸向、非等圓及 非線性(六自由度)之微動調整機能,並達到高精密度定位 之功效。 並且,該第一微動模組丨〇、該第二微動模組汕及該第三 微動模組30係以反層疊組合方式結合,更扁平化該超精密 壓電定位平台1,故有效簡化該超精密壓電定位平台丨之體 144499.doc 14 201121696 積。再者’模組化的設計,使得該超精密m位平台】 之組裝零件少、拆卸方便且易於維修。 上述實施例僅為說明本發明之原理及其功效,並非限制- ^月。因此習於此技術之人士對上述實施例進行修改及 良化仍不脫本發明之精神。本發明之權利範圍應如後述之 申請專利範圍所列。 【圖式簡單說明】144499.doc LSI 201121696 The carrier 40 is disposed in the carrier setting area 5 and connects the gimbal flexible members 32. Preferably, a gap is formed between the periphery of the carrier 4 and the first micro-motion module and the second micro-motion module 20 to provide an active space for positioning and positioning the carrier buckle. In this embodiment, the carrier 4 includes a frame Μ and a substrate 42. The frame 41 connects the universal flexible members 32, and the substrate 42 is fixed in the frame 41. The substrate 42 can be a transparent substrate according to the processing or manufacturing requirements of the substrate 42. The ultra-precision piezoelectric positioning platform of the present invention can be applied to the automation industry, the semiconductor industry (for example, microelectromechanical systems (MEMS), small fabs or LED insect crystal plants), and the photovoltaic industry. For example, the ultra-precision piezoelectric positioning platform of the present invention is applied to a reticle system in an exposure lithography process, which can greatly reduce the accuracy error and adjustment problems that occur when the reticle is replaced. Since how to reduce the delay caused by the switching of product types is equivalent to improving the competitiveness of the industry, in addition to improving the speed of product replacement, the accuracy of the alignment can be greatly improved. Through the cooperation of the first micro-motion module 10, the second micro-motion module 2〇 and the third micro-motion module 30, the ultra-precision piezoelectric positioning platform can perform the first axial direction and the second axial direction. The third axial direction, the first angular direction is one. The first angular direction (X, the axial direction of the third angular direction P, non-equal and non-linear (six degrees of freedom) micro-motion adjustment function, and achieve the effect of high-precision positioning. And, the first fretting The module 丨〇, the second micro-motion module 汕 and the third micro-motion module 30 are combined in a reverse stacking manner to flatten the ultra-precision piezoelectric positioning platform 1 , thereby effectively simplifying the ultra-precision piezoelectric positioning platform丨体体144499.doc 14 201121696 Product. Furthermore, the modular design makes the ultra-precision m-position platform less assembled, easy to disassemble and easy to maintain. The above embodiments are only for explaining the principle of the present invention and The effects of the present invention are not limited thereto. Therefore, those skilled in the art will be able to modify and modify the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims. Brief description
圖1顯示本發明較佳實施例之超精密壓電定位平台之立 體分解示意圖; 圖2顯示本發明較佳實施例之超精密壓電定位平台之第 一微動模組之第一微動單元側視圖; 圖3顯示本發明較佳實施例之超精密壓電定位平台之第 二微動模組之第二微動單元側視圖; 圖4顯不本發明較佳實施例之超精密壓電定位平台之第 二微動模組之立體分解示意圖;及 圖5顯示本發明較佳實施例之超精密壓電定位平台之組 合示意圖。 【主要元件符號說明】 1 本發明之超精密壓電定位平台 10 第一微動模組 11 第一微動單元 20 第二微動模組 21 第二微動單元 30 第三微動模組 144499.doc IS1 2011216961 is a perspective exploded view of an ultra-precision piezoelectric positioning platform according to a preferred embodiment of the present invention; FIG. 2 is a side view showing a first micro-motion unit of a first micro-motion module of an ultra-precision piezoelectric positioning platform according to a preferred embodiment of the present invention; 3 is a side view of a second micro-motion unit of a second micro-motion module of an ultra-precision piezoelectric positioning platform according to a preferred embodiment of the present invention; FIG. 4 is a view showing an ultra-precision piezoelectric positioning platform of a preferred embodiment of the present invention. A schematic exploded view of a second micro-motion module; and FIG. 5 shows a combined schematic diagram of an ultra-precision piezoelectric positioning platform in accordance with a preferred embodiment of the present invention. [Main component symbol description] 1 Ultra-precision piezoelectric positioning platform of the invention 10 First micro-motion module 11 First micro-motion unit 20 Second micro-motion module 21 Second micro-motion unit 30 Third micro-motion module 144499.doc IS1 201121696
31 第三固定部 32 萬向撓性元件 33 第三壓電元件 40 載體 41 框架 42 基板 50 載體設置區域 111 第一固定部 112 第一活動部 113 第一連桿 114 壓電元件 115 第一彈性元件 116 第一調整組件 117 墊材 211 第二固定部 212 第二活動部 213 第二連桿 214 第二壓電元件 215 第二彈性元件 216 第二調整組件 217 墊材 311 缺角 321 開孔 322 固定子L 144499.doc -16- 20112169631 third fixing portion 32 universal flexible member 33 third piezoelectric element 40 carrier 41 frame 42 substrate 50 carrier setting region 111 first fixing portion 112 first movable portion 113 first link 114 piezoelectric element 115 first elasticity Element 116 first adjustment component 117 pad 211 second fixing portion 212 second movable portion 213 second link 214 second piezoelectric element 215 second elastic element 216 second adjustment component 217 pad 311 notch 321 opening 322 Fixator L 144499.doc -16- 201121696
331 弧狀頂面 1111 第一固定部本體 1112 第一固定部凸塊 1113 第一設置孔 1121 第一活動部 1122 第一活動部凸塊 1123 缺角 1124 第一凹槽 1131 第一頸縮部 2111 第二固定部本體 2112 第二固定部凸塊 2113 第二設置孔 2121 第二活動部本體 2122 第二活動部凸塊 2123 第二凹槽 2131 第二頸縮部 144499.doc -17-331 arc-shaped top surface 1111 first fixing portion body 1112 first fixing portion protrusion 1113 first setting hole 1121 first movable portion 1122 first movable portion bump 1123 notch 1124 first groove 1131 first neck portion 2111 Second fixing portion body 2112 Second fixing portion protrusion 2113 Second setting hole 2121 Second movable portion body 2122 Second movable portion convex portion 2123 Second concave groove 2131 Second necking portion 144499.doc -17-
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098145187A TW201121696A (en) | 2009-12-25 | 2009-12-25 | Ultra-precision piezoelectric positioning platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098145187A TW201121696A (en) | 2009-12-25 | 2009-12-25 | Ultra-precision piezoelectric positioning platform |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201121696A true TW201121696A (en) | 2011-07-01 |
TWI373390B TWI373390B (en) | 2012-10-01 |
Family
ID=45045736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098145187A TW201121696A (en) | 2009-12-25 | 2009-12-25 | Ultra-precision piezoelectric positioning platform |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201121696A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI463784B (en) * | 2012-11-21 | 2014-12-01 | Univ Nat Yunlin Sci & Tech | Quick positioning device with piezoelectric element |
TW201508294A (en) * | 2013-08-26 | 2015-03-01 | Chiuan Yan Technology Co Ltd | Bed type detection mechanism for detecting alignment and conductivity of optical element |
-
2009
- 2009-12-25 TW TW098145187A patent/TW201121696A/en unknown
Also Published As
Publication number | Publication date |
---|---|
TWI373390B (en) | 2012-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6859337B2 (en) | Optical-element mountings exhibiting reduced deformation of optical elements held thereby | |
CN103021472B (en) | Plane parallel type three-freedom-degree precise positioning work table | |
US8416386B2 (en) | Conforming seats for clamps used in mounting an optical element, and optical systems comprising same | |
WO2019052044A1 (en) | Two-dimensional three-degree-of-freedom micro-motion platform structure for high-precision positioning and measurement | |
US10151423B2 (en) | Kinematic mount | |
JP2008504141A (en) | Apparatus, system and method for changing substrate dimensions during nanoscale processing | |
CN103240755B (en) | Governor motion | |
US7451596B2 (en) | Multiple degree of freedom micro electro-mechanical system positioner and actuator | |
JP2013501249A (en) | Retaining device for optical elements | |
CN110289785B (en) | Three-degree-of-freedom piezoelectric directional adjustment device for power failure maintenance and platform control method | |
TWI495076B (en) | Mechanical isolation for mems electrical contacts | |
KR20120037999A (en) | Substrate holder system, substrate joining apparatus and method for manufacturing a device | |
TW201121696A (en) | Ultra-precision piezoelectric positioning platform | |
CN102114600B (en) | Ultra-Precise Piezoelectric Positioning Stage | |
CN109872767B (en) | Multi-source driven compliant parallel micromanipulator | |
CN104896268A (en) | Three degree-of-freedom large travel flexible nano positioning platform | |
WO2005102909A1 (en) | Actuator | |
JP5955964B2 (en) | Guidance for target processing tools | |
CN114865946A (en) | Micro-motion platform | |
WO2011059369A1 (en) | Provision of a normal force to electromechanical motor | |
US11579403B2 (en) | 2D bi-pod flexure design, mount technique and process for implementation | |
CN112865592B (en) | Parallel three-degree-of-freedom precision micro-motion mechanism of composite differential branched chain and working method thereof | |
WO2023022180A1 (en) | Electrostatic attraction device and electrostatic attraction method | |
JP2002184339A (en) | Braking mechanism and sample stage for electron microscope | |
CN119224967B (en) | Reflector adjustment device and motion stage positioning device |