[go: up one dir, main page]

TW201032955A - Polishing pads for chemical mechanical planarization and/or other polishing methods - Google Patents

Polishing pads for chemical mechanical planarization and/or other polishing methods Download PDF

Info

Publication number
TW201032955A
TW201032955A TW099100535A TW99100535A TW201032955A TW 201032955 A TW201032955 A TW 201032955A TW 099100535 A TW099100535 A TW 099100535A TW 99100535 A TW99100535 A TW 99100535A TW 201032955 A TW201032955 A TW 201032955A
Authority
TW
Taiwan
Prior art keywords
polishing pad
substrate
polishing
matrix
polymer
Prior art date
Application number
TW099100535A
Other languages
Chinese (zh)
Other versions
TWI516340B (en
Inventor
Michael R Oliver
Original Assignee
Novaplanar Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novaplanar Technology Inc filed Critical Novaplanar Technology Inc
Publication of TW201032955A publication Critical patent/TW201032955A/en
Application granted granted Critical
Publication of TWI516340B publication Critical patent/TWI516340B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Embodiments herein provide polishing pads that produce high post-polish planarity, such as on a wafer substrate or other substrates. Exemplary pads include a bulk matrix and embedded polymer particles. Pads according to embodiments herein may be used to remove material over a composite substrate, comprised of two or more different materials, or a substrate comprised of a single material.

Description

201032955 六、發明說明: 【發明所屬之技術領域】 本文之具體實例係關於用於化學機械平坦化及/或用於 其他拋光方法(包括拋光多種表面/基板)之拋光墊。 【先前技術】 化學機械平坦化(CMP )為半導體加工中用於平坦化 基板表面的一種方法。CMP材料移除典型地經由同時與基 板進行的化學及機械相互作用而發生。使用CMp可獲得高 度平坦的非常適用於許多半導體器件結構之表面。 拋光墊為用於CMP中的—種結構。襯塾可包含多種材 料且有時連隨光液(漿料)使絲作為基板表面之⑽ 界面。一般而言,抛光塾可用於ΓΉΰ 兀•蛩J用於CMP或用於其他拋光方法, 包括拋光多種基板之表面。 實施方式】 經由實施方式結合附圖將易於瞭解本文之 為簡化本說明#,相同參考數字表示相元實:。 之具體實例在附圖之圖形中以舉例而非限:…本文 明。 平例向非限制之方式加以說 部分的附圖 在以下實施方式中,參考形成本文之 3 201032955 其中相同數字始終表示相同零件,且其中經由實施本發明 之說明具體實例展示。應瞭解在不脫離所希望之範疇的情 況下,可利用其他具體實例且可作結構或邏輯改變◊因此月, 下列實施方式並非以限制意義提出,且具體實例之範疇由 附加之申請專利範圍及其等效物加以界定。 各個操作又可以可能有助於瞭解具體實例之方式描述 為多個不連續操作;但是’描述之順序不應詮釋為欲暗示 此等操作依順序而定。 本說明書可使用基於透視之描述,諸如上部/下部、後 部/前部及頂部/底部。此等描述僅用於便於論述且並非意欲 限制本文之具體實例之應用。 為達到本說明書之目的,「A/B」形式或「A及/或Bj 开> 式之短語意謂(A)、(B)或(A及B) 〇為達到本說明書之目 的,「A、B及c中之至少一個」形式之短語意謂(A)、(B)、 (C)、(A 及 B)、(A 及 C)、(B 及 C)或(A、B 及 C)。為達到 本說明書之目的’「(A)B」形式之短語意謂(B)或(AB),即A 為視情況可選要素。 本說明書可能使用短語「在一個具體實例中(in an embodiment)」或「在多個具艘實例中(in embodiments)」, 其各係指一或多個相同或不同的具體實例β此外,術語「包 含(comprising)」、「包括(including)」、「具有(having)」及其 類似術語當用於本文之具體實例時具有相同意義。 本文之具體實例提供在基板上產生高拋光後平坦度之 拋光墊。依據本文之具體實例之襯墊可用於在包含兩種或 201032955 兩種以上$同材料之複合基板,戈包含單-#料之基板上移 除材料。雖然CMP作為使用所述襯墊之一種適合方法而於 本文中提及,但該等襯墊與其他拋光方法(包括在其他基 板上使用)一起使用亦涵蓋於且屬於具體實例之範疇内。 在多個具體實例中,本文所述之拋光墊可用於拋光半 導體材料、晶圓、石夕、玻璃、金屬、微機電系統(mems )、 藍寶石等。 ❹ 在稱作銅CMP之—個例示性具體實例中,可移除介電 質之上之銅及障壁層,且當鋼導體間之介電質完全曝露時 可終止拋光。拋光亦可當移除所有銅且僅保留薄障壁層時 終止。 在多個具體實例中,拋光墊可由聚矽氡橡膠(亦稱作 石夕氧燒聚合物)製造。在一個具體實例中,㈣可具有諸 如至少部分由矽氧烷聚合物所構築之主體基質,且在一個 具體實例中,可含有不同材料之喪入粒子(諸如聚胺子酸 Q m } ° 在一個具體實例中,由梦氧烧聚合物材料所構築之襯 墊適度可壓縮,其儲存模數E•諸如在1χ1〇6帕斯卡(pa)之 -個數量級㈣内。在多個具體實例中1氧燒聚合物之 儲存模數E’及損失模數E"可在適度範圍内變化。#氧炫聚 合物之E,之代表性數值為約lxl〇6Pa,但是可在約ΐχΐ〇5ρ& 至1 X107 Pa之範圍内,同時適合的子範圍落在約2χΐ〇5 Pa 與約5x1〇6Pa之間且更尤其在約4xl〇5pa與約2χΐ〇6ρ&之 間。在-個具體實例中,儲存模數E,隨密度降低而降低。 5 201032955 在一個具體實例中,E”之相應適合的數值為約1χ1〇4 約lxl06Pa’諸如約lxl〇5Pae在多個具鱧實例中,上述2 值可適用於由其他主體基質材料所構築之襯墊。 在一個具體實例中,所提供之拋光墊包含含有儲存模 數為約lxl05Pa至約1><1〇71^且損失模數為約1><1〇4以至 約lx 106 Pa之材料之基質,及嵌入該基質内且平均粒徑為 大約10 μιη至1 〇〇 之聚合物粒子。 主體矽氧烷聚合物基質之機械性質主要決定襯墊之機 械回應。此等性質例如可藉由改變主體聚合物及/或嵌入粒 子之組成及/或密度加以控制。在多個具體實例中,£,及 皆可藉由改變製造矽氧烷聚合物時之起始材料之化學組成 而顯著改變。藉由添加粒子(諸如小煙霧狀二氧化矽粒子) 亦可修改此等性質。可添加此等粒子來提高e,。 當經壓縮時,依據具體實例之襯墊足夠緩慢地回彈以 產生具有低凹陷之低缺陷表面’丨因此在複合結構上獲得 高度平坦的經拋光表面。依據本文具體實例之襯塾為消耗 14的’其損失因數tan δ為約(M。該損失因數加δ為損失 棋數Ε,·與儲存棋㈣,之比率。在多個具體實例中,ta“可 至;為約0.05且在其他多個具體實例中可大於約〇」。 在-個具體實例中,所提供之抛光塾包含含有損失因 至少為G.G5之錢炫聚合物的基質,及複數個喪入該基 之聚口物粒子,該等聚合物粒子具有不同於該基質之 化學組成。 在一個具體實例中 梦氧燒聚合物可在襯塾表面 (尤 201032955 其在㈣表面可產生成品基板之高平坦度之局部緩慢回彈 處)產生機械回應。在一個使用石夕氧院聚合物之具體㈣ _,損失因數隨頻率增加(時間減少)而增加。此損失回 應產生襯塾之機械回應,在機械回應甲襯塾不能超越所抛 光之表面平面快速提供向上力,因此有益地抑制在所抛光 材料_產生形貌。對典型CMP操作條件而言,即使基板為 多種類型材料之複合物,此等性質亦導致具有低缺陷程度 之非常平坦的最終表面。 a 依據本文之具體實例之襯墊可用於拋光一種材料(諸 如矽或玻璃)之表面以及兩種或兩種以上材料(諸如半導 體之CMP中所遇材料)之表面。有利的抛光特徵經由以下 成為可能:(1)當壓縮襯墊時,導致每單位面積局部力之 小量額外增加之主體基質的m⑺使得在拋光平面 上不可充分地推壓襯墊中該等聚合物粒子之襯墊的性質。 襯墊之機械性質限制該襯墊驅使其自身進入所拋光材料且 Φ 限制其超越拋光平面充分地推壓漿料粒子。此等性質之組 合降低襯墊超越拋光平面提供強大局部壓力之能力,此為 在所拋光表面中產生缺陷之關鍵機制。 雖然矽氧烷聚合物可由基於聚二甲基矽氧烷(pdms) 之前驅體形成,但起始鏈之長度需要時可加以修改。在一 個具體實例中,矽氧烷鏈上某部分之甲基側基可經其他部 分取代。此取代可影響矽氧烷鏈間之交聯量。其他因素(諸 如所用之觸媒及固化方法)亦可影響交聯之化學交互作 用。對大多數拋光方法而言,需要高交聯度。因此,依據 201032955 本文之教示,對特定應用而言,可調配梦氧炫材料之化學 組成以最優化E’及E”。 除以上所論述之化學方法外,在多個具體實例中,矽 氧烧聚合物亦可製造成海絲或發泡體之形式,例如使用包 含在聚合物基質内之氣孔(p0Ckets of gas )。在一個具體實 例中,適合的氣體可為空氣、氮氣或其他適合的氣體。例 如,藉由足量添加發泡化學物質至起始材料,可產生足夠 的氣體。此可導致互連之氣孔,從而產生稱為開放氣室式 發泡體(open-celled f0am)之發泡體。因此,能夠添加不 同量之發/包劑至起始材料供調配寬範圍發泡體密度用。在 一個具體實例中,發泡體可經由在適合的固化溫度下在固 化方法中所發生的反應而產生。 存在寬範圍之矽氧烷聚合物之最終結構,其可依據本 文所述之具體實例加以製造。此等聚合物之其他細節可見 於 <Sz/oia«e 户〇/少》^5, Clarson 及 Semiyen (1993)中,其内容 以引用之方式併入本文中。 在一個具體實例中,襯墊可具有諸如至少部分由矽氧 烷聚合物所構築之主體基質。依據一個具體實例之襯墊之 主體基質可為矽氧烷聚合物,包括例如聚二甲基矽氧烷及 其化學變體(諸如交聯及/或氟化聚二甲基矽氧烷),或一種 以上聚合物之組合。 在一個具體實例中,主體基質亦可含有不同材料(諸 如聚胺曱酸酯)之粒子。在此等具體實例中,當此等粒子 曝露於襯墊表面時,其可能為該襯墊與待拋光之基板或與 201032955 所用之抛光液/裝料相互作用之主要或唯一位置。適合的粒 子-般具有足夠的表面能且可進一步用於增強概塾與基板 間之抛光界面。在一個具體實例令,該等粒子磨損可慢於 主體材料’從*該等粒子充當與基板接觸之主要來源。 在一個具體實例中,較佳粒子類型為聚合物,諸如廣 泛用作CMP襯墊之主體材料的聚胺甲酸酯。在一個具體實 例中,$胺甲酸醋可用作襯塾與基板間發生拋光相互作用 之處的表面材料。在多個具體實例中,亦可使用其他類型 響之粒子,諸如聚服、聚碳酸酿、聚喊、聚醋、經化聚醋、 聚砜、聚笨乙烯、聚醯胺、聚丙烯醯胺、聚丙烯、聚乙烯、 聚丁二稀、聚氣乙婦、聚甲基丙埽酸甲醋、聚乙稀醇或对 綸。可根據粒子在襯墊·粒子_晶圓界面及/或襯墊_粒子-漿料 界面之性質選擇適合的粒子。 在個具體實例中,聚合物粒子之平均粒徑為約10/im 至100 /m’諸如50 /rn至70 ,例如6〇 μιηβ在一個具體 實例中’聚合物襯塾界定襯墊體積,其中聚合物粒子占襯 墊體積之約10%至30%,諸如約2〇%。 在多個具體實例中,聚合物粒子可隨機分布於基質 中,或進一步可相對均勻地分布於整個基質中。 在一個具體實例中,在襯墊基質中可存在粒度之分 布。在一個具體實例中,可選擇或控制粒子為所需尺寸或 在所需尺寸範圍内。例如,可過濾粒子以移除某一尺寸以 上及/或以下之粒子,諸如30 μιη以下。 在多個具體實例中,需要時可將一或多種粒子類型/組 201032955 成用於本文之具體實例。使用不同粒子類型可能有利例 如對於在單一基板或不同基板中拋光一種以上類型之材 料。在多個具體實例中,該(等)粒子材料可與待使用之 抛光液/漿料及/或待拋光之基板進行匹配以最大化襯塾之 特定拋光效應。在一個具體實例中,大於某一直經之粒子 可用於拋光具有各種特徵之表面以確保該等粒子在拋光期 間不會過分延伸入此等特徵中(例如半導體上一條線)。 對拋光僅有一種材料(諸如矽或玻璃)之表面而言, 所拋光之物件不存在暗示限制襯墊中之聚合物粒子尺寸之 特徵。在此具體實例中,關於粒度之任何限制作為拋光方 法自身優化之一部分而出現’亦即拋光速率及拋光均勻性 可由概塾中聚合物粒子尺寸及密度調節。此控制可關於包 括速度、成本及拋光優值(諸如均勻性)之參數優化總體 拋光方法。 依據一個具體實例,嵌入襯墊粒子提供襯墊、基板及 漿料粒子間的接觸,點’或對不含粒子之衆料而言,提供襯 墊與所拋光基板間的接觸點。在多個具體實例中,藉由以 此方式使用喪入粒子’襯墊之某些功能可分別地加以控 制。在一個具體實例中,彳能為概塾表面上主要接觸點之 概塾聚合物粒子與聚料粒子及所拋光之基板相互作用。可 選擇襯塾聚合物粒子來獲得高CMp材料移除率或其他⑽ 性能基準(諸如低缺陷產生)。 在一個具體實例中,襯墊之主體機械回應可藉由使用 一或多種具有不同機械性質之不同材料而分別地加以調 201032955 整。 用於CMP拋光墊之一種例示性所需材料為矽氧烷聚合 物。其低儲存模數E,及高損失因數tanS可在經抛光之複合 基板上產生高度平坦之最終結構。第二種材料亦可以例如 約10%至30%,諸如約1〇%、15%、2〇%或3〇%之密度包括 於聚合物基質中。在一個具體實例中,二氧化石夕填料粒子 或其他填料粒子亦可包括於主體基質中以改變某些主體機 械性質,諸如儲存模數E,。 由PDMS所形成之矽氧烷聚合物一般疏水其表面能 大約為20 mN/m。在一個具體實例中’ CMp需要使用拋光 液或漿料以濕潤相互作用之襯墊表面從而提供經改良之 CMP操作。在-個具體實例中,濕㈣光發生處之局部概 墊表面為重要的。對以上所註釋之聚合物粒子而言,其具 有比矽氧烷基質更高的表面能。例如使用表面能在4〇 至50 mN/m之範圍内的聚胺甲酸酯粒子,在拋光作用發生 之處出現經改良之局部濕潤。其他聚合物粒子類型(諸如 聚碳酸酯、聚酯等)亦在拋光處理部位提供局部更高的表 面能。 在一個具體實例中,矽氧烷聚合物自身可藉由化學修 飾PDMS起始材料而更加親水。經聚醚或其他基團取代 PDMS主鏈中一或多個甲基可產生更高的表面能,且因此可 使聚合物更親水。 因此存在多種方法可用於具體實例中來改良基於矽氧 烷聚合物之襯墊之表面可濕性。此等方法包括:丨)經由化 201032955 學添加/取代以修飾矽氧烷基質材料,2)合併更高表面能之 粒子進入襯墊材料中,從而導致非均質結構,及3)粗化概 塾之表面。 在多個具體實例中,製造矽氧烷聚合物物件之方法包 括(但不限於)壓延法、壓縮成型法、喷霧法、分散法及 擠壓法。 一種極其適用於製造用於CMP之拋光墊的方法為壓縮 成型法。在壓縮成型方法中,未固化之聚矽氧橡膠前驅體 以及拋光粒子(諸如聚胺甲酸酯)可置於模中,接著可覆 ❹ 蓋且加熱該模。在一個具體實例中,模之頂面可在其中具 有襯墊凹槽設計。襯墊形成後,其可在獨立烘箱中加以固 化。 依據一個具體實例之極其適用於製造用於CMp之拋光 墊之另一種方法為壓延法。在此方法中,將聚矽氧聚合物 原料通過幾組滚筒(每組三或四個),且將該材料擠出成為 具有良好控制之厚度的薄片。例如,可使用此方法製造超 過-米寬度之薄片。退出最後一組滾筒後,可將該聚合物 〇 薄片置放於固化烘箱t ’在其令對薄片實施受控制之熱固 化。固化循環之時間及溫度可由合併成為初始化學物質混 合物之引入矽氧烷聚合物化學物質及固化劑來決定。最後 兩個滾筒間之間隔決定薄片厚度。薄片可加以固化(例如 在凹槽圖案化後)或可用作成型方法之預成型坯。 在一個具體實例中,CMP襯墊之較佳厚度範圍在1〇密 耳㈤)至鹰密耳之範圍内。此厚度範圍可例如由魔延 12 201032955 法或成型法獲得。 在-個具體實例中,妙氧烧聚合物在此厚度範圍(ι〇 密耳至鳩密耳)内具有很高的可換性。在—個具體實例 中,一種改良平面硬度之方法可為諸如在壓延方法中,當 矽氧烷聚合物經過最後一對滾筒時,將其置放於相對僵硬 的支撐材料上。一種適於此具體實例之材料為約〇 〇2〇"=、 已清洗且熱固之聚醋布。由如上所述之壓延方法獲得的結 ❹構可合併可滲透布作為兩層或多層結構之底層。在多個具 體實例中,適合的材料(諸如聚醋、玻璃、耐論、螺榮或 棉)可用於提供面内硬度、滲透性及/或熱穩健性及化學穩 健性。 ^ 在一適合的壓延系統中,可創建依據具體實例之多層 結構。例如,在一個具體實例中,起初可創建具有提供高 面内硬度之布層及無凹槽矽氧烷聚合物層的結構。在一個 具體實例中’接著可將多層結構部分固化且隨後當添加第 ⑩一矽氧烷聚合物層至結構頂部時,用作最後滾筒間之底 層可能為與漿料及晶圓或其他待拋光表面接觸之層的此 頂層在一個具體實例中可有凹槽或無凹槽且可具有不同於 基層之組成。 在一個具體實例中,不同材料之多層在跨越晶圓表面 (且不僅僅是在晶圓複合表面上之兩種材料間的界面上) 之長距離中可用於控制襯墊CMP平坦化性質。在多個具體 實例中’可獲得幾毫米的平坦化長度。關於可與本文具體 實例—起併入之多層化襯墊之其他詳情可見於美國專利第 13 201032955 5,212,910號中’其全部内容以引用之方式併入本文中。 在多個具趙實例中,CMP襯塾可有凹槽或有其他各種 構型之圖案以改良抱光性能。在多個具體實例中,間距尺 寸及凹槽深度尺寸可在寬範圍内變化。在一個具體實例 中,適合的凹槽可為例如約Q (m英对至約英对深及 /或寬。在-個具體實例中,適合的凹槽(需要時可呈現多 種囷案)彳間隔開約0.020英吋至約〇 5英吋。 —凹槽可以若干方式形成於石夕氧燒聚合物襯塾中,諸如 經由成型法。在-個具體實例中,未固化之聚合物可足夠 軟從而可由囷案化滾筒或印模於其中壓印出凹槽。在一個 具體實例中,對經壓縮成型之襯塾而t,模之頂部内表面 可具有凸起圖案’因此當襯塾退出該模時對其加以圖案 化。顯然’該圖案可為模表面上之凸起結構所創建的任何 圖案,例如正方形圖案、六邊形圖案或同心凹槽。 圈1說明依據-例示性具體實例之基板加工裝置之透 視圖》 用於化學機械拋光之系統100可包括一旋轉壓板1〇2, 其經由一驅動軸104驅動。抛光塾106連接至壓板102之 頂面。拋光毁料108自槳料分配臂112上之一或多個孔110 在襯墊上加以分配。晶圓載體114固持晶圓(具有扣環) U6e待平坦化一側面向下的晶圓116對著拋光墊^⑽之表 面118擠壓且由載體驅動轴12❶旋轉。 襯墊210以截面展示於圈2中且表示一例示性具體實 例。襯墊210之頂面216為拋光或平坦化表面。襯墊21〇 201032955 之主艘212由基質材料及聚合物粒子構成。襯墊210建置 於支撐布層220上。凹槽214切入襯墊210之表面216以 用於適當的漿料流動。襯墊21〇可以黏合層218連接至壓 板表面。 襯塾210之近頂面216位置23❶之例示性擴展截面展 示於圖3中。該襯墊由矽氧烷聚合物基質3〇2及聚合物粒 子304構成。襯墊表面216具有一些曝露的聚合物粒子3〇6。 圈4展示依據一個具體實例具有兩層基質材料之襯塾 結構。襯墊400由與材料之下層或基底襯墊4〇2 (諸如由發 泡體或類似結構或功能材料所構築)接觸之支撐層4〇4 (諸 如由聚酯、玻璃、耐綸、嫘縈或棉等所構築)構成❶在一 個具體實例中,下層402為可壓縮的且可幫助補償襯墊高 度之變化。在一個替代具體實例中,可缺少下層4〇2。上層 406為襯墊表面408形成於其中之主體基質材料(諸如由矽 氧烷聚合物所構築)。雖然凹槽41〇形成於第二層中,但在 ❿-個具體實例中其可進—步延伸人—或多個下層。整體結 構具有黏合層412以提供例如與壓板表面之接觸。晶圓表 面上材料任何點處之局部拋光速率隨晶圓與襯墊間向下力 增加及晶圓與襯墊間相對速度增加而增加。其他參數(諸 如概势類型及結構以及漿料化學組成及粒子)亦決定材料 移除率。關於此等參數之其他詳情參見韻⑽心, Planarization of Semiconductor Materials^ M. R. 〇liver (.^),201032955 VI. Description of the Invention: [Technical Field of the Invention] Specific examples herein relate to polishing pads for chemical mechanical planarization and/or for other polishing methods, including polishing various surfaces/substrates. [Prior Art] Chemical mechanical planarization (CMP) is a method for planarizing a substrate surface in semiconductor processing. CMP material removal typically occurs via simultaneous chemical and mechanical interactions with the substrate. The use of CMp results in a highly flat surface that is well suited for many semiconductor device structures. The polishing pad is a structure used in CMP. The lining may comprise a plurality of materials and sometimes the phosgene (slurry) is used as the (10) interface of the substrate surface. In general, polished enamel can be used for CMP or for other polishing methods, including polishing the surface of a variety of substrates. BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be readily understood by the following description in conjunction with the accompanying drawings. Specific examples are given by way of example and not limitation in the drawings of the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS In the following embodiments, reference is made to the accompanying drawings, which are incorporated herein by reference. It should be understood that other specific examples may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following embodiments are not intended to be limiting, and the scope of the specific examples Its equivalent is defined. The various operations may be described as a plurality of discrete operations in a manner that may be helpful in understanding a particular example; however, the order of description should not be construed as an implied limitation. This specification may use perspective-based descriptions such as upper/lower, rear/front and top/bottom. These descriptions are only for ease of discussion and are not intended to limit the application of the specific examples herein. For the purposes of this specification, the phrase "A/B" or "A and/or Bj open" means "(A), (B) or (A and B)" for the purposes of this specification," The phrase "at least one of A, B and c" means "A", (B), (C), (A and B), (A and C), (B and C) or (A, B and C). For the purposes of this specification, the phrase "(A)B" means "B" or (AB), that is, A is an optional element. The specification may use the phrase "in an embodiment" or "in an embodiment", each of which means one or more of the same or different specific instances. The terms "comprising", "including", "having" and the like have the same meaning when used in the specific examples herein. Specific examples herein provide a polishing pad that produces a high degree of polished flatness on a substrate. A liner according to a specific example herein can be used to remove a material on a substrate comprising two or more composite materials of the same type or 201032955. While CMP is mentioned herein as a suitable method of using the liner, the use of such liners with other polishing methods, including those used on other substrates, is also encompassed by and within the scope of specific examples. In various embodiments, the polishing pads described herein can be used to polish semiconductor materials, wafers, glass, metal, micro-electromechanical systems (mems), sapphire, and the like. In an exemplary embodiment referred to as copper CMP, the copper and barrier layers over the dielectric can be removed and the polishing can be terminated when the dielectric between the steel conductors is fully exposed. Polishing can also be terminated when all copper is removed and only the thin barrier layer is retained. In various embodiments, the polishing pad can be fabricated from a polybenzazole rubber (also known as a sulphuric acid polymer). In one embodiment, (d) may have a host matrix such as at least partially constructed from a decyl alkane polymer, and in one embodiment, may contain particles of different materials (such as polyamine acid Q m } ° In one embodiment, the liner constructed from the dream oxygenated polymer material is moderately compressible, and has a storage modulus E such as in the order of magnitude (4) of 1χ1〇6 Pascals (pa). In a number of specific examples 1 The storage modulus E' and the loss modulus E" of the oxy-fired polymer can be varied within a moderate range. The representative value of the #oxygen polymer E is about lxl〇6Pa, but can be about ρ5ρ& In the range of 1 X107 Pa, a suitable sub-range falls between about 2χΐ〇5 Pa and about 5x1〇6Pa and more particularly between about 4xl〇5pa and about 2χΐ〇6ρ& In a specific example, The storage modulus E decreases as the density decreases. 5 201032955 In a specific example, the corresponding suitable value of E" is about 1χ1〇4 about lxl06Pa' such as about lxl〇5Pae in a plurality of examples, the above 2 values Can be applied to other host matrix materials In one embodiment, the polishing pad is provided to contain a storage modulus of from about 1 x 105 Pa to about 1 < 1 〇 71 ^ and a loss modulus of about 1 > 1 〇 4 to about l x 106 Pa a matrix of material, and polymer particles embedded in the matrix having an average particle size of from about 10 μm to about 1 Å. The mechanical properties of the host siloxane polymer matrix primarily determine the mechanical response of the liner. Controlled by varying the composition and/or density of the host polymer and/or embedded particles. In various embodiments, both, and by varying the chemical composition of the starting material in the manufacture of the siloxane polymer Significantly changed. These properties can also be modified by the addition of particles, such as small smoke-like cerium oxide particles. These particles can be added to increase e. When compressed, the liner is rebounded slowly enough according to the specific example. To produce a low-defect surface with low depressions, thus obtaining a highly flat polished surface on the composite structure. The lining according to the specific example herein is consuming 14 with a loss factor tan δ of about (M. Adding δ is the ratio of the number of lost games, and the stored chess (four). In many specific examples, ta is "to go; it is about 0.05 and in other specific examples, it can be greater than about 〇". In an embodiment, the polishing crucible is provided comprising a matrix comprising a polymer having a loss of at least G.G5, and a plurality of agglomerate particles eroding into the substrate, the polymer particles having a chemical different from the matrix Composition. In one embodiment, the Dream Oxygenated Polymer can produce a mechanical response on the surface of the lining (especially at 201032955 where the (4) surface can produce a localized slow rebound of the high flatness of the finished substrate). In a specific (four) _ using the Oxygen Institute polymer, the loss factor increases with increasing frequency (time reduction). This loss responds to a mechanical response of the lining, which provides a high upward force in the mechanical response of the surface of the lining that does not exceed the surface of the polished surface, thus beneficially suppressing the appearance of the material being polished. For typical CMP operating conditions, even if the substrate is a composite of multiple types of materials, these properties result in a very flat final surface with a low degree of defect. a Liner according to the specific examples herein can be used to polish the surface of a material such as tantalum or glass and the surface of two or more materials such as those encountered in CMP of a semiconductor. Advantageous polishing features are made possible by: (1) when compressing the liner, resulting in a small increase in the local force per unit area, the m(7) of the host matrix is additionally increased such that the polymerization in the liner is not sufficiently pushed on the polishing plane The nature of the spacer of the particles. The mechanical nature of the liner limits the liner from itself into the material being polished and Φ limits its ability to push the slurry particles sufficiently beyond the polishing plane. The combination of these properties reduces the ability of the liner to provide a strong localized pressure beyond the polishing plane, which is a key mechanism for creating defects in the polished surface. Although the decane polymer can be formed from a precursor based on polydimethyl siloxane (pdms), the length of the starting chain can be modified as needed. In one embodiment, the methyl pendant group of a moiety on the decane chain can be substituted with other moieties. This substitution can affect the amount of crosslinking between the oxane chains. Other factors, such as the catalyst used and the curing method, can also affect the chemical interaction of the crosslinks. For most polishing methods, a high degree of crosslinking is required. Therefore, according to the teachings of 201032955, for a specific application, the chemical composition of the oxygen material can be adjusted to optimize E' and E". In addition to the chemical methods discussed above, in a number of specific examples, helium oxygen The calcined polymer can also be produced in the form of a seawater or a foam, for example using pores of gas contained in a polymer matrix. In one embodiment, a suitable gas can be air, nitrogen or other suitable gas. For example, by adding a sufficient amount of foaming chemistry to the starting material, sufficient gas can be generated. This can result in interconnected pores, resulting in an open cell-like foam (open-celled f0am). Thus, it is possible to add different amounts of hair/package to the starting material for blending a wide range of foam densities. In one embodiment, the foam can be in a curing process at a suitable curing temperature. The resulting reaction is produced. There is a wide range of final structures of the alkane polymer, which can be made according to the specific examples described herein. Other details of such polymers can be found in &l t;Sz/oia«e 〇/少》^5, Clarson and Semiyen (1993), the contents of which are incorporated herein by reference. In one particular example, the pad may have, for example, at least partially The host matrix of the alkane polymer. The host matrix of the liner according to one embodiment may be a siloxane polymer, including, for example, polydimethyl methoxy oxane and chemical variants thereof (such as cross-linking and/or fluorination) Polydimethyloxane, or a combination of more than one polymer. In one embodiment, the host matrix may also contain particles of different materials, such as polyamine phthalates. In these specific examples, when When the particles are exposed to the surface of the liner, it may be the primary or unique location of the liner interacting with the substrate to be polished or with the polishing fluid/charge used in 201032955. Suitable particles generally have sufficient surface energy and Further used to enhance the polishing interface between the outline and the substrate. In a specific example, the particles may wear more slowly than the host material 'from the * particles as the main source of contact with the substrate. In a specific example, The particle type is a polymer such as a polyurethane widely used as a host material for a CMP pad. In one embodiment, a urethane sulphate can be used as a surface material where polishing interaction occurs between the liner and the substrate. In various specific examples, other types of particles can also be used, such as poly-coated, poly-carbonated brewing, poly-spoken, poly- vinegar, sulphurized polyacetal, polysulfone, polystyrene, polyamine, polypropylene hydrazine. Amine, polypropylene, polyethylene, polybutylene, polyglycol, polymethyl methacrylate, polyethylene or fibril. Depending on the particle at the pad/particle interface and/or The properties of the liner-particle-slurry interface select suitable particles. In a specific example, the average particle size of the polymer particles is from about 10/im to 100 /m' such as from 50 / rn to 70, such as 6 〇 μιηβ In one embodiment, the 'polymer liner' defines the liner volume, wherein the polymer particles comprise from about 10% to about 30%, such as about 2%, by volume of the liner. In various embodiments, the polymer particles can be randomly distributed in the matrix or can be further distributed relatively evenly throughout the matrix. In one embodiment, a distribution of particle sizes may be present in the liner matrix. In one embodiment, the particles can be selected or controlled to a desired size or within a desired size range. For example, the particles can be filtered to remove particles of a size above and/or below, such as below 30 μηη. In various embodiments, one or more particle types/groups 201032955 can be used as specific examples herein. The use of different particle types may be advantageous, for example, for polishing more than one type of material in a single substrate or in different substrates. In various embodiments, the (or equivalent) particulate material can be matched to the polishing fluid/slurry to be used and/or the substrate to be polished to maximize the specific polishing effect of the liner. In one embodiment, particles larger than a certain length can be used to polish surfaces having various features to ensure that the particles do not excessively extend into such features during polishing (e.g., a line on a semiconductor). For polishing the surface of only one material, such as tantalum or glass, the polished article does not exhibit the characteristic of limiting the size of the polymer particles in the liner. In this particular example, any limitation with respect to particle size occurs as part of the self-optimization of the polishing method', i.e., polishing rate and polishing uniformity can be adjusted by the polymer particle size and density in the outline. This control optimizes the overall polishing method with parameters including speed, cost, and polishing figure of merit, such as uniformity. According to one embodiment, the intercalated spacer particles provide contact between the liner, the substrate, and the slurry particles, or the point of contact between the liner and the substrate being polished. In a number of specific examples, certain functions of the spacers used in this manner can be separately controlled. In one embodiment, the enthalpy can interact with the polymeric particles and the polished substrate for the primary contact points on the surface of the surface. The lining polymer particles can be selected to achieve high CMp material removal rates or other (10) performance benchmarks (such as low defect generation). In one embodiment, the mechanical response of the body of the liner can be adjusted separately by using one or more different materials having different mechanical properties. An exemplary desired material for a CMP polishing pad is a decane polymer. Its low storage modulus E and high loss factor tanS produce a highly flat final structure on the polished composite substrate. The second material may also be included in the polymer matrix, for example, at a density of from about 10% to about 30%, such as from about 1%, 15%, 2%, or 3%. In one embodiment, the silica dioxide particles or other filler particles may also be included in the host matrix to modify certain host mechanical properties, such as storage modulus E. The siloxane polymer formed by PDMS is generally hydrophobic with a surface energy of about 20 mN/m. In one embodiment, CMp requires the use of a polishing fluid or slurry to wet the interacting pad surface to provide an improved CMP operation. In a specific example, the surface of the surface of the wet (four) light is important. For the polymer particles noted above, they have a higher surface energy than the oxoalkyl group. For example, using polyurethane particles having a surface energy in the range of 4 Å to 50 mN/m, improved localized wetting occurs where polishing occurs. Other polymer particle types (such as polycarbonate, polyester, etc.) also provide locally higher surface energy at the polishing site. In one embodiment, the siloxane polymer itself can be more hydrophilic by chemically modifying the PDMS starting material. Substitution of one or more methyl groups in the PDMS backbone via a polyether or other group produces higher surface energy and, therefore, makes the polymer more hydrophilic. Thus, a variety of methods are available for use in specific examples to improve the surface wettability of a silicone based polymer based liner. These methods include: 丨) adding/substituting to modify the oxyalkylene material, 2) combining higher surface energy particles into the liner material, resulting in a heterogeneous structure, and 3) roughening The surface. In various embodiments, methods of making a siloxane polymer article include, but are not limited to, calendering, compression molding, spraying, dispersion, and extrusion. One method that is extremely suitable for the manufacture of polishing pads for CMP is compression molding. In the compression molding method, an uncured polyoxyxene rubber precursor and polishing particles such as a polyurethane may be placed in a mold, and then the lid may be covered and the mold heated. In one embodiment, the top surface of the mold can have a pad groove design therein. Once the liner is formed, it can be cured in a separate oven. Another method that is extremely suitable for making a polishing pad for CMp according to a specific example is calendering. In this method, the polyoxymethylene polymer material is passed through several sets of rolls (three or four per set) and the material is extruded into sheets having a well controlled thickness. For example, this method can be used to make sheets that are over-meter width. After exiting the last set of rolls, the polymer crucible sheet can be placed in a curing oven t' where it is subjected to controlled thermal curing of the sheets. The time and temperature of the curing cycle can be determined by the introduction of the oxirane polymer chemistry and curing agent which are incorporated into the initial material mixture. The spacing between the last two rollers determines the thickness of the sheet. The sheet can be cured (e.g., after the groove is patterned) or can be used as a preform for the forming process. In one embodiment, the preferred thickness of the CMP pad ranges from 1 mil (five) to the eagle mil. This thickness range can be obtained, for example, by the magic extension 12 201032955 method or molding method. In a specific example, the oxy-oxygenated polymer has a high degree of exchangeability in this thickness range (m mil to mil). In one embodiment, a method of improving the planar hardness can be, for example, in a calendering process in which a naphthenic polymer is placed on a relatively stiff support material as it passes through the last pair of rolls. A suitable material for this specific example is a 〇 〇 2 〇 "=, cleaned and thermoset vinegar cloth. The structure obtained by the calendering method as described above may incorporate a permeable cloth as a bottom layer of a two-layer or multi-layer structure. In a number of specific examples, suitable materials (such as polyester, glass, sin, sir, or cotton) can be used to provide in-plane hardness, permeability, and/or thermal robustness and chemical robustness. ^ In a suitable calendering system, a multi-layer structure based on a specific example can be created. For example, in one embodiment, a structure having a layer providing a high in-plane hardness and a layer of a non-grooved alkane polymer can be initially created. In one embodiment, 'the multilayer structure can then be partially cured and then when the 10th oxane polymer layer is added to the top of the structure, the underlying layer used between the final rolls may be with the paste and wafer or other to be polished. This top layer of the layer of surface contact may or may not have a groove in one embodiment and may have a different composition than the base layer. In one embodiment, multiple layers of different materials can be used to control pad CMP planarization properties over long distances across the wafer surface (and not just at the interface between the two materials on the wafer composite surface). A flattening length of a few millimeters can be obtained in a number of specific examples. Further details regarding the multi-layered liners that may be incorporated in the specific examples herein are found in U.S. Patent No. 13, 2010, the entire disclosure of which is incorporated herein by reference. In a number of examples, the CMP liner may have grooves or other patterns of various configurations to improve glare performance. In various embodiments, the pitch size and groove depth dimension can vary over a wide range. In one embodiment, a suitable groove can be, for example, about Q (m-pair to about-in-depth and/or wide. In a particular example, a suitable groove (a variety of cases can be presented when needed). The spacing is from about 0.020 inches to about 5 inches. - The grooves can be formed in a number of ways in the diarrhea polymer liner, such as via molding. In a particular example, the uncured polymer can be sufficient Soft so that the groove can be embossed by the smear roller or stamp. In one embodiment, for the compression-molded lining and t, the top inner surface of the die can have a raised pattern 'so when the lining exits The mold is patterned. It is apparent that the pattern can be any pattern created by the raised structure on the surface of the mold, such as a square pattern, a hexagonal pattern, or a concentric groove. Circle 1 illustrates the basis - an illustrative example "Perspective view of the substrate processing apparatus" The system 100 for chemical mechanical polishing may include a rotary platen 1 2 driven by a drive shaft 104. The polishing crucible 106 is coupled to the top surface of the platen 102. The polishing stock 108 is self-propelled On the material distribution arm 112 Or a plurality of holes 110 are dispensed on the liner. The wafer carrier 114 holds the wafer (with a buckle) U6e The wafer 116 facing the flattened side faces down against the surface 118 of the polishing pad (10) and is carried by the carrier The drive shaft 12 is rotated. The gasket 210 is shown in cross section in the circle 2 and represents an exemplary embodiment. The top surface 216 of the liner 210 is a polished or planarized surface. The main vessel 212 of the liner 21〇201032955 is comprised of a matrix material and The polymer particles are constructed. The liner 210 is formed on the support fabric layer 220. The groove 214 cuts into the surface 216 of the liner 210 for proper slurry flow. The liner 21 can be bonded to the surface of the platen by an adhesive layer 218. An exemplary expanded cross-section of the top surface 216 of the crucible 210 at position 23 is shown in Figure 3. The liner is comprised of a siloxane polymer matrix 3〇2 and polymer particles 304. The liner surface 216 has some exposed polymer. Particles 3〇6. Circle 4 shows a lining structure having two layers of matrix material according to one specific example. The liner 400 is made of a layer underneath the material or a base liner 4〇2 (such as by a foam or similar structural or functional material). Build) contact support layer 4〇4 Constructed from polyester, glass, nylon, crepe or cotton, etc. In one embodiment, the lower layer 402 is compressible and can help compensate for variations in the height of the liner. In an alternative embodiment, it may be absent The lower layer 4 〇 2. The upper layer 406 is the host matrix material (such as constructed of a siloxane polymer) in which the pad surface 408 is formed. Although the groove 41 〇 is formed in the second layer, in the ❿ - a specific example The step may extend the person-or a plurality of lower layers. The unitary structure has an adhesive layer 412 to provide, for example, contact with the surface of the platen. The local polishing rate at any point on the surface of the wafer varies from wafer to pad. The force increases and the relative speed between the wafer and the pad increases. Other parameters, such as the type and structure of the profile and the chemical composition of the slurry and the particles, also determine the material removal rate. For additional details on these parameters, see Rhythm (10), Planarization of Semiconductor Materials^ M. R. 〇liver (.^),

SpdngerVerlag,其全部内容以引用之方式併入本文中。, 雖然圖2及圈4所展示之觀塾有凹槽.,但在多個具艘 15 201032955 之 凹槽外μ#、可無㈣或無㈣而構築,或除所表示& " 所表示之凹槽,襯墊亦可具有其他表面圖案。 文之'、體實例提供具有低表面凹陷之拋光。此低表 面凹陷可經由兩種作用機制之一或二者實現。 表 μ哲丨:低表面凹陷之第一種作用機制係基於基質之機械 * 。入低Ε’有損襯墊之聚合物粒子在拋光期間不會快 回彈從而向下延伸且於凹處中拋光。聚合物粒子在襯墊 可將其向下壓入凹虑你母十斗士,Τ 處很深之前在水平方向遇到凹入結構之 彳結果窄凹處而言’拋光聚合物粒子之表面未到 達凹處底部且無材料進—步加以移除。此機制尤其適用於 具有小橫向尺寸(例如小於2G㈣)之凹處,此時拋光方向 實質上跨過此短尺寸。 當行進方向沿長得多的尺寸(諸如長導線)時,另一 機制可起作用》 引起低表面凹陷之第二種作用機制係基於襯墊聚合物 之尺寸在多個具趙實例中,聚合物拋光粒子相對其 抛光的窄結構具有大尺寸。例如,聚合物粒子可具有20㈣❹ 左右之直徑’同時所拋光之長線非常窄。在當前技術水準 上,此等長線寬度小於5 /πη»因此,當粒子在窄結構之上 時其不能向下延伸很遠進入彼結構中之凹處。此限制機 制適用於粒子沿所拋光結構之長尺寸具有相對速度之組 件。對半導體結構中之導線而言,此方向沿導體長度。 兩種限制機制皆有助於限制表面凹陷,尤其在長尺寸 與短尺寸極為不同之凹入結構之情況下。經由拋光^保持 16 201032955 形狀的聚合物大粒子,兩種機制皆可能實現。此與 合物襯墊形成對比,在抛光期間標準聚合物襯塾中:窄突 點在很高壓力下得以塵縮。當具有高E,之此等突點到達: $時,該等突點很快向下延伸入該凹處。來自文獻之結果 表明對於使用標準襯塾及標準方法之加工而言突 大約為1〇〇〇 A至2〇〇〇 A。 在一個具體實例中,聚合物粒子之平均直徑可為 ❹墊拋光之線的線寬的至少約2倍至20倍(諸如約2、4:6、 8、10、15、20倍或更高倍數)。 圏5說明與基板相互作用之概塾及粒子之例示性圖 解觀塾502具有聚合物粒子5〇4。聚合物粒子…與形成 於基板508中之後506 Μ脑 線506接觸。例如,線506可為金屬線且 508可為介電材料。如可所見,粒子⑽相對於線寬 之尺寸阻止粒子504 ιέι IT zt /丄 ^ 下延伸入線506超越某個深度移除 材料。 Φ 隸為達到描述較佳具體實例之目的已於本文中說明 =述某些具體實例,但一般技術者應瞭解,可在不脫離 下用推測達到相同目的之廣泛多種替代及/或同 習此适姑另或實施例替代所展示及所描述之具體實例。熟 I !!術者將易於瞭解本文可以各種各樣之方式加以實 4案意欲涵蓋本文所論述之具體實例的任何改型 此’顯然希望具體實例僅受申請專利範圍及其 等效物限制。 17 201032955 【圖式簡單說明】 圖1說明依據一個代表性具體實例之基板加工裝置之 透視圖; 圖2說明依據一個具體實例之襯墊之剖面圖; 圖3說明依據一個具體實例之圖2之襯墊之一部分的 剖面展開圖; 圖4說明依據一個具體實例之襯墊之剖面圖;及 圖5說明依據一個具體實例之襯墊及粒子與基板間相 互作用之例示性圖解。 【主要元件符號說明】 無 18Spdnger Verlag, the entire contents of which are incorporated herein by reference. Although the view shown in Figure 2 and Circle 4 has a groove, it is constructed in the presence of a plurality of grooves 15 201032955, which may be constructed without (4) or without (4), or in addition to the representation &" The groove is shown, and the liner may have other surface patterns. The body example provides a polishing with low surface depressions. This low surface depression can be achieved via one or both of the two mechanisms of action. Table μ Zhe: The first mechanism of action for low surface depressions is based on matrix machinery*. The polymer particles that are low in the 'damaged liner' do not rebound quickly during polishing to extend downward and polish in the recess. The polymer particles in the liner can be pressed down into the recesses of your mother, the squats are deep, and the concave structure is encountered in the horizontal direction. The result is that the surface of the polished polymer particles does not reach. The bottom of the recess is free of material to be removed. This mechanism is particularly useful for recesses having a small lateral dimension (e.g., less than 2G (four)) where the polishing direction substantially spans this short dimension. When the direction of travel is along a much longer dimension (such as a long wire), another mechanism can work. The second mechanism of action that causes low surface depressions is based on the size of the liner polymer. The object polishing particles have a large size relative to their polished narrow structure. For example, the polymer particles may have a diameter of about 20 (four) ’ while the long line polished is very narrow. At the current state of the art, such long line widths are less than 5 / π η » so that when the particles are above a narrow structure they cannot extend down far into the recesses in the structure. This limiting mechanism applies to components in which the particles have a relative velocity along the long dimension of the structure being polished. For wires in a semiconductor structure, this direction is along the length of the conductor. Both restriction mechanisms help to limit surface depressions, especially in the case of recessed structures with very long and short dimensions. Both mechanisms are possible by polishing the large particles of the polymer in the shape of 16 201032955. This contrasts with the composite liner in the standard polymer liner during polishing: the narrow protrusions are dust-shrinking at very high pressures. When there is a high E, the bumps reach: $, the bumps quickly extend down into the recess. The results from the literature indicate approximately 1 〇〇〇A to 2 〇〇〇 A for processing using standard linings and standard methods. In one embodiment, the average diameter of the polymer particles can be at least about 2 to 20 times the line width of the wire polished by the mattress (such as about 2, 4: 6, 8, 10, 15, 20 or more). multiple).圏5 illustrates an overview of the interaction with the substrate and an exemplary diagram of the particles. The solution 502 has polymer particles 5〇4. The polymer particles... are in contact with the cerebral line 506 after being formed in the substrate 508. For example, line 506 can be a metal line and 508 can be a dielectric material. As can be seen, the size of the particles (10) relative to the line width prevents the particles 504 ιέι IT zt / 丄 ^ from extending into the line 506 beyond a certain depth to remove material. Φ has been described herein for the purpose of describing preferred embodiments, but certain ones will be described, but one of ordinary skill in the art will appreciate that a wide variety of alternatives and/or habits can be used to achieve the same purpose without departing from the scope of the invention. Alternative embodiments or embodiments may be substituted for the specific examples shown and described. It will be apparent to those skilled in the art that the present invention may be embodied in a variety of ways. The present invention is intended to cover any modifications of the specific examples discussed herein. 17 201032955 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a substrate processing apparatus according to a representative specific example; FIG. 2 is a cross-sectional view showing a spacer according to a specific example; FIG. 3 is a diagram showing FIG. A cross-sectional view of a portion of the liner; Figure 4 illustrates a cross-sectional view of the liner in accordance with one embodiment; and Figure 5 illustrates an illustrative illustration of the interaction of the liner and particles with the substrate in accordance with one embodiment. [Main component symbol description] None 18

Claims (1)

201032955 七、申請專利範圍: l一種抛光墊,其包含: 包含損失因數tan (δ)至少為〇 〇5之矽氧烷聚合物之 基質;及 傲入該基質内之複數個聚合物粒子,該聚合物粒子 具有不同於該基質之化學組成。 2. 如申請專利範圍第1項之拋光墊,其中該基質具有約 1 xl〇 Pa至約lxi〇7 pa之儲存模數及約ιχ1〇4 pa至約ιχ1〇6 罾Pa之損失模數。 3. 如申請專利範圍第1項之拋光墊,其中該拋光墊界定 概塾體積’且該聚合物粒子占該襯墊體積之約1〇%至3〇%。 ' 4.如申請專利範圍第1項之拋光墊,其中該聚合物粒子 • 包含以下至少一種:聚胺曱酸酯、聚脲、聚碳酸酯、聚醚、 聚酯、聚砜、聚苯乙烯、聚醯胺、聚丙烯醯胺、聚丙 聚? 缔、聚丁二稀、聚氣乙稀、聚甲基丙烯酸曱酯、聚乙 鲁埽醇及耐綸。 5.如申請專利範圍第1項之拋光墊’其進一步包含與該 基質耦接之支撐層。 、6.如申請專利範圍第5項之拋光墊’其中該支擇層包含 下至少一種:聚酯、玻璃、耐綸、嫘縈及棉。 7. 如申請專利範圍第1項之拋光墊’其中該基質在其表 面包含至少一個凹槽或圖案。 8. —種拋光塾,其包含: 包含儲存模數為約ixl05 Pa至約lx1〇7 p 且損失模 201032955 數為約Ixl04pa至約lxl06Pai材料之基質;及 嵌入該基質内且平均粒徑為約10][1111至100μη1之複 數個聚合物粒子。 9. 如申請專利範圍第8項之拋光墊,其中該基質材料之 損失模數為約lxl〇5pa。 10. 如申請專利範圍第8項之拋光墊,其中該基質材料 包含至少為0.05之損失因數tan (δ)。 11. 如申請專利範圍第8項之拋光墊,其中該基質材料 包含至少為0.1之損失因數tan (δ)。 12·如申請專利範圍第8項之拋光墊,其中該拋光墊具 有10密耳(mil)至200密耳之厚度。 13. 如申請專利範圍第8項之拋光墊,其中該聚合物粒 子係隨機分布於該基質中。 14. 如申請專利範圍第8項之拋光墊,其中該聚合物粒 子相對均勻地分布於整個基質中。 15. 如申請專利範圍第8項之拋光墊,其中該拋光墊界 疋襯墊體積,且該聚合物粒子占該襯墊體積之約丨至 30%。 16. 如申請專利範圍第8項之拋光墊,其中該基質材料 包含矽氧烷聚合物。 17. 如申請專利範圍第8項之拋光墊’其中該基質材料 包含交聯聚二曱基矽氧烷。 18. 如申請專利範圍第8項之拋光墊,其中該基質材料 包含氟化聚二曱基矽氧烷。 201032955 19. 如申請專利範圍第8項之拋光墊,其中該基質進一 步包含二氧化石夕填料粒子。 20. 如申請專利範圍第8項之拋光墊,其中該聚合物粒 子包含以下至少一種:聚胺甲酸酯、聚脲、聚碳酸酯、聚 醚、聚酯、聚砜、聚苯乙浠、聚醯胺、聚丙烯醯胺、聚丙 烯、聚乙烯、聚丁二烯、聚氣乙烯、聚甲基丙烯酸甲酯、 聚乙稀醇及耐論。 21. 如申請專利範圍第8項之抛光墊,其中該聚合物粒 ® 子包含經化聚S旨粒子。 22. 如申請專利範圍第21項之拋光墊,其中該羥化聚酯 粒子具有約60 μιη之平均粒徑。 - 23.如申請專利範圍第21項之拋光墊,其中該拋光墊界 定襯塾體積’其中該羥化聚酯粒子占該襯墊鱧積之約20%。 24.如申請專利範圍第8項之拋光墊,其進一步包含與 該基質耦接之支撐層。 ❹ 25.如申請專利範圍第24項之拋光墊,其中該支撐層包 含以下至少一種:聚酯、玻璃、耐綸、嫘縈及棉。 26. 如申請專利範圍第8項之抛光塾,其中該基質在其 表面上包含至少一個凹槽或圖案。 27. —種抛光基板表面的方法,其包含: 提供基板;及 使該基板與拋光墊接觸,藉以接觸時相對該拋光墊 及該基板之另一者移動該拋光墊及/或該基板,該拋光塾 包含: 21 201032955 包含儲存模數為約lxl〇5pa至約】xi〇7pa且損失模 數為約1X104Pa至約1x106pa之材料之基質;及 我入該基質内且平均粒徑為約1〇㈣至刚阳之聚 合物粒子。 28.如申請專利範圍帛27項之方法’其中該基板具有待 抛光線’該線具有線寬’且其中該聚合物粒子之平均粒徑 為該待拋光線之線寬的至少約2倍至2〇倍。 、圖式· (如次頁) ❹ 22201032955 VII. Patent application scope: l A polishing pad comprising: a matrix comprising a siloxane polymer having a loss factor tan (δ) of at least 〇〇5; and a plurality of polymer particles proud of the matrix, The polymer particles have a chemical composition different from the matrix. 2. The polishing pad of claim 1, wherein the substrate has a storage modulus of from about 1 x 1 〇 Pa to about 1 xi 〇 7 pa and a loss modulus of from about 1 χ1〇4 pa to about χ1〇6 罾Pa. 3. The polishing pad of claim 1, wherein the polishing pad defines an average volume' and the polymer particles comprise from about 1% to about 3% by volume of the liner. 4. The polishing pad of claim 1, wherein the polymer particles comprise at least one of the following: polyamine phthalate, polyurea, polycarbonate, polyether, polyester, polysulfone, polystyrene , Polyamide, Polyacrylamide, Polyacrylamide? Condensed, polybutadiene, polyethylene, methacrylate, polyethylene, and nylon. 5. The polishing pad of claim 1 further comprising a support layer coupled to the substrate. 6. The polishing pad of claim 5, wherein the supporting layer comprises at least one of: polyester, glass, nylon, crepe and cotton. 7. The polishing pad of claim 1, wherein the substrate comprises at least one groove or pattern on its surface. 8. A polishing crucible comprising: a substrate comprising a material having a storage modulus of from about ixl05 Pa to about 1 x 1 〇 7 p and a loss mode 201032955 of from about Ixl04pa to about 1 x 106 Pai; and embedding in the matrix and having an average particle size of about 10] [1111 to 100μη1 of a plurality of polymer particles. 9. The polishing pad of claim 8, wherein the matrix material has a loss modulus of about lxl 〇 5pa. 10. The polishing pad of claim 8 wherein the matrix material comprises a loss factor tan (δ) of at least 0.05. 11. The polishing pad of claim 8 wherein the matrix material comprises a loss factor tan (δ) of at least 0.1. 12. The polishing pad of claim 8 wherein the polishing pad has a thickness of from 10 mils to 200 mils. 13. The polishing pad of claim 8, wherein the polymer particles are randomly distributed in the matrix. 14. The polishing pad of claim 8, wherein the polymer particles are relatively evenly distributed throughout the matrix. 15. The polishing pad of claim 8 wherein the polishing pad defines a liner volume and the polymer particles comprise from about 30% of the volume of the liner. 16. The polishing pad of claim 8 wherein the matrix material comprises a siloxane polymer. 17. The polishing pad of claim 8 wherein the matrix material comprises crosslinked polydimethyl fluorene. 18. The polishing pad of claim 8 wherein the matrix material comprises fluorinated polydecyl decane. 201032955. The polishing pad of claim 8, wherein the substrate further comprises particles of cerium oxide. 20. The polishing pad of claim 8, wherein the polymer particles comprise at least one of the following: polyurethane, polyurea, polycarbonate, polyether, polyester, polysulfone, polystyrene, Polyamide, polypropylene decylamine, polypropylene, polyethylene, polybutadiene, polyethylene, polymethyl methacrylate, polyethylene glycol and resistance. 21. The polishing pad of claim 8 wherein the polymer granule comprises a granule. 22. The polishing pad of claim 21, wherein the hydroxylated polyester particles have an average particle size of about 60 μηη. The polishing pad of claim 21, wherein the polishing pad defines a volume of the substrate wherein the hydroxylated polyester particles comprise about 20% of the padding. 24. The polishing pad of claim 8 further comprising a support layer coupled to the substrate. ❹ 25. The polishing pad of claim 24, wherein the support layer comprises at least one of the following: polyester, glass, nylon, crepe and cotton. 26. The polishing cartridge of claim 8 wherein the substrate comprises at least one groove or pattern on its surface. 27. A method of polishing a surface of a substrate, comprising: providing a substrate; and contacting the substrate with a polishing pad, thereby moving the polishing pad and/or the substrate relative to the polishing pad and the other of the substrates upon contact, The polishing crucible comprises: 21 201032955 comprising a substrate having a storage modulus of from about lxl 〇 5pa to about xi 〇 7pa and having a loss modulus of from about 1X104Pa to about 1x106pa; and I enter the matrix and have an average particle size of about 1〇. (4) Polymer particles to Gangyang. 28. The method of claim 27, wherein the substrate has a line to be polished 'the line has a line width' and wherein the average particle size of the polymer particles is at least about 2 times the line width of the line to be polished to 2 times. , schema · (such as the next page) ❹ 22
TW099100535A 2009-01-12 2010-01-11 Polishing pads for chemical mechanical planarization and/or other polishing methods TWI516340B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14400409P 2009-01-12 2009-01-12

Publications (2)

Publication Number Publication Date
TW201032955A true TW201032955A (en) 2010-09-16
TWI516340B TWI516340B (en) 2016-01-11

Family

ID=42317192

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099100535A TWI516340B (en) 2009-01-12 2010-01-11 Polishing pads for chemical mechanical planarization and/or other polishing methods

Country Status (3)

Country Link
US (1) US20100178853A1 (en)
TW (1) TWI516340B (en)
WO (1) WO2010081084A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510328B (en) * 2010-05-03 2015-12-01 Iv Technologies Co Ltd Base layer, polishing pad including the same and polishing method
JP5945874B2 (en) * 2011-10-18 2016-07-05 富士紡ホールディングス株式会社 Polishing pad and manufacturing method thereof
JP5789634B2 (en) * 2012-05-14 2015-10-07 株式会社荏原製作所 Polishing pad for polishing a workpiece, chemical mechanical polishing apparatus, and method for polishing a workpiece using the chemical mechanical polishing apparatus
US9421666B2 (en) * 2013-11-04 2016-08-23 Applied Materials, Inc. Printed chemical mechanical polishing pad having abrasives therein
JP6341758B2 (en) * 2014-05-30 2018-06-13 株式会社クラレ Polishing pad
KR20230106863A (en) * 2022-01-07 2023-07-14 삼성전자주식회사 Polishing pad, chemichal mechanical polishing apparatus including the same, and method for fabricating semiconductor device using the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749485B1 (en) * 2000-05-27 2004-06-15 Rodel Holdings, Inc. Hydrolytically stable grooved polishing pads for chemical mechanical planarization
US6860802B1 (en) * 2000-05-27 2005-03-01 Rohm And Haas Electric Materials Cmp Holdings, Inc. Polishing pads for chemical mechanical planarization
KR100877542B1 (en) * 2001-11-13 2009-01-07 도요 고무 고교 가부시키가이샤 Polishing pads and manufacturing method thereof
US6913517B2 (en) * 2002-05-23 2005-07-05 Cabot Microelectronics Corporation Microporous polishing pads
US7311862B2 (en) * 2002-10-28 2007-12-25 Cabot Microelectronics Corporation Method for manufacturing microporous CMP materials having controlled pore size
US7704125B2 (en) * 2003-03-24 2010-04-27 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
KR20040093402A (en) * 2003-04-22 2004-11-05 제이에스알 가부시끼가이샤 Polishing Pad and Method of Polishing a Semiconductor Wafer
US7435161B2 (en) * 2003-06-17 2008-10-14 Cabot Microelectronics Corporation Multi-layer polishing pad material for CMP
US7074115B2 (en) * 2003-10-09 2006-07-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad
JP2005131732A (en) * 2003-10-30 2005-05-26 Ebara Corp Grinding device
US8075372B2 (en) * 2004-09-01 2011-12-13 Cabot Microelectronics Corporation Polishing pad with microporous regions
TWI385050B (en) * 2005-02-18 2013-02-11 Nexplanar Corp Customized polishing pads for cmp and methods of fabrication and use thereof
JP5193595B2 (en) * 2005-09-22 2013-05-08 株式会社クラレ Polymer material, foam obtained therefrom and polishing pad using the same
US7371160B1 (en) * 2006-12-21 2008-05-13 Rohm And Haas Electronic Materials Cmp Holdings Inc. Elastomer-modified chemical mechanical polishing pad
KR101399516B1 (en) * 2007-01-15 2014-05-27 도요 고무 고교 가부시키가이샤 Polishing pad and method for producing the same

Also Published As

Publication number Publication date
US20100178853A1 (en) 2010-07-15
TWI516340B (en) 2016-01-11
WO2010081084A3 (en) 2010-10-21
WO2010081084A2 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
US9951054B2 (en) CMP porous pad with particles in a polymeric matrix
TWI675869B (en) Uv curable cmp polishing pad and method of manufacture
JP4344083B2 (en) Polishing article containing fluorochemical agent for wafer surface modification
TWI308097B (en) Surface textured microporous polishing pads
TWI788070B (en) Polishing articles and integrated system for manufacturing chemical mechanical polishing articles
TWI385050B (en) Customized polishing pads for cmp and methods of fabrication and use thereof
US8272922B2 (en) Method of polishing a substrate
JP4916638B2 (en) Base pad for polishing pad
JP5671554B2 (en) Organic fine particle loaded polishing pad, and method for producing and using the same
JP4959901B2 (en) Polishing pad with groove for chemical mechanical planarization
JP5143528B2 (en) Polishing pad
TW200534960A (en) Polishing pad and method of making same
TW201032955A (en) Polishing pads for chemical mechanical planarization and/or other polishing methods
JP2011526218A (en) Polishing pad having porous element and method for producing and using the same
TW200524023A (en) Materials and methods for low pressure chemical-mechanical planarization
TW200539986A (en) Low surface energy CMP pad
KR101563204B1 (en) Polishing pad with controlled void formation
US8303375B2 (en) Polishing pads for chemical mechanical planarization and/or other polishing methods
CN113524023A (en) Method of forming a levered porous polishing pad
WO2020138198A1 (en) Polishing pad
TW491758B (en) Printing of polishing pads
KR101666477B1 (en) Preparation method of poly-urethane mounting pad and poly-urethane mounting pad
James CMP polishing pads
KR20250047156A (en) Method of polishing using chemical mechanical polishing pad
JP2025058929A (en) Chemical Mechanical Polishing Pads

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees