[go: up one dir, main page]

TW201023381A - Photovoltaic cell - Google Patents

Photovoltaic cell Download PDF

Info

Publication number
TW201023381A
TW201023381A TW097148447A TW97148447A TW201023381A TW 201023381 A TW201023381 A TW 201023381A TW 097148447 A TW097148447 A TW 097148447A TW 97148447 A TW97148447 A TW 97148447A TW 201023381 A TW201023381 A TW 201023381A
Authority
TW
Taiwan
Prior art keywords
phase
light
layer
glass
photovoltaic cell
Prior art date
Application number
TW097148447A
Other languages
Chinese (zh)
Inventor
Yuan-Chieh Ding
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097148447A priority Critical patent/TW201023381A/en
Publication of TW201023381A publication Critical patent/TW201023381A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention relates to a photovoltaic cell including a photo-voltage module configured for absorbing incidence radiation and converting radiation energy to electrical energy. The photo-voltage module has an incidence surface. Installed on the incidence surface is a glass layer doped with europium therein. The glass layer consists of at least two phases. The neighboring phases form a plurality of phase interfaces between each other. The size of each phase is less than 500nm. The phase interfaces are capable of refracting or reflecting incidence radiation to the europium. The solar cell can improve a conversion efficiency of solar radiation energy.

Description

201023381 九、發明說明: 【發明所屬之技術領域】 . 本發明涉及光電轉化技術領域,特別涉及― 種光伏電 .池。 电 【先前技術】 太陽能電池係利用可再生環保能源太陽& 巧月b而實現称 電,即將太陽之輻射能藉由半導體材料轉變為電_ & w “Grown junction GaAs solar cell” , Shen,c c *’ Pearson G.L.; Proceedings of the IEEE,Volume 64,iSs ’ 19了6 Page(s):384-385)。太陽能電池板之結構主 rcn ❷ 轉化層。該光電轉化層由p型半導體材料和1^型5 光電 料形成之PN結組成。當太陽光照射到光電轉化層之導體材 材料上時,該光電轉化層吸收太陽光中與該半之半導體 應波段之光。而該被吸收光中之光子與組成半體材料對 及價電子發生碰撞,產生電子-空穴對,從而使體之原子 電子-空穴對之形式轉變為電能實現光電轉換過=能以產生 接於P型半體材料層和N型半導體材料、,並對外 載供電。 屬弓丨線之負 目前,太陽能電池通常包括CdTe或妙基半導 作之光電轉化層,其最多只能吸收波長為4〇〇至ι1〇〇η^ = 間之光。而該波長範圍以外之太陽光會被該光電轉化層反 射,並不能被轉化為電能。由此,該部分之太陽光被浪費, 使得太陽能電池之光轉換效率較低。 5 201023381 【發明内容】 • 有鑑於此,提供一種光伏電池,以解決以上問題,並 • 增加光伏電池對光之轉換效率實屬必要。 以下將以實施例說明一種光伏電池。 一種光伏電池,其包括光伏轉換模組,用於吸收光能 並將其轉化為電能。該光伏轉換模組具有光入射面。該光 入射面上設置有摻雜銪元素之玻璃層。該玻璃層之微觀組 ® 織包括至少兩個分相。該不同之分相之間形成相界面,該 每個分相之相尺寸小於500nm。該相界面用於折射或反射 入射光至銪元素。 與先前技術相比,該光伏電池之玻璃層包括銪元素與 至少兩個分相,該分相間之相界面可將未直接射至銪元素 之光經折射或反射後射向銪元素,使銪元素可將與該銪元 素對應之短波長之光轉換為長波長之光,增加光之轉化 _率。從而使入射光經過該玻璃層後,其部分波長被增加後, 進入光伏轉換模組,增加被光伏轉換模組吸收光之波段範 圍,從而提高光伏電池之光轉換效率。 【實施方式】 下面將結合附圖及實施例對本技術方案實施例提供之 光伏電池作進一步詳細說明。 請參閱圖1,本技術方案實施例提供之光伏電池10, 其包括光伏轉換模組11及設置於光伏轉換模組11之玻璃 201023381 層12,使入射光經玻璃層12吸收後進入光伏轉換模組11。 ' 該光伏轉換模組11可由一個或複數光伏轉換單元組 ' 成,或為複數光伏轉換單元組成之陣列模組。另,光伏轉 • 換模組11可為單面或多面接收入射光之電池模組,即具有 至少一光入射面。本實施例中,光伏轉換模組11由一光伏 轉換單元組成,其包括透明導電層111、集電極層112及設 置於透明導電層111與集電極層112之間之光電轉化層 113。該光電轉化層113具有一入光面101及與入光面101 ® 相對之表面102。該光電轉化層113用於將射入該光電轉化 層113之光中與該光電轉化層113對應波長之光(即光能) 轉化為電能。該光電轉化層113可採用矽基半導體材料、 III-V族或II-VI族化合物組成之PN結製成。該表面102亦 可為光入射面,即:該光電轉化層113具有相對設置之兩 個光入射面,以供光同時入射表面102與入光面101。當 然,該光電轉化層113上與入光面101及表面102相接之 @侧面亦可設置為光入射面。 本實施例中,透明導電層111沈積於入光面101,該集 電極層112沈積於表面102,用於分別與負載或外部電路之 兩極電氣連通,將經光電轉化層113轉化之電能傳輸至該 負載或外部電路,以實現向該負載或外部電路供電之目 的。該透明導電層111可為平板玻璃表面藉由物理或者化 學鍍膜之方法均勻之鍍上一層透明之導電氧化物薄膜形 成。該氧4匕物包括 CdO、ZnO、ZnO : M ( M=A1,Ga,In, F)等。該集電極層112可為鋁或其他金屬板。 201023381 使用中,光射入透明導電層111並進入光電轉化層 '113,然後光電轉化層113將與該光電轉化層113對應波長 • 之光轉化為電能,使該電能經透明導電層111與集電極層 112輸出實現供電。 該玻璃層12中摻雜有銪元素。該玻璃層12之微觀組 織包括至少兩個分相。該不同之分相之間形成相界面,該 每個分相之相尺寸小於500nm,用於折射或反射入射光至 銪元素,使入射光中短波長之光轉換為長波長之光,再射 ®入光伏轉換模組。該相尺寸係藉由計算出複數d值(參閱 圖12)之平均值所得。 該玻璃層12藉由熱處理摻雜銪元素之玻璃,使該摻雜 销元素之玻璃發生旋節分解(spinodal decoposition)而獲 得。該熱處理之溫度於該摻雜銪元素之玻璃之玻璃轉變溫 度(Tg)與結晶溫度(Tc)之間,才能防止該玻璃層12熱處 理後轉化為晶態而失去玻璃透光之特性。該熱處理之保溫 _時間需要根據熱處理之溫度而決定,以確保發生旋節分解 所形成之分相尺寸小於500nm為宜。例如,如果熱處理之 溫度較高(靠近結晶溫度),即可提供相應較高之能量給該 摻雜銪元素之玻璃,使旋節分解以較快之速率發生,同時 形成之分相會於高溫下繼續長大,使分相尺寸超過500nm, 從而形成透光率較低之玻璃層12。相反,如果熱處理之溫 度較低(靠近玻璃轉化溫度),即只能提供相應較低之能量 給該摻雜銪元素之玻璃,使旋節分解以較慢之速率發生, 必須需要較長之時間才能形成本技術方案所需之分相。 201023381 入射光射入玻璃層12時,會與分相間之相界面發生折 ' 射或反射,使未直接射至銪元素之光經折射或反射後射向 _ 銪元素,可增加光之轉化率。然而,如果每個分相之相尺 • 寸大於500nm (接近先前技術中太陽能電池吸收可見光中 之波長),經銪元素轉換為長波長之光與該每個分相發生折 射或反射之幾率大,使被轉化後之光大部分被吸收,從而 降低轉化後光之出射率。相反,如果每個分相之相尺寸下 於500nm,被轉化後之光不會或只有少部分被吸收,相比 ®增加光之轉化率而言,降低轉化後光之出射率可被忽略。 該玻璃層12藉由熱處理摻雜銪元素之矽酸鹽玻璃而獲 得,從而形成富矽酸鹽分相。本實施例中,玻璃層12藉由 熱處理摻雜三價銪元素硼矽酸鹽玻璃而獲得。該玻璃層12 之分相為富硼酸鹽相、呈海綿狀分佈於富硼酸鹽相中之富 硼酸鹽相。銪元素中50wt%銪分佈於富硼酸鹽相中。該玻 璃層12用於將光中波長為350至470nm之入射光轉化為 ❿570至720nm之出射光。該lOOmol之硼矽酸鹽玻璃中至多 摻雜氧化銪2.5mol。當然,該玻璃層12亦可於外侧面設置 抗反射層,用於減少光入射時於入射界面發生全反射。該 硼矽酸鹽玻璃主要包括氧化矽(Si02)、氧化硼(B2〇3)與 鹼金屬氧化物(如:氧化鈉Na20)。該摻雜於硼矽酸鹽玻 璃内之銪元素以氧化銪(Eu203)之形式存於。 以下將以摻雜不同含量Eu3+之硼矽酸鹽玻璃(見表1) 為例,說明本實施例中玻璃層12之製備方法與熱處理方 法,幫助理解本發明,但不限於本實施例所列舉之製備方 201023381 法。 ' 該摻雜Eu3+之硼矽酸鹽玻璃之組成採用以下分子式表 •示 59Si02-33B2〇3-8Na2〇-xEu2〇3(x=〇.5〜2.5mol%),即, • 59mol 之 Si02、33mol 之 B2〇3 與 8mol 之 Na2〇 形成之摩爾 品質為lOOmol之棚石夕酸鹽玻璃中摻雜xmol之Eu2〇3。表1 中列出五個摻雜不同濃度Eu3+之硼矽酸鹽玻璃之玻璃樣 品。根據表1列出之五個玻璃樣品之成分分別稱量出相應 品質之Si02、H3B〇3、Na2C03與Eu203,並將其混合均勻 ❹後放入白金坩堝内以10°C/min(攝氏度/分鐘)升溫至1400 至1500°C,保溫30min,並將熔融態之混合物洗鑄於預熱 鐵質模具上急冷形成最終之玻璃樣品,再經退火處理消除 應力。經測量該五個玻璃之Tg約為570°C,Tc約為780T;。 因此,將該五個玻璃樣品放入已升溫至570至750°C 之熱處理爐内,經保溫〇至400min後立即拿取玻璃樣品冷 卻至室溫。 表1玻璃樣品之成分(mol%) 玻璃樣品 玻璃組成 59N-33B-8S-xEu203 Si02 B2O3 Na20 Eu2〇3 (a) χ=0·5 56.05 35.79 8.16 0.27 (b) x=1.0 56.18 35.61 8.21 0.85 (c)x=1.5 56.84 35.00 8.16 1.00 (d) x=2.0 57.02 34.87 8.11 1.11 (e) x=2.5 56.68 35.12 8.2 2.47 其中,N代表Si02,B代表B2〇3,S代表Na20。 201023381 請參閱圖2,本實施例中製作玻璃層12之五個玻璃樣 • 品(a) - ( e)(列於表1中)之於650°C下保溫12h後,經 掃描電鏡(Scanning Electron Microscope,SEM)觀察之微 ' 觀結構。該五個玻璃樣品經熱處理後均形成分相,經元素 檢測後證明,圖中襯度較亮之為富硼酸鹽相、襯度較暗且 呈海綿狀分佈於富硼酸鹽相中之為富硼酸鹽相。其中,銪 元素大部分分佈於富硼酸鹽相中。即:玻璃層12包括至少 兩個分相及銪元素。根據圖3中分相之尺寸與銪元素濃度 ❿之關係來看,該分相大小約於160nm與230nm之間。 請參閱圖4,進一步對五個樣品中之(b)與(d)分別 於570°C與650°C之條件下保溫不同之時間進行熱處理, 並檢測出相應之玻璃層12中分相之尺寸。可看出,於570°C 保溫時間小於100h時,(b )樣品之分相之尺寸小於150nm。 而對於(d)樣品來講,於650°C保溫時間小於50h時,分 相之尺寸小於250nm。因此,無論銪元素含量為多少,只 _要根據熱處理溫度(於Tg與Tc之間)相應地增加或縮短 保溫時間,均可獲得玻璃層12。優選地,分相之尺寸小於 或等於lOOnm時(即:於650°C保溫時間小於210min), 光轉化效率較高。 請參閱圖5及圖6,由於玻璃層12轉化光之機理相同, 因此本實施例中只列出玻璃樣品(b)於650°C保溫時間小 於40min時之吸收光譜與溫時間小於210min時之放射光 譜。根據分析結果可看出’該玻璃樣品(b )經保溫20min 與40min後與未熱處理時相同,均依序於577nm、531nm、 11 201023381 525nm、464nm、413nm、393nm、376nm 與 361nm 出現吸 • 收峰,即該玻璃樣品(b)經熱處理後仍可吸收577nm、 _ 531nm、525nm、464nm、413nm、393nm、376nm 與 361nm ' 波長之光。 相應地,僅採用464nm當作螢光光譜之激發源(即, 入射光源)繼續對該玻璃樣品(b )進行螢光吸收光譜分析, 以獲得不同保溫時間之玻璃樣品之放射光譜。請參閱圖6, 根據分析結果,該玻璃樣品(b)經保溫不同時間後與未熱 ❹處理時相同,均依序於578nm、591nm、615nm、652nm與 700nm觀察到放射峰,即該玻璃樣品(b)經熱處理後仍可 放射出 578nm、591nm、615nm、652nmy 與 700nm 波長之 光。與入射光譜之波長( 464nm)相比,射出光之波長均得 到相應之增加。相類似地,如果採用其他波長之螢光光譜 作為激發源時,亦同樣可獲得比入射光譜對應波長大之& 譜,利於光電轉化層113吸收。 φ 請參閱圖7至圖11,為五個玻璃樣品(a)-(e)於65〇ee 保溫不同時間後所獲得之放射光譜之強度。由此可看出, 於保溫400min以内之五個玻璃樣品之放射光譜強度均大於 未經熱處理之五個玻璃樣品之放射光譜強度。即:熱處理 有利於增加五個玻璃樣品之射出光譜之強度。 综上所述,經過熱處理之該五個玻璃樣品(a) ·( e) 不僅可吸收波長範圍為350至470nm内之光,並將其至少 轉化為波長範圍於570至720nm之光,還可增加轉化後之 光之射出強度,可用於將光中波長較短之350至47〇nm < 12 201023381 光轉化為波長較長之570至720nm之光,並提高其轉化效 ' 率。採用該玻璃樣品製作之玻璃層12設置於光伏電池10 • 時,可使該光伏電池10吸收350至470nm範圍内之波長, •從而提高光利用率。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化,皆 ®應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案實施例提供之光伏電池結構示意圖。 圖2係本技術方案實施例提供之於650°C保溫12h後 獲得之不同銪含量之玻璃層之SEM微觀結構圖。 圖3係圖2中玻璃層中矽酸鹽相之相尺寸隨銪元素濃 度之變化關係曲線。 ^ 圖4係不同溫度下玻璃層中矽酸鹽相之相尺寸隨保溫 時間之變化關係曲線。 圖5係於650°C玻璃層(含lmol%Eu203)之吸收光譜 隨保溫時間之變化關係曲線。 圖6係於650°C玻璃層(含lmol%Eu203)之發射光譜 隨保溫時間之變化關係曲線。 圖7至圖11係於650°C不同銪含量之玻璃層之發射光 譜強度隨保温之變化關係曲線。 圖12係本技術方案實施例提供之玻璃層中分相之示意 13 201023381 圖。 ,【主要元件符號說明】 光伏電池 10 光伏轉換模組 11 透明導電層 111 集電極層 112 光電轉化層 113 ❿入光面 101 表面 102 14201023381 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to the field of photoelectric conversion technology, and in particular to a photovoltaic battery. [Prior Art] Solar cells use the renewable environmental energy sun & smart moon b to achieve the power, that is, the solar radiation can be converted into electricity by semiconductor materials _ & w "Grown junction GaAs solar cell", Shen, Cc *' Pearson GL; Proceedings of the IEEE, Volume 64, iSs '19 6 Page(s): 384-385). The structure of the solar panel is the main rcn ❷ conversion layer. The photoelectric conversion layer is composed of a p-type semiconductor material and a PN junction formed of a type 5 photoelectric material. When sunlight is irradiated onto the conductor material of the photoelectric conversion layer, the photoelectric conversion layer absorbs light in the sunlight and the semiconductor band of the semiconductor. The photons in the absorbed light collide with the constituent half-materials and the valence electrons to generate electron-hole pairs, so that the form of the atomic electron-hole pairs of the body is converted into electrical energy to realize photoelectric conversion. It is connected to the P-type half material layer and the N-type semiconductor material, and is supplied with external power. The negative of the bow line Currently, solar cells usually include CdTe or a light-based conversion layer of the base, which can only absorb light with a wavelength between 4〇〇 and ι1〇〇η^. Sunlight outside this wavelength range is reflected by the photoelectric conversion layer and cannot be converted into electrical energy. As a result, the sunlight of this portion is wasted, so that the light conversion efficiency of the solar cell is low. 5 201023381 [Invention] In view of this, a photovoltaic cell is provided to solve the above problems, and it is necessary to increase the conversion efficiency of photovoltaic cells to light. A photovoltaic cell will be described below by way of example. A photovoltaic cell comprising a photovoltaic conversion module for absorbing light energy and converting it into electrical energy. The photovoltaic conversion module has a light incident surface. The light incident surface is provided with a glass layer doped with germanium. The microscopic group of the glass layer comprises at least two phase separations. A phase interface is formed between the different phases, and the phase size of each phase is less than 500 nm. The phase interface is used to refract or reflect incident light to the erbium element. Compared with the prior art, the glass layer of the photovoltaic cell comprises a strontium element and at least two phase separations, and the phase interface between the phases can refract or reflect the light that is not directly incident on the erbium element to the 铕 element, so that 铕The element converts short-wavelength light corresponding to the erbium element into long-wavelength light, increasing the conversion rate of light. Therefore, after the incident light passes through the glass layer, part of the wavelength is increased, and then enters the photovoltaic conversion module to increase the wavelength range of the light absorbed by the photovoltaic conversion module, thereby improving the light conversion efficiency of the photovoltaic cell. [Embodiment] Hereinafter, a photovoltaic cell provided by an embodiment of the present technical solution will be further described in detail with reference to the accompanying drawings and embodiments. Referring to FIG. 1 , a photovoltaic cell 10 according to an embodiment of the present invention includes a photovoltaic conversion module 11 and a layer 12 of glass 201023381 disposed on the photovoltaic conversion module 11 to absorb incident light through the glass layer 12 and enter the photovoltaic conversion mode. Group 11. The photovoltaic conversion module 11 can be formed by one or a plurality of photovoltaic conversion unit groups or an array module composed of a plurality of photovoltaic conversion units. In addition, the photovoltaic conversion module 11 can be a battery module that receives incident light on one or more sides, that is, has at least one light incident surface. In this embodiment, the photovoltaic conversion module 11 is composed of a photovoltaic conversion unit, and includes a transparent conductive layer 111, a collector layer 112, and a photoelectric conversion layer 113 disposed between the transparent conductive layer 111 and the collector layer 112. The photoelectric conversion layer 113 has a light incident surface 101 and a surface 102 opposite to the light incident surface 101 ® . The photoelectric conversion layer 113 is for converting light (i.e., light energy) of a wavelength corresponding to the photoelectric conversion layer 113 into light of the photoelectric conversion layer 113 into electric energy. The photoelectric conversion layer 113 can be made of a PN junction composed of a ruthenium-based semiconductor material, a group III-V or a group II-VI compound. The surface 102 can also be a light incident surface, that is, the photoelectric conversion layer 113 has two opposite light incident surfaces for the light to be incident on the surface 102 and the light incident surface 101 at the same time. Of course, the @ side surface of the photoelectric conversion layer 113 that is in contact with the light incident surface 101 and the surface 102 may also be provided as a light incident surface. In this embodiment, the transparent conductive layer 111 is deposited on the light incident surface 101, and the collector layer 112 is deposited on the surface 102 for electrically connecting the two poles of the load or the external circuit, respectively, and transferring the electrical energy converted by the photoelectric conversion layer 113 to The load or an external circuit for the purpose of powering the load or an external circuit. The transparent conductive layer 111 may be formed by uniformly plating a transparent conductive oxide film on the surface of the flat glass by physical or chemical coating. The oxygen species include CdO, ZnO, ZnO: M (M = A1, Ga, In, F) and the like. The collector layer 112 can be aluminum or other metal plate. 201023381 In use, light is incident on the transparent conductive layer 111 and enters the photoelectric conversion layer '113, and then the photoelectric conversion layer 113 converts light corresponding to the wavelength of the photoelectric conversion layer 113 into electric energy, and the electric energy is transmitted through the transparent conductive layer 111 and the set. The electrode layer 112 output provides power supply. The glass layer 12 is doped with antimony. The microstructure of the glass layer 12 comprises at least two phase separations. A phase interface is formed between the different phases, and the phase of each phase is less than 500 nm, for refracting or reflecting incident light to the erbium element, converting short-wavelength light of the incident light into long-wavelength light, and then shooting ® into the PV conversion module. The phase size is obtained by calculating the average of the complex d values (see Figure 12). The glass layer 12 is obtained by heat-treating a glass doped with yttrium element to cause spinodal decoposition of the glass of the doped pin element. The temperature of the heat treatment is between the glass transition temperature (Tg) and the crystallization temperature (Tc) of the glass of the antimony element to prevent the glass layer 12 from being converted into a crystalline state after heat treatment and losing the light transmission property. The heat retention time of the heat treatment is determined according to the temperature of the heat treatment to ensure that the phase separation formed by the spinodal decomposition is preferably less than 500 nm. For example, if the temperature of the heat treatment is high (close to the crystallization temperature), a correspondingly higher energy can be supplied to the glass of the doped yttrium element, so that the spinodal decomposition occurs at a faster rate, and the phase separation formed at a high temperature The film continues to grow and the phase separation size exceeds 500 nm, thereby forming a glass layer 12 having a low light transmittance. Conversely, if the temperature of the heat treatment is low (close to the glass transition temperature), that is, only a correspondingly lower energy can be supplied to the glass of the doped germanium element, so that the spinodal decomposition occurs at a slower rate, and it takes a longer time. In order to form the phase separation required by the technical solution. 201023381 When incident light enters the glass layer 12, it will fold or reflect at the interface between the phases, so that the light that is not directly incident on the erbium element is refracted or reflected and then directed to the _ 铕 element, which can increase the conversion rate of light. . However, if the phase factor of each phase is greater than 500 nm (close to the wavelength of the visible light absorbed by the solar cell in the prior art), the conversion of the erbium element into a long wavelength light has a greater chance of refraction or reflection with each of the phases. So that most of the converted light is absorbed, thereby reducing the emission rate of the converted light. Conversely, if the phase size of each phase is below 500 nm, the converted light will not or only be absorbed in a small fraction, and the emission rate of the reduced light can be ignored compared to the conversion of ® light. The glass layer 12 is obtained by heat-treating a bismuth-doped tellurite glass to form a decanoate-rich phase. In the present embodiment, the glass layer 12 is obtained by heat-doping a trivalent europium borosilicate glass. The phase separation of the glass layer 12 is a borate-rich phase and a borate-rich phase in the borate-rich phase. 50% by weight of cerium in the cerium element is distributed in the borate-rich phase. The glass layer 12 is used to convert incident light having a wavelength of 350 to 470 nm in light into an exiting light of ❿ 570 to 720 nm. The lOOmol of borosilicate glass was doped with up to 2.5 mol of cerium oxide. Of course, the glass layer 12 may also be provided with an anti-reflection layer on the outer side surface for reducing total reflection at the incident interface when light is incident. The borosilicate glass mainly includes cerium oxide (SiO 2 ), boron oxide (B 2 〇 3 ) and an alkali metal oxide (e.g., sodium oxide Na 20 ). The ruthenium element doped in the borosilicate glass is present in the form of ruthenium oxide (Eu203). Hereinafter, the preparation method and the heat treatment method of the glass layer 12 in the present embodiment will be described by taking the boron silicate glass doped with different contents of Eu3+ (see Table 1) as an example to help understand the present invention, but is not limited to the examples listed in the embodiment. Preparation method 201023381 method. The composition of the doped Eu3+ borosilicate glass is represented by the following formula: 59Si02-33B2〇3-8Na2〇-xEu2〇3 (x=〇.5~2.5mol%), ie, • 59 mol of SiO 2 , 33 mol of B2〇3 and 8 mol of Na2〇 are formed with a molar mass of 100 μm of smectite glass doped with x mol of Eu 2 〇 3 . Table 5 lists five glass samples of borosilicate glass doped with different concentrations of Eu3+. According to the components of the five glass samples listed in Table 1, weighed the corresponding quality of SiO2, H3B〇3, Na2C03 and Eu203, and mixed them evenly into the platinum crucible at 10 ° C / min (Celsius / The temperature is raised to 1400 to 1500 ° C, kept for 30 min, and the molten mixture is washed and cast on a preheated iron mold to form a final glass sample, which is annealed to eliminate stress. The five glasses were measured to have a Tg of about 570 ° C and a Tc of about 780 T; Therefore, the five glass samples were placed in a heat treatment furnace which had been heated to 570 to 750 ° C, and the glass samples were taken to room temperature immediately after being immersed for 400 minutes. Table 1 Composition of glass sample (mol%) Glass sample glass composition 59N-33B-8S-xEu203 Si02 B2O3 Na20 Eu2〇3 (a) χ=0·5 56.05 35.79 8.16 0.27 (b) x=1.0 56.18 35.61 8.21 0.85 ( c)x=1.5 56.84 35.00 8.16 1.00 (d) x=2.0 57.02 34.87 8.11 1.11 (e) x=2.5 56.68 35.12 8.2 2.47 where N stands for Si02, B stands for B2〇3, and S stands for Na20. 201023381 Please refer to FIG. 2, in the present embodiment, five glass samples of the glass layer 12 (a) - (e) (listed in Table 1) were incubated at 650 ° C for 12 h, and then scanned by scanning electron microscopy (Scanning) Electron Microscope, SEM) observes the microscopic structure. After the heat treatment, the five glass samples formed a phase separation. After elemental detection, it was proved that the contrast in the figure was brighter than the borate-rich phase, and the contrast was dark and spongy distributed in the borate-rich phase. Borate phase. Among them, the lanthanum element is mostly distributed in the borate-rich phase. That is, the glass layer 12 includes at least two phase separation and germanium elements. According to the relationship between the size of the phase separation in Fig. 3 and the concentration of lanthanum element ,, the phase separation size is between 160 nm and 230 nm. Referring to FIG. 4, heat treatment is further performed on (b) and (d) of the five samples at different temperatures of 570 ° C and 650 ° C, respectively, and the phase separation in the corresponding glass layer 12 is detected. size. It can be seen that when the holding time is less than 100 h at 570 ° C, the size of the phase separation of the sample (b) is less than 150 nm. For the (d) sample, the phase separation size is less than 250 nm when the incubation time is less than 50 h at 650 °C. Therefore, regardless of the content of the lanthanum element, the glass layer 12 can be obtained only according to the heat treatment temperature (between Tg and Tc) correspondingly increasing or shortening the holding time. Preferably, when the size of the phase separation is less than or equal to 100 nm (i.e., the holding time is less than 210 min at 650 ° C), the light conversion efficiency is high. Referring to FIG. 5 and FIG. 6 , since the mechanism for converting light by the glass layer 12 is the same, only the glass sample is listed in the embodiment (b) when the absorption spectrum at 650 ° C for less than 40 min and the temperature time is less than 210 min. Radiation spectrum. According to the analysis results, it can be seen that the glass sample (b) is the same as that of the unheated after being kept for 20 min and 40 min, and is sequentially absorbed at 577 nm, 531 nm, 11 201023381 525 nm, 464 nm, 413 nm, 393 nm, 376 nm and 361 nm. The peak, that is, the glass sample (b) can absorb light of 577 nm, _531 nm, 525 nm, 464 nm, 413 nm, 393 nm, 376 nm and 361 nm' wavelength after heat treatment. Accordingly, only the 464 nm was used as the excitation source of the fluorescence spectrum (i.e., the incident light source) to continue the fluorescence absorption spectroscopy analysis of the glass sample (b) to obtain the emission spectra of the glass samples of different holding times. Referring to FIG. 6 , according to the analysis result, the glass sample (b) is the same as that of the unheated treatment after being kept for different time, and the radiation peaks are observed at 578 nm, 591 nm, 615 nm, 652 nm, and 700 nm, that is, the glass sample. (b) After the heat treatment, light of wavelengths of 578 nm, 591 nm, 615 nm, 652 nmy, and 700 nm can be emitted. The wavelength of the emitted light is correspondingly increased compared to the wavelength of the incident spectrum (464 nm). Similarly, if a fluorescence spectrum of another wavelength is used as the excitation source, a & spectrum which is larger than the wavelength corresponding to the incident spectrum can be obtained, which is advantageous for absorption by the photoelectric conversion layer 113. φ Refer to Figures 7 through 11 for the intensity of the emission spectra obtained for the five glass samples (a)-(e) after 65 ee for different times. It can be seen that the intensity of the emission spectra of the five glass samples within 400 min of the incubation is greater than the intensity of the emission of the five glass samples without heat treatment. That is, heat treatment is beneficial to increase the intensity of the emission spectrum of five glass samples. In summary, the five glass samples (a) (e) that have been heat treated not only absorb light in the wavelength range of 350 to 470 nm, but also convert it into at least light having a wavelength ranging from 570 to 720 nm. Increasing the intensity of the converted light can be used to convert light with a shorter wavelength of 350 to 47 〇nm < 12 201023381 into a longer wavelength of 570 to 720 nm and increase its conversion efficiency. When the glass layer 12 made of the glass sample is disposed on the photovoltaic cell 10, the photovoltaic cell 10 can be made to absorb wavelengths in the range of 350 to 470 nm, thereby improving light utilization. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a photovoltaic cell provided by an embodiment of the present technical solution. Fig. 2 is a SEM micrograph of a glass layer of different cerium content obtained after the 650 ° C incubation for 12 h, provided by the embodiment of the present invention. Fig. 3 is a graph showing the phase size of the citrate phase in the glass layer of Fig. 2 as a function of the concentration of the lanthanum element. ^ Figure 4 is a graph showing the phase size of the citrate phase in the glass layer at different temperatures as a function of holding time. Fig. 5 is a graph showing the absorption spectrum of the glass layer (containing 1 mol% of Eu203) at 650 ° C as a function of holding time. Figure 6 is a graph showing the emission spectrum of a 650 ° C glass layer (containing 1 mol% of Eu203) as a function of holding time. Fig. 7 to Fig. 11 are graphs showing the relationship between the emission spectrum intensity of the glass layer having different cerium contents at 650 °C as a function of heat retention. FIG. 12 is a schematic diagram of phase separation in a glass layer provided by an embodiment of the present technical solution. 13 201023381 FIG. , [Major component symbol description] Photovoltaic cell 10 Photovoltaic conversion module 11 Transparent conductive layer 111 Collector layer 112 Photoelectric conversion layer 113 Into the smooth surface 101 Surface 102 14

Claims (1)

201023381 十、申請專利範圍: • 1.一種光伏電池,其包括光伏轉換模組,用於吸收光能並將 • 其轉化為電能,該光伏轉換模組具有光入射面,其改進在 • 於,該光入射面上設置有摻雜銪元素之玻璃層,該玻璃層 之微觀組織包括至少兩個分相,該不同之分相之間形成相 界面,該每個分相之相尺寸小於500nm,該相界面用於折 射或反射入射光至銪元素。 2. 如申請專利範圍第1項所述之光伏電池,其中,該至少兩 ❿個分相中之一分相呈海綿狀分佈。 3. 如申請專利範圍第1項所述之光伏電池,其中,該每個分 相之相尺寸小於或等於lOOnm。 4. 如申請專利範圍第1項所述之光伏電池,其中,該玻璃層 藉由熱處理摻雜銪元素之矽酸鹽玻璃而獲得,該至少兩個 分相中之一分相為富矽酸鹽相。 5. 如申請專利範圍第1項所述之光伏電池,其中,該玻璃層 之兩個分相為富硼酸鹽相與富矽酸鹽相,該富矽酸鹽相於 富硼酸鹽相中呈海綿狀分佈,該銪元素中之50wt%之銪分 佈於富硼酸鹽相中。 6. 如申請專利範圍第5述之光伏電池,其中,該硼矽酸鹽玻 璃中摻雜氧化銪,摻雜比例為lOOmol之硼矽酸鹽玻璃中至 多摻雜氧化銪2.5mol。 7. 如申請專利範圍第5述之光伏電池,其中,該硼矽酸鹽玻 璃包括氧化矽、氧化硼與鹼金屬氧化物。 8. 如申請專利範圍第1項所述之光伏電池,其中,該玻璃層 15 201023381 中摻雜之銪元素以氧化銪之形式存在,使得波長350至 ’ 470nm之入射光可轉化為波長570至720nm之出射光。 * 9.如申請專利範圍第1項所述之光伏電池,其中,該光伏轉 '換模組包括透明導電層、集電極層及設置透明導電層與集 電極層之間之光電轉化層,該光電轉化層具有入光面,該 透明導電層設置於入光面上,該玻璃層設置於透明導電層 上並與入光面相對表面,使光依次經過玻璃層與透明導電 層後進入光電轉化層。 ® 10.如申請專利範圍第9項所述之光伏電池,其中,該光電 轉化層具有相對設置之兩個入光面。201023381 X. Patent application scope: • 1. A photovoltaic cell comprising a photovoltaic conversion module for absorbing light energy and converting it into electrical energy, the photovoltaic conversion module having a light incident surface, the improvement being The light incident surface is provided with a glass layer doped with yttrium element, the microstructure of the glass layer includes at least two phase separations, and phase interfaces are formed between the different phase separations, and the phase size of each phase separation is less than 500 nm. The phase interface is used to refract or reflect incident light to the erbium element. 2. The photovoltaic cell of claim 1, wherein one of the at least two phase separations has a spongy distribution. 3. The photovoltaic cell of claim 1, wherein the phase of each phase is less than or equal to 100 nm. 4. The photovoltaic cell of claim 1, wherein the glass layer is obtained by heat-treating a bismuth-doped tellurite glass, and one of the at least two phases is a ruthenium-rich acid Salt phase. 5. The photovoltaic cell of claim 1, wherein the two phases of the glass layer are a borate-rich phase and a cerium-rich phase, and the cerium-rich phase is in a borate-rich phase. A spongy distribution in which 50% by weight of the lanthanum element is distributed in the borate-rich phase. 6. The photovoltaic cell according to claim 5, wherein the borosilicate glass is doped with cerium oxide, and the doping ratio is 100 mol of borosilicate glass to 2.5 mol of polydoped cerium oxide. 7. The photovoltaic cell of claim 5, wherein the borosilicate glass comprises cerium oxide, boron oxide and an alkali metal oxide. 8. The photovoltaic cell of claim 1, wherein the doped germanium element in the glass layer 15 201023381 is present in the form of yttrium oxide, such that incident light having a wavelength of 350 to '470 nm can be converted to a wavelength of 570 to 720nm out of the light. The photovoltaic cell of claim 1, wherein the photovoltaic conversion module comprises a transparent conductive layer, a collector layer, and a photoelectric conversion layer disposed between the transparent conductive layer and the collector layer, The photoelectric conversion layer has a light incident surface, and the transparent conductive layer is disposed on the light incident surface. The glass layer is disposed on the transparent conductive layer and opposite to the light incident surface, so that the light passes through the glass layer and the transparent conductive layer in sequence to enter the photoelectric conversion. Floor. The photovoltaic cell of claim 9, wherein the photoelectric conversion layer has two light-input surfaces disposed opposite each other. 1616
TW097148447A 2008-12-12 2008-12-12 Photovoltaic cell TW201023381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097148447A TW201023381A (en) 2008-12-12 2008-12-12 Photovoltaic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097148447A TW201023381A (en) 2008-12-12 2008-12-12 Photovoltaic cell

Publications (1)

Publication Number Publication Date
TW201023381A true TW201023381A (en) 2010-06-16

Family

ID=44833351

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097148447A TW201023381A (en) 2008-12-12 2008-12-12 Photovoltaic cell

Country Status (1)

Country Link
TW (1) TW201023381A (en)

Similar Documents

Publication Publication Date Title
US8450600B2 (en) Photovoltaic device with scratch-resistant coating
Yao et al. Rare earth ion doped phosphors for dye-sensitized solar cells applications
CN105023921B (en) A kind of perovskite silicon entire cascaded stacked solar cell, cascade solar cell and preparation method thereof
CN204303826U (en) A kind of high-efficiency N-type double-side solar cell
Karunakaran et al. Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+-Yb3+ co-doped YAG phosphors
CN102842646A (en) Preparation method of interdigitated back-contact battery based on N-type substrate
CN102231398B (en) Copper indium gallium selenide thin film battery with textured surface and preparation method thereof
WO2024032005A1 (en) Solar cell and preparation method therefor
CN101752443B (en) Photovoltaic cell
CN108039866A (en) Photovoltaic generating system
Alkallas et al. Achieving effective performance of silicon solar cell through electrosprayed MgF2 antireflection coating
CN101728448A (en) Solar battery
CN218918901U (en) Heterojunction solar cell
CN102593245B (en) Method for preparing high efficient low cost crystalline silicon solar cell
TW201023381A (en) Photovoltaic cell
US20130288421A1 (en) Method of fabricating a differential doped solar cell
TWI398959B (en) Solar cell
CN103378206A (en) Reflection type light-gathering solar cell module
CN102956720B (en) A kind of solar cell and preparation method thereof
CN114163138B (en) A preparation method of spectrum conversion nanorod array
Zhou et al. Phosphors for Solar Cells
CN100399584C (en) A tin dioxide/silicon heterojunction solar cell
CN109020244A (en) Back passivation crystal silicon solar energy battery front side silver paste glass powder and preparation method thereof
KR101151413B1 (en) Solar cell having multimple anti-reflection film and manufacturing method thereof
Abdulkadir Fabrication and characterization of black silicon for heterojunction solar cells