200950677 rui^uvuTW 26763twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種散熱模組,且特別是有關於一種 整合式散熱模組。 【先前技術】 由於電子產業的迅速發展而引發產生高熱量的問 題’使得有別於傳統熱傳與對流的散熱技術被大幅開發使 P 用。其中最為廣泛當屬利用熱管作為熱量高效能輸送元 件’但是由於在熱管管内蒸汽會與冷凝液體在液汽 (liquid-vapor)介面處產生互相干擾的現象,而導致輸送熱 量值受到管徑大小的限制。 分離式熱管的技術因而被提出,依其結構設計的差異 區分為迴路式熱管(Loop Heat Pipe, LHP)與毛細幫浦迴路 (Capillary Pumped Loop,CPL)兩種。整體來看這兩種分離 式熱管主要在於將蒸發蒸汽與冷凝流體分隔開來,以處理 蒸>飞與冷凝液體在液汽介面處產生互相干擾的現象,來提 ’ 升輸送熱量值與降低熱阻值。 美國專利4,343,763是將發熱元件直接安置在蒸發區 的流體内以及將冷凝管路直接安置在冷凝區内的設計,來 進行整個傳熱的蒸發冷凝循環。另外如美國專利5,179,5〇〇 所代表,透過特別的管路結構設計來區隔蒸發蒸汽與冷凝 液體。美國專利6,450,132也是透過環狀的結構設計,來 分離蒸發冷凝迴路。 美國專利5,884,693 B2將發熱元件安置在整個迴路熱 200950677 rui^ouuuTW 26763twf.doc/n f内部的模式來進行散熱,而美國專利6风946 B2則是 提出另外的附加迴路來提供蒸發冷凝過程中增加設計。美 :二利之:,725,91。B2則是在蒸發區增加另—道迴路結構 故计,形成内外兩個通道的創新構想。 上述專利對於蒸發後的蒸汽與^凝後的液體間的相 互衝突而導致熱傳效能降低,所採用的方式不是沒有考量 3,就是如傳統的迴路熱管在蒸發與冷凝區外的管路加以 〇 餘用保溫絕熱材料來作為絕熱管路區。 这種保溫絕熱方式易導致整個迴路熱管必須存在有 進出的官路,且其製作較複雜,且維護上也較困難。 【發明内容】 本發明提出一種散熱模組,包括腔體與隔離結構。其 & ’腔體底部填充有—流體,且相鄰於—發熱元件。隔離 、、",设置於腔體中,將腔體分隔為靠近該發熱元件之一蒸 與一冷凝區’使該流體在吸收熱量後產生蒸汽,由蒸 © 發區沿著隔離結構到達冷凝區,進而冷卻成液態並回流2 腔體底部。 在本發明之一實施例中,上述之發熱元件之散熱模 1且’更包括一蒸發單元,設置於腔體與發熱元件之間。 在本發明之一實施例中,上述之發熱元件之散熱模 級’更包括一儲存槽,設置於腔體底部’儲存工作流體。 本發明提出另一種散熱模組,包括腔體與隔離結構。 胺體底部填充有一工作流體,且一發熱元件設置於腔體下 方。隔離結構設置於腔體中,將腔體分隔為中央之一蒸發 200950677 rvyi^ouuuTW 26763twf.doc/n 區與外圍之一冷凝區,使工作流體於吸收熱量後產生蒸 汽’沿著蒸發區向上跨過隔離結構而到達冷凝區,進而冷 卻成液態並回流至腔體底部。 在本發明之一實施例中,上述之發熱元件之散熱模 組’更包括一蒸發單元,設置於腔體與發熱元件之間。 在本發明之一實施例中’上述之發熱元件之散熱模 組,更包括一儲存槽’設置於腔體底部,儲存工作流體。 【實施方式】 圖1是繪示本發明一實施例之一種散熱模組的結構剖 面示意圖。圖1-A是繪示圖1之中另一隔離結構的示意圖 。圖1-B是緣示圖1之中又一隔離結構的示意圖。圖2是 繪示圖1之散熱模組的上視示意圖。 請參照圖1 ’散熱模組100包含有腔體11〇與隔離結 構120。腔體I10例如是方形的中空封閉結構,或者也可 以是圓枉形的中空封閉結構’使結構更為耐壓。腔體11〇 底部填充有工作流體I15,此工作流體115可以是水或是 其他適當的流體。 發熱元件130則例如是設置於腔體110侧壁。舉圖i 為例,發熱元件13〇是設置於腔體外側壁下方,或者,發 熱元件也玎以設置於腔體外側壁中央甚至是上方,該腔體 no更進一夕可為一中空環狀結構,環繞發熱元件&❹而 設置。在一實施例中,發熱元件130可以是發光二極體 led )、雷射二極體、氡體放電光源等光電元件,或是積 體電路晶片如繪圖晶片、記憶體晶片、半導體晶片...二等 7 200950677 rUl?uUU,jTW 26763twf.doc/n 單電子元件晶片或是晶片模組,或者也可以是任何發孰 之物件如運轉中之馬達等等。 ' ^隔離結構I20設置於腔體11〇中,將腔體no分隔為 靠近發熱元件130之蒸發區140與冷凝區150,隔離結構 120底部有缝隙設計,可讓工作流體115藉此流回到腔體 U〇底部。工作流體115在發熱元件130相鄰處吸收熱量 後產生蒸汽,由蒸發區140沿著隔離結構120到達冷凝區 © I50,進而冷卻成液態並回流至腔體110底部,於腔體11〇 内部形成蒸發冷凝迴路。 ❹200950677 rui^uvuTW 26763twf.doc/n IX. Description of the Invention: [Technical Field] The present invention relates to a heat dissipation module, and more particularly to an integrated heat dissipation module. [Prior Art] The problem of high heat generation caused by the rapid development of the electronics industry has led to the development of heat dissipation technology that is different from the conventional heat transfer and convection. Among them, the most widely used is the use of heat pipes as heat-efficient high-efficiency transport elements', but because the steam in the heat pipe will interfere with the condensed liquid at the liquid-vapor interface, the heat transfer value is affected by the pipe diameter. limit. The technology of the split heat pipe is proposed, and it is divided into a loop heat pipe (LHP) and a Capillary Pumped Loop (CPL) according to the difference in its structural design. Overall, the two separate heat pipes mainly separate the evaporation steam from the condensed fluid to treat the phenomenon that the steam and the condensed liquid interfere with each other at the liquid-vapor interface, so as to increase the heat value of the heat transfer. Reduce the thermal resistance value. U.S. Patent 4,343,763 is a design in which the heat generating component is placed directly in the fluid in the evaporation zone and the condensation line is placed directly in the condensation zone for the entire heat transfer evaporative condensation cycle. In addition, as represented by U.S. Patent No. 5,179,5, a special piping design is used to separate the vaporized vapor from the condensed liquid. U.S. Patent 6,450,132 is also designed to separate the evaporative condensation circuit through a toroidal structural design. U.S. Patent No. 5,884,693 B2 places the heating element in a mode internal to the circuit heat 200950677 rui^ouuuTW 26763twf.doc/nf for heat dissipation, while U.S. Patent 6 Wind 946 B2 proposes an additional additional circuit to provide additional design during the evaporative condensation process. . Beauty: Erlizhi: 725,91. B2 is an innovative concept that adds another loop structure in the evaporation zone to form two channels inside and outside. The above patents reduce the heat transfer efficiency for the conflict between the vaporized vapor and the liquid after the condensation. The method adopted is not without consideration. 3, that is, the conventional loop heat pipe is entangled in the pipeline outside the evaporation and condensation zone. Residual insulation material is used as the insulation pipeline area. This thermal insulation method tends to cause the entire loop heat pipe to have an inbound and outbound road, and its fabrication is complicated and difficult to maintain. SUMMARY OF THE INVENTION The present invention provides a heat dissipation module including a cavity and an isolation structure. The &' cavity is filled with a fluid at the bottom and adjacent to the heating element. Isolation, ", is disposed in the cavity, separating the cavity into a vaporization and a condensation zone near the heating element, so that the fluid generates steam after absorbing heat, and the condensation is obtained by the evaporation zone along the isolation structure. The zone is then cooled to a liquid state and refluxed to the bottom of the 2 cavity. In an embodiment of the invention, the heat dissipating mold 1 of the above-mentioned heat generating component and further includes an evaporation unit disposed between the cavity and the heat generating component. In an embodiment of the invention, the heat dissipation module of the heat generating component further includes a storage tank disposed at the bottom of the cavity to store the working fluid. The invention proposes another heat dissipation module, which comprises a cavity and an isolation structure. The amine body is filled with a working fluid at the bottom, and a heating element is disposed below the cavity. The isolation structure is disposed in the cavity, and the cavity is divided into one of the central evaporations 200950677 rvyi^ouuuTW 26763twf.doc/n zone and one of the peripheral condensation zones, so that the working fluid generates steam after absorbing heat' After passing through the isolation structure and reaching the condensation zone, it is cooled to a liquid state and returned to the bottom of the cavity. In an embodiment of the invention, the heat dissipation module of the heat generating component further includes an evaporation unit disposed between the cavity and the heat generating component. In one embodiment of the present invention, the heat dissipation module of the above-mentioned heat generating component further includes a storage tank disposed at the bottom of the cavity to store the working fluid. [Embodiment] FIG. 1 is a cross-sectional view showing the structure of a heat dissipation module according to an embodiment of the present invention. Figure 1-A is a schematic view showing another isolation structure of Figure 1. FIG. 1-B is a schematic view showing another isolation structure in FIG. 2 is a top plan view showing the heat dissipation module of FIG. 1. Referring to FIG. 1 , the heat dissipation module 100 includes a cavity 11 〇 and an isolation structure 120 . The cavity I10 is, for example, a square hollow closed structure, or a hollow closed structure of a round shape, which makes the structure more resistant to pressure. The bottom of the chamber 11 is filled with a working fluid I15, which may be water or other suitable fluid. The heating element 130 is, for example, disposed on the sidewall of the cavity 110. For example, the heating element 13 is disposed under the outer wall of the cavity, or the heating element is disposed at the center of the outer wall of the cavity or even above, and the cavity no may be a hollow ring structure. Set around the heating element & In an embodiment, the heating element 130 may be a light-emitting diode (LED), a laser diode, a body discharge source, or the like, or an integrated circuit chip such as a drawing chip, a memory chip, or a semiconductor wafer. Second-class 7 200950677 rUl?uUU, jTW 26763twf.doc/n Single-electronic component wafer or wafer module, or can be any hairpin object such as a running motor. The ^ isolation structure I20 is disposed in the cavity 11〇, and divides the cavity no into the evaporation zone 140 and the condensation zone 150 near the heating element 130. The bottom of the isolation structure 120 has a slit design, so that the working fluid 115 flows back thereto. The bottom of the cavity U〇. The working fluid 115 generates heat after absorbing heat at the vicinity of the heat generating component 130, and reaches the condensing zone © I50 along the isolation structure 120 by the evaporation zone 140, thereby cooling to a liquid state and flowing back to the bottom of the cavity 110 to form inside the cavity 11〇. Evaporate the condensation circuit. ❹
At^隔離結構120可由低熱傳導物所組成的,使蒸汽之熱 月b得以由蒸發區丨4〇進入冷凝區15〇。在一實施例中,隔 離、、、。構120可以是一塊隔板,前後固著於腔體的内壁 如圖2 =碰的上視圖所示,其下方财難:之設計, 道=會EJ著於腔體11G底部。構成隔離結構的低熱傳 如疋電木、鐵氟龍、歸(如聚亞胺酸、聚苯乙烯泡 沾位、玻璃纖維織物、石綿、紙、碳、陶兗或其他適當 去二塊材。_實心材質可以作為上述隔板的材質。或 南刪ϋϊ也可以是—塊中空隔板,由剛性材料所組成,利 墙66吉升斗提供足夠的支樓’防止中空隔板因内部中空區 門办外。卩環境之壓力差而崩塌。巾空隔板内部之封 ::二料可空f大於零,其例如是接近完全真空’或是。 疋選自上述之低熱傳導物,例如,剛性的聚The At ^ isolation structure 120 may be composed of a low heat conductor such that the heat of the steam b is allowed to enter the condensation zone 15 from the evaporation zone. In one embodiment, the isolation, ,,. The structure 120 can be a partition, which is fixed to the inner wall of the cavity front and rear. As shown in the upper view of the 2 = bump, the design is below: the road will be EJ at the bottom of the cavity 11G. The low heat transmission that constitutes the isolation structure is such as Bakelite, Teflon, and return (such as polyimidate, polystyrene foam, glass fiber fabric, asbestos, paper, carbon, pottery or other suitable two blocks). _ Solid material can be used as the material of the above-mentioned partition. Or South ϋϊ can also be - a hollow partition, composed of rigid materials, the wall 66 JI liter provides enough support to prevent the hollow partition due to the internal hollow area Outside the door. The environment is under pressure and collapses. The inside of the towel empty partition:: the second material can be empty f is greater than zero, which is, for example, close to full vacuum 'or. 疋 selected from the above low heat conduction, for example, Rigid poly
Mate .二7^聚苯乙稀料,或是以紙底材質(Paper如sed Μ,’組成-具有剛性之結構。 200950677 ........卿 26763twf.d〇C/n 由於隔離結構120為低熱傳導物,或甚至是上述中空 隔板,因此,能夠透過此隔離結構120的設計,有效避免 蒸汽與冷凝區150之間的互相干擾。另外,為了降低蒸汽 流動時的摩擦係數’降低流動的阻力,還可以依照流體力 學的基本觀念,將隔離結構12〇整個截面進行修飾改善的 設計’例如’設計成各式截角,如圖i_A、圖i_B所示之 隔離結構12〇_1、隔離結構120-2,或甚至是拋物線狀或流 φ 線型(如子彈型)的頂部,以進一步增強熱量輸送的能力 ’降低蒸汽早冷凝的機會。 為了加強蒸汽冷凝的能力,還可以在腔體110内部頂 端設置類似傘形或弧狀的設計,以提供頂端冷凝後的液體 可以藉助傘狀或弧狀的協助,藉由重力的方式迅速留回腔 體110底部,進行周而復始的蒸發冷凝循環。 請再參照圖1,工作流體115與發熱元件13〇之間的 腔體110内壁可以設置有毛細構造12〇a以協助工作流體能 夠透過毛細構造而來到蒸發區14〇,迅速地吸收發熱元件 ® 130的熱量而形成蒸汽。毛細構造例如是透過金屬燒結、 餘刻、電鑄或焊接金屬網等方式,設置於腔體11〇内壁。 腔體110與發熱元件130之間可以利用含矽系樹脂、脂肪 族高分子、低分子聚脂類、壓克力系樹脂、石蠟類或環氧 樹脂等相變化樹脂材料,再添加金屬或陶瓷粉體當作導熱 材料,如氮化銘(A1N)、氮化硼(BN)、氧化鋁(Al2〇3)、氧 化鋅(ZnO)及人工鑽石之熱界面材料為墊片,以增加發熱元 件與散熱模組100之間的熱傳遞效率。 · 200950677 a 26763twf.doc/n 請繼續參照圖l,冷凝區150之腔體11〇内壁例如是 設置有紋路圖案,如粗糙之平面、黏著上銅粉或是形成壓 花圖案,或是設置有微結構設計,如各種微型鳍片或微型 溝漕結構等等,增加蒸汽在腔體側壁上的時間,使蒸汽更 容易冷凝而向下迴流,經由重力或是毛細力量流回腔體 110底部。冷凝區150周圍之腔體11〇外部側壁更可以設 置有散熱單元155,例如散熱平板或散熱鰭片等等結構, ❹ 主要目的是增加足夠的散熱面積將熱量傳遞至外部空氣。 圖1繪示之實施例中,腔體110底部為一平坦的結構 ,在另一實施例中,腔體還可以有其他的設計。請參考圖 3續'示之散熱拉組i〇〇a’考量腔體〖I〇a中空封閉結構與内 部隔離結構120a之固定,還可將腔體11〇a底部設計成凹 入之樣式,將隔離結構12〇a固定於腔體ii〇a相接底部, 並將隔離結構120a底部製作成縫細結構的設計。工作流體 115儲存於隔離結構12〇a兩侧之腔體u〇a底部,透過縫 隙結構設計讓腔體U〇a底部的液體能回到蒸發區,以 ❿持續進行整個熱傳運作。此缝細結構可以是一種毛細結構 ,使冷凝區150底部之工作流體與蒸發區14〇底部之工作 流體得以循環作用。 >除此之外,視元件的需求,還可進一步將隔離結構設 計成多層隔板。請參考圖4之散熱模組i〇〇b,其腔體u〇b 内之隔離結構120b例如是由三塊隔板12〇、123、125所構 成的,使工作流體115在發熱元件13〇相鄰處吸收熱量而 產生蒸汽之後,沿著隔板121、123、125所形成的路徑, 200950677 rv,x^wu〇TW 26763twf.doc/n 往冷凝區150前進,以增加空間内蒸汽的行進路徑。 凊參照圖5與圖6繪示之散熱模組1〇〇,,在—實施例 中,為了達到更迅速冷凝的功效,腔體1〇〇,可以設計成中 空%狀結構,環繞發熱元件13〇,而設置。如此一來,隔離 結構120’也會隨之成為一個環狀的結構,其例如是環^隔 板。此環狀隔板可以是實心材料之低熱傳導物,或是中空 隔板,其材質請參考上述說明,於此不贅述。而為了將隔 ❹ 離結構120’固定於腔體100’内部,隔離結構120,底部可以 是設計成如同圖3底部之缝細結構。在此種散熱模組1〇〇, 之中,工作流體115’由包圍發熱元件13〇,之蒸發區14〇, 吸收熱量形成蒸汽,向外部之冷凝區150’移動,藉由侧壁 之散熱单元155的協助’而向下冷凝流回腔體11〇,底部。 發熱元件除了可以设置於腔體側壁之外,也可以設置 於腔體下方。圖7是繪示本發明另一實施例之一種散熱模 組之結構剖面圖。圖8是繪示圖7之散熱模組之上視示意 圖。其中,圖7與上述圖1使用相對應之標號者,代表類 〇 似之元件,其詳細結構、材質可參照圖1之相關說明。 請參考圖7,散熱模組200包含有腔體210與隔離結 構220。腔體210可以是立方形的中空封閉結構,或者也 可以是圓柱形的中空封閉結構。腔體210底部填充有工作 流體215 ’此工作流體215可以是水或是其他適當的流體 。發熱元件230例如是設置於腔體210下方。 另外,請參考圖9繪示之另一散熱模組200a,考量腔 體21〇a中空封閉結構之固定’可將腔體210底部設計成凹 11 200950677 r υ i i」TW 26763twf.d〇c/n 入形式,利用隔離結構220a兩侧之腔體21〇a底部來加以 儲存此工作流體215,透過缝隙結構設計讓冷凝區25〇底 部之工作流體215能回到蒸發區240底部,以持 敕 個熱傳運作。 玉 請參考圖7,隔離結構22〇設置於腔體21〇中,將腔 體21〇分隔為中央之蒸發區240與外圍之冷凝區25〇。隔 離結構220可以是一個管狀隔板,請參考圖8,由上視剖 ❹ 面觀之,隔離結構220可以是方形,當然,隔離結構22〇 之上視剖面也可以是環狀或是其他幾何圖案的。此管狀隔 板所圍空間的正下方即為發熱元件23〇。腔體21〇底部之 工作流體215在吸收下方發熱元件23〇之熱量後產生蒸汽 向上逸散’然後跨過隔離結構220到達外圍的冷凝區25〇 ,進而冷卻成液態並迴流至腔體21〇底部,形成一蒸發冷 凝迴路。在本實施例中,由於冷凝區25〇是位在腔體2〇〇 内之外圍,因此’散熱單元255可以是環狀設置於腔體20〇 外,加速熱量的散失。 在另一實施例中’除了管狀隔板之隔離結構22〇以外 ’隔離結構220也可以是兩塊隔板,分別垂直於腔體21〇 底。卩,將腔體210隔離成三塊垂直區域,分別是中間的蒸 發區240與兩側的冷凝區250。 隔離結構220頂端可以設計成各式截角或流線型頂部 ,増強熱量輸送的能力。腔體210頂端同樣可以設置傘型或 弧形的設計。在本實施例中所提出之散熱模組’由於提供了 更大的冷凝區空間,可以更進一步加速蒸汽的冷凝。 12 26763twf.doc/n 200950677TwMate. Two 7^ polystyrene, or paper bottom material (Paper such as sed Μ, 'composition - has a rigid structure. 200950677 ........qing 26763twf.d〇C/n due to isolation structure 120 is a low heat conductor, or even a hollow separator, and therefore, the design of the isolation structure 120 can effectively avoid mutual interference between the steam and the condensation zone 150. In addition, in order to reduce the friction coefficient of the steam flow, the pressure is reduced. The resistance of the flow can also be modified according to the basic concept of fluid mechanics. The design of the entire structure of the isolation structure 12 is improved, for example, by various truncated angles, as shown in the figure i_A, i_B, the isolation structure 12〇_1 , isolation structure 120-2, or even the top of a parabolic or flow φ line type (such as bullet type) to further enhance the ability of heat transfer 'reduce the opportunity of early condensation of steam. In order to enhance the ability of steam condensation, it can also be in the cavity The inner end of the body 110 is provided with an umbrella-like or arc-like design to provide a liquid which is condensed at the top end and can be quickly returned to the bottom of the cavity 110 by means of gravity by means of an umbrella or an arc. The recirculation condensation cycle is repeated. Referring again to Figure 1, the inner wall of the cavity 110 between the working fluid 115 and the heating element 13A may be provided with a capillary structure 12〇a to assist the working fluid to pass through the capillary structure to the evaporation zone 14 Thereafter, the heat of the heat generating component 130 is rapidly absorbed to form a vapor. The capillary structure is disposed on the inner wall of the cavity 11 by, for example, metal sintering, engraving, electroforming, or welding of a metal mesh. The cavity 110 and the heat generating component 130 A phase change resin material containing a lanthanoid resin, an aliphatic polymer, a low molecular weight polyester, an acrylic resin, a paraffin wax or an epoxy resin may be used, and a metal or ceramic powder may be added as a heat conductive material. Thermal interface materials such as Niobium (A1N), boron nitride (BN), alumina (Al2〇3), zinc oxide (ZnO), and artificial diamond are spacers to increase the relationship between the heat generating component and the heat dissipation module 100. Heat transfer efficiency. 200950677 a 26763twf.doc/n Continuing to refer to FIG. 1, the inner wall of the cavity 11 of the condensing zone 150 is, for example, provided with a grain pattern such as a rough surface, a copper powder adhered thereto or an embossed pattern. Or a micro-structure design, such as various micro fins or micro-groove structures, to increase the time of steam on the sidewall of the cavity, making the steam easier to condense and return downwards, flowing back through gravity or capillary force. The bottom of the cavity 110. The outer wall of the cavity 11 around the condensation zone 150 may be provided with a heat dissipation unit 155, such as a heat dissipation plate or a heat dissipation fin, etc. The main purpose is to increase the heat dissipation area to transfer heat to the outside air. In the embodiment shown in FIG. 1, the bottom of the cavity 110 is a flat structure, and in another embodiment, the cavity may have other designs. Referring to FIG. 3, the heat dissipation drawing group i〇〇a' is considered to be fixed, and the bottom of the cavity 11〇a is designed to be concave. The isolation structure 12〇a is fixed to the bottom of the cavity ii〇a, and the bottom of the isolation structure 120a is made into a design of the slit structure. The working fluid 115 is stored at the bottom of the cavity u〇a on both sides of the isolation structure 12〇a, and the liquid structure at the bottom of the cavity U〇a can be returned to the evaporation zone through the slit structure to continue the entire heat transfer operation. The slit structure may be a capillary structure that circulates the working fluid at the bottom of the condensation zone 150 and the working fluid at the bottom of the evaporation zone 14〇. > In addition to this, depending on the requirements of the components, the isolation structure can be further designed as a multilayer separator. Referring to the heat dissipation module i〇〇b of FIG. 4, the isolation structure 120b in the cavity u〇b is composed of, for example, three partitions 12〇, 123, and 125, so that the working fluid 115 is on the heating element 13〇. After the adjacent portion absorbs heat to generate steam, along the path formed by the partitions 121, 123, 125, 200950677 rv, x^wu〇TW 26763twf.doc/n proceeds toward the condensation zone 150 to increase the flow of steam in the space. path. Referring to FIG. 5 and FIG. 6 , the heat dissipation module 1 〇〇 , in the embodiment, in order to achieve the effect of more rapid condensation, the cavity 1 〇〇 can be designed as a hollow % structure, surrounding the heating element 13 Oh, and set. As a result, the isolation structure 120' will also become an annular structure, such as a ring spacer. The annular separator may be a low heat conductor of a solid material or a hollow separator. For the material, please refer to the above description, and details are not described herein. In order to fix the spacer structure 120' inside the cavity 100', the isolation structure 120, the bottom portion may be a thin structure designed like the bottom of Fig. 3. In the heat dissipation module 1A, the working fluid 115' is surrounded by the heating element 13〇, the evaporation zone 14〇, absorbing heat to form steam, moving to the external condensation zone 150', and dissipating heat by the sidewall The assistance of unit 155' condenses back down to the cavity 11〇, bottom. The heating element may be disposed outside the cavity, in addition to the sidewall of the cavity. Figure 7 is a cross-sectional view showing the structure of a heat dissipation module according to another embodiment of the present invention. FIG. 8 is a schematic top view of the heat dissipation module of FIG. 7. FIG. 7 and the above-mentioned FIG. 1 use the corresponding reference numerals, and represent the like elements. The detailed structure and material can be referred to the related description of FIG. Referring to FIG. 7, the heat dissipation module 200 includes a cavity 210 and an isolation structure 220. The cavity 210 may be a cuboid hollow closed structure or may be a cylindrical hollow closed structure. The bottom of the chamber 210 is filled with a working fluid 215' which may be water or other suitable fluid. The heating element 230 is disposed, for example, below the cavity 210. In addition, please refer to FIG. 9 for another heat dissipation module 200a, which considers the fixing of the cavity 21〇a hollow closed structure, and the bottom of the cavity 210 can be designed as a recess 11 200950677 r υ ii" TW 26763twf.d〇c/ The n-in form uses the bottom of the cavity 21〇a on both sides of the isolation structure 220a to store the working fluid 215. The slit structure is designed to allow the working fluid 215 at the bottom of the condensation zone 25 to return to the bottom of the evaporation zone 240 for holding. A heat transfer operation. J. Referring to Figure 7, the isolation structure 22 is disposed in the cavity 21, partitioning the cavity 21 into a central evaporation zone 240 and a peripheral condensation zone 25A. The isolation structure 220 can be a tubular partition. Referring to FIG. 8, the isolation structure 220 can be square from the top view. Of course, the upper structure of the isolation structure 22 can also be annular or other geometry. Patterned. The heating element 23 is directly below the space enclosed by the tubular spacer. The working fluid 215 at the bottom of the cavity 21 产生 generates heat vapor escaping after absorbing the heat of the lower heating element 23 and then passes over the isolation structure 220 to the peripheral condensing zone 25 〇, thereby cooling to a liquid state and flowing back to the cavity 21 〇 At the bottom, an evaporative condensation loop is formed. In the present embodiment, since the condensing zone 25 is located at the periphery of the cavity 2, the heat dissipating unit 255 may be annularly disposed outside the cavity 20 to accelerate the dissipation of heat. In another embodiment, the isolation structure 220 may be two spacers, except for the isolation structure 22 of the tubular spacer, which are perpendicular to the cavity 21, respectively. Thereafter, the cavity 210 is isolated into three vertical regions, an intermediate evaporation zone 240 and a condensing zone 250 on both sides. The top of the isolation structure 220 can be designed as a variety of truncated or streamlined tops, with the ability to transfer heat. The top of the cavity 210 can also be provided with an umbrella or curved design. The heat dissipating module ' proposed in this embodiment can further accelerate the condensation of steam by providing a larger condensing space. 12 26763twf.doc/n 200950677Tw
J, V i. WW 1 W 上述各種不同態樣實施例之散熱模組,利用隔離結構 的設置,於腔體内部之封閉空間,產生獨立且不互相感擾 的蒸發冷凝迴路,使此散熱模組能夠提供高效率的蒸發冷 卻效果。並且整合了蒸發與冷凝的管道,大幅地簡&散埶 模組的複雜度。 ‘' —雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何所屬技術領域中具有通常知識者,在不 脫離本發明之精神和範圍内,當可作些許之更動與潤飾, 因此本發明之保護範圍當視後附之申請專利範圍所界定者 為準。 【圖式簡單說明】 圖1是繪示本發明一實施例之一種散熱模組的結構剖 面示意圖。 圖1-A是緣示圖1之中另一隔離結構的示意圖。 圖1-B是繪示圖1之中又一隔離結構的示意圖。 圖2是繪示圖1之散熱模組的上視示意圖。 圖3是繪示本發明另一實施例之一種散熱模組之結構 剖面圖。 圖4是繪示本發明再一實施例之一種散熱模組之結構 剖面圖。 圖5是繪示本發明又一實施例之一種散熱模組之結構 剖面圖。圖6是繪示圖5之散熱模組的上視示意圖。 圖7是繪示本發明一實施例之發熱元件設置於底部的 一種散熱模組之結構剖面圖。 13 200950677. j.vi^uwxJTW 26763twf.doc/n 圖8是繪示圖7之散熱模組的上視示意圖。 圖9是繪示本發明另一實施例之發熱元件設置於底部 的一種散熱模組之結構剖面圖。 【主要元件符號說明】 100、100a、100b、100,、200、200a :散熱模組 110、110a、110b、110,、210、210a :腔體 115、115’、215 :工作流體 120、 120-1、120-2、120a、120b、120,、220、220a : 隔離結構 121、 123、125 :隔板. 130、130’、230:發熱元件 140、140’、240 :蒸發區 150、250,、250 :冷凝區 155、155’、255 :散熱單元J, V i. WW 1 W The heat dissipation module of the various different embodiments described above utilizes the arrangement of the isolation structure to create an independent and non-interfering evaporation condensation loop in the enclosed space inside the cavity, so that the heat dissipation module The group provides efficient evaporative cooling. And the integration of the evaporation and condensation of the pipeline, greatly simplifying the complexity of the module. The present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the invention, and it is intended to be a part of the invention without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing the structure of a heat dissipation module according to an embodiment of the present invention. FIG. 1-A is a schematic view showing another isolation structure in FIG. FIG. 1-B is a schematic view showing still another isolation structure in FIG. 1. FIG. 2 is a top plan view showing the heat dissipation module of FIG. 1. 3 is a cross-sectional view showing the structure of a heat dissipation module according to another embodiment of the present invention. 4 is a cross-sectional view showing the structure of a heat dissipation module according to still another embodiment of the present invention. FIG. 5 is a cross-sectional view showing the structure of a heat dissipation module according to still another embodiment of the present invention. FIG. 6 is a top plan view showing the heat dissipation module of FIG. 5. Fig. 7 is a cross-sectional view showing the structure of a heat dissipating module in which a heat generating component is disposed at a bottom portion according to an embodiment of the present invention. 13 200950677. j.vi^uwxJTW 26763twf.doc/n FIG. 8 is a top view showing the heat dissipation module of FIG. 7. Figure 9 is a cross-sectional view showing the structure of a heat dissipating module in which a heat generating component is disposed at a bottom portion according to another embodiment of the present invention. [Main component symbol description] 100, 100a, 100b, 100, 200, 200a: heat dissipation module 110, 110a, 110b, 110, 210, 210a: cavity 115, 115', 215: working fluid 120, 120- 1, 120-2, 120a, 120b, 120, 220, 220a: isolation structure 121, 123, 125: spacer. 130, 130', 230: heating elements 140, 140', 240: evaporation zones 150, 250, , 250: Condensation zone 155, 155', 255: heat sink unit