[go: up one dir, main page]

TW200948990A - Cu-ni-si alloy to be used in electrically conductive spring material - Google Patents

Cu-ni-si alloy to be used in electrically conductive spring material Download PDF

Info

Publication number
TW200948990A
TW200948990A TW98110571A TW98110571A TW200948990A TW 200948990 A TW200948990 A TW 200948990A TW 98110571 A TW98110571 A TW 98110571A TW 98110571 A TW98110571 A TW 98110571A TW 200948990 A TW200948990 A TW 200948990A
Authority
TW
Taiwan
Prior art keywords
alloy
mass
crystal
bending
annealing
Prior art date
Application number
TW98110571A
Other languages
Chinese (zh)
Other versions
TWI443204B (en
Inventor
Naofumi Maeda
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Publication of TW200948990A publication Critical patent/TW200948990A/en
Application granted granted Critical
Publication of TWI443204B publication Critical patent/TWI443204B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

A Cu-Ni-Si base alloy containing Ni in an amount of 1.0 to 4.0 mass% and Si in a concentration of 1/6 to 1/4 of that of Ni, wherein the density of twin boundaries (S3 boundaries) is 15 to 60% of all the grain boundaries. The alloy may further contain Mg: 0.2% or less, Sn: 0.2 to 1%, Zn: 0.2 to 1%, Co: 1 to 1.5%, and/or Cr: 0.05 to 0.2%.

Description

200948990 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種使用於電子零件用導電性彈菁材之 Cu-NbS!系合金,尤其係關於—種使用於連接器、端子、 繼電器、開關等電子零件且強度、彎曲加工性及導電率之 平衡優異之Cu-Ni-Si系合金。 【先前技術】200948990 VI. TECHNOLOGICAL FIELD OF THE INVENTION [Technical Field] The present invention relates to a Cu-NbS! alloy for use in a conductive elastomeric material for electronic parts, and more particularly to a connector, a terminal, and a relay. A Cu-Ni-Si alloy that is excellent in balance of strength, bending workability, and electrical conductivity with electronic components such as switches. [Prior Art]

隨著近年來電子機器之輕薄短小化,端子、連接号等 亦趨向小型化及薄壁化,而要求強度及弯曲加工性卡遜 (Cu,Si系)合金、皱銅及軸等析出強化型銅合金代 替先前之磷青銅或黃銅等固溶強化型銅合金其需求曰益 力其中,卡遜合金之強度與導電率之平衡優異,故使 用於連接器等電子零件中之頻率愈來愈高。 通常強度與彎曲加工性係相反之性質,過去以來已 對卡遜合金中維持較高之強度且改善彎曲加工性之情況進 行研九,廣泛進行如下討論,即,欲藉由調整製造步驟, 對結晶粒徑、析出物之個數及形狀、集合組織進行個別或 者相互控制,從而改善彎曲加工性。 於專利文獻1中,於更添加有Co、Zn、Mn、Cr、A1 之卡遜合金中,抑制溶體化時之晶粒成長,改善彎曲加工 性。於專利文獻2中,使卡遜合金含有適量之Ti、Zr、Hf 或Th ’較佳為使結晶粒徑微細化,由此改善衝壓加工性及 ,彎曲加工性。於專利文獻3中,將卡遜合金中之s含量及〇 含量限制為小於〇.0〇5%,使Sn含量及Mg含量最佳化,視 3 200948990 情況使Zn之含量最佳化,進而控制結晶粒徑,由此改善彎i 曲加工性。 於專利文獻4及專利文獻5中,限制卡遜合金中之s 含量,並使Mg、Sn、Zn之含量最佳化,對結晶粒徑及晶粒 之縱橫比進行控制’由此改善彎曲加工性及應力緩和性 等。於專利文獻ό中’對卡遜合金之集合組織進行控制, 並將{123} <412>方位之極密度控制於規定範圍,由此 改善彎曲加工性。 於專利文獻7中,對卡遜合金之集合組織進行控制, 並以滿足(I( "u + I (3ΐη) /1( > 2·〇之方式控制集合级 織,改善彎曲加工性。於專利文獻8中,對卡遜合金中之 熱壓延及溶體化處理條件進行調整,使拉伸強度試驗中不 會表現出降伏點效果(yield p〇int effect),由此改善彎曲加 工性。 [專利文獻1 ]日本專利特開平5_丨79377號公報 [專利文獻2]曰本專利特開平6_184681號公報 [專利文獻3]曰本專利特開平11 222641號公報 [專利文獻4]日本專利特開2〇〇2_38228號公報 [專利文獻5]曰本專利特開2〇〇2_18〇161號公報 [專利文獻6]日本專利特開2〇〇7_92135號公報 [專利文獻7]日本專利特開2〇〇6 16629號公報 [專利文獻8]日本專利特開2007-169781號公報 [發明内容】 璧L明所欲解決之問, 200948990 隨著近年來電子料之微細&,於冑曲加工性評價 時,除龜裂之有無以外,f曲部中產生之摺敵大小亦成為 問題。其原因在於曲部作為電接頭(eiect_ contact)之情形時,若褶敵較大,則接觸電阻會變得不穩 定’而損及電性連接之可靠性。 “With the recent reduction in the size and thickness of electronic devices, terminals and connection numbers have become smaller and thinner, and strength and bending workability of Cason (Cu, Si-based) alloys, wrinkles, and shafts have been required. Copper alloy replaces the demand for solid solution-strengthened copper alloy such as phosphor bronze or brass. Among them, the balance between strength and electrical conductivity of Carson alloy is excellent, so the frequency used in electronic parts such as connectors is getting more and more. high. Generally, the strength is opposite to that of the bending processability. In the past, the case of maintaining high strength and improving the bending workability in the Carson alloy has been extensively discussed as follows, that is, by adjusting the manufacturing steps, The crystal grain size, the number and shape of the precipitates, and the aggregate structure are individually or mutually controlled to improve the bending workability. In Patent Document 1, in the Carson alloy in which Co, Zn, Mn, Cr, and A1 are further added, grain growth during dissolution is suppressed, and bending workability is improved. In Patent Document 2, it is preferable that the Carson alloy contains an appropriate amount of Ti, Zr, Hf or Th' to refine the crystal grain size, thereby improving press workability and bending workability. In Patent Document 3, the s content and the cerium content in the Carson alloy are limited to less than 〇0.5 〇, and the Sn content and the Mg content are optimized, and the Zn content is optimized according to 3 200948990, and further The crystal grain size is controlled, thereby improving the bending workability. In Patent Document 4 and Patent Document 5, the content of s in the Carson alloy is limited, and the contents of Mg, Sn, and Zn are optimized, and the crystal grain size and the aspect ratio of the crystal grains are controlled, thereby improving the bending process. Sex and stress mitigation. In the patent document, 'the control organization of the Carson alloy is controlled, and the polar density of the {123} <412> azimuth is controlled within a predetermined range, thereby improving the bending workability. In Patent Document 7, the aggregate structure of the Carson alloy is controlled to satisfy the (I( "u + I (3ΐη) /1 (> 2·〇) method to control the collective weaving, and to improve the bending workability. In Patent Document 8, the conditions of hot rolling and solution treatment in the Carson alloy are adjusted so that the yield strength test does not exhibit a yield p〇int effect, thereby improving bending processing. [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Patent Document 5] Japanese Patent Laid-Open Publication No. JP-A No. Hei. No. Hei. No. Hei. Japanese Laid-Open Patent Publication No. 2007-169781 [Draft of the Invention] Japanese Patent Laid-Open Publication No. 2007-169781 [Summary of the Invention] 璧L Ming wants to solve the problem, 200948990 With the recent fineness of electronic materials, In the evaluation of workability, in addition to the presence or absence of cracks, The size of the enemy off has become a problem. This is because the curved portion of the case as the electrical connector (eiect_ contact), if the enemy pleats is large, the contact resistance becomes unstable 'to the detriment of the reliability of electrical connection. "

然而,先前技術中所評價之彎曲加工性為耐彎曲龜裂 性’幾乎並未考慮f曲㈣,故無法獲得耐彎曲褶敵性優 異之Cu Ni Si系合金。於專利文獻3中,雖然:實曲加工性 評價中揭示有㈣’但並未對f曲褶敵之大^、進行定量評 ^故無法獲侍無褶皺之發明例。於專利文獻ό中雖進行 f曲摺皺評價,但為了獲得強度及彎曲加卫性優異之 Cu-Ni-Si系合金,而著眼於{ 111}正極點圖上之{ 12/丨'〈 412&gt;方位(專利文獻6「〇〇16」),並對溶體化處理前之冷 壓延及溶體化處理之條件進行調整(專利文獻6「⑼19」卜 於專利錄8巾’亦進行彎曲賴評價,但為了獲得強度 及著曲加工性優異&lt; Cu_Nisi系合金,而著眼於殘留之However, the bending workability evaluated in the prior art is that the bending crack resistance is hardly considered to be f-curve (four), so that a Cu Ni Si-based alloy excellent in bending flaking resistance cannot be obtained. In Patent Document 3, an invention example in which the (4)' is not evaluated in the evaluation of the actual bending property, but the quantitative evaluation of the f-flicking enemy is not performed, and the wrinkle-free is not obtained. In the patent document, the f-crease evaluation is performed, but in order to obtain a Cu-Ni-Si alloy excellent in strength and bending and securing property, attention is paid to {12/丨' < 412 on the {111} positive dot map. Orientation (Patent Document 6 "〇〇16"), and adjustment of conditions for cold rolling and solution treatment before solution treatment (Patent Document 6 "(9) 19", "Patent Record 8" is also evaluated for bending However, in order to obtain excellent strength and flexural workability &lt; Cu_Nisi alloy, attention is paid to the residual

Nl_Sl粒(專利文獻8「〇〇〇9」),並對Ni量、Si量或熱壓延 及溶體化處理條件進行調整(專利文獻8「0019」)。 解決誤題之手科 本發明者等人為了達成上述目的,而與先前技術不同 地根據控制多晶金屬之晶界之觀點,對彎曲加工性進行 反覆研究,'结果藉由對Cu_Ni_si系合金之加工熱處理時產 生之退火雙晶之產生頻率進行控制,而獲得高強度且彎曲 @^賈時亦具有良好之f曲加工性的Cu-Ni-Si系合金。 200948990 tgj之效果 本發明之Cu-Ni-si条人人 彎曲加工性良好且蠻…’可作為維持高強度之同時 f生艮好且彎曲褶皺減少的銅合 子、連接器等用途。 而適用於端 【實施方式】 接著,就本發明$ [Ni、Si] …要條件與其作用-併加以說明。 對Ni及Si進行適當之敎虚搜 之金屈心人札處此形成以Ni2Si為主 之金屬間化合物之微細粒子 同時導電性亦上升。 口金之強度明顯增加’Nl_S1 (Patent Document 8 "〇〇〇9"), and the amount of Ni, the amount of Si, or the hot rolling and the solution treatment conditions are adjusted (Patent Document 8 "0019"). In order to achieve the above object, the inventors of the present invention have repeatedly studied the bending workability according to the viewpoint of controlling the grain boundary of the polycrystalline metal, which is different from the prior art, and the result is obtained by the Cu_Ni_si alloy. The frequency of occurrence of the annealing twin crystals generated during the processing heat treatment is controlled, and a Cu-Ni-Si alloy having high strength and bending properties is also obtained. 200948990 Effect of tgj The Cu-Ni-si strip of the present invention is excellent in bending workability and can be used as a copper zygoter or a connector which maintains high strength and has a good shrinkage and reduced bending wrinkles. The present invention is applicable to the end [Embodiment] Next, the present invention is made by the condition of [[Ni, Si] ... and the description thereof. In the case of Ni and Si, the fine particles of the intermetallic compound mainly composed of Ni2Si are simultaneously formed, and the conductivity is also increased. The strength of the mouth gold has increased significantly’

Ni係以1. 〇〜4. 〇暫番0/ *... 。、較佳為1.5〜3質量%之範圍 添加。若Ni小於1 〇哲具。/ α,. 、 。’則…、法獲得充分之強度。若 超過4.0質量% ’則熱壓延時會產生龜裂。Ni is 1. 〇~4. 〇予番0/ *... Preferably, it is in the range of 1.5 to 3 mass%. If Ni is less than 1 〇 〇. / α,. , . ‘Therefore, the law gained sufficient strength. If it exceeds 4.0% by mass, the hot pressing delay will cause cracks.

Si之添加濃度(質量%)係設為Ni之添加濃度(質量 〇/〇)之1/6〜1/4。若Sk添加濃度少於Ni之添加漠度之1/6, 則強度會下降,若多^Ni之添加濃度之1/4,則不僅無助 於強度,而且過剩之Si會造成導電性下降。 [Mg、Sn、Zn、.Co、Cr]The added concentration (% by mass) of Si is set to 1/6 to 1/4 of the added concentration (mass 〇/〇) of Ni. If the concentration of Sk added is less than 1/6 of the additive indifference of Ni, the strength will decrease. If more than 1/4 of the added concentration of Ni is not beneficial to the strength, excessive Si will cause a decrease in conductivity. [Mg, Sn, Zn, .Co, Cr]

Mg具有改善應力緩和特性及熱加工性之效果,但若超 過0.2質量%,則鑄造性(鑄件表面)、熱加工性及電鍍耐 熱剝離性會下降。因此,將Mg之濃度規定為〇2%以下。Although Mg has an effect of improving stress relaxation properties and hot workability, when it exceeds 0.2% by mass, castability (casting surface), hot workability, and plating heat peeling resistance are deteriorated. Therefore, the concentration of Mg is specified to be 〇2% or less.

Sn及Zn具有改善強度及耐熱性之作用,此外Sn具有 耐應力緩和特性之改善作用,而211具有改善焊接耐熱性之 作用。Sn係以質量%之範圍添加’ &amp;係以〇 2〜ι 200948990 質量%之範圍添加。若低於上述範圍,則無法獲得所需之效 果,若高於上述範圍,則導電性會下降。Sn and Zn have an effect of improving strength and heat resistance, and Sn has an effect of improving stress relaxation resistance, and 211 has an effect of improving solder heat resistance. The Sn is added in the range of % by mass and is added in the range of 〇 2 to ι 200948990% by mass. If it is less than the above range, the desired effect cannot be obtained, and if it is higher than the above range, the conductivity is lowered.

Co及cr具有與Si生成化合物並藉由析出來改善強度 之作用。此外,C〇具有於熱處理時防止晶粒之粗大化之作 用,而Cr具有耐熱性之改善作用。c〇係以i〜丨5質量% 之範圍添加,Cr係以0.05〜0.2質量%之範圍添加。若低於 • 上述範圍,則無法獲得所需之效果,若高於上述範圍,則 - 使導電性下降。 〇 曰 [雙晶界面(twin boundary)] 金屬材料通常係具有各種晶體方位(crystal orientation )之晶粒之聚集體,即多晶體,於金屬材料中由 於原子排列方法之不同而存在邊界,即晶界。晶界根據相 鄰晶粒間之方位差而分為高角度晶界(high_angle grain boundary)、低角度晶界(i〇w_angie grain b〇undary)、亞晶 界(subgrain b〇undary),通常,晶界係指相鄰晶粒間之方 Q 位差為15以上之咼角度晶界。另一方面,晶界根據相鄰晶 粒間之一致性而分為隨機晶界及規則晶界。由於Cu-Ni-Si 系合金之加工熱處理而產生之退火雙晶係Σ3之規則晶界, 晶粒間之一致性較高。 Σ值係表示晶界之一致性之指標,於使夾住晶界之左右 晶格重合時’相重合之對應格子點與格子點之密度比為1/η 時’處於η之對應關係。因雙晶界面之原子一致性良好, 故於邊界附近不易產生不均勻變形,且於彎曲變形時不易 產生以邊界附近為基點之龜裂或褶皺。因此,藉由對包含 7 200948990 曰B界及雙阳界面之總邊界(於此,低角度晶界及亞晶界除 外)中之雙晶界面之比例進行控制,可改善彎曲加工性。 曰&amp;本發明之Cu_Ni_Si系合金中’藉由將其總邊界中之 雙曰曰界面(Σ3邊界)之頻率(比例)控制為i5%以上且6〇% 以下,較佳為30%以上且6〇%以下,由此可改善彎曲加工 14若】、於15 %,則無法獲得所需之彎曲加工性,若超過 6〇/〇則/谷體化時之晶粒會粗大化,而引起強度下降。 作為求出雙晶界面之比例的方法,例如有利用場致發 射掃描電子顯微鏡(Field Emission Scanning Electron Microscope,FESEM )之電子背散射圖案(Eiectr〇nBack Scattering Pattern ’ EBSP )法。此方法係基於對試樣表面斜 向照射電子束時產生之電子背向散射繞射圖案(菊池圖案 (Kikuchi pattern )),對晶體方位進行分析的方法。於利用 本方法分析晶體方位之後,求出相鄰晶體方位間之方位 差’從而可確定隨機晶界及各規則晶界之比例(晶界特性 分布)。因雙晶界面相當於2:3規則晶界,故雙晶界面之比 例可由(規則晶界E3之長度總和)/ (晶界之長度總和)χ 100來計算。另外’晶界係指相鄰晶粒間之方位差為15〇以 上之邊界,不包括低角度晶界或亞晶界。 本發明中之雙晶係退火雙晶’其係隨著由於壓延後之 退火所產生之再結晶而生成的雙晶。雙晶之產生頻率與材 料之疊差能(stacking fault energy )有相關關係,若疊差能 較低’則退火時產生之雙晶頻率會上升,若疊差能較高, 則頻率會下降。另一方面,疊差能會隨著增加固溶Ni. Si 200948990 量(正確而言係增加固溶81詈) 而下降。因此,為了增加 雙晶界面頻率而於最終之再結晶退火(於本發明中,與溶 體化處理相對應)之前降低疊差能,為此增加固溶州量· Si量即可。Co and cr have a function of forming a compound with Si and improving the strength by precipitation. Further, C 〇 has a function of preventing coarsening of crystal grains during heat treatment, and Cr has an effect of improving heat resistance. C〇 is added in the range of i to 丨5 mass%, and Cr is added in the range of 0.05 to 0.2 mass%. If it is less than the above range, the desired effect cannot be obtained, and if it is higher than the above range - the conductivity is lowered. 〇曰 [twin boundary] A metal material is usually an aggregate of crystal grains having various crystal orientations, that is, a polycrystal. In a metal material, a boundary exists due to a difference in atom arrangement methods, that is, a crystal. boundary. The grain boundary is divided into a high angle grain boundary, a low angle grain boundary (i〇w_angie grain b〇undary), and a subgrain b〇undary according to the difference in orientation between adjacent grains. The grain boundary refers to the 咼 angle grain boundary where the square Q difference between adjacent crystal grains is 15 or more. On the other hand, the grain boundaries are classified into random grain boundaries and regular grain boundaries according to the consistency between adjacent crystal grains. Due to the regular grain boundary of the annealed bimorph system 产生3 produced by the heat treatment of the Cu-Ni-Si alloy, the uniformity between the grains is high. The Σ value is an index indicating the consistency of the grain boundaries, and when the density ratio of the corresponding lattice points and the lattice points where the phase overlaps when the crystal lattices of the grain boundary are overlapped is 1/η, the relationship is η. Since the atomic consistency of the twin crystal interface is good, uneven deformation is less likely to occur near the boundary, and cracks or wrinkles near the boundary are less likely to occur at the time of bending deformation. Therefore, the bending workability can be improved by controlling the ratio of the twin interface including the total boundary of the B-B and the Shuangyang interface (except for the low-angle grain boundary and the sub-grain boundary). In the Cu_Ni_Si alloy of the present invention, the frequency (ratio) of the double-twisted interface (Σ3 boundary) in the total boundary is controlled to be i5% or more and 6% or less, preferably 30% or more. 6〇% or less, whereby the bending process 14 can be improved, and if it is 15%, the required bending workability cannot be obtained, and if it exceeds 6 〇/〇, the crystal grains at the time of grain formation become coarse, resulting in The strength is reduced. As a method for determining the ratio of the twin crystal interface, for example, an Eeectr〇n Back Scattering Pattern (EBSP) method using a Field Emission Scanning Electron Microscope (FESEM) is known. This method is based on the method of analyzing the crystal orientation based on an electron backscatter diffraction pattern (Kikuchi pattern) generated when the surface of the sample is obliquely irradiated with an electron beam. After analyzing the crystal orientation by the method, the azimuth difference between adjacent crystal orientations is determined to determine the ratio of the random grain boundary and the regular grain boundary (grain boundary characteristic distribution). Since the twin interface is equivalent to a 2:3 regular grain boundary, the ratio of the twin interface can be calculated from (the sum of the lengths of the regular grain boundaries E3) / (the sum of the lengths of the grain boundaries) χ 100. Further, the "grain boundary" means that the difference in orientation between adjacent crystal grains is a boundary of 15 Å or more, excluding a low-angle grain boundary or a subgrain boundary. The twin-crystal annealing twin crystal in the present invention is a twin crystal which is formed by recrystallization due to annealing after rolling. The frequency of twin crystal generation is related to the stacking fault energy. If the stacking energy is low, the twin crystal frequency generated during annealing will rise. If the stacking energy is higher, the frequency will decrease. On the other hand, the difference in stacking energy decreases with increasing amount of solid solution Ni. Si 200948990 (correctly increasing solid solution 81詈). Therefore, in order to increase the bimorphic interface frequency, the stacking energy can be lowered before the final recrystallization annealing (corresponding to the solution treatment in the present invention), and the amount of solid solution state and Si can be increased for this purpose.

然而,於先前之卡遜合金之製造方法中m之固 溶通常於溶體化處理時進行,而就於所需以上的高溫下進 行熱壓延之處理而言’除成本增加以夕卜,熱壓延時龜裂之 危險亦會增加,故不進行。&amp;,亦有熱壓延時兼具溶體化 處理之製造方法,但即便於相當於溶體化處理之退火後進 行熱壓延’亦無法使鑄造時所產生之Ni_si結晶物完全固 溶’無法充分降低疊差能。結果,利用先前方法獲得之雙 晶界面頻率為12%左右。另―方面,於本發明中,藉由提 高鑄造時之冷卻速度來減少Ni_Si結晶物之個數及粒徑,此 外,於熱壓延步驟中不產生龜裂之限度内採用高溫長時間 之退火條件,對材料進行冷卻,由此使固溶Ni量· si量高 於先前方法,從而獲得所需之雙晶界面頻率。 [製造方法] 本發明之卡遜合金係於「熔解、鑄造—熱壓延—平面 切削」後,以組合有溶體化處理、冷壓延以及時效處理之 一般性製造製程來製造’亦有於最終冷壓延後進行去應力 退火之情形或熱壓延時兼具溶體化處理之情形。因退火雙 晶係隨著溶體化處理時之再結晶而產生,故為了達成雙晶 界面之頻率為15〇/〇以上且60%以下,可於下述範圍内之條 件下進行上述鑄造至熱壓延為止之處理,於最終之再結 9 200948990 退火’即於溶體化處理之前預先使Ni及Si充分固溶。 設鑄造時之鱗錠(ingot)冷卻速度為3〇〇〜5〇(rc/min, 於鏵造冷卻時抑制粗大Ni-Si粒子之結晶。鑄錠冷卻速度超 過500°C /min之速度就費用方面而言並不實用。接著’於加 熱溫度940〜1000°C、較佳為950〜980。(:以加熱時間3〜6 h 進行退火,使殘留於鑄鍵上之Ni-Si粒子固溶後,進行熱壓 延。若加熱溫度小於940。(:或小於3小時,則所殘留之Ni_Si 粒子之固溶會不充分。另一方面,於超過熱壓延時之ι〇〇〇 °c之高溫下之退火會增加熱壓延龜裂之危險。超過6小時 之退火於上述溫度區域中,成為針對所需效果而為過剩之 退火,就費用方面而言並不理想。設熱壓延結束時之材料 溫度為650°C以上。若小於65〇t:,則熱壓延過程中析出之 NuSi量會增加,而無法確保充分之固溶州量.^量,故 雙晶界面頻率會下降。 於平面切削後’實施加工度為85%以上之冷壓延,在 700〜820°C進行5 sec〜30 min之溶體化處理(於此情形係 成為最終之再結晶退火)之後,在35〇〜550〇c進行2〜3〇 h 之時效處理。此外,以加工度5%〜5〇%進行冷壓延。 [實施例1] (試樣之製造) 熔解電解銅,並將既定量之添加元素投入到大氣熔解 爐中,攪拌熔液。其後,在澆鑄溫度1250〇c,向鑄模注入 上述熔液,從而獲得铸錠。藉由改變鑄模之水冷條件,可 將鑄造時之鑄錠冷卻速度調整為表中之條件。鑄造時之鑄 200948990 。\ p速度係待熔液凝固之後,鑄錠溫度自降至$㈧ c為止=平均冷卻速度rc/min)。接著對該鑄錠,以下述 R序進行加工、熱處理’從而獲得板厚為0.25mm之試樣。 (1)對鑄錠,於表中之條件下進行退火、熱壓延,將 板厚加工成既定厚度之後,進行水冷。 , (2)利用平面切削而除去表層之氧化銹皮。 (3)實施冷壓延,直至板厚達到0.3 mm為止。 ❹ (4)在表中之溶體化溫度下實施1分鐘之溶體化處理。 (5) 在45(TCxl0h之條件下實施時效處理。However, in the prior method of manufacturing the Carson alloy, the solid solution of m is usually carried out at the time of the solution treatment, and in the case of the hot calender treatment at a temperature higher than the required temperature, the cost is increased. The risk of cracking during hot pressing will also increase, so it will not be carried out. &amp;, there is also a manufacturing method in which the hot press delay has a solution treatment, but even if it is subjected to hot calendering after annealing corresponding to the solution treatment, the Ni_si crystal formed at the time of casting cannot be completely dissolved. The stacking energy cannot be fully reduced. As a result, the double crystal interface frequency obtained by the prior method was about 12%. On the other hand, in the present invention, the number and particle diameter of the Ni_Si crystals are reduced by increasing the cooling rate during casting, and further, annealing at a high temperature for a long time is not caused in the hot rolling step. Under conditions, the material is cooled, whereby the amount of solid solution Ni is higher than the previous method, thereby obtaining the desired twin interface frequency. [Manufacturing Method] The Carson alloy of the present invention is produced by a general manufacturing process in which a solution treatment, a cold rolling, and an aging treatment are combined after "melting, casting, hot rolling, plane cutting". After the final cold rolling, the case of stress relief annealing or the hot pressing delay is combined with the solution treatment. Since the annealing twin crystal system is generated by recrystallization during the solution treatment, the above casting can be carried out under the following conditions in order to achieve a frequency of the twin crystal interface of 15 Å/〇 or more and 60% or less. The treatment until hot rolling is performed in the final re-deformation 9 200948990 annealing, that is, Ni and Si are sufficiently solid-solved in advance before the solution treatment. The ingot cooling rate at the time of casting is 3 〇〇 5 〇 (rc/min), and the crystallization of coarse Ni-Si particles is suppressed during the cooling of the casting. The cooling rate of the ingot exceeds 500 ° C / min. It is not practical in terms of cost. Then, 'heating temperature is 940 to 1000 ° C, preferably 950 to 980. (: annealing is performed for 3 to 6 h with heating time to solidify Ni-Si particles remaining on the cast bond. After the solution, the hot rolling is carried out. If the heating temperature is less than 940. (: or less than 3 hours, the solid solution of the remaining Ni_Si particles may be insufficient. On the other hand, after the hot pressing delay is exceeded) Annealing at high temperatures increases the risk of hot rolling cracking. Annealing in the above temperature range for more than 6 hours is an excessive annealing for the desired effect, which is not ideal in terms of cost. At the end of the material temperature is 650 ° C or more. If less than 65 〇 t:, the amount of NuSi precipitated during the hot rolling process will increase, and can not ensure a sufficient amount of solid solution state, so the double crystal interface frequency will Decrease. After the plane cutting, 'the cold rolling is performed with a processing degree of 85% or more, at 700~8 After the solution treatment at 5 ° C for 30 sec to 30 min (in this case, the final recrystallization anneal), aging treatment is carried out at 35 〇 to 550 〇 c for 2 to 3 〇h. 5% to 5% by weight is subjected to cold rolling. [Example 1] (Production of sample) The electrolytic copper is melted, and a predetermined amount of the added element is introduced into an atmospheric melting furnace to stir the melt. Thereafter, at a casting temperature of 1250 〇c, the molten metal is injected into the mold to obtain an ingot. By changing the water cooling condition of the mold, the cooling rate of the ingot during casting can be adjusted to the conditions in the table. Casting at the time of casting 200948990. After the solidification of the melt, the temperature of the ingot was reduced to $(eight) c until the average cooling rate rc/min. Then, the ingot was processed and heat-treated in the following R order to obtain a sample having a thickness of 0.25 mm. (1) The ingot is annealed and hot-rolled under the conditions in the table, and the plate thickness is processed to a predetermined thickness, and then water-cooled. (2) The surface oxide is removed by planar cutting. (3) Perform cold rolling until the plate thickness reaches 0.3 mm. ❹ (4) in the table Embodiment 1 minute melt solution treatment at a temperature of (5) to an aging treatment at 45 (condition of TCxl0h.

(6) 實施冷壓延,直至時效材達到〇.25瓜瓜為止。 對上述材料,依據下述基準進行關於雙晶界面之EBSP 測定,實施拉伸試驗及W彎曲試驗。 [雙晶界面] 作為求出雙晶界面之比例之方法,係使用利用場致發 射掃描電子顯微鏡(Field Emission Scanning mectr〇n e Microscope’ fmem)之電子背向散射圖案(ElectronBack Scattering Pattern ’ EBSP )法。於利用本方法分析晶體方位 之後,求出相鄰晶體方位間之方位差,從而確定晶界特性 分布。設觀察倍率為1000倍,並設觀察視野之合計為2 mm2。規則晶界係使用1:值來表示,雙晶界面相當於幻規 則晶界。雙晶界面之比例(%)可由(規則晶界Σ3之長度 總和)/(晶界之長度總和)χ 1 0 0來計算。另外, 八Τ之晶 界係指相鄰晶粒間之方位差為1 5。以上之邊界,不包括低角 度晶界或亞晶界。 11 200948990 [拉伸強度] 對各銅合金板,沿著與壓延方向平行之方向進行拉伸 試驗’並依據JIS Z2241來求出拉伸強度。於下述實施例中, 所謂南強度’就合金A而言,係指拉伸強度為700 MPa以 上’就合金B而言,係指拉伸強度為65〇 MPa以上,且就 合金C而言,係指拉伸強度為6〇〇 Mpa以上。 [彎曲龜裂](6) Perform cold rolling until the aging material reaches 〇.25 melon. For the above materials, the EBSP measurement on the twin crystal interface was carried out according to the following criteria, and the tensile test and the W bending test were carried out. [Dual crystal interface] As a method of determining the ratio of the twin crystal interface, an electron backscatter pattern (EBSP) method using a field emission scanning electron microscope (Field Emission Scanning mectr〇ne Microscope' fmem) is used. . After analyzing the crystal orientation by this method, the azimuth difference between adjacent crystal orientations is determined to determine the grain boundary characteristic distribution. Let the observation magnification be 1000 times and set the total observation field to be 2 mm2. The regular grain boundary is represented by a value of 1: and the twin crystal interface is equivalent to the boundary of the illusion. The ratio (%) of the twin interface can be calculated from (the sum of the lengths of the regular grain boundaries Σ3) / (the sum of the lengths of the grain boundaries) χ 1 0 0 . In addition, the grain boundary of the gossip refers to a difference in orientation between adjacent grains of 15 . The above boundaries do not include low angle grain boundaries or subgrain boundaries. 11 200948990 [Tensile strength] Each of the copper alloy sheets was subjected to a tensile test in a direction parallel to the rolling direction. The tensile strength was determined in accordance with JIS Z2241. In the following examples, the term "south strength" means that the tensile strength is 700 MPa or more in the case of alloy A, and the tensile strength is 65 MPa or more in the case of alloy B, and in the case of alloy C. , means that the tensile strength is 6〇〇Mpa or more. [bending crack]

使彎曲軸平行於壓延方向,選取寬度mmx長度3〇 mm之帶狀試驗片。進行該試驗片之界彎曲試驗(JIS H3130 )’將不產生龜裂之最小彎曲半徑設為MBR( MinimumThe bending test was parallel to the rolling direction, and a strip test piece having a width mmx length of 3 mm was selected. Perform the boundary bending test of the test piece (JIS H3130)' to set the minimum bending radius without cracking to MBR (Minimum

Bend Radius ) ’並根據與板厚t ( mm )之比MBR/t來進行評 價。關於合金A,於Bad way ( B.W.)方向之MBR/t為1 以下之情形時,將彎曲加工性之龜裂評價為良好(〇),而 除此以外之情形判斷為不良(χ&gt;關於合金8及c,於MBR/t 為0.5以下之情形時,判定彎曲加工性為良好。 [彎曲褶皺]Bend Radius ) ' and evaluated based on the ratio MBR/t to the plate thickness t (mm). When the MBR/t in the Bad way (BW) direction is 1 or less, the crack of the bending workability is evaluated as good (〇), and the other cases are judged to be bad (χ&gt; 8 and c, when the MBR/t is 0.5 or less, it is judged that the bending workability is good. [Bending fold]

於上述w彎曲試驗中,對以MBR進行彎曲加工之詞 片之f曲凸部纟面上m察到的稽&amp;之掃描電子顯微 (Scamnng Electron Micr〇sc〇py,SEM )影像進行拍攝。 照片上測定彎曲褶皺之寬度’從而求出試驗片内之最大 曲權皺之寬度。針對各待騎料,對三個試驗片進行測篇 將平均值作為彎曲褶敵之寬度。於B w•方向之彎曲槽敵 寬度為30心以下之情形時,彎曲加工性之褶皺評價為 好(〇),若超過3”m ’則判斷為不良(小另外, 12 200948990 中「一」表示無法評價。 將本發明之Ni-Si系銅合金a(Cu-2% Ni-〇.5% Si-0.1% Mg)之實施例示於表1。 將本發明之Ni-Si系銅合金B ( Cu-1.6% Ni-0.4% Si-0.4% Sn-〇_5% Zn)之實施例示於表2。 將本發明之Ni-Si系銅合金cccu—u% Ni_〇 4%si)之 實施例示於表3。 麝 於比較例1、8及15中,由於鑄造時之冷卻速度小於 300°C/mm,故於鑄錠中生成粗大Ni si粒結晶物對母相 之Νι及Si之固溶量下降,疊差能並未充分下降,故雙晶界 面頻率小於15%。 於比較例2〜4、9〜11及16〜18中,由於熱壓延條件 不滿足940 C以上且3 h以上、以及結束溫度65〇。。以上中 之任一種,故Ni-Si粒失雜物未充分固溶,疊差能並未下 降,因此雙晶界面頻率小於15〇/〇。 ▲ 於比較例5、12及_ φ 中,由於冷加工度為85%以下,In the above-mentioned w-bending test, a scanning electron microscope (Scamnng Electron Micr〇sc〇py, SEM) image was observed on the surface of the f-curved surface of the piece of the MBR. . The width of the curved pleats was measured on the photograph to determine the width of the largest curvature wrinkles in the test piece. For each of the materials to be fed, the three test pieces were measured and the average value was taken as the width of the curved pleats. When the width of the curved groove in the B w• direction is 30 or less, the wrinkle of the bending workability is evaluated as good (〇), and if it exceeds 3” m ', it is judged to be bad (small, 12, 200948990 An example of the Ni-Si-based copper alloy a (Cu-2% Ni-〇.5% Si-0.1% Mg) of the present invention is shown in Table 1. The Ni-Si-based copper alloy B of the present invention is used. An example of (Cu-1.6% Ni-0.4% Si-0.4% Sn-〇_5% Zn) is shown in Table 2. The Ni-Si-based copper alloy of the present invention cccu-u% Ni_〇4% si) The examples are shown in Table 3. In Comparative Examples 1, 8, and 15, since the cooling rate at the time of casting is less than 300 ° C / mm, the solid solution amount of the coarse Ni Si crystals in the ingot is reduced to the mother phase and the amount of Si dissolved. The difference in energy is not sufficiently reduced, so the double crystal interface frequency is less than 15%. In Comparative Examples 2 to 4, 9 to 11 and 16 to 18, the hot rolling conditions did not satisfy 940 C or more and 3 h or more, and the end temperature was 65 Torr. . In any of the above, the Ni-Si particles are not sufficiently solid-solved, and the stacking energy is not lowered, so the twin-crystal interface frequency is less than 15 〇/〇. ▲ In Comparative Examples 5, 12 and _ φ, since the degree of cold working is 85% or less,

故溶體化時之再結晶不充分,雙晶界面頻率小於L 於比較例6、13 &amp; 20中,由於溶體化溫度為7〇〇。。以 下’故再結晶不充分,譬晶見而此*、^ 雙日日界面頻率小於1 5%,且強度亦 下降。 於比較例7、14及21 Φ,山# &amp; 中由於溶體化溫度超過820。(:, 故雙晶界面頻率超過60%,砝y α 、、'α晶粒徑增大,故彎曲褶皺寬 度增大。 13 200948990 【I ί 合金 A ( Cu-2% Ni-0.5% Si-0.1% Mg ) 弯曲加工性 褶皺 〇 〇 〇 〇 X X X X 1 X X m 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 拉伸強度 (MPa) 1 712 1 1 722 1 [739 1 1 742 1 1 730 1 728 | 738 I 683 760 雙晶界面頻 率(%) 00 Ο 00 CO C\ CN o 溶體化處理 溫度 (°c) 720 730 750 750 750 750 750 750 __Z5〇__ 680 850 冷壓延I 加工度 (%) 00 00 925 ON o I ΐ震 〇 Ο uS 10.0 Ο in Ο Ο o iri o o o ι火、熱壓延 結束溫度 (0〇 650 650 700 650 650 650 650 600 650 650 650 退火時間 ⑻ 寸 寸 寸 寸 寸 寸 寸 寸 寸 退火溫度 (°C) 1 950 1 950 1 950 1 970 950 900 960 960 960 960 950 鑄造時 冷卻速度 (°C/min) 300 350 400 420 200 350 Ο in cn 350 350 I 350 I 350 (N ΓΟ 寸 (Ν ro 寸 卜 發明例 比較例 200948990 οTherefore, recrystallization at the time of solution formation was insufficient, and the bimorphic interface frequency was less than L. In Comparative Examples 6, 13 &amp; 20, the solution temperature was 7 Å. . Below, the recrystallization is not sufficient, and the twins see this *, ^ double-day interface frequency is less than 1 5%, and the strength also decreases. In Comparative Examples 7, 14, and 21 Φ, Shan # &amp; because the solution temperature exceeded 820. (:, therefore, the double-crystal interface frequency exceeds 60%, and the 砝y α and 'α crystal grain sizes increase, so the curved wrinkle width increases. 13 200948990 [I ί Alloy A ( Cu-2% Ni-0.5% Si- 0.1% Mg ) Bending workability pleats XXXX 1 XX m 〇〇〇〇〇〇〇〇X 〇〇 Tensile strength (MPa) 1 712 1 1 722 1 [739 1 1 742 1 1 730 1 728 | 738 I 683 760 Double crystal interface frequency (%) 00 Ο 00 CO C\ CN o Solution temperature (°c) 720 730 750 750 750 750 750 750 __Z5〇__ 680 850 Cold rolling I Processing degree (%) 00 00 925 ON o I ΐ shock 〇Ο uS 10.0 Ο in Ο Ο o iri ooo ι fire, hot rolling end temperature (0 〇 650 650 700 650 650 650 650 600 650 650 650 annealing time (8) inch inch inch inch inch inch inch annealing Temperature (°C) 1 950 1 950 1 950 1 970 950 900 960 960 960 960 950 Cooling rate during casting (°C/min) 300 350 400 420 200 350 Ο in cn 350 350 I 350 I 350 (N ΓΟ inch ( Ν ro 寸 卜 invention example comparison example 200948990 ο

r—lfNd 合金 B (Cu-1.6%Ni-0.4% Si-0.4% Sn-0.5% Zn) 彎曲加工性 褶皺 〇 〇 〇 〇 X X X X 1 X X 电 翁t» 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 « £ ^ § | 664 | |676 I L—697一 I [702 I | 684 I 1678 J 1 687 | 696 as VO [640 1 CO 卜 雙晶界面頻 率(%) 卜 〇 ο 溶體化處理 溫度 (0〇 720 730 750 750 750 750 750 750 ο 680 ο 00 |冷壓延| 加工度 (%) 00 00 1 92·5 1 a\ Ο 容 1¾ 1 q Ο 10.0 〇 〇 IT) 〇 〇 in Ο ^Η Ο »〇 ο 退火、熱壓延 結束溫度 (°C) 650 1 650 700 1 650 1 650 650 | 650 I 600 1 650 1 650 650 1 退火時間 (h) 寸 寸 寸 寸 寸 寸 寸 寸 寸 退火溫度 (°C) 950 950 950 970 950 900 960 960 960 〇\ 1鑄造時| 冷卻速度 (°C/min) 300 | 350 | 400 420 200 350 350 350 1 350 1 1 350 1 | 350 I VO 卜 00 00 〇\ 〇 ra cn 寸 發明例 比較例 200948990 【e ί 合金 C ( Cu-l.6% Ni-0.4% Si) 1彎曲加工性I 褶皺 〇 〇 〇 〇 X X X X 1 X X 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 拉伸強度 (MPa) S 602 1 622 I | 626 I 1 612 1 605 ro S 1 623 1 1 627 1 CN ί 637 I 雙晶界面頻 率(%) 00 CN (X 5 寸 〇 cn CN 1-H i-H ΓΟ 溶體化處理 溫度 (°C) 720 730 __750 Ί 750 750 750 ο 750 750 680 850 |冷壓延| 加工度 (%) 00 00 卜 2_5 1 o 雲 rj q 寸· 〇 1 lo.o 1 〇 〇 ο in o in q o Ο 退火、熱壓延 結束溫度 (°C) 「650 1 650 1 700 1 650 1 | 650 I | 650 | 650 600 650 | 650 I 1 650 1 退火時間 ⑻ 寸 寸 寸 寸 寸 寸 寸 寸 寸 退火溫度 (°C) 950 1 950 1 1 950 | 970 1 950 1 900 960 960 960 960 950 鑄造時 冷卻速度 (°C/nim) 300 350 400 420 200 | 350 — 1 350 350 350 350 350 〇\ 〇 vr) OO On 發明例 比較例 200948990 [實施例2] (試樣之製造) 熔解電解銅,於大氣熔解爐中投入既定量之添加元 素’以達到表4所示之所需組成,攪拌熔液。其後,在澆 鑄溫度1250°C,向鑄模注入上述熔液,並將冷卻速度調整 為400°C /min,從而獲得鑄錠。接著,對該鑄錠,以下述順 序進行加工、熱處理’從而獲得板厚為0.25 mm之試樣。 (1)對鑄鍵’在950C退火4小時之後,以使塵延後 之結束溫度達到700°C之方式實施熱壓延。 (2 )對表層之氧化銹皮進行平面切削,將板厚加工成 5 mm。 (3 )實施冷壓延,直至板厚達到0.3 mm為止。 (4) 在750°C實施1分鐘之溶體化處理。 (5) 在450°Cxl〇 h之條件下實施時效處理。 (6) 進行冷壓延’直至時效材達到〇 25 mm為止。 對上述材料,實施關於雙晶界面之EBSP測定、拉伸試 驗、導電率及貿彎曲試驗。雙晶界面頻率及w彎曲試驗之 評價係以與上述實施例1相同之方式進行,拉伸強度受到 組成之影響較大,故判定600 MPa以上為高強度。 17 200948990 [表4] 組成(wt%) Ni Si Mg Sn Zn Mn Co Cr 發明例13 1.60 0.40 發明例14 2.50 0.45 發明例15 3.00 0.50 發明例16 3.20 0.70 發明例17 1.60 0.40 0.20 0.30 發明例18 1.60 0.40 0.50 0.40 發明例19 2.30 0.50 0.10 發明例20 2.60 0.60 0.50 0.40 發明例21 2.80 0.68 0.50 0.40 發明例22 3.00 0.50 0.15 發明例23 3.00 0.50 0.20 發明例24 2.00 0.50 1.50 0.12 比較例22 0.80 0.20 比較例23 4.20 1.00 將結果示於表5。如表5所示,於發明例13〜24中獲 得所需之雙晶界面頻率,彎曲加工性良好,且強度亦良好。 於比較例22中,Ni量低於規定量,雖彎曲加工性良好,但 拉伸強度下降。於比較例23中,Ni量高於規定量,產生熱 壓延龜裂,無法製作試樣。 18 200948990 【二】 弯曲加工性1 褶皺 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 L熱壓延龜裂,無法製作試樣 通 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 拉伸強度 (MPa) 1615 I | 723 I 1 754 1 1—Η Os 646 m 1 716 | 820 | 739 I L731 I 1 526 | 雙晶界面頻 率(%) 〇\ CO Ο fΗ $ 溶體化處理 溫度 (°C) 750 750 750 750 750 750 750 750 750 750 750 750 750 L冷壓延| 加工度 (%) 5 丁 w的別 後板厚 Ο 〇 〇 Ο *〇 〇 Ο Ο uS 〇 to 〇 〇 uS 〇 〇 〇 退火、熱壓延 結束溫度 (°C) 700 700 700 700 700 Ο ο 700 ο ο 700 700 700 700 700 ^71 退火時間 ⑻ 寸 寸 寸 寸 寸 寸 寸 寸 寸 寸 寸 寸 退火溫度 (°C) 950 950 1 950 | 1 950 1 1 950 | 950 1 950 1 950 950 950 950 1 950 1 Γ 950 1 |鑄造時| 冷卻速度 (°C/min) 400 400 400 400 400 400 400 400 400 400 400 400 400 1發明例13| |發明例14| |發明例15| 發明例16 |發明例17| 1發明例18| 1發明例19| 1發明例2〇| 發明例21 |發明例22| |發明例23| |發明例24| |比較例22| 比較例23 200948990 【圖式簡單說明】 無 【主要元件符號說明】 無r-lfNd alloy B (Cu-1.6%Ni-0.4% Si-0.4% Sn-0.5% Zn) Bending process folds XXXX 1 XX Electric Weng t» 〇〇〇〇〇〇〇〇X 〇〇 « £ ^ § | 664 | |676 IL—697一I [702 I | 684 I 1678 J 1 687 | 696 as VO [640 1 CO Bu-double interface frequency (%) Bu 〇 solution temperature (0〇720 730 750 750 750 750 750 750 ο 680 ο 00 |Cold calendering | Machining degree (%) 00 00 1 92·5 1 a\ 13 13 13⁄4 1 q Ο 10.0 〇〇IT) 〇〇in Ο ^Η Ο »〇ο Annealing, hot calendering end temperature (°C) 650 1 650 700 1 650 1 650 650 | 650 I 600 1 650 1 650 650 1 Annealing time (h) Inch inch inch inch inch annealing temperature (°C) 950 950 950 970 950 900 960 960 960 〇 \ 1 When casting | Cooling rate (°C/min) 300 | 350 | 400 420 200 350 350 350 1 350 1 1 350 1 | 350 I VO 00 00 〇 〇 〇ra cn inch invention example Comparative Example 200948990 [e ί Alloy C (Cu-l.6% Ni-0.4% Si) 1 Bending workability I pleats XXXX 1 XX 〇〇〇〇〇〇 〇X 〇〇 tensile strength (MPa) S 602 1 622 I | 626 I 1 612 1 605 ro S 1 623 1 1 627 1 CN ί 637 I Double crystal interface frequency (%) 00 CN (X 5 inch 〇cn CN 1-H iH 溶 Solution temperature (°C) 720 730 __750 Ί 750 750 750 ο 750 750 680 850 | Cold rolling | Processing degree (%) 00 00 Bu 2_5 1 o Cloud rj q inch · 〇1 lo. o 1 〇〇ο in o in qo 退火 Annealing, hot rolling end temperature (°C) “650 1 650 1 700 1 650 1 | 650 I | 650 | 650 600 650 | 650 I 1 650 1 Annealing time (8) inch inch Annealing temperature (°C) 950 1 950 1 1 950 | 970 1 950 1 900 960 960 960 960 950 Cooling rate during casting (°C/nim) 300 350 400 420 200 | 350 — 1 350 350 350 350 350 〇\ 〇vr) OO On Inventive Example Comparative Example 200948990 [Example 2] (Production of Sample) The electrolytic copper was melted, and a predetermined amount of additive element 'in the atmospheric melting furnace was introduced to achieve the desired composition shown in Table 4, Stir the melt. Thereafter, the molten metal was poured into the mold at a casting temperature of 1,250 ° C, and the cooling rate was adjusted to 400 ° C / min to obtain an ingot. Next, the ingot was processed and heat-treated in the following order to obtain a sample having a thickness of 0.25 mm. (1) After the casting bond was annealed at 950C for 4 hours, hot rolling was performed so that the temperature after the end of the dust extension reached 700 °C. (2) Plane cutting the rust scale of the surface layer and machine the thickness to 5 mm. (3) Perform cold rolling until the sheet thickness reaches 0.3 mm. (4) The solution treatment was carried out at 750 ° C for 1 minute. (5) Aging treatment is carried out at 450 ° C x l 〇 h. (6) Perform cold rolling until the aging material reaches 〇 25 mm. For the above materials, EBSP measurement, tensile test, conductivity and trade bending test on the twin interface were carried out. The evaluation of the twin-crystal interface frequency and the w-bending test was carried out in the same manner as in the above-described Example 1, and the tensile strength was greatly affected by the composition, so that it was judged that the strength was 600 MPa or more. 17 200948990 [Table 4] Composition (wt%) Ni Si Mg Sn Zn Mn Co Cr Inventive Example 13 1.60 0.40 Inventive Example 14 2.50 0.45 Inventive Example 15 3.00 0.50 Inventive Example 16 3.20 0.70 Inventive Example 17 1.60 0.40 0.20 0.30 Inventive Example 18 1.60 0.40 0.50 0.40 Inventive Example 19 2.30 0.50 0.10 Inventive Example 20 2.60 0.60 0.50 0.40 Inventive Example 21 2.80 0.68 0.50 0.40 Inventive Example 22 3.00 0.50 0.15 Inventive Example 23 3.00 0.50 0.20 Inventive Example 24 2.00 0.50 1.50 0.12 Comparative Example 22 0.80 0.20 Comparative Example 23 4.20 1.00 The results are shown in Table 5. As shown in Table 5, in the inventive examples 13 to 24, the desired twin-crystal interface frequency was obtained, the bending workability was good, and the strength was also good. In Comparative Example 22, the amount of Ni was less than a predetermined amount, and the bending workability was good, but the tensile strength was lowered. In Comparative Example 23, the amount of Ni was higher than the predetermined amount, and hot rolling cracking occurred, and the sample could not be produced. 18 200948990 【二】 Bending workability 1 pleats 热 L hot rolling cracks, can not make samples through stretching Strength (MPa) 1615 I | 723 I 1 754 1 1—Η Os 646 m 1 716 | 820 | 739 I L731 I 1 526 | Double crystal interface frequency (%) 〇\ CO Ο fΗ $ Solution temperature (° C) 750 750 750 750 750 750 750 750 750 750 750 750 750 L cold rolling | Machining degree (%) 5 butyl w after the thickness Ο 〇〇Ο *〇〇Ο Ο uS 〇to 〇〇uS 〇〇〇 Annealing, hot rolling end temperature (°C) 700 700 700 700 700 Ο ο 700 ο ο 700 700 700 700 700 ^71 Annealing time (8) inch inch inch inch inch inch inch inch annealing temperature (°C) 950 950 1 950 | 1 950 1 1 950 | 950 1 950 1 950 950 950 950 1 950 1 Γ 950 1 | Casting | Cooling rate (°C/min) 400 400 400 400 400 400 400 400 400 400 400 400 400 1 Inventive Example 13 | Example 14|Inventive Example 15 | Inventive Example 16 | Inventive Example 17 | 1 Inventive Example 18 | 1 Inventive Example 19 1 invention example 2 〇 | invention example 21 | invention example 22| | invention example 23| | invention example 24| | comparison example 22| comparison example 23 200948990 [Simple description of the diagram] None [Description of main component symbols] None

2020

Claims (1)

200948990 七、申請專利範圍: 1. 一種Cu-Ni-Si系合金,其含有: 1.0〜4.0質量%之Ni、相對於Ni之質量百分比濃度為 1/6〜1/4之濃度之Si,且剩餘部分由Cu及不可避免之雜質 所構成;而利用EBSP測定進行集合組織觀察之結果,總晶 界中之雙日a界面(Σ3邊界)之頻率控制為15%以上且 以下。 ❹ 2·如申請專利範圍第1項之Cu_Ni_Si系合金,其進 步含有0.2質量%以下之Mg。 卡合3右如/請專㈣㈣1項之CHSi系合金,其進 4有二2〜1質量%之如、及〇.2〜1質量%之以。 系合金,其進一 0.2質量%之Cr。 步含有1〜1·5質量%之c〇、及〇 〇5 如申請專利範圍第1項之CU-N“Si 八、圖式: (無) 21200948990 VII. Patent application scope: 1. A Cu-Ni-Si alloy containing: 1.0 to 4.0% by mass of Ni, a concentration of Si of 1/6 to 1/4 of the mass percentage relative to Ni, and The remainder is composed of Cu and unavoidable impurities. As a result of observation of the aggregate structure by EBSP measurement, the frequency of the double-day a interface (Σ3 boundary) in the total grain boundary is controlled to be 15% or more and below. ❹ 2· The Cu_Ni_Si-based alloy according to the first item of the patent application, which further contains 0.2% by mass or less of Mg. The card is 3 right as / please (4) (4) 1 item of CHSi alloy, which has 2 2 to 1% by mass, such as, and 〇. 2 to 1% by mass. An alloy which has a 0.2% by mass of Cr. The step contains 1 to 1.5% by mass of c〇, and 〇 〇5 as CU-N of the first application of the patent scope "Si VIII, schema: (none) 21
TW98110571A 2008-03-31 2009-03-31 Cu-Ni-Si alloy used for conductive spring material TWI443204B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093847 2008-03-31

Publications (2)

Publication Number Publication Date
TW200948990A true TW200948990A (en) 2009-12-01
TWI443204B TWI443204B (en) 2014-07-01

Family

ID=41135514

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98110571A TWI443204B (en) 2008-03-31 2009-03-31 Cu-Ni-Si alloy used for conductive spring material

Country Status (5)

Country Link
JP (1) JP4596493B2 (en)
KR (1) KR101249107B1 (en)
CN (1) CN101981212A (en)
TW (1) TWI443204B (en)
WO (1) WO2009123140A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5961335B2 (en) 2010-04-05 2016-08-02 Dowaメタルテック株式会社 Copper alloy sheet and electrical / electronic components
WO2012004868A1 (en) 2010-07-07 2012-01-12 三菱伸銅株式会社 Cu-ni-si copper alloy plate with excellent deep-draw characteristics and production method thereof
KR102008302B1 (en) 2010-09-30 2019-08-07 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Image forming apparatus and method for generating user interface screen which displayed to the user accessed image forming apparatus
JP5192536B2 (en) * 2010-12-10 2013-05-08 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet excellent in deep drawing workability and fatigue resistance and method for producing the same
JP5180283B2 (en) * 2010-12-24 2013-04-10 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet having excellent fatigue resistance and spring characteristics after bending, and method for producing the same
JP4857395B1 (en) * 2011-03-09 2012-01-18 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy and method for producing the same
JP5534610B2 (en) * 2011-03-31 2014-07-02 Jx日鉱日石金属株式会社 Cu-Co-Si alloy strip
WO2012160684A1 (en) 2011-05-25 2012-11-29 三菱伸銅株式会社 Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
JP2013098098A (en) * 2011-11-02 2013-05-20 Otsuka Techno Kk Breaker
US9159985B2 (en) * 2011-05-27 2015-10-13 Ostuka Techno Corporation Circuit breaker and battery pack including the same
EP2752498A4 (en) * 2011-08-29 2015-04-08 Furukawa Electric Co Ltd COPPER ALLOY MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP5827530B2 (en) * 2011-09-16 2015-12-02 三菱伸銅株式会社 Cu-Ni-Si based copper alloy sheet with excellent spring limit and stress relaxation resistance and good shear workability
JP5802150B2 (en) 2012-02-24 2015-10-28 株式会社神戸製鋼所 Copper alloy
CN102864327A (en) * 2012-09-10 2013-01-09 任静儿 Copper alloy material used for valve
CN102864331A (en) * 2012-09-10 2013-01-09 顾建 Copper alloy material
CN102864333A (en) * 2012-09-10 2013-01-09 顾建 Copper rare earth alloy material
CN102855957A (en) * 2012-09-10 2013-01-02 顾建 Copper alloy material for lead
CN102851531A (en) * 2012-09-10 2013-01-02 虞雪君 Copper-zinc alloy
CN102851532A (en) * 2012-09-10 2013-01-02 顾建 Copper alloy used in valves
CN102864332A (en) * 2012-09-10 2013-01-09 任静儿 Copper rare earth alloy
CN102867562A (en) * 2012-09-10 2013-01-09 任静儿 Cupper alloy
CN102851536A (en) * 2012-09-10 2013-01-02 任静儿 Copper alloy used in conductor wire
CN102925746B (en) * 2012-11-29 2014-09-17 宁波兴业鑫泰新型电子材料有限公司 High-performance Cu-Ni-Si system copper alloy, and preparation method and processing method thereof
JP5795030B2 (en) * 2013-07-16 2015-10-14 株式会社古河テクノマテリアル Expanded material made of Cu-Al-Mn alloy material with excellent stress corrosion resistance
CN103643080A (en) * 2013-12-25 2014-03-19 海门市江滨永久铜管有限公司 High-strength, high-ductility and high-conductivity copper-nickel-silicon alloy bar and production method thereof
JP6310538B1 (en) * 2016-12-14 2018-04-11 古河電気工業株式会社 Copper alloy wire rod and method for producing the same
JP7046032B2 (en) * 2019-04-11 2022-04-01 Jx金属株式会社 Copper alloys for electronic materials, manufacturing methods and electronic parts for copper alloys for electronic materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087307B2 (en) * 2003-07-09 2008-05-21 日鉱金属株式会社 High strength and high conductivity copper alloy with excellent ductility
JP4020881B2 (en) * 2004-04-13 2007-12-12 日鉱金属株式会社 Cu-Ni-Si-Mg copper alloy strip
JP4566048B2 (en) * 2005-03-31 2010-10-20 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP2006299287A (en) * 2005-04-15 2006-11-02 Nikko Kinzoku Kk Dual phase copper alloy, spring material and foil body, and method for producing dual phase copper alloy
JP4408275B2 (en) * 2005-09-29 2010-02-03 日鉱金属株式会社 Cu-Ni-Si alloy with excellent strength and bending workability
JP5247021B2 (en) * 2005-11-28 2013-07-24 Jx日鉱日石金属株式会社 Cu-Ni-Si-based alloy plate / strip with reduced wrinkles in the bent portion and method for producing the same
JP5156317B2 (en) * 2006-09-27 2013-03-06 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof

Also Published As

Publication number Publication date
KR101249107B1 (en) 2013-03-29
WO2009123140A1 (en) 2009-10-08
KR20100095476A (en) 2010-08-30
TWI443204B (en) 2014-07-01
CN101981212A (en) 2011-02-23
JP4596493B2 (en) 2010-12-08
JP2009263784A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
TW200948990A (en) Cu-ni-si alloy to be used in electrically conductive spring material
TWI571519B (en) Cu-ni-co-si based copper alloy sheet material and manufacturing method thereof
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
TWI381398B (en) Cu-Ni-Si alloy for electronic materials
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5170881B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
JP5319700B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
CN101983249B (en) Cu-ni-si-co-cr alloy for electronic material
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
TWI475119B (en) Cu-Zn-Sn-Ni-P alloy
WO2012096237A1 (en) Copper alloy for electronic/electric devices, copper alloy thin plate, and conductive member
JP5525247B2 (en) Copper alloy with high strength and excellent bending workability
TWI513833B (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, wrought copper alloy material for electronic device, and part for electronic device
WO2011142450A1 (en) Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
TWI429764B (en) Cu-Co-Si alloy for electronic materials
TW201339328A (en) Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, rolled copper alloy for electronic device, and parts for electronic device
TWI432586B (en) Cu-Co-Si alloy material
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
TWI510654B (en) Cu-Zn-Sn-Ni-P alloy
JP3977376B2 (en) Copper alloy
CN104919066A (en) Copper alloy for electronic or electrical device, copper alloy thin sheet for electronic or electrical device, process for manufacturing copper alloy for electronic or electrical device, conductive component for electronic or electrical device, and terminal
WO2020152967A1 (en) Copper alloy plate material and method for manufacturing same
JPWO2009123158A1 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment