200945151 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種電容式觸控裝置及控制方法。 . 【先前技術】 在傳統應用上’大尺寸電容式觸控面板皆使用表面電 容式(surface capacitive)感測技術,但表面電容式感測 技術是利用流向觸控面板各端點的一組電流不同來判別 手指的位置,因此當觸碰觸控面板之手指數為二指以上 時’回報電流組數仍為一組’故僅能辨別一組絕對座標位 置’例如在二維矩陣時僅能回報一組Χ,γ參數,因而無法 達到多指觸控的功能。 所有觸點可定位(Aii points Addressable; ΑΡΑ)型 陣·列電容式感測技術雖然可以達到多指觸控的功能,但是 其需要對母個點感測器(p〇int Sensor)進行充放電的動 〇 作’以矩陣形狀的觸控面板來說,當X轴及γ轴的感應線 (trace)增加時’ APA型陣列電容式的像素數目將急劇增 因而成取像速度(frame rate)下降,故不適用於大 尺寸觸控面板的應用。200945151 IX. Description of the Invention: [Technical Field] The present invention relates to a capacitive touch device and a control method. [Prior Art] In traditional applications, 'large-capacity capacitive touch panels use surface capacitive sensing technology, but surface capacitive sensing technology uses a set of currents flowing to the endpoints of the touch panel. Differently, the position of the finger is discriminated. Therefore, when the hand index of touching the touch panel is two fingers or more, the number of return current groups is still a group, so that only one set of absolute coordinate positions can be distinguished, for example, in a two-dimensional matrix. Rewarding a set of Χ, γ parameters, and thus can not achieve the function of multi-finger touch. All contact positionable (Aii points Addressable; ΑΡΑ) array and column capacitive sensing technology can achieve multi-finger touch function, but it needs to charge and discharge the mother point sensor (p〇int sensor) In the case of a matrix-shaped touch panel, when the X-axis and γ-axis traces increase, the number of APA-type array capacitive pixels will increase sharply and become a frame rate. It is not suitable for applications with large touch panels.
另種轴交錯(Axis intersect; AI)型陣列電容式感 測技術也同樣能達到多指觸控的功能。圖1顯示傳統應用 在】尺寸觸控面板的AI型陣列電容式感測技術’其包括 *】尺寸觸控面板10以及一 AI型陣列電容式觸控1C 12 掃描觸控面牙反10,以-最大可支援掃描22 #感應線的AI 5 200945151 型陣列電容式觸控IC 12為例來說,雖然應用在X轴及Y 轴各有10條感應線TRX1〜TRX10及TRY卜TRY10的小尺寸 觸控面板10時取像速度還不錯,但是若要將AI型陣列電 容式觸控1C 12應用於X轴及Y轴各有40條感應線 TRX1〜TRX40及TRY1〜TRY40的大尺寸觸控面板14時’如圖 2所示’則必須增加AI型陣列電容式觸控1C 12可掃描的 總感應線數量,然而,觸控1C 12每次對電容充放電所花 費的時間佔整體觸控面板應用上的取像速度的比例非常 ❹ 大,也就是說取像速度問題主要由ic 12每個框(frame) 對電容充放電所決定,故以增加可掃描感應線數的方法應 用於大尺寸觸控面板14將會有一非常大的缺點,就是整 體應用上的取像速度將會嚴重下降,進而影響應用端的效 能。 【發明内容】 本發明的目的之一,在於提出一種決定邊界問題的電 容式觸控裝置及其控制方法。 本發明的目旳之一,在於提出一種增加取像速度的電 容式觸控裝置及其控制方法。 根據本發明,一種電容式觸控装置及其控制方法包括 一觸控面板以及多個串接的積體電路,該觸控面板具有多 條感應線,該多個串接的積體電路中的第/積體電路對該 多條感應線中的第N條感應線充放電產生一第一信號,該 多個串接的積體電路中的第二積體電路對該多條感應線 6 200945151 中的第Ν+l條感應線充放電產生一第二信號,該第一積體 電路將該第一信號傳送給該第二積體電路,使該第二積體 電路可以根據該第一及第二信號決定該第N條感應線的感 應量,進而解決邊界問題。 此外,該多個串接的積體電路皆是獨立運作,當該第Another type of Axis intersecting (AI) array capacitive sensing technology can also achieve multi-finger touch function. FIG. 1 shows an AI-type array capacitive sensing technology that is conventionally applied to a size touch panel, which includes a size touch panel 10 and an AI-type array capacitive touch 1C 12 scan touch surface, 10 - Maximum support for scanning 22 # sensing line AI 5 200945151 Array capacitive touch IC 12, for example, although there are 10 sensing lines TRX1~TRX10 and TRY Bu TRY10 in the X-axis and Y-axis. The image capture speed of the touch panel 10 is not bad, but the AI-type array capacitive touch 1C 12 is applied to the large-size touch panels of the X-axis and the Y-axis each having 40 sensing lines TRX1 to TRX40 and TRY1 to TRY40. At 14 o'clock, as shown in Figure 2, the total number of sensing lines that can be scanned by the AI-type capacitive touch 1C 12 must be increased. However, the time taken by the touch 1C 12 to charge and discharge the capacitor accounts for the entire touch panel. The ratio of the image capturing speed in the application is very large, that is to say, the image capturing speed problem is mainly determined by the charging and discharging of the capacitor by each frame of the ic 12, so the method of increasing the number of scanable sensing lines is applied to the large size. The touch panel 14 will have a very large disadvantage, that is, Imaging application speed on the body will be seriously decreased, thereby affecting the efficiency of energy application side. SUMMARY OF THE INVENTION One object of the present invention is to provide a capacitive touch device that determines a boundary problem and a control method thereof. One of the objects of the present invention is to provide a capacitive touch device that increases the image capturing speed and a control method therefor. According to the present invention, a capacitive touch device and a control method thereof include a touch panel and a plurality of serially connected integrated circuits, the touch panel having a plurality of sensing lines, and the plurality of serially connected integrated circuits The first/integral circuit generates a first signal by charging and discharging the Nth sensing line of the plurality of sensing lines, and the second integrated circuit of the plurality of serially connected integrated circuits is the plurality of sensing lines 6 200945151 And charging and discharging a second signal in the first +1 + sense line, the first integrated circuit transmitting the first signal to the second integrated circuit, so that the second integrated circuit can be based on the first The second signal determines the amount of inductance of the Nth sense line, thereby solving the boundary problem. In addition, the plurality of serially connected integrated circuits are independently operated when the first
一積體電路掃描至其所負責的最後一條感應線,即該第N 條感應線,該第二積體電路開始掃描其所負責的第一條感 應線,即該第N+1條感應線,該第一積體電路將其掃描結 〇 果傳送給該第二積體電路,當該第二積體電路掃描至其所 負責的最後一條感應線時,在該第二積體電路之後的第三 積體電路將開始掃描其所負責的第一條感應線,該第二積 體電路將把其與該第一積體電路的掃描結果全部傳送給 該第三積體電路,以此接力的方式將所有積體電路的掃描 結果傳送至最後一顆積體電路進行運算,每一顆積體電路 在掃完其所負責的最後一條感應線時,將再次從其所負責 _ 的第一條感應線開始掃,因此,除了第一次掃描時間需要 ❹ 較長外,之後只需要一顆積體電路的掃描時間便可以掃完 整個觸控面板,因而增加取像速度。 【實施方式】 圖3顯示一種使用二顆以上AI型陣列電容式觸控1C 掃描觸控面板的電容式觸控裝置20。圖4顯示圖3的局部 放大圖。在電容式觸控裝置20中,陣列電容式觸控1C 24 負責掃描觸控面板22中的感應線TRX1至TRX10,陣列電 7 200945151 容式觸控IC 26負責掃描觸控面板22中的感應線TRXll 至TRX20。由於電容式觸控裝置20可以使用多顆AI型陣 列電容式觸控1C同時掃描觸控面板,因此應用在大尺寸 面板時,不但具有多指觸控功能,也具有良好的取像速 度。在小尺寸觸控面板的電容式觸控1C的偵測方法中, 一般是同時選取兩條感應線進行充放電以取得較佳的感 應量。若將上述的方法應用於電容式觸控裝置20的話, 以觸控1C 24為例,在掃描感應線TRX1時,觸控1C 24 Ο 將對感應線TRX7及TRX8充放電以取得感應線TRX7及TRX8 的電壓或電流信號,並藉以取得感應線TRX7的感應量, 如圖4所示。然而,當觸控1C 24掃描至其所負責的最後 一條感應線TRX10時,由於觸控1C 24並未連接感應線 TRX11,因此觸控1C 24無法對感應線TRX11充放電以取 得電壓或電流信號,因此在邊界處的感應線TRX10的感應 量只能用感應線TRX10的電壓或電流信號來判斷,因而使 感應線TRX10的感應量有不正確或偏小的情形。 圖5顯示本發明的第一實施例,電容式觸控裝置30 包括觸控面板32以及觸控1C 34及36,陣列電容式觸控 1C 34負責掃描觸控面板32的感應線TRX1至TRX10,陣 列電容式觸控1C 36負責掃描觸控面板32的感應線TRX11 - 至TRX20,觸控1C 34及36皆為獨立運作,當觸控1C 34 . 掃描至其所負責的最後一條感應線TRX10時,觸控1C 36 將開始掃描其所負責的第一條感應線TRX 11,同時,觸控 1C 34將對感應線TRX10充放電產生的電壓或電流信號pp 8 200945151 傳送給觸控IC 36 ’進而解決邊界問題’觸控IC 36根據 來自觸控1C 34的信號PP以及對感應線TRX11充放電而 得到的電壓或電流信號決定感應線TRX10的感應量,同 時,觸控1C 34也將其掃描結果經由交換及資料信號傳送 至觸控1C 36進行運算,其中觸控1C 34的掃描結果包含 感應線TRX1至TRX9的感應量,當然,當觸控1C 34掃完 最後一條感應線TRX10時’將再從第一條感應線TRX1開 始掃描。在其他實施例中,也可以由觸控1C 36將對感應 Ο 線TRX11充放電而得的電壓或電流信號傳送給觸控1C 34,以供觸控1C 34決定感應線TRX10的感應量。 圖5所示的電容式觸控裝置20可以推廣至多個串接 的觸控1C。圖6顯示本發明的第二個實施例,電容式觸控 裝置40包括陣列電容式觸控1C 42、44、46及48用以掃 描觸控面板(圖中未示)上同一轴的掃描線,其中觸控1C 42 負責掃描感應線TRX1至TRX20,觸控IC44負責掃描感應 線TRX21至TRX40,觸控1C 46負責掃描感應線TRX41至 ® TRX60,觸控IC 48負責掃描感應線TRX61至TRX80,觸控 1C 42、44、46及48皆獨立運作,當觸控1C 42掃描至其 所負責的最後一條感應線TRX20時,同時觸控1C 44也開 始掃描感應線TRX21,接著觸控1C 42將傳送信號ppl以 ^ 及交換及資料信號給觸控1C 44,其中信號ppl係對感應 線TRX20充放電而得的電壓或電流信號,而觸控ic 42所 送出的交換及資料信號包括觸控1C 42的掃描結果,當觸 控1C 42對感應線TRX20完成充放電後,將再由其所負責 9 200945151 的第一條感應線TRX1開始掃描,觸控IC44根據信號ppl 及對感應線TRX21充放電而得的電壓或電流信號決定感應 線TRX20的感應量,當觸控1C 44掃描至其所負責的最後 一條感應線TRX40時,其也將對感應線TRX40充放電而得 的電壓或電流信號pp2傳給下一顆觸控1C 46,同時也把 觸控1C 44的掃描結果以及其掃描結果經由交換及資料信 號傳結觸控1C 46,當觸控1C 44對感應線TRX40完成充 放電後,將再由其所負責的第一條感應線TRX21開始掃 ❹ 描,以此類推,最後觸控1C 42、44及46所掃描的結果 都以接力的方式傳送至最後一顆觸控1C 48以進行運算, 而且除了第一次描掃時間較長外,之後經由導管 (pipeline)接力的方式,幾乎只要一顆1C的掃描時間便 可以得到所有感應線的感應量,以本實施例來說,只要花 費掃描20條感應線的時間,便可以得到80條感應線的感 應量,因此可以大幅增加掃描的頻率,即增加取像速度。 再者,每一觸控1C都將其所負責掃描的最後一條感應線 〇 的電壓或電流信號傳給下一顆觸控1C,因而解決邊界問 題。 圖7顯示本發明的第三實施例,電容式觸控裝置50 包括觸控面板52及觸控1C 54、56、58及60,其中觸控 - 1C 54掃描觸控面板52上Y軸的感應線TRY21至TRY40, 觸控1C 56掃描觸控面板52上Y軸的感應線TRY1至 TRY20,觸控1C 58掃描觸控面板52上X軸的感應線TRX1 至TRX20,觸控1C 60掃描觸控面板52上X軸的感應線 200945151 TRX21至TRX40,觸控IC 54、56、58及60以串接方式連 接,並且以接力方式把每一顆觸控1C的掃描結果傳送至 最後一顆觸控1C 60以加快取像速度。此外,觸控1C 54 將感應線TRY21的電壓或電流信號傳給觸控1C 56以解決 觸控1C 54及56之間的邊界問題,而觸控1C 58也將感 應線TRX20的電壓或電流信號傳給觸控1C 60以解決觸控 1C 58及60之間的邊界問題。 〇 【圖式簡單說明】 圖1顯示傳統應用在小尺寸觸控面板的AI型陣列電 容式感測技術; 圖2顯示傳統應用在大尺寸觸控面板的AI型陣列電 容式感測技術; 圖3顯示一種使用二顆以上AI型陣列電容式觸控1C 掃描觸控面板的電容式觸控裝置; 圖4顯示圖3的局部放大圖; ❹ 圖5顯示本發明的第一實施例; 圖6顯示本發明的第二實施例;以及 圖7顯示本發明的第三實施例。 - 【主要元件符號說明】 10 觸控面板 12 觸控1C 14 觸控面板 11 200945151An integrated circuit scans to the last sense line that it is responsible for, that is, the Nth sense line, and the second integrated circuit starts scanning the first sense line that it is responsible for, that is, the (N+1)th sense line The first integrated circuit transmits its scan result to the second integrated circuit, and when the second integrated circuit scans to the last sense line it is responsible for, after the second integrated circuit The third integrated circuit will start scanning the first sensing line it is responsible for, and the second integrated circuit will transmit all the scanning results of the first integrated circuit to the third integrated circuit, thereby relaying The way to transfer the scan results of all the integrated circuits to the last integrated circuit for calculation, each integrated circuit will be responsible for the first one when it scans the last sense line it is responsible for. The strip sensing line starts to sweep. Therefore, in addition to the long time required for the first scanning time, only one scanning time of the integrated circuit is required to scan the entire touch panel, thereby increasing the image capturing speed. [Embodiment] FIG. 3 shows a capacitive touch device 20 using two or more AI-type array capacitive touch 1C scanning touch panels. Fig. 4 shows a partial enlarged view of Fig. 3. In the capacitive touch device 20, the array capacitive touch 1C 24 is responsible for scanning the sensing lines TRX1 to TRX10 in the touch panel 22, and the array circuit 7 200945151 is used to scan the sensing lines in the touch panel 22. TRXll to TRX20. Since the capacitive touch device 20 can simultaneously scan the touch panel using a plurality of AI-type capacitive touch sensors 1C, the multi-finger touch function and the good image capturing speed are applied to the large-sized panel. In the method of detecting the capacitive touch 1C of the small-sized touch panel, generally two sensing lines are simultaneously selected for charging and discharging to obtain a better sensing amount. If the above method is applied to the capacitive touch device 20, taking the touch 1C 24 as an example, when scanning the sensing line TRX1, the touch 1C 24 充 charges and discharges the sensing lines TRX7 and TRX8 to obtain the sensing line TRX7 and The voltage or current signal of the TRX8 is used to obtain the inductance of the sensing line TRX7, as shown in Figure 4. However, when the touch 1C 24 scans to the last sensing line TRX10 that it is responsible for, since the touch 1C 24 is not connected to the sensing line TRX11, the touch 1C 24 cannot charge or discharge the sensing line TRX11 to obtain a voltage or current signal. Therefore, the amount of inductance of the sensing line TRX10 at the boundary can only be judged by the voltage or current signal of the sensing line TRX10, thereby making the sensing amount of the sensing line TRX10 incorrect or small. FIG. 5 shows a first embodiment of the present invention. The capacitive touch device 30 includes a touch panel 32 and touch panels 1C 34 and 36. The array capacitive touch panel 1C 34 is responsible for scanning the sensing lines TRX1 to TRX10 of the touch panel 32. The array capacitive touch 1C 36 is responsible for scanning the sensing lines TRX11 - to TRX20 of the touch panel 32, and the touch 1C 34 and 36 are independent operation, when the touch 1C 34 . is scanned to the last sensing line TRX10 it is responsible for. The touch 1C 36 will start scanning the first sensing line TRX 11 that it is responsible for. At the same time, the touch 1C 34 will transmit the voltage or current signal pp 8 200945151 generated by charging and discharging the sensing line TRX10 to the touch IC 36'. The touch panel IC determines the amount of sensing of the sensing line TRX10 based on the signal PP from the touch 1C 34 and the voltage or current signal obtained by charging and discharging the sensing line TRX11. At the same time, the touch 1C 34 also scans the result. The operation is performed by switching the data signal to the touch 1C 36. The scan result of the touch 1C 34 includes the sensing amount of the sensing lines TRX1 to TRX9. Of course, when the touch 1C 34 sweeps the last sensing line TRX10, From the first Sensing lines TRX1 start scanning. In other embodiments, the voltage or current signal obtained by charging and discharging the sensing line TRX11 may be transmitted to the touch 1C 34 by the touch 1C 36, so that the touch 1C 34 determines the sensing amount of the sensing line TRX10. The capacitive touch device 20 shown in FIG. 5 can be extended to a plurality of serially connected touches 1C. FIG. 6 shows a second embodiment of the present invention. The capacitive touch device 40 includes array capacitive touches 1C 42 , 44 , 46 , and 48 for scanning scan lines of the same axis on a touch panel (not shown). The touch 1C 42 is responsible for scanning the sensing lines TRX1 to TRX20, the touch IC 44 is responsible for scanning the sensing lines TRX21 to TRX40, the touch 1C 46 is responsible for scanning the sensing lines TRX41 to TRX60, and the touch IC 48 is responsible for scanning the sensing lines TRX61 to TRX80, Touch 1C 42, 44, 46 and 48 operate independently. When touch 1C 42 scans to the last sensing line TRX20 it is responsible for, touch 1C 44 also starts scanning scanning line TRX21, then touch 1C 42 will The signal ppl is transmitted to the touch 1C 44 by the switching and data signals, wherein the signal ppl is a voltage or current signal obtained by charging and discharging the sensing line TRX20, and the switching and data signals sent by the touch ic 42 include the touch 1C. When the touch 1C 42 is charged and discharged by the touch line TRC20, the first sensing line TRX1 of the 200945151 is started to scan, and the touch IC 44 charges and discharges the sensing line TRX21 according to the signal ppl21. And the voltage or electricity The signal determines the sensing amount of the sensing line TRX20. When the touch 1C 44 scans to the last sensing line TRX40 it is responsible for, it also transmits the voltage or current signal pp2 obtained by charging and discharging the sensing line TRX40 to the next touch. Control 1C 46, and also touch the scan result of touch 1C 44 and its scan result through the exchange and data signal junction touch 1C 46, when the touch 1C 44 is charged and discharged to the induction line TRX40, it will be responsible for it. The first sensing line TRX21 starts to sweep, and so on. Finally, the results scanned by 1C 42, 44 and 46 are relayed to the last touch 1C 48 for calculation, and in addition to the first After a long sweep time, after the pipeline is connected, almost all the sensing time of the sensing line can be obtained by a scan time of 1C. In this embodiment, it takes only 20 sensors to scan. At the time of the line, the sensing amount of 80 sensing lines can be obtained, so that the scanning frequency can be greatly increased, that is, the image capturing speed is increased. Moreover, each touch 1C transmits the voltage or current signal of the last sense line 扫描 that it is responsible for scanning to the next touch 1C, thus solving the boundary problem. FIG. 7 shows a third embodiment of the present invention. The capacitive touch device 50 includes a touch panel 52 and touch panels 1C 54 , 56 , 58 , and 60 . The touch - 1 C 54 scans the Y-axis sensor on the touch panel 52 . The lines TRY21 to TRY40, the touch 1C 56 scans the Y-axis sensing lines TRY1 to TRY20 on the touch panel 52, the touch 1C 58 scans the X-axis sensing lines TRX1 to TRX20 on the touch panel 52, and the touch 1C 60 scans the touch The sensing line of the X-axis on the panel 52 is 200945151 TRX21 to TRX40, and the touch ICs 54, 56, 58 and 60 are connected in series, and the scanning result of each touch 1C is transmitted to the last touch by a relay method. 1C 60 to speed up the image capture speed. In addition, the touch 1C 54 transmits the voltage or current signal of the sensing line TRY21 to the touch 1C 56 to solve the boundary problem between the touch 1C 54 and 56, and the touch 1C 58 also senses the voltage or current signal of the line TRX20. Pass to touch 1C 60 to solve the boundary problem between touch 1C 58 and 60. 〇 [Simple diagram of the diagram] Figure 1 shows the AI-type array capacitive sensing technology used in small-sized touch panels; Figure 2 shows the AI-type array capacitive sensing technology used in large-size touch panels; 3 shows a capacitive touch device using two or more AI type capacitive touch 1C scanning touch panels; FIG. 4 shows a partial enlarged view of FIG. 3; FIG. 5 shows a first embodiment of the present invention; A second embodiment of the present invention is shown; and Fig. 7 shows a third embodiment of the present invention. - [Main component symbol description] 10 Touch panel 12 Touch 1C 14 Touch panel 11 200945151
20 電容式觸控裝置 22 觸控面板 24 觸控1C 26 觸控1C 30 電容式觸控裝置 32 觸控面板 34 觸控1C 36 觸控1C 40 電容式觸控裝置 42 觸控1C 44 觸控1C 46 觸控1C 48 觸控1C 50 電容式觸控裝置 52 觸控面板 54 觸控1C 56 觸控1C 58 觸控1C 60 觸控1C20 Capacitive Touch Device 22 Touch Panel 24 Touch 1C 26 Touch 1C 30 Capacitive Touch Device 32 Touch Panel 34 Touch 1C 36 Touch 1C 40 Capacitive Touch Device 42 Touch 1C 44 Touch 1C 46 Touch 1C 48 Touch 1C 50 Capacitive Touch Device 52 Touch Panel 54 Touch 1C 56 Touch 1C 58 Touch 1C 60 Touch 1C