TW200946697A - Cu-ni-si-co-cr alloy for electronic material - Google Patents
Cu-ni-si-co-cr alloy for electronic material Download PDFInfo
- Publication number
- TW200946697A TW200946697A TW098110574A TW98110574A TW200946697A TW 200946697 A TW200946697 A TW 200946697A TW 098110574 A TW098110574 A TW 098110574A TW 98110574 A TW98110574 A TW 98110574A TW 200946697 A TW200946697 A TW 200946697A
- Authority
- TW
- Taiwan
- Prior art keywords
- mass
- compound
- alloy
- copper alloy
- strength
- Prior art date
Links
- 239000012776 electronic material Substances 0.000 title claims abstract description 17
- 229910000599 Cr alloy Inorganic materials 0.000 title description 10
- 150000001875 compounds Chemical class 0.000 claims abstract description 56
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 36
- 229910019819 Cr—Si Inorganic materials 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 18
- 239000010949 copper Substances 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 15
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 239000006185 dispersion Substances 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 abstract description 24
- 239000000956 alloy Substances 0.000 abstract description 24
- 230000000694 effects Effects 0.000 abstract description 8
- 229910020711 Co—Si Inorganic materials 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 24
- 230000032683 aging Effects 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- 239000006104 solid solution Substances 0.000 description 9
- 238000005452 bending Methods 0.000 description 8
- 239000011856 silicon-based particle Substances 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 229910019974 CrSi Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910017876 Cu—Ni—Si Inorganic materials 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 229910018098 Ni-Si Inorganic materials 0.000 description 4
- 229910018529 Ni—Si Inorganic materials 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910000905 alloy phase Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 229910019878 Cr3Si Inorganic materials 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 229910014299 N-Si Inorganic materials 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 240000006413 Prunus persica var. persica Species 0.000 description 1
- 229910018598 Si-Co Inorganic materials 0.000 description 1
- 229910008453 Si—Co Inorganic materials 0.000 description 1
- QQRGDAKLEODQNU-UHFFFAOYSA-N [Bi].[Cu].[Au] Chemical compound [Bi].[Cu].[Au] QQRGDAKLEODQNU-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/10—Alloys based on copper with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
Description
200946697 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種析出硬化型銅合金,尤其係關於一 種適用於各種電子機器零件之Cu_Ni_si eQ心系合金β 【先前技術】 對於用於引線框架、連接器、接腳、端子、繼電器、 ❹_等各種電子制零件之電子㈣用銅合金而言,作為 其基本特性,被要求可同描_ I τ目古& + 刊時實現⑤強度及高導電性(或熱 傳導性)。近年來,電子零件之高積體化及小型化、薄壁 化快速發展,與此相對應地,對於電子機器零件中所使用 之銅合金之要求等級亦愈益提高。 就高強度及高導電性之觀點而言,近年來作為電子 材料用銅合金,析出硬化型銅合金之使用量正在增加以 取代先前之以❹鋼、黃銅等為代表之固溶強化型銅合 © H出硬化型銅合金令’藉由對經固溶化處理之過飽和 固溶體進行時效處理,而使微細之析出物均勾地分散,從 而提高合金之強度,同時減少鋼中之固溶元素量以提高 電氣傳導性。因此,可獲得強度、彈性等機械性質優異, 並且電氣傳導性、熱傳導性良好之材料。 析出硬化型銅合金中,一般被稱為卡遜系合金之 Cu-N卜Si系銅合金係兼具相對較高之導電性、強度、應力 緩和特性及弯曲加工性之典型之銅合金,為業界目前正積 極開發之合金之-。該銅合金中,可藉由使微細之.Si系 3 200946697 金屬間化合物粒子析出至銅基質中來謀求強度與導電率之 提升。 目前已知Cu-Ni-Si系銅合金可藉由添加(^與^來謀 求特性的提升。與Ni同樣地,〜與心能夠與&形成化合 物來提升強度。 在曰本專利特開2〇〇6-283120號公報(專利文獻u之 中’含有Co肖Cr之Cu_Ni_Si系合金的特性(尤其是強度 與導電率),被視為於某種組成條件以及製造條件之下, 當控制夾雜物的大小、組成、分佈時,則會有顯著性地提 升m言’該專利文獻丨中記載了—種電子材料用 Cu-Ni-Si-Co-Cr系銅合金,其特徵在於:於含有Ni : 〇 5〜 2.5 質量% ' Co : 0.5 〜2.5 質量%、及 Si : 0.30 〜1.2 質量%、200946697 VI. Description of the Invention: [Technical Field] The present invention relates to a precipitation hardening type copper alloy, in particular to a Cu_Ni_si eQ core alloy β suitable for various electronic machine parts. [Prior Art] For use in leads Frames, connectors, pins, terminals, relays, ❹_ and other electronic parts of the electronic (four) copper alloy, as its basic characteristics, is required to be the same as the description _ I τ 目古 & Strength and high electrical conductivity (or thermal conductivity). In recent years, the high-integration, miniaturization, and thin-walling of electronic components have been rapidly progressing, and accordingly, the demand level of copper alloys used in electronic machine parts has been increasing. From the viewpoint of high strength and high electrical conductivity, in recent years, as a copper alloy for electronic materials, the amount of precipitation hardening type copper alloy is increasing to replace the solid solution strengthening copper represented by the former steel, brass, and the like. Combined with H-hardened copper alloy, 'by aging treatment of the solution-treated supersaturated solid solution, the fine precipitates are dispersed, thereby increasing the strength of the alloy and reducing the solid solution in the steel. The amount of elements is increased to improve electrical conductivity. Therefore, a material excellent in mechanical properties such as strength and elasticity and excellent in electrical conductivity and thermal conductivity can be obtained. Among the precipitation-hardened copper alloys, Cu-N-Si-based copper alloys, which are generally called Carson-based alloys, are typical copper alloys having relatively high electrical conductivity, strength, stress relaxation properties, and bending workability. The industry is currently actively developing the alloy -. In the copper alloy, strength and electrical conductivity can be improved by depositing fine Si. 3 200946697 intermetallic compound particles into a copper matrix. It is known that Cu-Ni-Si-based copper alloys can be improved by adding (^ and ^. As with Ni, ~ and the heart can form a compound with & to increase the strength. 〇〇6-283120 (Patent Document u, 'Characteristics (especially strength and electrical conductivity) of a Cu_Ni_Si-based alloy containing Co-ShaCr is considered to be under certain composition conditions and manufacturing conditions, when controlling inclusions When the size, composition, and distribution of the object are significantly improved, the patent document discloses a Cu-Ni-Si-Co-Cr copper alloy for electronic materials, which is characterized by Ni : 〇 5 to 2.5% by mass ' Co : 0.5 to 2.5% by mass, and Si: 0.30 to 1.2% by mass,
Cr: 0.09〜0.5質量%,且剩餘部份由Cu及不可避免之雜質 所構成的銅合金之中,Si相對於該合金組成中的Ni與c〇 之合計質量的質量濃度比([Ni+Co]/Si比)為4 $ [Ni+c〇]/si $ 5,該合金組成中的Ni與c〇的質量濃度比(Ni/c〇比)為 0.5$Ni/C〇S2,而關於分散於材料中之大小為以上 之夾雜物的個数(P),與其中含有碳濃度為1〇質量%以上之 夾雜物的個数(Pc),Pc為丨5個n 〇〇〇 V m2以下,且其比(pc/p) 為0.3以下》 又,雖然日本專利2005_11318〇號公報(專利文獻2) 雖然不是Cu-Ni-Si系合金,惟其著眼於在銅合金中析出的 Cr與Si的化合物。藉由該化合物,一邊將具有既定的大小 以及個數密度之CrSi化合物微細地析出至Cu基質中,以 200946697 及限制CrSi以外的Cr化合物的大小,可一邊改善衝壓加工 性,一邊確保蝕刻加工性《然後,該專利文獻2中記載了 一種電子機器用銅合金,於含有Cr: 0.1〜〇.25重量%、Si : 0.005〜0.1 重量%、Zn: 0.1 〜〇.5 重量%、Sn: 〇 〇5〜〇 $ 重 量%,Cr與Si的重量比為3〜25,且剩餘部份由Cu及不可 避免之雜質所構成之銅合金之中,於銅母相中具有〇〇5^m 〜lOym大小的CrSi化合物以1χ1〇3〜5χ1〇5個/mm2的個數 密度存在,並且,Cr化合物(CrSi化合物以外)的大小為 10ym以下之蚀刻加工性及衝壓加工性優異之電子機器用 銅合金。在製造該銅合金時,熱加工前的加熱處理溫度設 為850它〜980t,於熱加工後,需要實施一次結合了冷加 工與以40(TC〜600°C的溫度進行的熱處理的製程,或者, 需要反覆實施數次該製程。 [專利文獻1]日本專利特開2006-283120號公報 [專利文獻2]日本專利特開2〇〇5_11318〇號公報 【發明内容】 發明所欲解決之譯顴 對於本發明之合金系之Cu_Ni_Si_C0_Cr系合金,亦同 樣符合近年來對電子零件之急速之高積體化與小型化、薄 壁化之材料特性之飛躍性提高之要求。 然而’在專利文獻1中並沒有關於Cr_SiK合物之記載。 在專利文獻2中,雖然有藉由控制CrSi化合物之個數 密度與大小來改善蝕刻加工性與衝壓加工性的記載但是 5 200946697 因為沒有添加Ni,所以沒有考慮到Ni-Si化合物或c〇_si 化合物的形成,只需要考慮Cr_Si化合物形成的條件即可, 在Cu-Ni-Si-Co-Cr系合金中,並沒有檢討到如何去控制 Cr-Si化合物。 因此,本發明課題,在於藉由控制在Cu-Ni-Si-Co-Cr 系合金中Cr-Si化合物的析出狀態,來謀求特性的提升。 用以解決誤顳之手段 本發明者為解決上述課題而進行了專心研究,結果發 現以下發明。於Cu-Ni-Si-Co-Cr系合金中,相對於犯及 C〇設定Si為過剩之組成,除了讓Ni添加量相應之Ni梦化 物與Co添加量相應之c〇矽化物確實地析出以實現高強度 化’另一方面將過剩之Si與所添加之Cr反應生成化合物以 實現高導電化。並且,本發明之關鍵之處在於,以避免讓Cr: 0.09 to 0.5% by mass, and the remaining part is a mass concentration ratio of Si to the total mass of Ni and c〇 in the composition of the copper alloy composed of Cu and unavoidable impurities ([Ni+ The Co]/Si ratio is 4 $ [Ni+c〇]/si $ 5, and the mass concentration ratio of Ni to c〇 in the alloy composition (Ni/c〇 ratio) is 0.5$Ni/C〇S2, and The number of inclusions (P) having a size of the above-mentioned inclusions dispersed in the material, and the number of inclusions (Pc) containing a carbon concentration of 1% by mass or more, Pc is 丨5 n 〇〇〇V m2 or less And the ratio (pc/p) is 0.3 or less. Further, although the Japanese Patent Publication No. 2005_11318 (Patent Document 2) is not a Cu-Ni-Si alloy, it focuses on Cr and Si precipitated in a copper alloy. Compound. By the fact that the CrSi compound having a predetermined size and the number density is finely precipitated in the Cu matrix, and the size of the Cr compound other than CrSi is limited to 200946697 and the press workability can be improved, the etching processability can be ensured. "Patent Document 2 describes a copper alloy for electronic equipment containing Cr: 0.1 to 0.25% by weight, Si: 0.005 to 0.1% by weight, and Zn: 0.1 to 5% by weight, and Sn: 〇 〇5~〇$% by weight, the weight ratio of Cr to Si is 3~25, and the remaining part is composed of Cu and unavoidable impurities. Among the copper alloys, there are 〇〇5^m in the copper matrix. The CrSi compound of the size of the OOm is present in a number density of 1χ1〇3 to 5χ1〇5/mm2, and the copper compound (except the CrSi compound) has a size of 10 μm or less and is excellent in etching workability and press workability. alloy. In the production of the copper alloy, the heat treatment temperature before hot working is set to 850 to 980 t, and after hot working, it is necessary to carry out a process combining cold working and heat treatment at 40 (TC to 600 ° C temperature, or [Patent Document 1] Japanese Patent Laid-Open No. Hei. No. 2006-283120 (Patent Document 2) Japanese Patent Laid-Open Publication No. Hei. No. Hei. In the alloy of the Cu_Ni_Si_C0_Cr alloy of the present invention, the demand for the rapid increase in the electronic components, the miniaturization, the miniaturization, and the thinning of the material properties have been met. However, in Patent Document 1, There is no description about the Cr_SiK compound. In Patent Document 2, there is a description of improving the etching processability and press formability by controlling the number density and size of the CrSi compound. However, 5 200946697 is not considered because no Ni is added. In the formation of a Ni-Si compound or a c〇_si compound, it is only necessary to consider the conditions under which the Cr_Si compound is formed, and in the Cu-Ni-Si-Co-Cr alloy, there is no It is a review of how to control a Cr-Si compound. Therefore, the object of the present invention is to improve the properties of a Cr-Si compound in a Cu-Ni-Si-Co-Cr alloy to improve the characteristics. The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, have found the following invention. In the Cu-Ni-Si-Co-Cr alloy, Si is set to be excessive in addition to C犯. The c-deuterium corresponding to the amount of Ni added according to the amount of Ni added is surely precipitated to achieve high strength. On the other hand, excess Si is reacted with the added Cr to form a compound to achieve high conductivity. The key point of the invention is to avoid
Cr與Si之化合過度成長、反而應與犯及c〇化合之Si變 侍不足之方式來控制Cr_Si化合物之成長。具體而言本發 明者著眼於Cr-Si化合物之組成與大小、個數密度,發現藉 由控制熱處理步驟之溫度與冷卻速度可更好地發揮其效 果。 即’本發明係 (1)種電子材料用銅合金,其含有Ni : 1.0〜4.5質The combination of Cr and Si is excessively grown, and instead, the growth of Cr_Si compounds is controlled in a manner that is inconsistent with the sufficiency of Si. Specifically, the present inventors focused on the composition, size, and number density of the Cr-Si compound, and found that the effect can be better exerted by controlling the temperature and cooling rate of the heat treatment step. That is, the present invention is a copper alloy for an electronic material containing Ni: 1.0 to 4.5.
Sl 〇’50〜1 ·2 質量 %、Co : 0.1 〜2.5 質量 %、Cr : 0.003 .3質量/。,>11與(:〇的合計質量相對於以之質量濃度比 ([Nl + C〇]/Sl 匕)為 4各[Ni+C〇]/Si$5),且剩餘部份由 Cu °避免之雜質所構成’對於分散於材料中之大小為0.1 200946697 y m〜5 v m之Cr-Si化合物而言,其 丹刀敢粒子中相對於 之Cr的原子濃度比為1〜5,其分散來疮本 2 Λ 散在度大於lxio4個 /mm2,而在1χ1〇6個/mm2以下。 1闽 ⑺如⑴之電子材料用銅合金,其中對於分散 中之大小在大於5…Cr_Si化合物而言,其分散 50個/mm2以下。 ❹ ❹ (3) 如⑴或⑺之電子材料用銅合金,其中進—步 0.05〜2.0質量%之選自“及以之】種或2種以上。 (4) 如⑴〜(3)中任一項之電子材料用銅合金其中進 一步含有0._〜2.0質量%之選自Mg、Mn、Ag、p、幻、Sl 〇'50~1 · 2 mass %, Co : 0.1 ~2.5 mass %, Cr : 0.003 .3 mass /. , <11 and (: 合 total mass is relative to the mass concentration ratio ([Nl + C〇] / Sl 匕) is 4 [Ni + C 〇] / Si $ 5), and the remainder is Cu ° The impurities to be avoided constitute 'for a Cr-Si compound having a size of 0.1200946697 ym~5 vm dispersed in the material, the atomic concentration ratio of the dandan dan particles relative to the Cr is 1 to 5, which is dispersed. Sore 2 Λ Dispersion is greater than lxio 4 / mm2, and below 1 χ 1 〇 6 / mm2. (1) A copper alloy for an electronic material according to (1), wherein the dispersion is 50 or less by weight in a dispersion of more than 5...Cr_Si. ❹ ❹ (3) A copper alloy for electronic materials such as (1) or (7), wherein 0.05 to 2.0% by mass of the copper alloy is selected from the group consisting of "and" or two or more types. (4) As in (1) to (3) A copper alloy for an electronic material further comprising 0._~2.0% by mass selected from the group consisting of Mg, Mn, Ag, p, phantom,
Sb、Be、B、Ti、Zr、ai 及 Fe 之 i 種或 2 種以上。S (5) -種伸銅品’其係使用⑴〜(4)中任一項之銅合金。 (6) —種電子機器零件,其係使用(1)〜(5)中任一項之 銅合金。 發明效果 根據本發明,可更佳地發揮合金元素Cr之添加效果, 故而可獲得強度及導電率得到顯著提高之電子材料用 Cu-Ni-Si-Co-Cr 系合金。 【實施方式】There are two or more kinds of Sb, Be, B, Ti, Zr, ai, and Fe. S (5) - a type of copper alloy, which is a copper alloy according to any one of (1) to (4). (6) An electronic machine part using the copper alloy according to any one of (1) to (5). According to the present invention, the effect of adding the alloying element Cr can be more effectively exhibited, so that a Cu-Ni-Si-Co-Cr alloy for an electronic material having remarkably improved strength and electrical conductivity can be obtained. [Embodiment]
Co及Si之添加吾Adding Co and Si
Ni、Co及Si係藉由實施適當之熱處理而形成金屬間化 合物,可在不使導電率惡化的情況下謀求高強度化。以下, 針對Ni、Co及Si各別的添加量作說明。 7 200946697 ^為了滿足作為電子材料用銅合金適當的強度及導電 率關於Nl及Co的添加量,必須設為Ni : 1.0〜4.5質量 A、C〇.0.1 〜2 气哲县 〇/ X. 人3貨量/〇 ’較佳為Ni : 1.0〜2,0質量。/。、Co : 曹 更佳為Ni : ι·2〜1.8質量%、Co : 1.2〜1.8 質量% » 然而’當各別的添加量未滿Ni : 0.5質量%、Co : 0.5 質量%的時候,則無法獲得所需要的強度;反過來說,當超 過 Ni : 2.5 暂县。/ i-i ^ 貝重/〇、Co . 2.5質量%的時候,則雖然能夠謀 東同強度化,但導電率會顯著地降低,進一步熱間加工性 也會降低,故不佳。 >關於Si的添加量’為了滿足作為目標之強度與導電 $需要0.30〜ι·2質量%,較佳為〇 5〜〇 8質量%。然而, 田Sl的添加量未滿〇‘3質量%的時候,則無法獲得所需要的 強度當超過1 ·2質量%的時候,則雖^能夠謀求高強度化, 仁導電率會顯著地降低,進一步熱間加工性也會降低,故 不佳。 在本發明中,進一步規定了合金組成中Ni與Co的總 量對於Sl的重量濃度比([Ni+Co]/Si)。 本發明中,藉由將Ni/Si比設定的比以往所報告的規 定範圍3蕊Ni/Si < 7、菩* > ^ , M = 7還要低’亦即藉由稍微增加si的添加 量,讓 不會剩餘下來,而透過合成矽化物來減輕對 無助於析出之過剩# Ni & c。#固溶所造成導電率的降 -4是在重量濃度比為[Ni+Co]/Si < 4的時候,則是因 為S i的比鱼;麻古 平過问,不但因為固溶Si的關係而使導電率降 200946697 低,在退火步驟當中也因為在材料表層會形成si〇2的氧化 皮膜而使焊接性劣化。另外,對無助於強化之Ni c〇 si系 析出粒子會變得容易粗大化,而對無助於強度,相反地容 易成為撓曲加工時之裂痕發生的起點或焊接不良部。另一 方面’會提高相對於Si之Ni及Co的比率,當變成[Ni+c〇]/si >5的時候’導電率會顯著降低,作為電子材料用並不佳。 因此,在本發明中,將合金組成中的[Ni + c〇]/Si比控制 0 在 [Ni + Co]/Si$ 5 的範圍内。 [Ni+Co]/Si 比較佳為 4.2$ [Ni+C0]/Si$4.7。Ni, Co, and Si are formed into an intermetallic compound by performing appropriate heat treatment, and the strength can be increased without deteriorating the electrical conductivity. Hereinafter, the respective addition amounts of Ni, Co, and Si will be described. 7 200946697 ^In order to meet the appropriate strength and conductivity of copper alloy for electronic materials, the addition amount of Nl and Co must be set to Ni: 1.0 to 4.5 mass A, C〇.0.1 〜2. 3 volume / 〇 ' is preferably Ni: 1.0 ~ 2, 0 mass. /. Co: Cao is better than Ni: ι·2~1.8% by mass, Co: 1.2~1.8% by mass. However, when the amount of each addition is less than Ni: 0.5% by mass, Co: 0.5% by mass, it is not available. The required strength; conversely, when surpassing Ni: 2.5 temporary county. / i-i ^ Shell weight / 〇, Co. 2.5% by mass, although the strength can be improved, the electrical conductivity is remarkably lowered, and the hot inter-processability is also lowered, which is not preferable. > Regarding the amount of addition of Si, in order to satisfy the target strength and conductivity, it is required to be 0.30 to 1% by mass, preferably 〇 5 to 〇 8 mass%. However, when the amount of addition of the field Sl is less than 3% by mass, the required strength cannot be obtained. When the amount is more than 1.2% by mass, the strength can be remarkably lowered. Further thermal processing will also be reduced, so it is not good. In the present invention, the weight concentration ratio ([Ni + Co] / Si) of the total amount of Ni and Co in the alloy composition to Sl is further specified. In the present invention, by setting the Ni/Si ratio to be less than the previously stated predetermined range 3, Ni/Si < 7, Bodhisattf > ^, M = 7, that is, by slightly increasing the si The amount added is such that it does not remain, and the synthetic telluride is used to alleviate the excess that does not contribute to precipitation # Ni & c. The decrease of conductivity caused by #Solution is -4 when the weight concentration ratio is [Ni+Co]/Si < 4, because it is the ratio of S i; Mugu Ping asked, not only because of the solution of Si The relationship is low in the electrical conductivity drop of 200946697, and the weldability is deteriorated in the annealing step because the oxide film of si〇2 is formed on the surface layer of the material. In addition, it is easy to coarsen the Ni c〇 si-based precipitated particles which do not contribute to strengthening, and it does not contribute to strength, and conversely, it is easy to become a starting point or a defective portion of cracks during flexing. On the other hand, the ratio of Ni to Co with respect to Si is increased, and when it becomes [Ni+c〇]/si > 5, the conductivity is remarkably lowered, which is not preferable as an electronic material. Therefore, in the present invention, the [Ni + c〇] / Si ratio in the alloy composition is controlled to be in the range of [Ni + Co] / Si$ 5 . [Ni+Co]/Si is better than 4.2$ [Ni+C0]/Si$4.7.
Ni及Co不僅會一同幫助與以之化合物的生成,州及 Co彼此關聯進而改善合金特性,藉由控制合 與。。的重量濃度比⑽。比),能夠進一步提成升中合= 性。藉由將Ni/C〇比設在較佳之0,5gNi/c〇^2的範圍内, 可以顯著地看到強度的提升。Ni/c〇比更佳的範 ^Ni and Co not only help together with the formation of the compound, but the state and Co are related to each other to improve the alloy properties by controlling the combination. . The weight concentration ratio (10). Than), can further promote the rise and fall = sex. By setting the Ni/C 〇 ratio within the range of preferably 0,5gNi/c〇^2, the improvement in strength can be clearly seen. Ni/c is better than the best ^
Ni/Co$ 1.3。 、·= ❹Ni/Co$ 1.3. ,·= ❹
Cr之添加晉 於Cu-Ni-Si-Co系合金中,若使Ni、&及c〇的濃度上 升,則析出粒子之總數會增加,目此可謀求藉由析出強化 之強度上升。另一方面,隨著添加濃度之上升,無助於析 出之固溶量亦會增加,因此導電率會降低,結果時效析出 之峰值強度雖會上升,但導電率之峰值強度會下降。然而, 若於上述Cu-Ni-Si系合金中添加〇 〇〇3〜〇 3 …、 負重%之Cr、 較佳為0.01〜(Μ質量%之(^,則於最終特性令鼓 同之Ni、Si及C。濃度之Cu_Ni|C。系合金相:;,、= 9 200946697 於強度而使導電率上升’進-步可改善熱加工性而提高材 料利用率。 於Cu-Ni-Si-C〇系合金中添加有Cr時析出之粒子之組 成,雖容易將以Cr為主成分之bcc構造之析出粒子單體析 出,但與Si之化合物亦容易析出。Cr藉由實施適當之熱處 理’可於銅母相中容易地將與si之化合物即鉻矽化物(Cr3Si 等)析出,故而於形成合金特性之組合固溶體化處理、冷 延、時效處理之步驟中,可使作為Nidi或C〇Si2等之未^ 出固溶Si成分析出為Cr-Si化合物。因此,可抑制因固、、容 ΟWhen the addition of Cr is promoted to the Cu-Ni-Si-Co alloy, if the concentrations of Ni, & and c are increased, the total number of precipitated particles increases, and the strength by precipitation strengthening can be increased. On the other hand, as the concentration of the addition increases, the amount of solid solution which does not contribute to precipitation increases, so that the electrical conductivity decreases, and as a result, the peak intensity of the aging precipitation increases, but the peak intensity of the electrical conductivity decreases. However, if the above-mentioned Cu-Ni-Si alloy is added with 〇〇〇3 to 〇3, and the weight % of Cr is preferably 0.01 to Μ% by mass (^, the final characteristic is such that the drum is the same as Ni , Si and C. Concentration of Cu_Ni|C. Alloy phase:;,, = 9 200946697 Increases electrical conductivity by strength 'Step-by-step improves hot workability and improves material utilization. Cu-Ni-Si- In the C bismuth alloy, the composition of the particles precipitated when Cr is added is easy to precipitate a precipitated particle of a bcc structure containing Cr as a main component, but a compound with Si is also likely to be precipitated. Cr is subjected to an appropriate heat treatment. It is possible to easily precipitate a compound of Si, such as chrome telluride (Cr3Si, etc.) in the copper mother phase, so that it can be used as a Nidi or in the step of forming a combination of alloy properties, solid solution treatment, cold rolling, and aging treatment. The solid solution Si of C〇Si2 or the like is analyzed as a Cr-Si compound. Therefore, it is possible to suppress solidification and containment.
Si引起之導電率之降低,從而可無損於強度而謀求導電率 之上升。 此時’若Cr粒子中之Si濃度較低,則si會殘留於母 相中,因而導電率會降低’另一方面’若Cr粒子中之Si 濃度較南’則用以析出Ni-Si粒子或Co-Si粒子之Si濃度會 減少’因而強度會降低。進一步,當Cr中之Si濃度較高時, 粗大之Cr-Si化合物會增加,而彎曲、疲勞強度等會劣化。 進一步’即便減慢固溶化後之冷卻速度,或者過度延長時 ❹ 效熱處理時間’ Cr-Si化合物仍會粗大化而使形成化 合物之Si濃度減少,從而導致有助於強化之Ni_si化合物 不足°其原因在於’ Cu中之Si對Cr之擴散速度快於對 或Co,因此Cr-Si化合物容易粗大化,從而cr-Si化合物之 析出速度變得快於Ni-Si化合物及Co-Si粒子之析出速度。 因此,若控制固溶化後之冷卻速度,以避免成為較最 大強度之時效條件更高溫、更長時間之條件,則可控制cr_Si 10 200946697 化合物之魬成、大 質量%〜0.3哲喜 將Cr濃度設為〇·003 % ,將Cr-Si化合物中Cr相對於si之原子 濃度比S又為1〜气。 曰 ^Cr於溶解鑷造時之冷卻過程中會優先析出至The decrease in the electrical conductivity caused by Si makes it possible to increase the electrical conductivity without impairing the strength. At this time, if the Si concentration in the Cr particles is low, si will remain in the matrix phase, and thus the conductivity will decrease. On the other hand, if the Si concentration in the Cr particles is higher than the south, the Ni-Si particles are precipitated. Or the Si concentration of the Co-Si particles is reduced, and thus the strength is lowered. Further, when the Si concentration in Cr is high, the coarse Cr-Si compound increases, and the bending, fatigue strength, and the like deteriorate. Further, even if the cooling rate after solid solution is slowed down, or the heat treatment time is excessively prolonged, the Cr-Si compound is coarsened to decrease the Si concentration of the compound, resulting in insufficient Ni_si compound for strengthening. The reason is that the diffusion of Si in Cu is faster than that of Co or Co, so the Cr-Si compound is easily coarsened, so that the precipitation rate of the Cr-Si compound becomes faster than the precipitation of the Ni-Si compound and Co-Si particles. speed. Therefore, if the cooling rate after solution treatment is controlled to avoid the conditions of higher temperature aging conditions being higher temperature and longer, the composition of cr_Si 10 200946697 compound can be controlled, and the mass %~0.3 Zhexi will be the Cr concentration. It is set to 003·003%, and the atomic concentration ratio S of Cr to Si in the Cr-Si compound is again 1 to gas.曰 ^Cr will be preferentially precipitated during the cooling process during dissolution and fabrication.
故而可強化晶界’使熱加工時之破裂難以產生從 而可㈣材料率下降。@ ’於轉鑄造時析出至晶界 之Cr在固溶化處理等中可再固溶,而於後續之時效析出時 生成石夕化物°通常之Cu抓Si系合金中所添加之Si量,無 助於時效析出之Si依舊會維持固溶於母相中的狀態進而抑 制導電率之上升’但藉由添加矽化物形成元素t Cr,使矽 化物進一步析出’從而與先前之CuNiSi心系合金相比, 可降低固岭Si量,從而可無損於強度而使導電率上升。 、分耑密磨Therefore, the grain boundary can be strengthened to make it difficult to generate cracks during hot working, and the material rate can be lowered. @ 'Cr which precipitated to the grain boundary during the transfer casting can be re-dissolved in the solution treatment or the like, and the amount of Si added in the usual Cu-grazing Si-based alloy is formed in the subsequent aging precipitation. The Si precipitated in the aging process still maintains the state of solid solution in the matrix phase and inhibits the increase in conductivity. 'But by adding the telluride forming element t Cr , the telluride is further precipitated' and thus the prior CuNiSi core alloy phase. In comparison, the amount of the solid Si can be lowered, so that the electrical conductivity can be increased without impairing the strength. Milling
Cr-Si化合物之大小會對彎曲加工性及疲勞強度等造成 影響,當大小大於5em之Cr_Si化合物的分散密度超過5〇 個/min的時候、或者〇.1〜5ym之Cr-Si化合物的分散密 度超過lxlO6個/mm2的時候,赞曲加工性或疲勞強度會顯 著劣化。進一步,個數密度會影響母相中之Si濃度之過或 不足’故於較大粒子大量分散之狀態下無法獲得所需之強 度特性。因此,大小為大於5 # m之Cr-Si化合物的分散密 度較佳為設在50個/mm2以下,更佳為設在3〇個/mm2以下, 最佳為設在10個/mm2以下。〇1〜5em之Cr-Si化合物的 为散密度只要在1x1 〇6個/min2以下即可,較佳為5x1 〇5個 /mm2以下,更佳為lxl〇5個/mm2以下即可。又,Cr-Si化合 200946697 物的分散密度在lxl〇4個/mm2以下之情形時,藉由G添加 之改善效果較小,故理想之Cr_Si化合物的分散密度需^超 過lxl 〇4個/mm2,在典型的實施形態中,CrSi化合物的分 散密度需在1χ1〇5個/mm2以上。The size of the Cr-Si compound affects the bending workability and the fatigue strength. When the dispersion density of the Cr_Si compound having a size larger than 5 cm exceeds 5 Å/min, or the dispersion of the Cr-Si compound of 〇1 to 5 μm. When the density exceeds lxlO6/mm2, the processability or fatigue strength of the film is significantly deteriorated. Further, the number density affects the excessive or insufficient concentration of Si in the mother phase, so that the desired strength characteristics cannot be obtained in a state where a large number of particles are largely dispersed. Therefore, the dispersion density of the Cr-Si compound having a size of more than 5 #m is preferably set to 50/mm2 or less, more preferably 3 Å/mm2 or less, and most preferably 10 or less. The density of the Cr-Si compound of 〇1 to 5em may be 1 x 1 〇 6 / min 2 or less, preferably 5 x 1 〇 5 / mm 2 or less, more preferably 1 x l 〇 5 / mm 2 or less. Further, when the dispersion density of Cr-Si compound 200946697 is less than or equal to 4/mm2, the improvement effect by G addition is small, so the dispersion density of the ideal Cr_Si compound needs to exceed lxl 〇4/mm2. In a typical embodiment, the dispersion density of the CrSi compound needs to be 1χ1〇5 pieces/mm2 or more.
Sn 及 Zn © 藉由於本發明之Cu_Ni_Si系合金中,以〇 〇5〜2 〇質量 %之總量添加選自Sn及Zn中選擇i種或2種以上可以在不 太損及強度、導電率的情況下,改善應力緩和特性等。當 該添加量小於0.05質量%時,則效果會不足,當超過2二 質量%時,則會損害鑄造性、熱加工性等製造性、製品之導 電率,因此較佳為添加〇.〇5〜2.〇質量%。 其他添加元素 ❹ 藉由添加特定量之Mg、Mn、Ag、P、As、Sb、、B x Ti、Zr、Al及Fe,可呈現各種效果,而藉由相互補足不 僅可改善強度、導電率,亦可改善製造性,例如彎曲加工 性、鍍敷性或者藉由鑄塊組織之微細化而實現之熱加工性 之改善等,因此,於本發明之Cu_Ni_si-C〇Cr系合金中, 可視其所需求之特性而適當添加總量為2〇質量%以下之該 等兀素之1種或2種以上。對於該添加量而言,當該等元 素之總量小於0.001質量%時,則無法獲得所需之效果而 當該等元素之總量超過2.0質量%時,則導電率之降低或製 造性之劣化會變得很顯著,因此總量較佳為設為〇 〇〇1〜2〇 質量% ’更佳為設為〇 〇丨〜丨〇質量%。 再者’在不會對本發明< Cu_Ni_si_c〇_Cr系合金之特 12 200946697 ,亦可添加本說明書中未具體記 性造成不良影響之範圍内 載之元素。 其次’針對本發明之製造方法進行說明。本發明之 U-Nl-Sl-C〇-Cr系合金’除了控制Ni-si化合物、C0-Si及 Cr-S4合物之m處理、時效處理之條件以外可藉由 Cu-Ni-Si系合金之慣用製造方法來製造。Sn and Zn are added to the Cu_Ni_Si-based alloy of the present invention in a total amount of 〇〇5 to 2% by mass, and are selected from the group consisting of Sn and Zn, and one or two or more types may be selected, which may be less inferior in strength and electrical conductivity. In the case of improvement, stress relaxation characteristics and the like are improved. When the amount added is less than 0.05% by mass, the effect is insufficient. When the amount is more than 2% by mass, the manufacturability such as castability and hot workability and the electrical conductivity of the product are impaired. Therefore, it is preferable to add 〇.〇5 ~ 2. 〇 quality%. Other added elements 可 By adding specific amounts of Mg, Mn, Ag, P, As, Sb, B x Ti, Zr, Al, and Fe, various effects can be exhibited, and the strength and conductivity can be improved by complementing the complementary feet. Further, it is also possible to improve manufacturability such as bending workability, plating property, or improvement in hot workability by miniaturization of ingot structure, and thus, in the Cu_Ni_si-C〇Cr alloy of the present invention, visible One or two or more of these halogens are added in an amount of 2% by mass or less in total. With respect to the added amount, when the total amount of the elements is less than 0.001% by mass, the desired effect cannot be obtained, and when the total amount of the elements exceeds 2.0% by mass, the electrical conductivity is lowered or the manufacturability is The deterioration becomes remarkable, so the total amount is preferably set to 〇〇〇1 to 2〇% by mass, and more preferably set to 〇〇丨~丨〇% by mass. Further, the element contained in the range of the present invention, which does not specifically affect the adverse effects of the present invention, may be added to the above-mentioned "Cu_Ni_si_c〇_Cr alloy". Next, the manufacturing method of the present invention will be described. The U-Nl-Sl-C〇-Cr alloy of the present invention can be controlled by a Cu-Ni-Si system in addition to the conditions of m treatment and aging treatment of the Ni-si compound, the C0-Si and the Cr-S4 compound. The alloy is manufactured by a conventional manufacturing method.
Ο 首先使用大氣溶解爐,將電氣銅、Ni、Si、Co、Cr 原料溶解’獲得所需組成之炫液。繼而,將該溶液鑄造 成鑄錠丨;f灸進行熱壓&,並反覆進行冷壓延與熱處理, 乂加工成具有所需厚度及特性之條或箔。熱處理有固溶化 處理與時效處理。固溶化處理中,以7〇〇〜⑺㈧艽之高溫進 仃加熱,使Ni-Si系化合物、c〇-Si系化合物及Cr_si系化 合物固溶於Cu母相中,同時使Cu母相再結晶。固溶化處 理有時亦由熱壓延來兼作。 該固溶化處理中’冷卻速度亦與加熱溫度一樣重要。 因先前並未控制加熱後之冷卻速度,故而係於加熱爐之出 側(exit side )設置水槽以進行水冷,或者採用大氣環境氣 氛下之空氣冷卻。此時,冷卻速度容易因加熱溫度之設定 而發生變動,先前之冷卻速度於rC/秒以下〜1(rc/秒以上 之範圍變動。因此,難以進行如本發明例之合金系之特性 之控制。 冷卻速度理想的是it:/秒〜lot:/秒之範圍。時效處理 中’於350〜550C之溫度範圍内進行ih以上之加熱,典型 的是進行3〜24h之加熱,使固溶化處理中固溶之Ni及si 13 200946697 之化合物與cr及Si之化合物析出為微細粒子。利用該時效 處理’強度與導電率會上升。為獲得更高之強度,有時於 時效别及/或時效後進行冷壓延。又,當於時效後進行冷壓 延時,有時於冷壓延後進行去應力退火(1〇w temperature annealing,低溫退火)0 本發明之Cu-Ni-Si-Co-Cr系鋼合金於一實施形態中, 可設為0.2%安全限應力為75〇 Mpa以上且導電率為5〇% IACS以上,進一步可設為〇 2%安全限應力為8〇〇 Mpa以上 且導電率為50〇/〇 IACS以上,亦更可設為〇 2%安全限應力 為850 MPa以上且導電率為5〇% IACS以上。 本發明之Cu-Ni-Si-Co-Cr系合金可加工成各種伸銅 °°例如板、條、管、棒及線,進一步,本發明之Cu-Ni-Si 系銅合金可使用於同時要求高強度及高電氣傳導性(或熱 傳導性)之引線框架、連接器、接腳、端子、繼電器開 關、二次電池用箔材等電子機器零件。 [實施例] 以下表示本發明之具體例,但該等實施例係為了更進 步理解本發明及其優點而提供,並無意用來限定發明。 本發明之實施例中所用之銅合金,具有如表1所示使Ο First use an atmospheric melting furnace to dissolve the electrical copper, Ni, Si, Co, and Cr raw materials to obtain a desired liquid. Then, the solution is cast into a cast ingot; the moxibustion is subjected to hot pressing & and is subjected to cold calendering and heat treatment in turn, and is processed into a strip or foil having a desired thickness and characteristics. The heat treatment has a solution treatment and an aging treatment. In the solution treatment, the Ni-Si compound, the c〇-Si compound, and the Cr_si compound are dissolved in the Cu mother phase by heating at a high temperature of 7 〇〇 to (7) (eight) 艽, and the Cu mother phase is recrystallized. . The solution treatment is sometimes doubled by hot calendering. The cooling rate in the solution treatment is also as important as the heating temperature. Since the cooling rate after heating is not previously controlled, a water tank is provided on the exit side of the heating furnace for water cooling, or air cooling under an atmospheric atmosphere. At this time, the cooling rate is likely to fluctuate due to the setting of the heating temperature, and the previous cooling rate is in the range of rC/sec or less to 1 (rc/sec or more. Therefore, it is difficult to control the characteristics of the alloy system as in the example of the present invention. The cooling rate is preferably in the range of it:/sec to lot:/second. In the aging treatment, the heating is performed at a temperature of 350 to 550 C, and heating is preferably performed for 3 to 24 hours to dissolve the solution. The solid solution of Ni and si 13 200946697 and the compound of cr and Si are precipitated as fine particles. The strength and conductivity increase with this aging treatment. In order to obtain higher strength, sometimes in time and/or aging After the cold rolling is performed, the cold pressing delay is performed after the aging, and the stress annealing is performed after the cold rolling (1〇w temperature annealing). The Cu-Ni-Si-Co-Cr system of the present invention is used. In one embodiment, the steel alloy can be set to a 0.2% safety limit stress of 75 〇Mpa or more and a conductivity of 5 〇% IACS or more, and further can be set to 〇2% safety limit stress of 8 〇〇Mpa or more and electrical conductivity. 50 〇 / 〇 IACS or more It is also possible to set the 〇2% safety limit stress to 850 MPa or more and the conductivity to be 5 〇% IACS or more. The Cu-Ni-Si-Co-Cr alloy of the present invention can be processed into various kinds of copper, such as a plate, Strips, tubes, rods and wires, further, the Cu-Ni-Si-based copper alloy of the present invention can be used for lead frames, connectors, pins, terminals, which simultaneously require high strength and high electrical conductivity (or thermal conductivity). Electronic device parts such as relay switches and foils for secondary batteries. [Embodiment] Specific examples of the present invention are shown below, but these embodiments are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention. The copper alloy used in the examples of the present invention has the same as shown in Table 1.
Nl、Sl、C〇及Cr之含量若干變化之銅合金中適當添加有 Sn ' Zn、Mg ' Mn、c〇及Ag之組成。又,比較例中所用之 銅〇金刀別為具有本發明之範圍外之參數之 eu_Ni_Si_C〇-Cr 系合金。 利用高頻炫解爐,以1300。(:之溫度對表1中記載之各 200946697 • 種成分組成之銅合金進行熔鑄,鑄造成厚度30mm之鑄錠。 繼而,將鑄錠以l〇〇(TC之溫度進行加熱後,熱壓延至板厚 l〇mm為止,再快速進行冷卻。為去除表面之積垢(sca〗e), 實施平面切削至厚度8mm為止,隨後藉由冷壓延製成厚度 0.2mm之板。繼而,於Ar氣體環境氣氛中實施固溶化處理, 根據Ni及Cr之添加量,以800〜1〇〇(rc之溫度保持12〇秒 之後,改變冷卻速度而冷卻至室溫為止。冷卻速度係藉由 〇 &變向加熱後之試料喷吹之氣體流量來控制,計測自試料 之最高到達溫度冷卻至40(rc為止之時間以作為冷卻速 度。未喷吹氣體時之爐冷速度g5t:/s,再者料延緩冷卻 速度之示例’將-面控制加熱輸出一面進行降溫時之冷卻 速度設為rC/s。其後,冷虔延至〇 lmm為止最後根據 添加量’以柳〜55(rc之溫度於惰性環境氣氛中各實施】 〜12小時之時效處理,製造出試料。 對以此方式獲得之各合金進行強度及導電率之特性呼 ❹價。對於強度,進行壓延平行方向上之拉伸測試 ;^ 安全限應力⑺-MPa),而導電率(Ec;%iacs)則藉 由W橋接之體積電阻率測定而求出。 彎曲性之評價,係使用W字型模呈 曲半徑之比A〗夕後姓 、/、’於试料板厚與彎 桃之比為1之條件下進行9G加卫 ::鏡觀察…工部表面,將未觀察到裂 為實用上無問題,並標註〇,將觀察到裂 X。疲勞測試係根據JIS Z 2273,施加 月:標注為 斷裂為止之反覆次數為…次之應力(Mpa)。出直至 15 200946697The composition of Sn ' Zn, Mg ' Mn, c 〇 and Ag is appropriately added to the copper alloy in which the contents of Nl, Sl, C 〇 and Cr are changed. Further, the copper bismuth gold knife used in the comparative example is an eu_Ni_Si_C〇-Cr alloy having parameters other than the range of the present invention. Use a high frequency blaze furnace to 1300. (The temperature of each of the copper alloys of the composition of each of the components of the invention is shown in Table 1 and is cast into an ingot having a thickness of 30 mm. Then, the ingot is heated at a temperature of TC, and then hot-rolled to The thickness of the plate is l〇mm, and then the cooling is performed quickly. To remove the scale of the surface (sca), planar cutting is performed until the thickness is 8 mm, and then a plate having a thickness of 0.2 mm is formed by cold rolling. Then, in the Ar gas The solution treatment is carried out in an ambient atmosphere, and the amount of Ni and Cr is increased by 800 to 1 Torr (the temperature of rc is maintained for 12 sec., and then the cooling rate is changed to cool to room temperature. The cooling rate is obtained by 〇 & The gas flow rate of the sample after the direction heating is controlled, and the maximum temperature reached from the sample is cooled to 40 (the time until rc is used as the cooling rate. The furnace cooling speed g5t: /s when the gas is not blown, and Example of retarding the cooling rate 'The cooling rate when cooling the output side of the heating surface is set to rC/s. Thereafter, the cold rolling is extended to 〇lmm and finally according to the amount of addition' to the temperature of 柳~55 (the temperature of rc is inert Every atmosphere Application: ~12 hours of aging treatment to produce samples. The properties of the alloys obtained in this way are characterized by strength and electrical conductivity. For strength, tensile testing in the parallel direction of rolling; ^ Safety limit stress (7) -MPa), and the electrical conductivity (Ec; %iacs) is determined by measuring the volume resistivity of the W-bridge. The evaluation of the bending property is based on the ratio of the radius of the W-shaped mold to the radius A. , '9G Guarding under the condition that the ratio of the test plate thickness to the curved peach is 1:: Mirror observation... The surface of the working part will be unobserved and the crack is practically no problem, and the 〇 will be marked, and the crack X will be observed. The fatigue test is based on JIS Z 2273, the month of application: the number of repetitions marked as broken is the second stress (Mpa). Until 15 200946697
Cr-Si化合物之觀察,係於對材料之板面進行電解研磨 後’藉由FE-AES觀察(曰本電子股份有限公司製、 JUMP-7800F),於多處將大小為〇 1;am以上之粒子作為對 象,利用Ar+進行濺擊以去除實際上吸附於其表層之元素 (C、Ο ),然後測定各粒子之歐傑光譜(八“奵), 將檢測出之元素藉由靈敏度係數法作為半定量值而進行重 量濃度換算時,以檢測出與&之粒子為對象。Cr g 合物之「組成(Cr/Si)」 大小The observation of the Cr-Si compound was carried out by electrolytic polishing on the surface of the material, and was observed by FE-AES (manufactured by Sakamoto Electronics Co., Ltd., JUMP-7800F), and the size was 〇1; The particles are used as objects, and are splashed with Ar+ to remove the elements (C, Ο) actually adsorbed on the surface layer, and then the Eugene spectrum (eight “奵”) of each particle is measured, and the detected elements are determined by the sensitivity coefficient method. When the weight concentration is converted as a semi-quantitative value, the particle of & is detected. The composition (Cr/Si) of the Cr g compound
J 厂 分散密度 係 定義為FE-AES觀察下對多處進行分析所得出之大^為 ::上之Cr-Si粒子之平均組成、最小圓 _ 視野_之平均個數。 奋覜莠 將結果示於表1及表2。 16 200946697 聆许:鸡*0/0The J plant dispersion density is defined as the average composition of the Cr-Si particles and the average number of the minimum circle _ field of view of the large-scale analysis of FE-AES. The results are shown in Tables 1 and 2. 16 200946697 Hearing: Chicken*0/0
G 17 宣萚Η ΙΟ S) Oi tsj s> KJ s 00 —- 5: d: 1—». c t^U; :〇〇 OS V» u> to Ιλ h—· k) bo bo bo bo bo bo ►—» bo bo — bo ►—* bo — bo bo N-* bo bo 1—* bo bo bo μ—> bo bo % 一 o k) 〇 bs o On Ο bs ο ΟΝ ο 〇\ O b\ o b\ O ON 〇 〇\ o a\ o σ\ 〇 b\ 〇 os 〇 Os 〇 σ\ O σ\ o b\ o Os 〇 Os o bs Ρ Η-» ρ o u> o io p p ρ 1 0.05 0.005 p N-* p ·—· p | 0.05 | [0.005 I p p — p 1—* | 0.05 | | 0.005 | p p p | 0.05 | | 0.005 ] p 〇 Ν> — Lft In NJ b — b b ο 1—^ o o — o N-* o — b ►—» o 1—» b ►—· HM o o t—* o n o u> o Iti o s o Ul o w o u> o 1>j ga o U\ o Ιλ o Lh δ o 0 01 o Lft o Ih N p 1—> p 1—» <1 p Ν-» p H»· <1 其他 為 Ν> o 私 Ιλ 〇 -U *••4 •u •U 戶 4^- •私 一 ♦ [Ni+Co]/Si 950 950 V〇 <-Λ o 1000 900 ο so ο Ο ο 00 o 00 8 00 o g o o 900 900 s o s〇 o 900 oo o g 00 ο oo o 1 800 固溶化 溫度 (xl20s) i…— 1—· N—* 1—» ο — >—* — 1—* u 私 冷卻 速度 (°C/s) 450 450 450 450 450 450 ' 450 450 ! 450 1 1 450 1 a: o 450 L 450 450 450 450 450 450— ..450 450 450 450 i: 〇 1 450 時效 溫度 (°C) 〇 σ\ 〇\ 〇\ as σν Os ΟΝ Os Os o\ 〇\ 〇\ σ\ 〇\ On Os ON ON Os 〇\ On 時效 時間 (h) 0.67 0.91 0.87 0.96 0.60 0.60 0.60 0.28 0.18 1 0.70 1 0.70 I 0.70 | 0.32 1 0.20 0.75 0.75 0.75 0.34 0.22 0.87 0.87 0.87 0.40 ! 0.26 0.1 〜5μιη 的 Cr-Si粒子之 分散密度 (χΙΟ6 個/mm2) ts) N) S) 00 00 00 Is) Ν) 00 JO to K> N-· 0\ to K) S) to S3 K) -j N) OS to Os s> On fj 00 〇 ^ |Sst ts) [Ο U) io Is) bo NJ •U Ν) ▲ Κ) ▲ Μ '〇\ S) os ιο Ιλ K) Lr, KJ Ui JO 一 K) NJ bo N) bo S) bo UJ b b N) VO SJ to — U) — Cr-Si粒子 之組成 ί_ 00 〇\ u> 00 u» Οι 00 s Ό 〇\ oo o 00 ο 00 to 00 Μ L/1 00 00 o 00 o Ln 00 KJ\ oo o | 840 1 | 820 1 VO LA <•/1 v〇 o \〇 o I 770 1 s; KJi o Μ ΚΑ 念 6 0Q ν〇 t-Λ <-h u> Ui N> KJt 1—» Ut N) V» i〇 U> KJ\ tyi U> no η o ο o 〇 o Ο Ο Ο o o o 0 〇 o 0 0 0 0 o o 0 O o 0 彆曲 加工性 1 310 | u> 1—> | 290 1 1 330 1 \>Λ L/t ·—< 3,05 KJ* 岩 o w K) 00 o | 280 | N> 00 o I 270 1 1 305 1 | 300 1 N> | 290 1 N) 00 a K) 00 o ! 280 2?5」 K) 00 o K> 疲勞 1_G 17 宣萚Η ΙΟ S) Oi tsj s> KJ s 00 —- 5: d: 1—». ct^U; :〇〇OS V» u> to Ιλ h—· k) bo bo bo bo bo bo ►—» bo bo — bo ►—* bo — bo bo N-* bo bo 1—* bo bo bo μ—&bo; bo bo % ok) 〇bs o On Ο bs ο ΟΝ ο 〇\ O b\ ob \ O ON 〇〇\ oa\ o σ\ 〇b\ 〇os 〇Os 〇σ\ O σ\ ob\ o Os 〇Os o bs Ρ Η-» ρ o u> o io pp ρ 1 0.05 0.005 p N- * p · —· p | 0.05 | [0.005 I pp — p 1—* | 0.05 | | 0.005 | ppp | 0.05 | | 0.005 ] p 〇Ν> — Lft In NJ b — bb ο 1—^ oo — o N -* o — b ►—» o 1—» b ►—· HM oot—* ono u> o Iti oso Ul owo u> o 1>j ga o U\ o Ιλ o Lh δ o 0 01 o Lft o Ih N p 1—> p 1—» <1 p Ν-» p H»· <1 Others Ν> o Private Ι 〇-U *••4 •u •U household 4^- • Private one ♦ [Ni+Co]/Si 950 950 V〇<-Λ o 1000 900 ο so ο Ο ο 00 o 00 8 00 ogoo 900 900 s Os〇o 900 oo og 00 ο oo o 1 800 Solution temperature (xl20s) i...— 1—· N—* 1—» ο — > —* — 1—* u Private cooling rate (°C/s) 450 450 450 450 450 450 ' 450 450 ! 450 1 1 450 1 a: o 450 L 450 450 450 450 450 450 — ..450 450 450 450 i: 〇1 450 aging temperature (°C) 〇σ\ 〇\ 〇 \ as σν Os ΟΝ Os Os o\ 〇\ 〇\ σ\ 〇\ On Os ON ON Os 〇\ On Aging time (h) 0.67 0.91 0.87 0.96 0.60 0.60 0.60 0.28 0.18 1 0.70 1 0.70 I 0.70 | 0.32 1 0.20 0.75 0.75 0.75 0.34 0.22 0.87 0.87 0.87 0.40 ! 0.26 0.1 ~ 5μιη Dispersion density of Cr-Si particles (χΙΟ6 / mm2) ts) N) S) 00 00 00 Is) Ν) 00 JO to K> N-· 0\ To K) S) to S3 K) -j N) OS to Os s> On fj 00 〇^ |Sst ts) [Ο U) io Is) bo NJ •U Ν) ▲ Κ) ▲ Μ '〇\ S) Os ιο Ιλ K) Lr, KJ Ui JO a K) NJ bo N) bo S) bo UJ bb N) VO SJ to — U) — Composition of Cr-Si particles ί_ 00 〇\ u> 00 u» Οι 00 s Ό 〇\ oo o 00 ο 00 to 00 Μ L/1 00 00 o 00 o Ln 00 KJ\ oo o | 840 1 | 820 1 V O LA <•/1 v〇o \〇o I 770 1 s; KJi o Μ ΚΑ 念 6 0Q ν〇t-Λ <-h u> Ui N> KJt 1—» Ut N) V» i〇 U> KJ\ tyi U> no η o ο o 〇o Ο Ο Ο ooo 0 〇o 0 0 0 0 oo 0 O o 0 曲曲加工1 310 | u>1—> | 290 1 1 330 1 \ >Λ L/t ·—< 3,05 KJ* ow ow K) 00 o | 280 | N> 00 o I 270 1 1 305 1 | 300 1 N> | 290 1 N) 00 a K) 00 o ! 280 2?5" K) 00 o K> Fatigue 1_
S1J 200946697 疲勞 ν-> ν〇 (Ν o <N 〇 <N JQ ΪΝ <Ν ο CN ν〇 <Ν ir> VO <Ν ο <Ν Vi (Ν <Ν <Ν S (Ν ο is JO (Ν S CN l〇 艺 CN jn (N s (Ν 彆曲i 加工性1 Ο 0 o o Ο ο ο Ο ο Ο ο Ο X X Ο 0 X X X X GO 妄 苳 >Λ 9 »〇 W» 妄 »η so 妄 <Ν ι〇 Ο ρ P «η 卜 Ο 卜 S 卜 ν〇 卜 *η ν〇 g 卜 Ο ο Ρ «ο 00 S 卜 ν*> ο 卜 g 卜 V-J 00 o *n OS \o iTi VO V) ρ Cr-Si粒子 之組成 1 m — 口 00 CN 00 γ4 卜 (Ν 卜 CN r** (Ν 1 1 Ο Γ〇 00 οι ο rn «S Ο so is o ;v〇 o l> 口 口 f .f^-C ρϊδ w u CO 寸 w> >η *η (S m 寸 对 寸 1 • •Ο ν-> (Ν ο ο VO Ό 00 S 0.1 〜5μτη 的 Cr-Si粒子之 分散密度 (χΙΟ6 個/mm2) ο ο 2 〇 二 Ο 卜 ο ο Μ ο ο ο Ο 2 ο 2 ο I 1 ::'2: 卜 0.003 0.009 ΛΟ s J2 ^ So φ * ^ ν〇 v〇 \o v〇 νο VO ν〇 ο Ό ο ν〇 Ό ν〇 ν〇 Ό Ό VO v〇 Ό 時效 溫度 CC) 寸 o JO ο •ο Ο «ο 寸 寸 寸 Ο •η 寸 对 Ο JO 寸 ο ι〇 ο 寸 o s i 寸 寸 冷卻 速度 CC/S) 对 寸 寸 寸 寸 〇 ο ο ο ο >η »〇 «ο JO o o ο 固溶化 溫度 (xl20s) ο 00 o 00 ο 00 ο Μ ο 00 〇 00 ο 00 ο 00 ο 00 ο 00 Ο 00 ο ο § ο ο ο § o o\ o 冢 ο Ο g [Ni+Co]/Si o cn ο rn ο Γ〇 〇 ro ο rn ο CO ο ΓΟ ο <^ί 卜 卜 — 卜· 寸· 卜 — r*·; 对· 寸· r-; 寸· 卜 — 对’ 其他 O.lMg : O.lMg N Ο V) Ο «ο ο ir> Ο cS ο m Ο ο Γ〇 ο ο ο ο p o o ο p ϋ 0.005 S o f—J 1-^ 0.005 S ο F-H ο ι ν :rl, ,r * S ο S ο Ό W-) ο VO \〇 o VO o ο ν〇 ο Ό ο ο so ο VD ο so ο Ό Ο Ό ο Ό Ο Ό Ο Ο so o Ό 〇 VO o \〇 Ο νο ο 2 〇〇 00 oo οο 00 οο οο 00 00 00 ΟΟ οο 00 ΟΟ οο 00 OO 00 00 οο <N »〇 Ό 卜 00 <7\ ο (Ν m 2 »〇 2 r- 00 Os 200946697 發明例1〜24中,藉由適當之冷卻速度,使得cr_Si化 合物之分散密度為lxl〇6以下,且Cr/Si為i〜5之範圍, 而獲得良好之特性。 另一方面’比較例1〜10中由於不含Co,比較例n、 12中由於不含Cr,因此強度與導電率無法達到高次元。比 較例13、14由於冷卻速度較慢,因此Cr_Si化合物過度成 長’從而無法獲得充分之強度,且彎曲加工性亦不良。 比較例15、16中,由於冷卻速度較快,因此Cr_Si化 合物不成長,過剩之Si固溶至合金中,強度與導電率劣化。 比較例17、18中’由於時效溫度較高,因此^卜队化合物 過度成長’從而無法獲得充分之強度,且彎曲加工性亦不 良。又’於粗大粒子中Cu、Ni等擴散,粒子中之Si濃度 降低,相對地Cr/Si比會上昇。比較例19、2〇中,由於Cr 之濃度過高,故而Cr-Si化合物過度成長,從而無法獲得充 分之強度,且彎曲加工性亦不良。 【圖式簡單說明] (無) 【主要元件符號說明】 (無) 19S1J 200946697 Fatigue ν-> ν〇(Ν o <N 〇<N JQ ΪΝ <Ν ο CN ν〇<Ν ir> VO <Ν ο <Ν Vi (Ν <Ν <Ν S (Ν ο is JO (Ν S CN l〇艺CN jn (N s (Ν 别曲i 加工1 Ο 0 oo Ο ο ο Ο ο Ο ο Ο XX Ο 0 XXXX GO 妄苳>Λ 9 »〇 W» 妄»η so 妄<Ν ι〇Ο ρ P «η 卜Ο卜 S 卜〇卜*η ν〇g Ο ο Ρ «ο 00 S 卜*> ο 卜g Bu VJ 00 o *n OS \o iTi VO V) Composition of ρ Cr-Si particles 1 m - mouth 00 CN 00 γ4 卜 (Ν 1 1 Ο Γ〇 00 οι ο rn «S Ο so is o ; V〇o l> mouth f .f^-C ρϊδ wu CO inch w>>η *η (S m inch to inch 1 • •Ο ν-> (Ν ο ο VO Ό 00 S 0.1 〜5μτη Dispersion density of Cr-Si particles (χΙΟ6/mm2) ο ο 2 〇二Ο ο ο Μ ο ο ο Ο 2 ο 2 ο I 1 ::'2: Bu 0.003 0.009 ΛΟ s J2 ^ So φ * ^ ν 〇v〇\ov〇νο VO ν〇ο Ό ο ν〇Ό ν〇ν〇Ό Ό VO v〇Ό aging temperature CC) inch o JO ο •ο Ο «ο inch Inch inch Ο η inch pair Ο JO inch ο ι〇ο inch osi inch cooling rate CC/S) inch inch inch 〇ο ο ο ο >η »〇«ο JO oo ο solution temperature (xl20s) ο 00 o 00 ο 00 ο Μ 00 00 00 00 00 00 00 00 00 00 00 00 00 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ir> Ο cS ο m Ο ο Γ〇ο ο ο ο poo ο p ϋ 0.005 S of—J 1-^ 0.005 S ο FH ο ι ν : rl, , r * S ο S ο Ό W-) ο VO 〇o VO o o o o o o o o o o o o o o o o o ο οο 00 ΟΟ οο 00 OO 00 00 οο <N »〇Ό 00 <7\ ο (Ν m 2 »〇2 r- 00 Os 200946697 Inventive Examples 1 to 24, by appropriate cooling Degrees, so that the dispersion density of the compound cr_Si lxl〇6 or less, and the Cr / Si is in the range of i~5, while the good properties. On the other hand, in Comparative Examples 1 to 10, since Co was not contained, since Comparative Examples n and 12 did not contain Cr, the strength and electrical conductivity could not reach high order. In Comparative Examples 13 and 14, since the cooling rate was slow, the Cr_Si compound was excessively grown, so that sufficient strength could not be obtained and the bending workability was also poor. In Comparative Examples 15 and 16, since the cooling rate was fast, the Cr_Si compound did not grow, and excess Si was solid-dissolved into the alloy, and the strength and electrical conductivity were deteriorated. In Comparative Examples 17 and 18, since the aging temperature was high, the compound was excessively grown, so that sufficient strength could not be obtained and the bending workability was also poor. Further, in the coarse particles, Cu, Ni, and the like are diffused, and the Si concentration in the particles is lowered, and the Cr/Si ratio is relatively increased. In Comparative Examples 19 and 2, since the concentration of Cr was too high, the Cr-Si compound excessively grew, and sufficient strength could not be obtained, and the bending workability was also poor. [Simple description of the diagram] (None) [Explanation of main component symbols] (None) 19
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008093780A JP4440313B2 (en) | 2008-03-31 | 2008-03-31 | Cu-Ni-Si-Co-Cr alloy for electronic materials |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200946697A true TW200946697A (en) | 2009-11-16 |
TWI382097B TWI382097B (en) | 2013-01-11 |
Family
ID=41135511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098110574A TWI382097B (en) | 2008-03-31 | 2009-03-31 | Cu-Ni-Si-Co-Cr alloy for electronic materials |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110027122A1 (en) |
JP (1) | JP4440313B2 (en) |
KR (1) | KR101297485B1 (en) |
CN (1) | CN101983249B (en) |
DE (1) | DE112009000731B4 (en) |
TW (1) | TWI382097B (en) |
WO (1) | WO2009123137A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5578827B2 (en) * | 2009-10-13 | 2014-08-27 | Dowaメタルテック株式会社 | High-strength copper alloy sheet and manufacturing method thereof |
JP4677505B1 (en) | 2010-03-31 | 2011-04-27 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same |
JP5281031B2 (en) * | 2010-03-31 | 2013-09-04 | Jx日鉱日石金属株式会社 | Cu-Ni-Si alloy with excellent bending workability |
US8821655B1 (en) | 2010-12-02 | 2014-09-02 | Fisk Alloy Inc. | High strength, high conductivity copper alloys and electrical conductors made therefrom |
JP5441876B2 (en) | 2010-12-13 | 2014-03-12 | Jx日鉱日石金属株式会社 | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same |
WO2012081571A1 (en) | 2010-12-13 | 2012-06-21 | 日本精線株式会社 | Copper alloy wire and copper alloy spring |
EP2653574B1 (en) | 2010-12-13 | 2017-05-31 | Nippon Seisen Co., Ltd. | Copper alloy and method for producing copper alloy |
JP5451674B2 (en) | 2011-03-28 | 2014-03-26 | Jx日鉱日石金属株式会社 | Cu-Si-Co based copper alloy for electronic materials and method for producing the same |
JP4799701B1 (en) | 2011-03-29 | 2011-10-26 | Jx日鉱日石金属株式会社 | Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same |
US9395869B2 (en) * | 2012-02-02 | 2016-07-19 | Apple Inc. | Global z-order for windows |
JP5802150B2 (en) * | 2012-02-24 | 2015-10-28 | 株式会社神戸製鋼所 | Copper alloy |
JP6039999B2 (en) * | 2012-10-31 | 2016-12-07 | Dowaメタルテック株式会社 | Cu-Ni-Co-Si based copper alloy sheet and method for producing the same |
JP6730784B2 (en) * | 2015-03-19 | 2020-07-29 | Jx金属株式会社 | Cu-Ni-Co-Si alloy for electronic parts |
CN105821238B (en) * | 2016-05-31 | 2018-01-02 | 黄河科技学院 | A kind of Cu alloy material and preparation method thereof |
CN106399751A (en) * | 2016-10-13 | 2017-02-15 | 龙岩学院 | Preparing method for high-strength and high-conductivity copper alloy |
CN107267806A (en) * | 2017-06-06 | 2017-10-20 | 深圳天珑无线科技有限公司 | Shell fragment and preparation method thereof, electronic installation |
JP7648724B1 (en) | 2023-12-07 | 2025-03-18 | Jx金属株式会社 | Copper alloys and electronic parts |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4191601A (en) * | 1979-02-12 | 1980-03-04 | Ampco-Pittsburgh Corporation | Copper-nickel-silicon-chromium alloy having improved electrical conductivity |
US4657601A (en) * | 1983-11-10 | 1987-04-14 | Brush Wellman Inc. | Thermomechanical processing of beryllium-copper alloys |
JPH0238653B2 (en) * | 1986-01-27 | 1990-08-31 | Kobe Steel Ltd | PURASUCHITSUKUKANAGATAYODOGOKINOYOBISONOSEIZOHOHO |
JPH04180531A (en) * | 1990-11-14 | 1992-06-26 | Nikko Kyodo Co Ltd | Electrically conductive material |
US6506269B2 (en) * | 1999-01-15 | 2003-01-14 | Industrial Technology Research Institute | High-strength and high-conductivity Cu-(Ni, Co, Fe)-Si copper alloy for use in leadframes and method of making the same |
WO2003076672A1 (en) * | 2002-03-12 | 2003-09-18 | The Furukawa Electric Co., Ltd. | High-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics |
JP4177221B2 (en) | 2003-10-06 | 2008-11-05 | 古河電気工業株式会社 | Copper alloy for electronic equipment |
US8317948B2 (en) * | 2005-03-24 | 2012-11-27 | Jx Nippon Mining & Metals Corporation | Copper alloy for electronic materials |
JP4068626B2 (en) * | 2005-03-31 | 2008-03-26 | 日鉱金属株式会社 | Cu-Ni-Si-Co-Cr-based copper alloy for electronic materials and method for producing the same |
JP2006284120A (en) | 2005-04-01 | 2006-10-19 | Mitsubishi Electric Corp | Flying object guidance system |
JP4754930B2 (en) * | 2005-10-14 | 2011-08-24 | Jx日鉱日石金属株式会社 | Cu-Ni-Si based copper alloy for electronic materials |
JP2007169765A (en) * | 2005-12-26 | 2007-07-05 | Furukawa Electric Co Ltd:The | Copper alloy and its production method |
JP4006467B1 (en) * | 2006-09-22 | 2007-11-14 | 株式会社神戸製鋼所 | Copper alloy with high strength, high conductivity, and excellent bending workability |
EP2426225B1 (en) * | 2006-05-26 | 2015-12-02 | Kabushiki Kaisha Kobe Seiko Sho | Copper alloy with high strength, high electrical conductivity, and excellent bendability |
-
2008
- 2008-03-31 JP JP2008093780A patent/JP4440313B2/en active Active
-
2009
- 2009-03-30 CN CN2009801119161A patent/CN101983249B/en active Active
- 2009-03-30 US US12/935,688 patent/US20110027122A1/en not_active Abandoned
- 2009-03-30 DE DE112009000731.7T patent/DE112009000731B4/en active Active
- 2009-03-30 KR KR1020107021569A patent/KR101297485B1/en active Active
- 2009-03-30 WO PCT/JP2009/056537 patent/WO2009123137A1/en active Application Filing
- 2009-03-31 TW TW098110574A patent/TWI382097B/en active
Also Published As
Publication number | Publication date |
---|---|
KR101297485B1 (en) | 2013-08-16 |
DE112009000731T5 (en) | 2011-05-26 |
KR20100113644A (en) | 2010-10-21 |
DE112009000731B4 (en) | 2018-02-08 |
CN101983249B (en) | 2012-10-03 |
WO2009123137A1 (en) | 2009-10-08 |
US20110027122A1 (en) | 2011-02-03 |
TWI382097B (en) | 2013-01-11 |
JP2009242921A (en) | 2009-10-22 |
CN101983249A (en) | 2011-03-02 |
JP4440313B2 (en) | 2010-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200946697A (en) | Cu-ni-si-co-cr alloy for electronic material | |
TWI395824B (en) | Cu-Ni-Si alloy for electronic materials | |
JP5170881B2 (en) | Copper alloy material for electrical and electronic equipment and method for producing the same | |
KR100565979B1 (en) | High strength copper alloy | |
CN102985572B (en) | Cu-Ni-Si copper alloy plate with excellent deep-draw characteristics and production method thereof | |
WO2008038593A1 (en) | Cu-Ni-Si ALLOY | |
WO2006019035A1 (en) | Copper alloy plate for electric and electronic parts having bending workability | |
TW200918678A (en) | Cu-ni-si-co copper alloy for electronic materials and methodfor manufacturing same | |
TW200821394A (en) | Copper alloy sheet material for electric and electronic instruments and method of producing the same | |
TW200948990A (en) | Cu-ni-si alloy to be used in electrically conductive spring material | |
JPWO2010064547A1 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP5619389B2 (en) | Copper alloy material | |
JP4157899B2 (en) | High strength copper alloy sheet with excellent bending workability | |
JP4950734B2 (en) | High strength and high conductivity copper alloy with excellent hot workability | |
CN102112641A (en) | Copper alloy material for electrical/electronic component | |
JP4006467B1 (en) | Copper alloy with high strength, high conductivity, and excellent bending workability | |
JP5439610B2 (en) | High strength, high conductivity copper alloy and method for producing the same | |
JP3962751B2 (en) | Copper alloy sheet for electric and electronic parts with bending workability | |
TW200837203A (en) | Cu-Ni-Si-based copper alloy for electronic material | |
JP3800269B2 (en) | High strength copper alloy with excellent stamping workability and silver plating | |
JP5232794B2 (en) | High strength and high conductivity copper alloy with excellent hot workability | |
JP6111028B2 (en) | Corson alloy and manufacturing method thereof | |
JP2008024995A (en) | Copper alloy plate for electrical/electronic component having excellent heat resistance | |
JP6246454B2 (en) | Cu-Ni-Si alloy and method for producing the same | |
TWI639163B (en) | Cu-Co-Ni-Si alloy for electronic parts, and electronic parts |