[go: up one dir, main page]

TW201007845A - AC/DC converters and methods of manufacturing same - Google Patents

AC/DC converters and methods of manufacturing same Download PDF

Info

Publication number
TW201007845A
TW201007845A TW098105358A TW98105358A TW201007845A TW 201007845 A TW201007845 A TW 201007845A TW 098105358 A TW098105358 A TW 098105358A TW 98105358 A TW98105358 A TW 98105358A TW 201007845 A TW201007845 A TW 201007845A
Authority
TW
Taiwan
Prior art keywords
region
substrate
well region
layer
dopant
Prior art date
Application number
TW098105358A
Other languages
Chinese (zh)
Inventor
Siarhei Kalodka
Sergey Gaitukevich
Vitali Maziarkin
Alan Wang
Chen-Hui Tsay
Original Assignee
Shamrock Micro Devices
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shamrock Micro Devices filed Critical Shamrock Micro Devices
Publication of TW201007845A publication Critical patent/TW201007845A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0156Manufacturing their doped wells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

The present invention discloses AC/DC converters and methods of manufacturing the same. The method includes providing a substrate; forming an oxide layer on a top surface of the substrate; applying a photo-resist layer on the oxide layer to define a well region; performing an ion-implantation in the well region using a dopant; and driving in atoms of the dopant to a depth in the well region through a thermal treatment, wherein the driving in process provides a concentration profile of the dopant in the well region such that the semiconductor structure has a high breakdown voltage.

Description

201007845 九、發明說明: 【參照相關專利申請案】 本申請案係關於並主張2〇〇8年2月口 , ^ 克、蘇吉、拿達利、王順意及蔡辰輝戶^人科洛 流轉換器與其製造方法,,之美國專利暫准案直 【發明所屬之技術領域】 本發明係關於交流·直流轉換器及其製造方法。 【先前技術】 常需雙要 _直湳鲭施51,日贫、c 製出一個習知尚壓交流 ,轉====== ίϊϊΐί程,亦表示完成結構較為複雜,且容胃^。^ 再者,在整合败流直鱗換器的習知設計巾, =低壓脈衝寬度變調(PWM)控制器及外部構件,如啟動 2金氧半場效電晶體_SFET)等等。交流_直流轉換二 計可包含將PWM控制器與高壓輸入mosfet構 中°然而’習知整合型交流·直流轉換器 的體積仍_對較大。將許多不_構件整合於 要許多複雜的製程,進而導致成本的增加。因此,本技藝需要 一種整合n錢機11 ’其具有更纽的構件及簡 化電路,以減少最終體積,並降低生產成本。 5 201007845 再者’當啟動習知交流-直流轉換器元件時,在理想的情況 下,會避免產生過充電壓。圖16繪示習知交流-直流轉換器的 方塊圖,其利用軟性啟動塊(如方塊320)來降低輸出電壓的上 升率’進而避免基於輸出電壓快速升起而導致的損毀。習知針 對軟性啟動的解決方案,係由一内部電流源(如圖16中的方塊 303)對外部電容器css充電,並感測此電容器中的電壓,以限 制工作週期,直到輸出電壓到達一特定值為止。除了軟性啟動 方案以外,交流-直流轉換器一般包含相位補償塊(未圖示),以 將父流電的相位同步化。因此,本技藝需要的是一種簡化的解 φ 決方案’整合外部電容器與小電流源’使内部電容器可同時作 軟性起啟動與相位補償之用。 【發明内容】 、本發明之一面向,係提供一種製造半導體結構的方法。本方 法包έ知:供一基板,在此基板的頂面形成一氧化層;在此氧化 層上施塗佈一光阻層,以定義一井區;在井區中利用一摻雜劑, ,行一離子佈植;以及透過熱處理技術,將摻雜劑的分子驅入 ^區中的-深度,其中驅人製程提供—濃麟性給輕中的換 雜劑’使得半導體結構具有高耐壓的特性。 ^發^之另-面向’係提供-種製造半導體結構的方法。本 =包含提供-基板,其基板具有—第—部分與—第二部分; ,基板的頂面形成-第-氧化層;在第—氧 二阻層笛以定義第一井區;在第—井區中利用二第 〜透過ί處理技術,將第-摻雜劑的分子 =義第一井區,在第二井區中利用—第 一 [中的-第y度,其中熱處理係至少攝氏咖度•小時,第 201007845 一深度係大於5.5微米,而第二深度係大於3微米。 本發明之另一面向,係提供一種以上述方法製造之 路。此積體電路包含整合啟動源與供應電壓之—單一 應電壓控制H ;與單-啟動及供應電壓控㈣電 笛、 ,係負責將高輸人電壓轉換為單—啟動及供應電壓ί 制益的内部供應電壓,其中第一電晶體係一 (DM〇S)taaalt 〇 獄金氧+導體 熟此技藝者在明瞭本發明之較佳實施例的詳述後,當可思及 本發明之其他面向。201007845 IX. Invention Description: [Refer to the relevant patent application] This application is about and advocates the 2nd and 8th of February, ^ gram, Su Ji, Natali, Wang Shunyi and Cai Chenhui Hui ^ people Kolo flow converter BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AC/DC converter and a method of manufacturing the same. [Prior technology] It is often necessary to have a double _ 湳鲭 湳鲭 51 51, the daily poverty, c to produce a customary pressure exchange, turn ====== ίϊϊΐ ί, also said that the completion of the structure is more complicated, and the stomach. ^ Furthermore, the custom design of the integrated singular scale changer, = low voltage pulse width modulation (PWM) controller and external components, such as start 2 MOS half field effect transistor _SFET) and so on. The AC_DC converter can include the PWM controller and the high voltage input mosfet. However, the size of the conventional integrated AC/DC converter is still large. Integrating many non-components into many complex processes leads to increased costs. Accordingly, the art requires an integrated unit 11' having more components and simplified circuitry to reduce final volume and reduce production costs. 5 201007845 Furthermore, when the conventional AC-DC converter component is activated, under ideal conditions, overcharge voltage will be avoided. Figure 16 is a block diagram of a conventional AC-to-DC converter that utilizes a soft start block (e.g., block 320) to reduce the rate of rise of the output voltage' to avoid damage based on the rapid rise of the output voltage. The conventional solution for soft start is to charge the external capacitor css by an internal current source (block 303 in Figure 16) and sense the voltage in the capacitor to limit the duty cycle until the output voltage reaches a specific one. The value is up. In addition to the soft start scheme, the AC-DC converter typically includes a phase compensation block (not shown) to synchronize the phase of the parent current. Therefore, what is needed in the art is a simplified solution. The integration of an external capacitor with a small current source allows the internal capacitor to be used for both soft start and phase compensation. SUMMARY OF THE INVENTION One aspect of the present invention is directed to a method of fabricating a semiconductor structure. The method comprises: providing a substrate, forming an oxide layer on a top surface of the substrate; applying a photoresist layer on the oxide layer to define a well region; using a dopant in the well region, , an ion implantation; and through the heat treatment technology, the molecules of the dopant are driven into the depth of the ^ region, wherein the driving process provides - a thicker to the light intermediate dopants - making the semiconductor structure highly resistant The characteristics of the pressure. The method of manufacturing a semiconductor structure is provided by the other. The present invention comprises a substrate provided with a substrate having a -part portion and a second portion; a top surface of the substrate forming a -first oxide layer; a first oxygen region in the first oxygen barrier layer defining the first well region; In the well zone, the first-permeate molecule is used in the second well region, and the first [middle-y-th degree, wherein the heat treatment system is at least Celsius Calitude • Hours, No. 201007845 A depth system greater than 5.5 microns and a second depth system greater than 3 microns. Another aspect of the present invention provides a method of manufacturing by the above method. The integrated circuit includes an integrated start source and supply voltage - a single voltage control H; and a single-start and supply voltage control (four) electric flute, which is responsible for converting high input voltage to single-start and supply voltage Internal supply voltage, wherein the first electro-crystalline system (DM 〇 S) taaalt 〇 金 氧 + 导体 导体 导体 导体 导体 导体 熟 熟 熟 熟 熟 熟 熟 熟 熟 熟 熟 熟 熟 熟 熟 熟Facing.

【實施方式】 ,下將詳細描述本發明之各實酬的細節,各實施例範例 之伴隨圖式,在本說明書巾,触標麟代表類似元件。 一^㈣關巾,錢_錢觀祕—縫錢·直流轉 換器,係可僅用11個微影光罩製作而成。根據本發明之一較 佳實施例,本方法製造出高壓雙擴散型N型金氧 (NLDMOS)與高壓N型金氧半導體(HVNM〇s)結構。鈥而,需[Embodiment] The details of the various aspects of the present invention will be described in detail below, with the accompanying drawings of the examples of the embodiments. In the specification, the touch marks represent similar elements. A ^ (four) off towel, money _ money view secret - sewing money · DC converter, can be made with only 11 lithography masks. According to a preferred embodiment of the present invention, the method produces a high voltage double diffused N-type gold oxide (NLDMOS) and high voltage N-type gold oxide semiconductor (HVNM〇s) structure. Oh, need

是,此製程可用於製造其他結構,如低壓互補式金氧 半導體(CMOS)電晶體、雙極電晶體與被動元件。 圖Ml係繪示本發明之一較佳實施例製造一交流_直流轉 換器之方法的剖面圖。參照圖丨,本方法形成一 N型井。如圖 1所不,一基板1〇2(較佳但不限於一 p型基板)可具有二個部 勿,一部分形成一 NLDM0S 11 〇,而另一部份形成一 hvnm〇s 120°在-較佳實施例中’基板1〇2中可形成許多n型井、 121 、 122 。 根據本發明,欲形成N型井,首先可在基板1〇2的頂面形 成一f薄的氧化層。接著,在塗佈一層光阻層,並利用微影技 術定義欲形成N料的位置。接著,本綠可透過例如以嶙 7 201007845Yes, this process can be used to fabricate other structures such as low voltage complementary metal oxide (CMOS) transistors, bipolar transistors, and passive components. Figure M1 is a cross-sectional view showing a method of fabricating an AC-DC converter in accordance with a preferred embodiment of the present invention. Referring to Figure 丨, the method forms an N-type well. As shown in FIG. 1, a substrate 1 〇 2 (preferably, but not limited to a p-type substrate) may have two portions, one portion forming an NLDMOS 11 〇 and the other portion forming a hvnm 〇 s 120 ° at - In the preferred embodiment, a plurality of n-type wells, 121, 122 can be formed in the substrate 1〇2. According to the present invention, in order to form an N-type well, first, a thin oxide layer can be formed on the top surface of the substrate 1〇2. Next, a layer of photoresist is applied and the position at which the N material is to be formed is defined using lithography. Then, the green can be transmitted through, for example, 嶙 7 201007845

作摻雜劑,以適當的濃度及能量,來實施N型井佈植。完成 佈植製程後,可分別實施電漿化學處理與光阻剝離,接著即可 自基板的頂面移除光阻層《爾後,透過熱處理,摻雜劑磷原子 可被驅入一個理想的深度。由於隨著所施加熱能量的提高,N 型井接面的深度亦會跟著加深,因此在熱處理期間所施加的總 溫度可為至少攝氏6000度•小時。 “ 在本發明之一較佳實施例中,N型井驅入製程提供一濃度 特性給N型井中的摻雜劑,使得最終MOS結構具有高耐壓的As a dopant, the N-well is implanted at an appropriate concentration and energy. After the completion of the implantation process, the plasma chemical treatment and the photoresist stripping can be separately performed, and then the photoresist layer can be removed from the top surface of the substrate. Then, after heat treatment, the dopant phosphorus atoms can be driven into a desired depth. . Since the depth of the N-well junction will also increase as the applied thermal energy increases, the total temperature applied during the heat treatment can be at least 6,000 degrees Celsius. In a preferred embodiment of the invention, the N-well drive process provides a concentration characteristic to the dopant in the N-type well such that the final MOS structure has a high withstand voltage

=性。舉例而言,在作業中,理想的高耐壓可為700V。圖1 中,在完成驅入製程後,N型井112、121、122的接面深度 1 可大於5.5微米。本方法可利用習知技術在驅入製程 除氧化層。 參照圖2 ’其綠示本方法形成一 p型井。如圖2所示,基板 2中可形成許多p型井123、125。類似N型井的形成,形 的步驟,首先可在基板102的頂面形成一層薄的氧化= sex. For example, in operation, the ideal high withstand voltage can be 700V. In Figure 1, the junction depth 1 of the N-wells 112, 121, 122 can be greater than 5.5 microns after the drive-in process is completed. The method utilizes conventional techniques to remove the oxide layer during the drive-in process. Referring to Figure 2', the green method forms a p-type well. As shown in Fig. 2, a plurality of p-type wells 123, 125 can be formed in the substrate 2. Similar to the formation of the N-type well, the step of forming a first step can form a thin oxidation on the top surface of the substrate 102.

=此接者’在塗佈—層光阻層,並利用微影技術定義欲形成P 位置。接著,可透過例如以硼作掺雜劑,以適當的濃度 ’來實施P型井佈植。完成佈植製程後,即可自基板的 移除光阻層°爾後’透過熱處理’摻雜劑爾子可被驅入 理想騎度。由於隨著所施加熱能量的提高,P型井接面 ,=亦會跟著加深,因此在熱處理_職加的總 至少攝氏6000度·小時。 巧 性—較佳實細+,p餅驅人抛提供—濃度特 Π型井中的摻雜劑’使得最終M〇s結構具有高耐廢的特 例而言,在作業中,理想的高耐>1可為7G0V。圖2中, $成::製程後,p型井123、125的接面深度心可大於3 半。、夫士、、+型井112、121、122的接面深度dl可大於5.5微 法可利用習知技術在驅入製程後剝除氧化層。 201007845 圖3繪示主動區域的形成。首先,本方法可在基板1〇2的 頂面形成一層薄的氧化層13(^接著,在氧化層13〇上沉積一 Sl3N4層132。爾後’本方法可在Si3N4層132上塗佈一光阻層 (未圖示)。接著’主動區域可利用微影技術作定義,並蝕刻Si3N4 層132中未被光阻圖樣覆蓋的部分,以暴露主動區域。接著, 本方法可剝除剩餘的光阻圖樣,而留下圖3所示的結構。= This connector is in the coating-layer photoresist layer and uses lithography to define the position at which the P is to be formed. Next, P-type well implantation can be carried out at a suitable concentration by, for example, using boron as a dopant. After the implantation process is completed, the photoresist layer can be removed from the substrate and the 'through heat treatment' dopant can be driven into the ideal ride. As the applied heat energy increases, the P-type well junction, = will also deepen, so the total heat treatment _ job plus at least 6000 degrees · hour. Ingenuity - better thin +, p cake drive to provide - the concentration of the dopant in the well-type well makes the final M〇s structure with high resistance to waste, in the operation, the ideal high resistance &gt ;1 can be 7G0V. In Fig. 2, after the 0.00:: process, the junction depth of the p-wells 123, 125 can be greater than 3 and a half. The joint depth dl of the Fr., and the +-type wells 112, 121, and 122 may be greater than 5.5 micrometers. The oxide layer may be stripped after the drive-in process by conventional techniques. 201007845 Figure 3 illustrates the formation of an active area. First, the method can form a thin oxide layer 13 on the top surface of the substrate 1〇2 (then, a layer of Sl3N4 is deposited on the oxide layer 13〇. Then the method can apply a light on the Si3N4 layer 132. a resist layer (not shown). Then the 'active region can be defined by lithography, and the portion of the Si3N4 layer 132 that is not covered by the photoresist pattern is etched to expose the active region. Then, the method can strip the remaining light The pattern is blocked, leaving the structure shown in Figure 3.

曰很踝本發明,P型井内可形成許多P型場(P-field),以增加 最終結構的寄生臨界電壓。欲形成p型場,首先本方法可利用 習知微影技術,形成具有預定圖樣的光阻層,其中預定圖樣僅 暴露欲形成P型場的區域^驗,本方法可透過例如以删作佈 植:以實施P型場佈植。完成佈植製程後,即可剝除光阻層。 =後’透過P型場驅入製程’本方法可將硼離子驅入基板中更 深層處。如圖4所示,驅入製程後,p型場126的深度们可 為例^大於3微米。接著,可利用習知熱處理,在私队層132 未覆蓋的區域形成魏化結構(F〇x)。形成場·結構後,即 可剝除Si3N4>f 132。圖4顯示此等製程所產生的結構,且中p 型井125中形成了二個p型場126。 參照圖5。根據本發曰月,p型基區(p彻〇可透過習知光阻 影技術而形成。接著,本方法可進行P型基區佈植、 f剝除,並驅人基轉子雜。在本發明之_較佳實施例 =完成驅人製程後,P型基區116之深度d4可為例如大於3 ^米。圖5顯示完成上述程序後的結構,其中N型井ιΐ2兩 邊的NLDMOS110中可形成二個p型基區116。 根據本發明,可接著形成閘極。在氧化後,圖士 構上可先沉積-層多砂。接著,可對多晶㈣作氧化斤。爾後: I利用習知微影技術,進行微影程序以定_極。隨 ^進行非等向性電聚_。獅光阻層 如圖6所示。如0 6所示,NL_S m有二個 9 201007845 而HVNMOS 120有二個閘極結構161。 如圖7所示’本發明可接著在nldmOS 110的P型基區以 及HVNMOS 120的p型井中,形成p+區。此等旰區以及隨 後所形成的N+區可為接觸金屬線連接NLDM〇s與hvnM〇s ,處。本方法可透過習知微影技術以及佈植製程序形成p+ 區。圖7顯示此等製程所形成的結構,其中NLDM〇s的p型 基區116中形成二個p+區117,而HVNM〇s的p型基區125 中形成二個P+區127。 參照圖8,其繪示本發明在NLDMOS中P型基區内以及 NLDMOS與HVNMOS中N型基區内,形成n+區。如前述, 本發明可利用習知微影及佈植製程形成此等N+區,以連接接 觸金屬線。再者,因為N+與P+區中所使用的離子較大,因此 在理想的情況下,會需要額外的驅入程序,以將離子驅入理想 的深度。圖8顯示此等製程序所形成的結構,其中NLDMOS 的P型基區116中形成N+區118,而NLDMOS 110中的N型 井112以及HVNMOS 120中的N型井121、122中,分別形 成 N+區 119、128、129。 根據本發明,可形成接觸點,隨後形成孔洞,以利用傳導 ❹ 性材質填補孔洞,進而提供NLDMOS/HVNMOS與外部電路 經的電性連接◊參照圖9,其繪示形成接觸點後的結構。圖8 =不的結構上可沉積一層化學氣相沉積(CVD)薄膜14〇。接 著’本發明可透過習知微影及蝕刻技術,在CVD薄膜14〇中 形成接觸孔洞142。如圖9所示,這些接觸孔洞142較佳係形 成在對應N+或p+區之處,而此n+或p+區係先前在 NLDMOS/HVNMOS中的P基區、p型井或n型井中所开{忐 的N+或P+區。 ^ 根據本發明,接觸孔洞142中以及CVD薄膜140的頂面可 進行金屬化,以在此等MOS元件中可有適當的電性連接。只 10 201007845 要此材質可承受習知製程並同時達到理想的電性及物理屬 性’本發明並不限制金屬化的材質。 a根據—實施例,進行金屬化首先可透過金屬濺鍍法,在CVD 薄臈140上形成一金屬層(未圖示)。接著,本發明可在金屬層 士進行微影製程,以定義適當的金屬線圖樣。如圖9與1〇所 示’圖9中的每個接觸孔洞142現已由金屬144所填補。 ❹In view of the present invention, a plurality of P-fields can be formed in the P-type well to increase the parasitic threshold voltage of the final structure. To form a p-type field, firstly, the method can form a photoresist layer having a predetermined pattern by using a conventional lithography technique, wherein the predetermined pattern only exposes a region where a P-type field is to be formed, and the method can be performed, for example, by deleting the cloth. Planting: To implement P-type field planting. After the implantation process is completed, the photoresist layer can be removed. = After 'P-field flooding process' This method drives boron ions into deeper layers in the substrate. As shown in FIG. 4, after driving into the process, the depth of the p-type field 126 can be, for example, greater than 3 microns. Next, a conventional heat treatment can be used to form a Weihua structure (F〇x) in a region not covered by the private team layer 132. After the field/structure is formed, Si3N4>f 132 can be stripped. Figure 4 shows the resulting structure of these processes, and two p-type fields 126 are formed in the p-well 125. Refer to Figure 5. According to the present invention, the p-type base region can be formed by conventional photo-resistance techniques. Next, the method can perform P-type base region implantation, f-stripping, and drive the base rotor. Preferred Embodiment = After the completion of the driving process, the depth d4 of the P-type base region 116 may be, for example, greater than 3 μm. Figure 5 shows the structure after completion of the above procedure, in which NLDMOS 110 on both sides of the N-type well ΐ2 can be formed. Two p-type base regions 116. According to the present invention, a gate electrode can be formed. After oxidation, the Tusk structure can be first deposited with a layer of sand. Then, the polycrystalline (tetra) can be oxidized. Know the lithography technology, carry out the lithography process to determine the _ pole. With the ^ isotropic galvanic _. The lion photoresist layer is shown in Figure 6. As shown in Figure 6, NL_S m has two 9 201007845 and HVNMOS 120 has two gate structures 161. As shown in Figure 7, the present invention can then form a p+ region in the P-type base region of nldmOS 110 and the p-type well of HVNMOS 120. These germanium regions and subsequently formed N+ regions The contact wires can be connected to NLDM〇s and hvnM〇s. This method can be formed by conventional lithography techniques and implanting procedures. +. Figure 7 shows the structure formed by these processes, in which two p+ regions 117 are formed in the p-type base region 116 of NLDM〇s, and two P+ regions 127 are formed in the p-type base region 125 of HVNM〇s. Referring to Figure 8, the present invention forms an n+ region in the P-type base region of the NLDMOS and in the N-type base region of the NLDMOS and HVNMOS. As described above, the present invention can form such a conventional lithography and implantation process. N+ zone to connect the contact wires. Furthermore, because the ions used in the N+ and P+ zones are large, in an ideal case, an additional drive-in procedure is required to drive the ions to the desired depth. 8 shows a structure formed by the equal process, in which the N+ region 118 is formed in the P-type base region 116 of the NLDMOS, and the N-well 112 in the NLDMOS 110 and the N-wells 121 and 122 in the HVNMOS 120 respectively form N+. Zones 119, 128, 129. According to the present invention, contact points can be formed, and then holes are formed to fill the holes with conductive materials, thereby providing an electrical connection between the NLDMOS/HVNMOS and an external circuit. Referring to Figure 9, The structure after the contact point is formed. Figure 8 = No layer can be deposited on the structure A vapor-deposited (CVD) film 14 〇. Next, the present invention can form contact holes 142 in the CVD film 14 by conventional lithography and etching techniques. As shown in FIG. 9, these contact holes 142 are preferably formed in Corresponding to the N+ or p+ region, which is the N+ or P+ region previously opened in the P-base, p-type or n-type well in the NLDMOS/HVNMOS. ^ According to the invention, the contact hole The top surface of CVD film 140 and CVD film 140 can be metallized to provide suitable electrical connections in such MOS devices. Only 10 201007845 This material can withstand the conventional process and at the same time achieve the desired electrical and physical properties. The present invention does not limit the metallized material. a According to the embodiment, metallization is first performed by metal sputtering to form a metal layer (not shown) on the CVD thin film 140. Next, the present invention can perform a lithography process on a metal layer to define an appropriate metal line pattern. Each contact hole 142 in FIG. 9 is now filled by metal 144 as shown in FIGS. 9 and 1B. ❹

一根據本發明,可選擇性地實施一 PAD層。首先,圖1〇所 示的結構頂面可形成一鈍化層150。接著,本方法可透過微影 製程來定義並開放一些區域,以供後續封裝之用。圖u顯示 此等製程所形成的結構。 除了新穎的NLDMOS/HVNMOS結構及其製造方法以外, 本發明亦提供一種有關交流-直流轉換器之啟動及内部電壓調 整的新穎ic料。确的交流-直流轉換器具有較小的PCB 體積,進而提供較小的產品體積並降低成本。 _圖12繪示本發明之一交流_直流轉換器的方塊圖。如圖12 所示,ic的内部設計包含虛線框300,其中啟動電流源3〇1可 連接供應電Μ單元3〇2,其可接著連接電敍電流參考單元 303。斜坡產生器304可接著連接電壓與電流參考單元3的。 如上述’圖中的DMOS電晶體μ可作為輸出電源開關。由於 此晶片整合啟動電路中的HVNM〇s(即高壓 NLDMOS(即DMOS)作輪出’因此晶粒的體積仍然相對較大: 之—較佳實施例之—交流·直流轉換器之 -犯例的方細。在本㈣之_實施射,透過啟動及供 壓,制31。(其可包含圖12中所示的啟動源3⑴與供心塵 302) ’圖13中的DMOS電晶體M1 —同運作,進而減少 的晶粒大小。圖12中所示的其他功能 曰 DMOS電晶體M2 -同運作。根據本發明 體= 將高輸入電壓轉換為控制器312的内部供應電壓體了負貝 201007845 在此新穎設計中,輸入高電壓MOSFET可由與輸出DM〇s 電晶體M2相同的較有效的DMOS所代替。由於電晶 體比習知MOSFET來的有效,因此在理想的情況下會作此替 換。此設計可進一步的縮小整體晶片體積。因此,本發明不但 可以降低晶片的製造成本,其產品亦較具有競爭力,因為較小 的1C曰曰片體積可以有更多的應用。為了顯示之便,圖1^'中的 方塊310較佳包含圖14所示的設計。 在本發明之另一實施例中’圖13中的輸出DM〇SM2可設 置於交流-直流轉換器1C的外部,以進一步減少IC的體積, ® 如圖15所示。此實施例可適用於許多應用中,好比大型電流/ 高電力1C設計。 ^在本發明之又一實施例中,揭露一種致能軟性啟動功能的 父流-直流轉換器。參照圖17,其繪示本發明之一較佳實施例 之一交流-直流轉換器的一範例。參照圖17,在啟動序列中, 啟動邏輯方塊330可關閉誤差放大器(電晶體M3),並換到電 流源(II)。電流源可接著供電給電容器Ci,而電容器ci中的 電壓可者轉換益工作週期的增加而逐漸增加。當反饋(FB) 引腳上的電壓達到所需值時’啟動邏輯方塊33〇可接著致能誤 ❹ 差放大器M3,並換到負載電阻ri。在此情況下,電容器ci 可作為相位補償單元。 此新穎1C設計之優勢在於,由於使用了内部電容器ci, 因=無需外部電容器作軟性啟動。換句話說,即不需要額外的 電容器。再者,内部軟性啟動方塊33〇可換成與相位補償單位 運作,以減少晶片設計中所需的構件,進而減少pCB的大小 並降低成本。 本發明已透過以上具體實施例作一詳細說明,惟以上 =述者,僅係用以說明本發明之較佳實施例而已,並不 能限定本發明之實施範圍。即凡依本發明申請範圍所作 12 201007845 =均等&化與修飾等’皆應仍屬本發利涵蓋範圍 【圖式簡單說明] ’其繪示本發明之—較佳實施例中製造一 父流-直流轉換器之方法; 圖12係本發明之一較佳實施一交流流轉換器之一 範例的方塊圖;According to the present invention, a PAD layer can be selectively implemented. First, a top surface of the structure shown in FIG. 1A can form a passivation layer 150. Then, the method can define and open some areas through the lithography process for subsequent packaging. Figure u shows the structure formed by these processes. In addition to the novel NLDMOS/HVNMOS structure and its method of fabrication, the present invention also provides a novel ic material for the startup and internal voltage regulation of an AC-DC converter. A true AC-DC converter has a smaller PCB footprint, which in turn provides smaller product size and lower cost. Figure 12 is a block diagram of an AC-DC converter of the present invention. As shown in Fig. 12, the internal design of ic includes a dashed box 300 in which the starting current source 3〇1 can be connected to the supply unit 3〇2, which can then be connected to the current reference unit 303. The ramp generator 304 can then be connected to the voltage and current reference unit 3. The DMOS transistor μ as in the above figure can be used as an output power switch. Since the HVNM〇s (ie, the high-voltage NLDMOS (ie, DMOS) in the wafer integration start-up circuit is turned on', the volume of the die is still relatively large: - the preferred embodiment - the AC-DC converter - a crime In the (4) of the present, through the start-up and supply pressure, 31 (which may include the start source 3 (1) and the feed dust 302 shown in Figure 12) 'DMOS transistor M1 in Figure 13 - The same operation, and thus reduced grain size. The other functions shown in Figure 12, DMOS transistor M2, operate in the same way. According to the invention, the high input voltage is converted into the internal supply voltage of the controller 312. In this novel design, the input high voltage MOSFET can be replaced by the same more efficient DMOS as the output DM 〇s transistor M2. Since the transistor is more efficient than conventional MOSFETs, this replacement would ideally be made. This design can further reduce the overall wafer volume. Therefore, the invention can not only reduce the manufacturing cost of the wafer, but also the product is more competitive, because the smaller 1C diaphragm volume can have more applications. , Figure 1^ The block 310 in ' preferably includes the design shown in Fig. 14. In another embodiment of the present invention, the output DM 〇 SM2 in Fig. 13 can be disposed outside the AC-DC converter 1C to further reduce the IC Volume, ® is shown in Figure 15. This embodiment can be applied in many applications, like a large current/high power 1C design. ^ In yet another embodiment of the invention, a parent flow enabling a soft start function is disclosed - DC Converter. Referring to Figure 17, an example of an AC-DC converter in accordance with one embodiment of the present invention is shown. Referring to Figure 17, in a startup sequence, logic block 330 is enabled to turn off the error amplifier (transistor). M3), and switch to the current source (II). The current source can then be supplied to the capacitor Ci, and the voltage in the capacitor ci can gradually increase as the conversion duty cycle increases. When the voltage on the feedback (FB) pin reaches When required, the 'start logic block 33' can then enable the error amplifier M3 and switch to the load resistor ri. In this case, the capacitor ci can be used as a phase compensation unit. The advantage of this novel 1C design is that Inside Capacitor ci, because = no external capacitor is required for soft start. In other words, no additional capacitor is needed. Furthermore, the internal soft start block 33 can be replaced with a phase compensation unit to reduce the components required in the wafer design. The present invention has been described in detail with reference to the preferred embodiments of the present invention, which are intended to illustrate the preferred embodiments of the present invention and are not intended to limit the invention. The scope of the invention is based on the scope of the application of the present invention. 12 201007845 = equalization & modification and modification, etc., should still be covered by the scope of the present invention [simplified description of the drawings] 'which shows the manufacture of the preferred embodiment of the invention A method of a parent current-to-DC converter; FIG. 12 is a block diagram showing an example of an AC current converter according to a preferred embodiment of the present invention;

圖13係本發明之一較佳實施例之一交流直流轉換器之一 範例的方塊圖; 圖14係本發明之一較佳實施例之一交流_直流轉換器之一 範例的電路圖; 圖15係本發明之一較佳實施例之一交流_直流轉換器之一 範例的方塊圖; 圖16係習知交流-直流轉換器的方塊圖;以及 圖17係本發明之一較佳實施例之一交流-直流轉換器之一 範例的方塊圖。 【主要元件符號說明】 102基板 110雙擴散型Ν型金氧半導體 112、121、122Ν 型井 116Ρ型基區 117、127Ρ+區 118Ν+區 119、128、129Ν+區 13 201007845 120高壓N型金氧半導體 123、125 P 型井 126 P型場 130氧化層 132Si3N4 層 140 CVD薄膜 142接觸孔洞 144金屬 150鈍化層 160、161閘極結構 300虛線框 301啟動電流源 302供應電壓單元 303電壓及電流參考單元 304斜坡產生器 310啟動及供應電壓控制器 312其他功能方塊 320軟性啟動方塊 330啟動邏輯方塊Figure 13 is a block diagram showing an example of an AC-DC converter according to a preferred embodiment of the present invention; Figure 14 is a circuit diagram showing an example of an AC-DC converter according to a preferred embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 16 is a block diagram of an exemplary AC-DC converter; FIG. 16 is a block diagram of a conventional AC-DC converter; and FIG. 17 is a preferred embodiment of the present invention. A block diagram of an example of an AC-DC converter. [Main component symbol description] 102 substrate 110 double diffused germanium type MOS semiconductor 112, 121, 122 Ν type well 116 基 type base region 117, 127 Ρ + region 118 Ν + region 119, 128, 129 Ν + region 13 201007845 120 high pressure N-type gold Oxygen semiconductor 123, 125 P-well 126 P-type field 130 oxide layer 132Si3N4 layer 140 CVD film 142 contact hole 144 metal 150 passivation layer 160, 161 gate structure 300 dashed box 301 start current source 302 supply voltage unit 303 voltage and current reference Unit 304 ramp generator 310 activates and supplies voltage controller 312 other functional blocks 320 soft start block 330 start logic block

1414

Claims (2)

201007845 十、申請專利範固: L 半導體結構的方法,該方法包含: =板之-頂面形成一氧化層; 乳化層上塗佈—光阻層,以定義一井區. it=利用一推雜劑,進行一離子佈以及 直“厂處理’將_雜劑的分子驅入該井區中的-深度, ❹ r二製程提供一濃度特性給該井區中的該摻雜劑,使 传斜導體結構具有—高财壓的特性。 2· 求項1所述之方法’纟中該熱處理係至少攝氏_〇度· Λ|、日守。 3.如凊求項丨所述之方法,其中該摻雜劑係鱗。 4·如睛求項3所述之方法,其中該雜係大於5 5微米。 5. 如凊求項3所述之方法,其中該井區係一 _井區。 6. 如凊求項丨所述之方法,其中該深度係大於3微米。 7. 如請求項6所述之方法,其巾該摻關係爛。 8·如請求項6所述之方法,其中該井區係- Ρ型井區。 9·二種製造一半導體結構之方法,該方法包含: 提,一基板,該基板具有一第一部分與一第二部分; 在該基板的—頂面形成一第一氧化層; 在該第一氧化層上塗佈一第一光阻層,以定義一第一井區; 15 201007845 在該第一井區中利用—第一檢秘十, 透過-熱處理技術,將&進行-第-離子佈植; 中的m 帛摻_的分子驅人該第-井區 剝除該第一氧化層; 在該基板的該頂面形成一第二氧化 在该第一氧化層上塗步一第二 _ Λ . ^ 疋丨且層,以疋義一第一井區, 在該第-井&中利用-第二摻 . 透過該熱處理技術,將該第-换二進订第-離f佈f, 中的一第二深度, 笫一摻雜劑的分子驅入該第二井區201007845 X. Application for patents: L The method of semiconductor structure, which comprises: = forming an oxide layer on the top surface of the board; coating the photoresist layer on the emulsion layer to define a well area. a dopant, an ion cloth and a direct "factory process" to drive the molecules of the dopant into the well region, and the ❹r process provides a concentration characteristic to the dopant in the well region, The oblique conductor structure has the characteristics of high fuel pressure. 2. The method described in Item 1 is: the heat treatment is at least Celsius 〇 · · 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. The method of claim 3, wherein the hybrid system is greater than 55 micrometers. 5. The method of claim 3, wherein the well region is a well region 6. The method of claim 1, wherein the depth is greater than 3 microns. 7. The method of claim 6 wherein the blending relationship is rotten. 8. The method of claim 6 Wherein the well region is a 井-type well region. 9. A method of fabricating a semiconductor structure, the method comprising: lifting, a substrate, The substrate has a first portion and a second portion; a first oxide layer is formed on the top surface of the substrate; and a first photoresist layer is coated on the first oxide layer to define a first well region; 201007845 In the first well area, using the first inspection secret 10, through-heat treatment technology, & performing - the first ion implantation; the molecular enthalpy of the m 帛 _ is stripped of the first well region a first oxide layer; a second oxide is formed on the top surface of the substrate; and a second layer is coated on the first oxide layer to form a first well region, in the first well region & utilized-second doping. Through the heat treatment technique, a second depth of the first-to-fth f-f, a molecule of the first dopant, is driven into the second well region 其中該熱處理係至少攝氏_〇 5.5微米,而該第二深度係大於3微米。夺糾—*度係大於 10.如請求項9所述之方法,更包含: 在該基板的該頂面形成一第三氧化層; 在a玄第二氧化層上沉積一氮化石夕芦. f該氮化魏上塗佈-第三光阻^以 . 矽之一 部分;以及 ^影製程後,_該第三光阻層未覆盔該氣化’ 剝除該第三光阻層之一剩餘部份,以形成該主動區 11.如請求項10所述之方法,更包含: 形成具有一預定圖樣之一第四光阻層; 暴露一部分以形成一場區; 利用一第二摻雜劑作佈植,以進行一場佈植; 將β亥第二摻雜劑的分子驅入該場區中的—第三产; ,該氮化料未覆蓋的—區域形成—場氧化結構; 剝除該氣切相在該第—與第二賴中形成該場區。 12.如請求項η所述之方法,更包含: 16 201007845 形成一基區; 在該第一井區之二邊將該基區驅入該基板之該第一部分内 的一第四深度; 在該基板之該第一與第二部分形成一閘極結構; 在該基板之該第一部分之該基區中以及該第二部分之該第 二井區中形成一第一離子區; 在該基板之該第一部分之該基區中以及該第一與該第二部 分之該第一井區中,形成一第二離子區; 在沉積於該基板上之一 CVD薄膜中,對應該第一離子區或 3亥第二離子區之處’形成接觸孔洞,以及 以一金屬填補該接觸孔洞,以提供該基板之該第一與該第二 部分之電性連接。 13. 如請求項12所述之方法,更包含: 在該基板之該頂面上形成一純化層;以及 在該鈍化層中定義額外的區域。 14. 如請求項11所述之方法,其中該第三深度係大於3微米。 15. 如請求項12所述之方法,其中該第四深度係大於3微米。 16. —種利用請求項1至15中之任一項之方法所製造之積體電 路,該積體電路包含: 一單一啟動及電壓控制器,供整合一啟動源與一供應電壓; 一第一電晶體,係電性連接該單一啟動及供應電壓控制器, 以將高輸入電壓轉換為該單一啟動及供應電壓控制器之一内部 供應電壓, 其中該第一電晶體係一雙擴散金氧半導體(DMOS)電晶體。 17 201007845 17. 如請求項16所述之積體電路,更包含. 制器一;直流控制器’係電性連接該單一啟動及供應麵控 晶體’係電性連接該交流·直流控制器, ,、中δ亥第二電晶體係一 DMOS電晶體。Wherein the heat treatment is at least 摄 〇 5.5 μm and the second depth is greater than 3 μm. The method of claim 9, further comprising: forming a third oxide layer on the top surface of the substrate; depositing a nitriding stone on the a second oxide layer. f the nitriding coating - the third photoresist is a part of the ;; and after the shadowing process, the third photoresist layer is uncovered, the gasification 'extracts one of the third photoresist layers The remaining portion is formed to form the active region. The method of claim 10, further comprising: forming a fourth photoresist layer having a predetermined pattern; exposing a portion to form a field region; using a second dopant Planting for a planting; driving the molecules of the second dopant of the second phase into the field region - the third product; the nitride-uncovered region forming a field oxide structure; stripping The gas phase forms the field in the first and second zones. 12. The method of claim η, further comprising: 16 201007845 forming a base region; driving the base region into a fourth depth in the first portion of the substrate on both sides of the first well region; The first and second portions of the substrate form a gate structure; a first ion region is formed in the base region of the first portion of the substrate and the second well region of the second portion; Forming a second ion region in the base region of the first portion and the first well region of the first portion and the second portion; corresponding to the first ion in a CVD film deposited on the substrate A contact hole is formed at the region or the second ion region of the 3H, and the contact hole is filled with a metal to provide electrical connection between the first portion and the second portion of the substrate. 13. The method of claim 12, further comprising: forming a purification layer on the top surface of the substrate; and defining additional regions in the passivation layer. 14. The method of claim 11, wherein the third depth system is greater than 3 microns. 15. The method of claim 12, wherein the fourth depth system is greater than 3 microns. 16. An integrated circuit manufactured by the method of any one of claims 1 to 15, the integrated circuit comprising: a single start-up and voltage controller for integrating a start source and a supply voltage; a transistor electrically coupled to the single start-up and supply voltage controller to convert the high input voltage to an internal supply voltage of the single start-up and supply voltage controller, wherein the first electro-crystalline system has a double diffused gold oxide Semiconductor (DMOS) transistor. 17 201007845 17. The integrated circuit of claim 16 further comprising: a controller 1; the DC controller is electrically connected to the single start and supply surface control crystal is electrically connected to the AC/DC controller, , , δ 第二 second second crystal system, a DMOS transistor. 18. SC二以體電路’其中該第二電晶體係在該積18. SC two-body circuit 'where the second electro-crystalline system is in the product 19.如請求項π所述之積體電路,更包含: 一啟動邏輯,係選擇性根據一反饋(FB)引腳所達到的一需求 值’致能一誤差放大器;以及 一内部電容器,當該啟動邏輯致能該誤差放大器時,係作為 一相位補償單元,以將一交流電之一相位同步化。 2〇.,凊求項1所述之方法,其中在作業期間,該高耐壓係 700V 〇19. The integrated circuit of claim π, further comprising: a startup logic selectively enabling an error amplifier based on a demand value achieved by a feedback (FB) pin; and an internal capacitor When the enable logic enables the error amplifier, it acts as a phase compensation unit to synchronize one phase of an alternating current. The method of claim 1, wherein the high withstand voltage system 700V 〇 during operation
TW098105358A 2008-02-20 2009-02-19 AC/DC converters and methods of manufacturing same TW201007845A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2992408P 2008-02-20 2008-02-20

Publications (1)

Publication Number Publication Date
TW201007845A true TW201007845A (en) 2010-02-16

Family

ID=41081684

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098105358A TW201007845A (en) 2008-02-20 2009-02-19 AC/DC converters and methods of manufacturing same

Country Status (3)

Country Link
US (1) US20090273376A1 (en)
CN (1) CN101521178A (en)
TW (1) TW201007845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489744B (en) * 2013-06-03 2015-06-21 Richtek Technology Corp AC to DC power converter control circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426881B (en) * 2012-05-15 2016-02-03 北大方正集团有限公司 A kind of BCD integrated device and manufacture method thereof
CN103779197B (en) * 2012-10-19 2016-04-06 北大方正集团有限公司 A kind of method of making p-type lightly doped drain
TW201505332A (en) * 2013-07-29 2015-02-01 Leadtrend Tech Corp Power controllers with ultra-high-voltage startup

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489744B (en) * 2013-06-03 2015-06-21 Richtek Technology Corp AC to DC power converter control circuit

Also Published As

Publication number Publication date
US20090273376A1 (en) 2009-11-05
CN101521178A (en) 2009-09-02

Similar Documents

Publication Publication Date Title
TWI544591B (en) Semiconductor device and method of forming same
US12166091B2 (en) LDMOS transistor and method for manufacturing the same
US8169801B2 (en) Voltage converters with integrated low power leaker device and associated methods
TW571440B (en) Semiconductor device and method for manufacturing the same
US7242059B2 (en) Semiconductor device having DMOS and CMOS on single substrate
US6542001B1 (en) Power supply module in integrated circuits
US7858466B2 (en) Different-voltage device manufactured by a CMOS compatible process and high-voltage device used in the different-voltage device
TW201207954A (en) Two step poly etch LDMOS gate formation
TW201007845A (en) AC/DC converters and methods of manufacturing same
US10812064B2 (en) Source down power FET with integrated temperature sensor
JP2001015734A (en) Method of matching high and low voltage devices using trench isolation structure in transistor device manufacturing
EP3024035A1 (en) Semiconductor device
CN102859700B (en) There is no the LDMOS of Reverse recovery
US20070215949A1 (en) Semiconductor device including MOS transistor having LOCOS offset structure and manufacturing method thereof
CN114464602A (en) Enhancement Mode Capacitors for Integration with Metal Oxide Semiconductor Field Effect Transistors
JP2001196584A (en) Lateral MOSFET, method of manufacturing the same, power converter and method of manufacturing the same
TW201034166A (en) Semiconductor devices and formation methods thereof
TWI692925B (en) Switching regulator and control circuit and control method thereof
CN114242660B (en) A method for manufacturing a rectifier circuit, a rectifier circuit, a voltage conversion circuit and a power supply
CN118471979B (en) Metal oxide field effect power transistor based on BCD integration and process
RU2804506C1 (en) Method for manufacturing a lateral bipolar transistor with an insulated gate based on a silicon-on-insulator structure
JP2003031709A (en) Semiconductor device and method for manufacturing the same
CN103762219B (en) Series boosting solar battery cell and preparation method thereof
KR100866711B1 (en) Inverter Formation Method of Semiconductor Device
CN110828315A (en) Manufacturing method of semiconductor device and power conversion device