CN103186298B - Low standby power consumption driving method and device for capacitive multi-touch - Google Patents
Low standby power consumption driving method and device for capacitive multi-touch Download PDFInfo
- Publication number
- CN103186298B CN103186298B CN201110451266.4A CN201110451266A CN103186298B CN 103186298 B CN103186298 B CN 103186298B CN 201110451266 A CN201110451266 A CN 201110451266A CN 103186298 B CN103186298 B CN 103186298B
- Authority
- CN
- China
- Prior art keywords
- sensing
- capacitance
- capacitive
- switch
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Electronic Switches (AREA)
- Position Input By Displaying (AREA)
Abstract
Description
技术领域technical field
本发明涉及触控面板的技术领域,尤指一种电容式多点触控的低待机功耗驱动方法及装置。The invention relates to the technical field of touch panels, in particular to a driving method and device for capacitive multi-touch with low standby power consumption.
背景技术Background technique
现代消费性电子装置多配备触控板做为其输入装置之一。为符合轻、薄、短、小等需求,触控板亦多与面板整合成为触控面板,用以方便使用者输入。触控板根据感测原理的不同可分为电阻式、电容式、音波式、及光学式等四种。Most modern consumer electronic devices are equipped with touch pads as one of their input devices. In order to meet the needs of lightness, thinness, shortness, and smallness, the touch panel is also integrated with the panel to form a touch panel, which is convenient for users to input. According to different sensing principles, touch panels can be divided into four types: resistive, capacitive, acoustic, and optical.
触控面板的技术原理是当手指或其他介质接触到荧幕时,依据不同感应方式,侦测电压、电流、声波或红外线等,进而测出触压点的坐标位置。例如电阻式即为利用上、下电极间的电位差,用以计算施压点位置检测出触控点所在。电容式触控面板是利用排列的透明电极与人体之间的静电结合所产生的电容变化,从所产生的电流或电压来检测其坐标。The technical principle of the touch panel is that when a finger or other medium touches the screen, it detects voltage, current, sound waves or infrared rays according to different sensing methods, and then measures the coordinate position of the touch point. For example, the resistive type uses the potential difference between the upper and lower electrodes to calculate the position of the pressure point to detect the location of the touch point. The capacitive touch panel uses the capacitance change generated by the electrostatic combination between the arranged transparent electrodes and the human body, and detects its coordinates from the generated current or voltage.
一般电容式触控面板驱动的方法是感测每一条导体线对地电容,通过对地电容值变化判断是否有物体靠近电容式触控面板,此即为现有的自感应电容(selfcapacitance)感测,其中,自感应电容或对地电容并非实体电容,其为每一条导体线的寄生及杂散电容。图1是现有自感应电容(selfcapacitance)感测的示意图,其在第一时间周期,先由第一方向的驱动及传感器110驱动第一方向的导体线,用以对第一方向的导体线的自感应电容充电。再于第二时间周期,驱动及传感器110侦测第一方向的导体线上的电压。又于第三时间周期,由第二方向的驱动及传感器120驱动第二方向的导体线,用以对第二方向的导体线的自感应电容充电。再于第四时间周期,驱动及传感器120侦测第二方向的导体线上的电压。Generally, the driving method of capacitive touch panel is to sense the ground capacitance of each conductor line, and judge whether there is an object approaching the capacitive touch panel through the change of ground capacitance value, which is the existing self-inductive capacitance (selfcapacitance) sense. Measurement, wherein, the self-induction capacitance or the ground capacitance is not the physical capacitance, which is the parasitic and stray capacitance of each conductor line. FIG. 1 is a schematic diagram of a conventional self-capacitance (selfcapacitance) sensing. In a first time period, the conductor lines in the first direction are first driven by the driver in the first direction and the sensor 110 is used to control the conductor lines in the first direction. The self-sensing capacitor charges. Then during the second time period, the driving and sensor 110 detects the voltage on the conductor line in the first direction. Also in the third time period, the driving and sensor 120 in the second direction drives the conductor lines in the second direction to charge the self-inductive capacitance of the conductor lines in the second direction. Then in the fourth time period, the driving and sensor 120 detects the voltage on the conductor line in the second direction.
图1中的现有自感应电容(selfcapacitance)感测方法是在同一条导体线上同时连接有驱动电路及感测电路,先对导体线驱动后,再对同一导体线感测其信号的变化量,以决定自感应电容大小。它的好处是:The existing self-capacitance (selfcapacitance) sensing method in FIG. 1 is to connect a driving circuit and a sensing circuit on the same conductor line at the same time, first drive the conductor line, and then sense the change of the signal on the same conductor line The amount to determine the size of the self-inductance capacitance. Its benefits are:
(1)数据量较少,触控面板的单一图框(frame)只有m+n笔数据,节省硬件成本。(1) The amount of data is small, and a single frame (frame) of the touch panel only has m+n pieces of data, which saves hardware costs.
(2)一个图框列数据(framerowdata)取得快速,故感测触碰点所需的时间较小。因为所有第一方向导体线可同时感测或逐一感测,然后再同时对第二方向所有的导体线进行驱动及感测,两次的不同方向导体线感测动作就可以做完一个图框,故数据量较少,同时在执行将感测信号由模拟信号转为数字信号所需的时间亦少很多。(2) A frame row data (framerowdata) is obtained quickly, so the time required for sensing the touch point is relatively small. Because all conductor lines in the first direction can be sensed simultaneously or one by one, and then drive and sense all conductor lines in the second direction at the same time, two sensing operations of conductor lines in different directions can complete a picture frame , so the amount of data is less, and at the same time, the time required for converting the sensing signal from analog signal to digital signal is much less.
(3)由于数据处理的量较少,所以具有较低的功率消耗。(3) Since the amount of data processing is less, it has lower power consumption.
但自感应电容(selfcapacitance)感测方法相对应的缺点则为:However, the corresponding disadvantages of the self-capacitance sensing method are:
(1)当触控面板上有浮接导体时,如水滴,油渍等等,容易造成触碰点误判。(1) When there is a floating conductor on the touch panel, such as water droplets, oil stains, etc., it is easy to cause misjudgment of the touch point.
(2)当触控面板上同时有多点触控时,会有鬼点现象(ghostpointeffect),导致自感应电容(selfcapacitance)感测方法难以支援多点触控的应用。(2) When there are multiple touch points on the touch panel at the same time, there will be a ghost point effect, which makes it difficult for the self-capacitance sensing method to support multi-touch applications.
另一电容式触控面板驱动的方法为感测互感应电容(mutualcapacitance)Cm的大小变化,用以判断是否有物体靠近触控面板,同样地,互感应电容Cm并非实体电容,其为第一方向的导体线与第二方向的导体线之间互感应电容Cm。图2是现有互感应电容Cm感测的示意图,如图2所示,驱动器210配置于第一方向(Y)上,传感器220配置于第二方向(X)上,于第一时间周期T1前半周期时,由驱动器210对第一方向的导体线230驱动,其使用电压Vy_1对互感应电容Cm250充电,于第一时间周期T1后半周期时,所有传感器220感测所有第二方向的导体线240上的电压Vo_1,Vo_2,…,Vo_n,用以获得n个数据,经过m个驱动周期后,即可获得m×n个数据。Another method for driving a capacitive touch panel is to sense the change in the size of the mutual capacitance (mutual capacitance) Cm to determine whether an object is close to the touch panel. Similarly, the mutual capacitance Cm is not a physical capacitance, which is the first The mutual induction capacitance Cm between the conductor line in the first direction and the conductor line in the second direction. FIG. 2 is a schematic diagram of the existing mutual induction capacitance Cm sensing. As shown in FIG. 2, the driver 210 is arranged in the first direction (Y), and the sensor 220 is arranged in the second direction (X). In the first time period T1 In the first half cycle, the driver 210 drives the conductor lines 230 in the first direction, and uses the voltage Vy_1 to charge the mutual induction capacitor Cm250. In the second half cycle of the first time period T1, all the sensors 220 sense all the conductors in the second direction. The voltages Vo_1 , Vo_2 , . . . , Vo_n on the lines 240 are used to obtain n data, and after m driving cycles, m×n data can be obtained.
互感应电容Cm感测方法的优点为:The advantages of the mutual capacitance Cm sensing method are:
(1)浮接导体和接地导体的信号不同方向,故可以很轻易的判断是否为人体触碰。(1) The signals of the floating conductor and the grounding conductor have different directions, so it can be easily judged whether it is human body contact.
(2)由于有每一个点的真实坐标,多点同时触摸时,可以分辨出每一个点的真实位置,互感应电容Cm感测方法容易支援多点触控的应用。(2) Due to the real coordinates of each point, when multiple points are touched simultaneously, the real position of each point can be distinguished, and the mutual induction capacitance Cm sensing method can easily support the application of multi-touch.
其缺点则为:Its disadvantages are:
(1)单一图框列数据(framerowdata)数据量为n×m,其远大于自感应电容(selfcapacitance)感测方法的数据量。(1) The data volume of a single frame row data (framerow data) is n×m, which is much larger than the data volume of the self-capacitance sensing method.
(2)必须选一个方向,逐一扫描,例如:当第一方向Y上有20条导体线时,则需要做20次感测的动作,才能得到一个完整图框列数据(framerowdata)。同时因为数据量大,在执行将感测信号由模拟信号转为数字信号所需的时间则增加许多。(2) One direction must be selected and scanned one by one. For example, when there are 20 conductor lines in the first direction Y, 20 sensing actions are required to obtain a complete frame row data. At the same time, due to the large amount of data, the time required for converting the sensing signal from analog signal to digital signal is greatly increased.
(3)由于数据量大很多,数据处理的功率消耗也会随之上升。(3) Since the amount of data is much larger, the power consumption of data processing will also increase accordingly.
因此,现有侦测电容式触控面板的技术实仍有改善的空间。Therefore, there is still room for improvement in the existing technology for detecting capacitive touch panels.
发明内容Contents of the invention
本发明的目的主要在于提供一种电容式多点触控的低待机功耗驱动方法及装置,以达到降低功率消耗的目的,从而可应用于手持式装置中,以延长手持式装置使用时间。The purpose of the present invention is mainly to provide a capacitive multi-touch low standby power consumption driving method and device to achieve the purpose of reducing power consumption, so that it can be applied to a handheld device to prolong the use time of the handheld device.
依据本发明的一个特色,本发明提出一种电容式多点触控的低待机功耗驱动系统,包含一电容式触控面板、一第一切换器装置、一第二切换器装置、一驱动装置、一传感装置、及一控制装置。该电容式触控面板具有于第一方向(Y)分布的多条第一导体线及于第二方向(X)分布的多条第二导体线。该第一切换器装置接至该电容式触控面板。该第二切换器装置连接至该电容式触控面板。该驱动装置连接至该第一切换器装置,以经由该第一切换器装置,而驱动该电容式触控面板。该传感装置连接至该第二切换器装置,以经由该第二切换器装置,而感测该电容式触控面板的信号。该控制装置连至该第一切换器装置、该第二切换器装置、该驱动装置、及该传感装置,从而设定该第一切换器装置及该第二切换器装置于一自感应模式,以使该驱动装置及该传感装置执行自感应电容(selfcapacitance)侦测,及设定该第一切换器装置及该第二切换器装置于一互感应模式,以使该驱动装置及该传感装置执行互感应电容(mutualcapacitance)侦测。According to a feature of the present invention, the present invention proposes a capacitive multi-touch low standby power drive system, comprising a capacitive touch panel, a first switcher device, a second switcher device, a drive device, a sensing device, and a control device. The capacitive touch panel has a plurality of first conductor lines distributed in a first direction (Y) and a plurality of second conductor lines distributed in a second direction (X). The first switch device is connected to the capacitive touch panel. The second switch device is connected to the capacitive touch panel. The driving device is connected to the first switch device to drive the capacitive touch panel through the first switch device. The sensing device is connected to the second switch device to sense the signal of the capacitive touch panel through the second switch device. The control device is connected to the first switch device, the second switch device, the drive device, and the sensing device, thereby setting the first switch device and the second switch device in a self-sensing mode to enable the driving device and the sensing device to perform self capacitance (selfcapacitance) detection, and to set the first switch device and the second switch device in a mutual induction mode, so that the driving device and the The sensing device performs mutual capacitance detection.
依据本发明的又一特色,本发明提出一种电容式多点触控的低待机功耗驱动方法,其系用于一电容式多点触控系统,该系统包含有一电容式触控面板、一第一切换器装置、一第二切换器装置、一驱动装置、一传感装置、及一控制装置,该电容式触控面板具有一睡眠模式、一自感应电容模式、及一互感应电容模式,该方法包含:A)当该电容式触控面板由该睡眠模式进入该自感应电容模式时,该控制装置判断该电容式触控面板的自感应电容是否有变化,若是,执行步骤B,若否,重回步骤A;B)该控制装置判断该电容式触控面板上是否有大于或等于一第二预设数目(A1=A2)的触碰点,若有,执行步骤C;C)该控制装置设定该第一切换器装置及该第二切换器装置,以让该电容式触控面板进入该互感应电容模式,并让该传感装置执行互感应电容(mutualcapacitance)侦测,该控制装置判断该电容式触控面板的互感应电容是否有变化,若是,执行步骤D,若否,重回步骤C;D)该控制装置判断该电容式触控面板上是否有大于或等于一第一预设数目(B1=B2)的触碰点,若有,执行步骤C。According to another characteristic of the present invention, the present invention proposes a low standby power consumption driving method for capacitive multi-touch, which is used in a capacitive multi-touch system, the system includes a capacitive touch panel, A first switcher device, a second switcher device, a driving device, a sensing device, and a control device, the capacitive touch panel has a sleep mode, a self-induction capacitance mode, and a mutual induction capacitance mode, the method includes: A) when the capacitive touch panel enters the self-sensing capacitance mode from the sleep mode, the control device determines whether the self-sensing capacitance of the capacitive touch panel has changed, and if so, execute step B , if not, return to step A; B) the control device judges whether there are touch points greater than or equal to a second preset number (A1=A2) on the capacitive touch panel, and if so, execute step C; C) the control device sets the first switch device and the second switch device so that the capacitive touch panel enters the mutual induction capacitance mode, and allows the sensing device to perform mutual capacitance (mutual capacitance) detection test, the control device judges whether the mutual induction capacitance of the capacitive touch panel has changed, if so, execute step D, if not, return to step C; D) the control device judges whether there is more than Or equal to a first preset number (B1=B2) of touch points, if there are, go to step C.
附图说明Description of drawings
图1是现有自感应电容感测的示意图。FIG. 1 is a schematic diagram of conventional self-inductive capacitive sensing.
图2是现有互感应电容感测的示意图。FIG. 2 is a schematic diagram of the existing mutual induction capacitive sensing.
图3是本发明电容式多点触控的低待机功耗驱动系统的方块图。FIG. 3 is a block diagram of a low standby power consumption drive system for capacitive multi-touch according to the present invention.
图4是本发明电容式多点触控的低待机功耗驱动系统一实施例的电路图。FIG. 4 is a circuit diagram of an embodiment of a capacitive multi-touch low standby power consumption driving system of the present invention.
图5是本发明执行该第一方向自感应电容侦测的示意图。FIG. 5 is a schematic diagram of implementing the first-direction self-sensing capacitive detection in the present invention.
图6是本发明执行该第二方向自感应电容侦测的示意图。FIG. 6 is a schematic diagram of implementing the second-direction self-sensing capacitive detection according to the present invention.
图7是本发明执行互感应电容侦测的示意图。FIG. 7 is a schematic diagram of performing mutual induction capacitance detection in the present invention.
图8是本发明电容式多点触控的低待机功耗驱动系统另一实施例的电路图。FIG. 8 is a circuit diagram of another embodiment of the capacitive multi-touch low standby power consumption driving system of the present invention.
图9是本发明执行该第一方向自感应电容侦测的示意图。FIG. 9 is a schematic diagram of implementing the first-direction self-sensing capacitive detection according to the present invention.
图10是本发明执行互感应电容侦测的示意图。FIG. 10 is a schematic diagram of performing mutual induction capacitance detection in the present invention.
图11是本发明电容式多点触控的低待机功耗驱动系统又一实施例的电路图。FIG. 11 is a circuit diagram of another embodiment of the capacitive multi-touch low standby power consumption driving system of the present invention.
图12是本发明电容式多点触控的低待机功耗驱动方法的流程图。FIG. 12 is a flow chart of the low standby power consumption driving method of capacitive multi-touch according to the present invention.
【主要元件符号说明】[Description of main component symbols]
驱动及传感器110驱动及传感器120Drive and Sensor 110 Drive and Sensor 120
驱动器210传感器220Driver 210 Sensor 220
第一方向的导体线230第二方向的导体线240Conductor wire 230 in the first direction and conductor wire 240 in the second direction
电容式多点触控的低待机功耗驱动系统300Capacitive multi-touch low standby power drive system 300
电容式触控面板310第一切换器装置320Capacitive touch panel 310 first switch device 320
第二切换器装置330驱动装置340The second switching device 330 drives the device 340
传感装置350控制装置360Sensing device 350 Control device 360
第一导体线311第二导体线312First conductor wire 311 Second conductor wire 312
切换器321驱动器341Switcher 321 Driver 341
互容驱动器343自容驱动器及传感器345Mutual Capacitance Drivers 343 Self Capacitance Drivers and Sensors 345
切换器331传感器351Switcher 331 Sensor 351
互容传感器353Mutual Capacitance Sensor 353
步骤A~步骤DStep A~Step D
端321a、321b、321c、331a、331b、331cEnds 321a, 321b, 321c, 331a, 331b, 331c
端321A、321B、331A、331BEnds 321A, 321B, 331A, 331B
具体实施方式detailed description
图3是本发明电容式多点触控的低待机功耗驱动系统300的方块图,该电容式多点触控的低待机功耗驱动系统300包含一电容式触控面板310、一第一切换器装置320、一第二切换器装置330、一驱动装置340、一传感装置350、及一控制装置360。3 is a block diagram of a capacitive multi-touch low standby power consumption drive system 300 of the present invention, the capacitive multi-touch low standby power drive system 300 includes a capacitive touch panel 310, a first The switch device 320 , a second switch device 330 , a drive device 340 , a sensor device 350 , and a control device 360 .
该电容式触控面板310具有于第一方向(Y)分布的多条第一导体线311(Y1~Y6)及于第二方向(X)分布的多条第二导体线312(X1~X6)。The capacitive touch panel 310 has a plurality of first conductor lines 311 (Y1-Y6) distributed in a first direction (Y) and a plurality of second conductor lines 312 (X1-X6) distributed in a second direction (X). ).
该第一切换器装置320连接至该电容式触控面板310。进一步而言,该第一切换器装置320连接至该多条第一导体线311(Y1~Y6)或该多条第二导体线312(X1~X6)。The first switch device 320 is connected to the capacitive touch panel 310 . Further, the first switch device 320 is connected to the plurality of first conductor lines 311 (Y1˜Y6) or the plurality of second conductor lines 312 (X1˜X6).
该第二切换器装置330连接至该电容式触控面板310。进一步而言,该第二切换器装置330连接至该多条第一导体线311(Y1~Y6)或该多条第二导体线312(X1~X6)。The second switch device 330 is connected to the capacitive touch panel 310 . Further, the second switch device 330 is connected to the plurality of first conductor lines 311 (Y1˜Y6) or the plurality of second conductor lines 312 (X1˜X6).
该驱动装置340连接至该第一切换器装置320,以经由该第一切换器装置320,进而驱动该电容式触控面板310。The driving device 340 is connected to the first switch device 320 to drive the capacitive touch panel 310 via the first switch device 320 .
该传感装置350连接至该第二切换器装置330,以经由该第二切换器装置330,而感测该电容式触控面板310的信号。The sensing device 350 is connected to the second switch device 330 to sense the signal of the capacitive touch panel 310 through the second switch device 330 .
该控制装置360连至该第一切换器装置320、该第二切换器装置330、该驱动装置340、及该传感装置350,从而设定该第一切换器装置320及该第二切换器装置330于一自感应模式,用以使该驱动装置340及该传感装置350执行自感应电容(selfcapacitance)侦测,及设定该第一切换器装置320及该第二切换器装置330于一互感应模式,用以使该驱动装置340及该传感装置350执行互感应电容(mutualcapacitance)侦测。The control device 360 is connected to the first switch device 320, the second switch device 330, the driving device 340, and the sensing device 350, thereby setting the first switch device 320 and the second switch device The device 330 is in a self-sensing mode for enabling the driving device 340 and the sensing device 350 to perform self-sensing capacitance (selfcapacitance) detection, and to set the first switch device 320 and the second switch device 330 at A mutual induction mode for enabling the driving device 340 and the sensing device 350 to perform mutual capacitance detection.
当该传感装置350执行互感应电容(mutualcapacitance)侦测时,该控制装置360判定该电容式触控面板310上有小于一第一预设数目(B1=B2)的触碰点时,该控制装置360设定该第一切换器装置320及该第二切换器装置330,以让该传感装置350执行自感应电容(selfcapacitance)侦测。其中,该第一预设数目(B1)优选为1。When the sensing device 350 performs mutual capacitance (mutual capacitance) detection, the control device 360 determines that there are less than a first preset number (B1=B2) of touch points on the capacitive touch panel 310, the The control device 360 sets the first switch device 320 and the second switch device 330 so that the sensing device 350 performs self capacitance detection. Wherein, the first preset number ( B1 ) is preferably 1.
当该传感装置350执行互感应电容(mutualcapacitance)侦测,该控制装置360判定该电容式触控面板310上有大于或等于该第一预设数目(B1=B2)的触碰点时,该控制装置360维持该第一切换器装置320及该第二切换器装置330的设定,以让该传感装置350执行互感应电容(mutualcapacitance)侦测。When the sensing device 350 performs mutual capacitance detection and the control device 360 determines that there are touch points greater than or equal to the first preset number (B1=B2) on the capacitive touch panel 310, The control device 360 maintains the settings of the first switch device 320 and the second switch device 330 so that the sensing device 350 performs mutual capacitance detection.
当该传感装置350执行自感应电容(selfcapacitance)侦测时,该控制装置360判定该电容式触控面板310上有小于一第二预设数目(A1=A2)的触碰点时,该控制装置360维持该第一切换器装置320及该第二切换器装置330的设定,以让该传感装置350执行自感应电容(selfcapacitance)侦测,其中,该第二预设数目(A1)优选为2。When the sensing device 350 performs self-capacitance detection and the control device 360 determines that there are less than a second preset number (A1=A2) of touch points on the capacitive touch panel 310, the The control device 360 maintains the settings of the first switch device 320 and the second switch device 330, so that the sensing device 350 performs self-capacitance detection, wherein the second preset number (A1 ) is preferably 2.
当该传感装置350执行自感应电容(selfcapacitance)侦测时,该控制装置360判定该电容式触控面板310上有大于或等于该第二预设数目(A1=A2)的触碰点时,该控制装置360设定该第一切换器装置320及该第二切换器装置330,用以让该传感装置350执行互感应电容(mutualcapacitance)侦测。When the sensing device 350 performs self-capacitance detection, the control device 360 determines that there are touch points greater than or equal to the second preset number (A1=A2) on the capacitive touch panel 310 , the control device 360 sets the first switch device 320 and the second switch device 330 to allow the sensing device 350 to perform mutual capacitance detection.
图4是本发明电容式多点触控的低待机功耗驱动系统一实施例的电路图,其中,该电容式触控面板310具有于第一方向分布的k条第一导体线311及于第二方向分布的k条第二导体线312,其中,k为大于2的正整数,该k条第一导体线311与该k条第二导体线312分别具有寄生电容及杂散电容,该k条第一导体线311与该k条第二导体线312之间的相叠处形成互感电容Cm。为方便说明,于本实施例中,k为6。4 is a circuit diagram of an embodiment of a capacitive multi-touch low standby power consumption drive system of the present invention, wherein the capacitive touch panel 310 has k first conductor lines 311 distributed in the first direction and in the first direction. k second conductor lines 312 distributed in two directions, wherein k is a positive integer greater than 2, the k first conductor lines 311 and the k second conductor lines 312 have parasitic capacitance and stray capacitance respectively, and the k A mutual inductance capacitance Cm is formed at the overlapping positions between the first conductor lines 311 and the k second conductor lines 312 . For convenience of description, k is 6 in this embodiment.
该第一切换器装置320具有6个1至2切换器321,该驱动装置340具有6个驱动器341,其中,第i个1至2切换器321的第一端321a连接至第i个驱动器,其第二端321b连接至第i条第二导体线312(Xi),其第三端321c连接至第i条第一导体线311(Yi),当中,1≦i≦6,又如本领域技术人员所知,该1至2切换器321可受控制以使其第一端321a连接于第二端321b、或是第一端321a连接于第三端321c。The first switch device 320 has six 1-to-2 switches 321, and the drive device 340 has six drivers 341, wherein the first end 321a of the i-th 1-to-2 switch 321 is connected to the i-th driver, Its second end 321b is connected to the i-th second conductor line 312 (Xi), and its third end 321c is connected to the i-th first conductor line 311 (Yi). Among them, 1≦i≦6, as in the field Those skilled in the art know that the 1-to-2 switch 321 can be controlled such that the first end 321a is connected to the second end 321b, or the first end 321a is connected to the third end 321c.
该第二切换器装置330具有6个2至1切换器331,该传感装置350具有6个传感器351,其中,第i个2至1切换器的第一端331a连接至第i个传感器,其第二端331b连接至第i条第一导体线(Yi),其第三端331c连接至第i条第二导体线(Xi),又如本领域技术人员所知,该2至1切换器331可受控制以使其第二端331b连接于第一端331a、或是第三端331c连接于第一端321a。The second switch device 330 has six 2-to-1 switches 331, and the sensing device 350 has six sensors 351, wherein the first end 331a of the i-th 2-to-1 switch is connected to the i-th sensor, Its second end 331b is connected to the i-th first conductor line (Yi), and its third end 331c is connected to the i-th second conductor line (Xi). As known to those skilled in the art, the 2-to-1 switching The device 331 can be controlled such that the second end 331b is connected to the first end 331a, or the third end 331c is connected to the first end 321a.
该自感应电容(selfcapacitance)侦测可分为一第一方向(Y)自感应电容(selfcapacitance)侦测及一第二方向(X)自感应电容(selfcapacitance)侦测。The self-capacitance detection can be divided into a first-direction (Y) self-capacitance detection and a second-direction (X) self-capacitance detection.
图5是本发明执行该第一方向(Y)自感应电容(selfcapacitance)侦测的示意图。如图5所示,当执行该第一方向(Y)自感应电容(selfcapacitance)时,该控制装置360设定第i个1至2切换器321及第i个2至1切换器331,以使第i个驱动器341连接至第i条第一导体线311(Yi),第i个传感器351连接至第i条第一导体线311(Yi)。其通过第i个1至2切换器321的第一端321a与其第三端321c连接,第i个2至1切换器331的第一端331a连接其第二端331b。FIG. 5 is a schematic diagram of the first direction (Y) self capacitance detection performed by the present invention. As shown in FIG. 5, when performing the self-capacitance (selfcapacitance) in the first direction (Y), the control device 360 sets the i-th 1-to-2 switch 321 and the i-th 2-to-1 switch 331 to The i-th driver 341 is connected to the i-th first conductor line 311 (Yi), and the i-th sensor 351 is connected to the i-th first conductor line 311 (Yi). It is connected to its third terminal 321c through the first terminal 321a of the i-th 1-to-2 switch 321, and the first terminal 331a of the i-th 2-to-1 switch 331 is connected to its second terminal 331b.
图6是本发明执行该第二方向(X)自感应电容(selfcapacitance)侦测的示意图。如图6所示,当执行该第二方向(X)自感应电容时,该控制装置360设定第i个1至2切换器321及第i个2至1切换器331,以使第i个驱动器341连接至第i条第二导体线312(Xi),第i个传感器351连接至第i条第二导体线312(Xi)。其通过第i个1至2切换器321的第一端321a与其第二端321b连接,第i个2至1切换器331的第一端331a连接其第三端331c。FIG. 6 is a schematic diagram of the second direction (X) self capacitance detection performed by the present invention. As shown in FIG. 6, when implementing the self-inductive capacitance in the second direction (X), the control device 360 sets the i-th 1-2 switcher 321 and the i-th 2-to-1 switcher 331, so that the i-th The i-th driver 341 is connected to the i-th second conductor line 312(Xi), and the i-th sensor 351 is connected to the i-th second conductor line 312(Xi). It is connected to the second end 321b of the i-th 1-to-2 switch 321 through the first end 321a, and the first end 331a of the i-th 2-to-1 switch 331 is connected to the third end 331c thereof.
图7是本发明执行互感应电容(mutualcapacitance)侦测的示意图。如图7所示,当执行该互感应电容侦测时,该控制装置360设定第i个1至2切换器321及第i个2至1切换器331,以使第i个驱动器341连接至第i条第一导体线311(Yi),第i个传感器351连接至第i条第二导体线312(Xi)。其通过第i个1至2切换器321的第一端321a与其第三端321c连接,第i个2至1切换器331的第一端331a连接其第三端331c。FIG. 7 is a schematic diagram of implementing mutual capacitance detection according to the present invention. As shown in FIG. 7 , when performing the mutual induction capacitance detection, the control device 360 sets the i-th 1-to-2 switch 321 and the i-th 2-to-1 switch 331 so that the i-th driver 341 is connected to To the i-th first conductor line 311 (Yi), the i-th sensor 351 is connected to the i-th second conductor line 312 (Xi). It is connected to the third terminal 321c through the first terminal 321a of the i-th 1-to-2 switch 321, and the first terminal 331a of the i-th 2-to-1 switch 331 is connected to the third terminal 331c.
图8是本发明电容式多点触控的低待机功耗驱动系统另一实施例的电路图,其中,该电容式触控面板310具有于第一方向分布的m条第一导体线311及于第二方向分布的n条第二导体线312,其中,m,n为正整数,且m不等于n,该m条第一导体线311与该n条第二导体线312分别具有寄生电容及杂散电容,该m条第一导体线311与该n条第二导体线312之间的相叠处形成互感电容Cm。为方便说明,于本实施例中,m为6,n为4。8 is a circuit diagram of another embodiment of the capacitive multi-touch low standby power consumption drive system of the present invention, wherein the capacitive touch panel 310 has m first conductor lines 311 distributed in the first direction and n second conductor lines 312 distributed in the second direction, wherein m and n are positive integers, and m is not equal to n, the m first conductor lines 311 and the n second conductor lines 312 have parasitic capacitance and For stray capacitance, mutual inductance capacitance Cm is formed at overlapping positions between the m first conductor lines 311 and the n second conductor lines 312 . For convenience of description, in this embodiment, m is 6, and n is 4.
该第一切换器装置320具有m个m+n至1切换器321,该驱动装置340具有m个驱动器341,该传感装置350具有n个传感器351,第j个m+n至1切换器321的第一端321A连接至第j条第一导体线311(Yj),其第二端至第m+n+1端321B分别连接至该m个驱动器341及该n个传感器351,其中,1≦j≦m,又如本领域技术人员所知,该m+n至1切换器321可受控制以选择第二端321B其中之一来连接于第一端321A。该第二切换器装置330具有n个1至m+n切换器331,第g个1至m+n切换器331的第一端331A连接至第g条第二导体线312(Xg),其第二端至第m+n+1端331B分别连接至该m个驱动器341及该n个传感器351,1≦g≦n,又如本领域技术人员所知,该1至m+n切换器331系可受控制以使其第一端331A连接于其中之一第二端331B。The first switch device 320 has m m+n to 1 switchers 321, the driving device 340 has m drivers 341, the sensing device 350 has n sensors 351, and the jth m+n to 1 switcher The first end 321A of 321 is connected to the jth first conductor line 311 (Yj), and its second end to the m+n+1th end 321B are respectively connected to the m drivers 341 and the n sensors 351, wherein, 1≦j≦m, and as known by those skilled in the art, the m+n to 1 switch 321 can be controlled to select one of the second terminals 321B to be connected to the first terminal 321A. The second switch device 330 has n 1 to m+n switches 331, the first end 331A of the g 1 to m+n switch 331 is connected to the g second conductor line 312 (Xg), which The second end to the m+n+1th end 331B are respectively connected to the m drivers 341 and the n sensors 351, 1≦g≦n, and as known to those skilled in the art, the 1 to m+n switch The line 331 can be controlled such that its first end 331A is connected to one of the second ends 331B.
如图8所示,该驱动装置340具有6个驱动器341(D1~D6),该传感装置350具有4个传感器351(S1~S4),该第一切换器装置320具有6个10至1切换器321,第1个10至1切换器321的第一端321A连接至第1条第一导体线311(Y1),其第二端至第十一端321B分别连接至该6个驱动器341及该4个传感器351。其他10至1切换器321的连接方式可依此类推。该第二切换器装置330具有4个1至10切换器331,第1个1至10切换器331的第一端331A连接至第1条第二导体线312X1,其第二端至第十一端331B分别连接至该6个驱动器341及该4个传感器351。其他1至10切换器331的连接方式可依此类推。As shown in Figure 8, the driving device 340 has six drivers 341 (D1-D6), the sensing device 350 has four sensors 351 (S1-S4), and the first switching device 320 has six 10 to 1 Switcher 321, the first end 321A of the first 10-to-1 switcher 321 is connected to the first first conductor line 311 (Y1), and its second to eleventh ends 321B are respectively connected to the six drivers 341 And the four sensors 351 . Other 10-to-1 switches 321 can be connected in the same manner. The second switcher device 330 has four 1 to 10 switchers 331, the first end 331A of the first 1 to 10 switcher 331 is connected to the first second conductor line 312X1, and its second end is connected to the eleventh The terminals 331B are respectively connected to the six drivers 341 and the four sensors 351 . The other 1 to 10 switches 331 can be connected in the same way.
该自感应电容侦测可分为一第一方向(Y)自感应电容侦测及一第二方向(X)自感应电容(selfcapacitance)侦测。The self-sensing capacitance detection can be divided into a first direction (Y) self-sensing capacitance detection and a second direction (X) self-sensing capacitance (selfcapacitance) detection.
图9是本发明执行该第一方向(Y)及第二方向(X)自感应电容(selfcapacitance)侦测的示意图。如图9所示,当执行该第一方向(Y)自感应电容时,该控制装置360设定第1个10至1切换器321,以使第1个驱动器341(D1)连接至第1条第一导体线311(Y1),第1个传感器351(S1)连接至第1条第一导体线311(Y1),从而感测第1条第一导体线311(Y1)上的电容;再使第1个驱动器341(D1)连接至第2条第一导体线311(Y2),第1个传感器351(S1)连接至第2条第一导体线311(Y2),从而感测第2条第一导体线311(Y2)上的电容;再使第1个驱动器341(D1)连接至第3条第一导体线311(Y3),第1个传感器351(S1)连接至第3条第一导体线311(Y3),从而感测第3条第一导体线311(Y3)上的电容;依此类推直至感测第6条第一导体线311(Y6)上的电容。其中,只使用第1个驱动器341及第1个传感器351。FIG. 9 is a schematic diagram of self capacitance (selfcapacitance) detection in the first direction (Y) and the second direction (X) in the present invention. As shown in FIG. 9, when implementing the first direction (Y) self-inductive capacitance, the control device 360 sets the first 10-to-1 switcher 321 so that the first driver 341 (D1) is connected to the first A first conductor line 311 (Y1), the first sensor 351 (S1) is connected to the first first conductor line 311 (Y1), thereby sensing the capacitance on the first first conductor line 311 (Y1); Then the first driver 341 (D1) is connected to the second first conductor line 311 (Y2), and the first sensor 351 (S1) is connected to the second first conductor line 311 (Y2), thereby sensing the first Capacitance on the 2 first conductor lines 311 (Y2); then the first driver 341 (D1) is connected to the third first conductor line 311 (Y3), and the first sensor 351 (S1) is connected to the third first conductor line 311 (Y3), thereby sensing the capacitance on the third first conductor line 311 (Y3); and so on until sensing the capacitance on the sixth first conductor line 311 (Y6). Among them, only the first driver 341 and the first sensor 351 are used.
而当执行该第二方向(X)自感应电容时,该控制装置360设定第1个1至10切换器331,以使第1个驱动器341(D1)连接至第1条第二导体线312(X1),第1个传感器351(S1)连接至第1条第二导体线312(X1),从而感测第1条二导体线312(X1)上的电容;再使第1个驱动器341(D1)连接至第2条第二导体线312(X2),第1个传感器351(S1)连接至第2条第二导体线312(X2),从而感测第2条第二导体线312(X2)上的电容;再使第1个驱动器341(D1)连接至第3条第二导体线312(X3),第1个传感器351(S1)连接至第3条第二导体线312(X3),从而感测第3条第二导体线312(X3)上的电容;依此类推直至感测第4条第二导体线312(X4)上的电容,其中,只使用第1个驱动器341及第1个传感器351。And when implementing the second direction (X) self-inductive capacitance, the control device 360 sets the first 1 to 10 switcher 331 so that the first driver 341 (D1) is connected to the first second conductor line 312 (X1), the first sensor 351 (S1) is connected to the first second conductor line 312 (X1), thereby sensing the capacitance on the first second conductor line 312 (X1); then the first driver 341(D1) is connected to the 2nd second conductor line 312(X2), and the 1st sensor 351(S1) is connected to the 2nd second conductor line 312(X2), thereby sensing the 2nd second conductor line Capacitance on 312 (X2); make the 1st driver 341 (D1) connect to the 3rd second conductor line 312 (X3), and the 1st sensor 351 (S1) connect to the 3rd second conductor line 312 (X3), thereby sensing the capacitance on the third second conductor line 312 (X3); and so on until sensing the capacitance on the fourth second conductor line 312 (X4), wherein only the first one is used The driver 341 and the first sensor 351.
在执行该第一方向(Y)自感应电容侦测及该第二方向(X)自感应电容侦测,均只使用第1个驱动器341及第1个传感器351,如此,每次的驱动能力与感测能力均相同,以避免造成误差。When performing the self-inductive capacitance detection in the first direction (Y) and the self-inductive capacitance detection in the second direction (X), only the first driver 341 and the first sensor 351 are used, so that the driving capacity of each Same as the sensing capability to avoid errors.
图10是本发明执行互感应电容(mutualcapacitance)侦测的示意图。如图10所示,当执行该互感应电容侦测时,该控制装置360设定第j个10至1切换器321及第g个1至10切换器331,以使第j个驱动器341(Dj)连接至第j条第一导体线311(Yj),第g个传感器351(Sg)连接至第g条第二导体线312(Xg),当中,1≦j≦6,1≦g≦4,详细言之,第1个驱动器341(D1)连接至第1条第一导体线311(Y1)、第2个驱动器341(D2)连接至第2条第一导体线311(Y2)、第3个驱动器341(D3)连接至第3条第一导体线311(Y3)、第4个驱动器341(D4)连接至第4条第一导体线311(Y4)、第5个驱动器341(D5)连接至第5条第一导体线311(Y5)、第6个驱动器341(D6)连接至第6条第一导体线311(Y6),且第1个传感器351(S1)连接至第1条第二导体线312(X1)、第2个传感器351(S2)连接至第2条第二导体线312(X2)、第3个传感器351(S3)连接至第3条第二导体线312(X3)、第4个传感器351(S4)连接至第4条第二导体线312(X4)。FIG. 10 is a schematic diagram of implementing mutual capacitance detection according to the present invention. As shown in FIG. 10, when performing the mutual induction capacitance detection, the control device 360 sets the jth 10 to 1 switcher 321 and the gth 1 to 10 switcher 331, so that the jth driver 341 ( Dj) is connected to the jth first conductor line 311 (Yj), the gth sensor 351 (Sg) is connected to the gth second conductor line 312 (Xg), among them, 1≦j≦6, 1≦g≦ 4. In detail, the first driver 341 (D1) is connected to the first first conductor line 311 (Y1), the second driver 341 (D2) is connected to the second first conductor line 311 (Y2), The 3rd driver 341 (D3) is connected to the 3rd first conductor line 311 (Y3), the 4th driver 341 (D4) is connected to the 4th first conductor line 311 (Y4), the 5th driver 341 ( D5) is connected to the fifth first conductor line 311 (Y5), the sixth driver 341 (D6) is connected to the sixth first conductor line 311 (Y6), and the first sensor 351 (S1) is connected to the first 1 second conductor line 312 (X1), 2nd sensor 351 (S2) connected to 2nd second conductor line 312 (X2), 3rd sensor 351 (S3) connected to 3rd second conductor line 312 (X3), the 4th sensor 351 (S4) is connected to the 4th second conductor line 312 (X4).
图11是本发明电容式多点触控的低待机功耗驱动系统又一实施例的电路图,其中,该电容式触控面板310具有于第一方向分布的m条第一导体线311及于第二方向分布的n条第二导体线312,其中,m,n为正整数,且m可以等于或不等于n,该m条第一导体线311与该n条第二导体线312分别具有寄生电容及杂散电容,该m条第一导体线311与该n条第二导体线312之间的相叠处形成互感电容Cm。为方便说明,于本实施例中,m为6,n为4。11 is a circuit diagram of another embodiment of the capacitive multi-touch low standby power consumption drive system of the present invention, wherein the capacitive touch panel 310 has m first conductor lines 311 distributed in the first direction and n second conductor lines 312 distributed in the second direction, wherein m and n are positive integers, and m may be equal to or not equal to n, the m first conductor lines 311 and the n second conductor lines 312 have For parasitic capacitance and stray capacitance, mutual inductance capacitance Cm is formed at the overlap between the m first conductor lines 311 and the n second conductor lines 312 . For convenience of description, in this embodiment, m is 6, and n is 4.
该第一切换器装置320具有m个m+n+z至1切换器321,该驱动装置340具有m个互容驱动器343及z个自容驱动器及传感器345。该传感装置350具有n个互容传感器353。当中,m、n、z为正整数。The first switch device 320 has m m+n+z to 1 switches 321 , and the drive device 340 has m mutual capacitance drivers 343 and z self capacitance drivers and sensors 345 . The sensor device 350 has n mutual capacitance sensors 353 . Among them, m, n, z are positive integers.
第j个m+n+z至1切换器321的第一端321A连接至第j条第一导体线311(Yj),其第二端至第m+n+z+1端321B分别连接至该m个互容驱动器343、该z个自容驱动器及传感器345及该n个互容传感器353,其中,1≦j≦m,又如本领域技术人员所知,该m+n+z至1切换器321可受控制以选择第二端321B其中之一来连接于第一端321A。The first end 321A of the jth m+n+z to 1 switch 321 is connected to the jth first conductor line 311 (Yj), and its second end to the m+n+z+1th end 321B are respectively connected to The m mutual capacitance drivers 343, the z self capacitance drivers and sensors 345 and the n mutual capacitance sensors 353, wherein, 1≦j≦m, and as known to those skilled in the art, the m+n+z to The switch 321 can be controlled to select one of the second terminals 321B to be connected to the first terminal 321A.
该第二切换器装置330具有n个1至m+n+z切换器331,第g个1至m+n+z切换器331的第一端331A连接至第g条第二导体线312(Xg),其第二端至第m+n+z+1端331B分别连接至该互容驱动器343、z个自容驱动器及传感器345及该n个互容传感器353,1≦g≦n,又如本领域技术人员所知,该1至m+n+z切换器331可受控制以使其第一端331A连接于其中之一第二端331B。The second switch device 330 has n 1 to m+n+z switches 331, and the first end 331A of the g 1 to m+n+z switch 331 is connected to the g second conductor line 312 ( Xg), the second terminal to the m+n+z+1th terminal 331B are respectively connected to the mutual capacitance driver 343, z self-capacitance drivers and sensors 345 and the n mutual capacitance sensors 353, 1≦g≦n, Also as known by those skilled in the art, the 1 to m+n+z switch 331 can be controlled such that its first terminal 331A is connected to one of the second terminals 331B.
如图11所示,该驱动装置340具有6个互容驱动器343(D1~D6)及1个自容驱动器及传感器345,该传感装置350具有4个互容传感器353,该第一切换器装置320具有6个11至1切换器321,第1个11至1切换器321的第一端321A连接至第1条第一导体线311(Y1),其第二端至第十二端321B分别连接至该6个驱动器343、1个自容驱动器及传感器345及该4个传感器353。其他11至1切换器321的连接方式可依此类推。As shown in Figure 11, the driving device 340 has 6 mutual capacity drivers 343 (D1-D6) and 1 self-capacitance driver and sensor 345, the sensing device 350 has 4 mutual capacity sensors 353, the first switch The device 320 has six 11-to-1 switches 321, the first end 321A of the first 11-to-1 switch 321 is connected to the first first conductor line 311 (Y1), and its second end to the twelfth end 321B They are respectively connected to the 6 drivers 343 , 1 self-capacitance driver and sensor 345 and the 4 sensors 353 . Other 11-to-1 switches 321 can be connected in the same manner.
该第二切换器装置330具有4个1至11切换器331,第1个1至11切换器331的第一端331A连接至第1条第二导体线312(X1),其第二端至第十二端331B分别连接至该6个驱动器343、1个自容驱动器345及该4个传感器353。其他1至11切换器331的连接方式可依此类推。The second switch device 330 has four 1-11 switchers 331, the first end 331A of the first 1-11 switcher 331 is connected to the first second conductor line 312 (X1), and its second end is connected to The twelfth terminal 331B is respectively connected to the six drivers 343 , one self-capacitance driver 345 and the four sensors 353 . The other 1 to 11 switches 331 can be connected in the same way.
于图11的电路中,进行自感应电容(selfcapacitance)侦测时,使用该1个自容驱动器及传感器345,分别经由该6个11至1切换器321及该4个1至11切换器331,而依序连接至该第一方向分布的6条第一导体线311及于第二方向分布的4条第二导体线312,从而进行自感应电容侦测。In the circuit of FIG. 11 , when self-capacitance detection is performed, the one self-capacitance driver and the sensor 345 are used to pass through the six 11-to-1 switches 321 and the four 1-to-1 switches 331 respectively. , and sequentially connected to the six first conductor lines 311 distributed in the first direction and the four second conductor lines 312 distributed in the second direction, so as to perform self-inductive capacitance detection.
进行互感应电容侦测时,使用该6个互容驱动器343及4个互容传感器353,分别经由该6个11至1切换器321及该4个1至11切换器331,而连接至该第一方向分布的6条第一导体线311及于第二方向分布的4条第二导体线312,从而进行互感应电容(mutualcapacitance)侦测。When performing mutual induction capacitance detection, use the 6 mutual capacitance drivers 343 and 4 mutual capacitance sensors 353 to connect to the The six first conductor lines 311 distributed in the first direction and the four second conductor lines 312 distributed in the second direction are used for mutual capacitance detection.
至于详细的切换器设定,是本领域技术人员基于本发明图8、图9、图10、及11所能轻易完成,不再赘述。As for the detailed setting of the switcher, those skilled in the art can easily complete it based on FIG. 8, FIG. 9, FIG.
于图11的电路中,由于该6个互容驱动器343及4个互容传感器353仅需分别实现(implement)互容驱动及互容感测的电路,因此可较图8中的6个驱动器341及4个传感器351的面积减少许多。In the circuit of FIG. 11, since the 6 mutual capacitance drivers 343 and the 4 mutual capacitance sensors 353 only need to implement the circuits of mutual capacitance driving and mutual capacitance sensing respectively, it can be compared with the 6 drivers in FIG. The areas of 341 and four sensors 351 are much reduced.
图12是本发明电容式多点触控的低待机功耗驱动方法的流程图,该方法用于一如前述图3所示电容式多点触控系统300,该系统300包含有一电容式触控面板310、一第一切换器装置320、一第二切换器装置330、一驱动装置340、一传感装置350、及一控制装置360,该电容式触控面板310具有一睡眠模式、一自感应电容模式、及一互感应电容模式。FIG. 12 is a flow chart of the low standby power consumption driving method of capacitive multi-touch according to the present invention. The method is used in a capacitive multi-touch system 300 as shown in FIG. Control panel 310, a first switcher device 320, a second switcher device 330, a driving device 340, a sensing device 350, and a control device 360, the capacitive touch panel 310 has a sleep mode, a Self-sensing capacitance mode, and a mutual induction capacitance mode.
在步骤A中,当该电容式触控面板310由该睡眠模式进入该自感应电容模式时,该控制装置360判断该电容式触控面板310的自感应电容是否有变化,若是,执行步骤B,若否,重回步骤A。该控制装置360判断该电容式触控面板310的自感应电容是否有变化,比较一预存的该电容式触控面板310的自感应电容数据与该传感装置350感测到的该电容式触控面板310的自感应电容数据。In step A, when the capacitive touch panel 310 enters the self-sensing capacitance mode from the sleep mode, the control device 360 determines whether the self-sensing capacitance of the capacitive touch panel 310 has changed, and if so, performs step B , if not, return to step A. The control device 360 determines whether the self-sensing capacitance of the capacitive touch panel 310 has changed, and compares a pre-stored self-sensing capacitance data of the capacitive touch panel 310 with the capacitive touch detected by the sensing device 350. The self-sensing capacitance data of the control panel 310.
在步骤B中,该控制装置360判断该电容式触控面板310上是否有大于或等于一第二预设数目(A1=A2)的触碰点,若有,执行步骤C。其中,该第二预设数目(A1=A2)优选为2。In step B, the control device 360 determines whether there are touch points greater than or equal to a second preset number (A1=A2) on the capacitive touch panel 310, and if so, step C is executed. Wherein, the second preset number (A1=A2) is preferably 2.
在步骤C中,该控制装置360设定该第一切换器装置320及该第二切换器装置330,以让该电容式触控面板310进入该互感应电容模式,并让该传感装置350执行互感应电容(mutualcapacitance)侦测,该控制装置360判断该电容式触控面板310的互感应电容是否有变化,若是,执行步骤D,若否,表示可能在步骤B中误判,所以重回步骤A。In step C, the control device 360 sets the first switch device 320 and the second switch device 330 so that the capacitive touch panel 310 enters the mutual induction capacitive mode, and the sensing device 350 Execute mutual capacitance (mutual capacitance) detection, the control device 360 judges whether the mutual capacitance of the capacitive touch panel 310 has changed, if yes, execute step D, if not, it means that a misjudgment may be made in step B, so repeat Go back to step A.
在步骤C中,该控制装置360判断该电容式触控面板310的互感应电容是否有变化,比较一预存的该电容式触控面板310的互感应电容数据与该传感装置350感测到的该电容式触控面板310的互感应电容数据。In step C, the control device 360 determines whether the mutual induction capacitance of the capacitive touch panel 310 has changed, and compares a pre-stored mutual induction capacitance data of the capacitive touch panel 310 with the data sensed by the sensing device 350. The mutual induction capacitance data of the capacitive touch panel 310 .
在步骤D中,该控制装置360判断该电容式触控面板310上是否有大于或等于一第一预设数目(B1=B2)的触碰点,若有,执行步骤C。其中,该第一预设数目(B1=B2)优选为1。In step D, the control device 360 determines whether there are touch points greater than or equal to a first preset number (B1=B2) on the capacitive touch panel 310, and if so, step C is executed. Wherein, the first preset number (B1=B2) is preferably 1.
在步骤B中,该控制装置360判定该电容式触控面板310上没有大于或等于该第二预设数目(A1=A2)的触碰点,执行步骤A。In step B, the control device 360 determines that there are no touch points greater than or equal to the second preset number (A1=A2) on the capacitive touch panel 310, and executes step A.
于其他实施例中,当该控制装置360判定该电容式触控面板310上没有大于或等于该第二预设数目(A1=A2)的触碰点的次数超过一预设值时,表示使用者没有使用该电容式触控面板310,可进入睡眠模式,以节省电源。In other embodiments, when the control device 360 determines that the number of touch points on the capacitive touch panel 310 that is greater than or equal to the second preset number (A1=A2) exceeds a preset value, it indicates using If the capacitive touch panel 310 is not used, it can enter sleep mode to save power.
在步骤D中,该控制装置360判定该电容式触控面板310上没有大于或等于该第一预设数目(B1=B2)的触碰点,执行步骤A。In step D, the control device 360 determines that there are no touch points greater than or equal to the first preset number (B1=B2) on the capacitive touch panel 310, and executes step A.
由前述说明可知,初始时,本发明的在电容式多点触控的低待机功耗驱动系统300在自感应电容模式,以侦测自感应电容,依据所侦测的触摸点数目,若触摸点总数小于第二预设数目(A1=A2)(例如:≦1),则持续维持在自感应电容模式下,若触摸点总数大于或等于第二预设数目(A1=A2)(例如:≧2),则进入互感应电容模式,以增进多点触控的侦测效能。It can be known from the foregoing description that initially, the driving system 300 in the capacitive multi-touch low standby power consumption mode of the present invention is in the self-sensing capacitance mode to detect the self-sensing capacitance. According to the number of detected touch points, if touch If the total number of touch points is less than the second preset number (A1=A2) (for example: ≦1), then continue to maintain in the self-inductive capacitance mode, if the total number of touch points is greater than or equal to the second preset number (A1=A2) (for example: ≧2), enter the mutual induction capacitance mode to improve the detection performance of multi-touch.
在进入互感应电容模式后,传感装置350会感测得到与互感应电容对应的的电压信号,该控制装置360滤除电压信号中的杂讯后,判断实际的触摸点的数目,若是触摸点总数大于或等于第一预设数目(B1=B2)(例如:≧1),则持续维持在互感应电容模式,若触摸点总数小于第一预设数目(B1=B2)(例如:≦0),则跳回使用自感应电容模式,进而节省电力。由此,可达到降低功率消耗的目的,从而可应用于手持式装置中,以延长手持式装置使用时间。After entering the mutual induction capacitance mode, the sensing device 350 will sense the voltage signal corresponding to the mutual induction capacitance. After the control device 360 filters out the noise in the voltage signal, it will judge the actual number of touch points. If the total number of touch points is greater than or equal to the first preset number (B1=B2) (for example: ≧1), it will continue to maintain the mutual induction capacitance mode, if the total number of touch points is less than the first preset number (B1=B2) (for example: ≦ 0), then jump back to use self-sensing capacitor mode, thereby saving power. In this way, the purpose of reducing power consumption can be achieved, so that it can be applied to handheld devices to prolong the use time of the handheld devices.
由上述可知,本发明无论就目的、手段及功效,均显示其迥异于现有技术的特征,极具实用价值。但是应注意的是,上述诸多实施例仅为了便于说明而举例而已,本发明所主张的权利范围自应以权利要求书所述为准,而非仅限于上述实施例。From the above, it can be known that the present invention has features that are very different from the prior art in terms of purpose, means and efficacy, and has great practical value. However, it should be noted that the above-mentioned embodiments are examples only for convenience of description, and the scope of rights claimed by the present invention should be determined by the claims, rather than limited to the above-mentioned embodiments.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110451266.4A CN103186298B (en) | 2011-12-29 | 2011-12-29 | Low standby power consumption driving method and device for capacitive multi-touch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110451266.4A CN103186298B (en) | 2011-12-29 | 2011-12-29 | Low standby power consumption driving method and device for capacitive multi-touch |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103186298A CN103186298A (en) | 2013-07-03 |
CN103186298B true CN103186298B (en) | 2016-06-22 |
Family
ID=48677485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110451266.4A Active CN103186298B (en) | 2011-12-29 | 2011-12-29 | Low standby power consumption driving method and device for capacitive multi-touch |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103186298B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102945110B (en) * | 2012-11-29 | 2016-01-27 | 旭曜科技股份有限公司 | The noise filtering method of capacitance type touch-control panel and system |
TWI489365B (en) * | 2013-11-01 | 2015-06-21 | Holtek Semiconductor Inc | Capacitive touch sensor and switching method between self capacitance and mutual capacitance therefor |
CN105426010A (en) * | 2015-12-15 | 2016-03-23 | 天马微电子股份有限公司 | Drive circuit for touch screen and drive method and display device thereof |
WO2018112861A1 (en) * | 2016-12-22 | 2018-06-28 | 深圳市汇顶科技股份有限公司 | Capacitance detection circuit and electronic device |
CN112305320B (en) * | 2020-12-30 | 2021-06-11 | 深圳市汇顶科技股份有限公司 | Proximity detection circuit, wearable device and proximity detection method |
WO2022141248A1 (en) * | 2020-12-30 | 2022-07-07 | 深圳市汇顶科技股份有限公司 | Proximity detection circuit, wearable device and proximity detection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101840293A (en) * | 2010-01-21 | 2010-09-22 | 宸鸿科技(厦门)有限公司 | Scanning method for projected capacitive touch panels |
TW201133319A (en) * | 2010-03-25 | 2011-10-01 | Novatek Microelectronics Corp | Touch sensing system, electronic touch apparatus, and touch sensing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9069405B2 (en) * | 2009-07-28 | 2015-06-30 | Cypress Semiconductor Corporation | Dynamic mode switching for fast touch response |
US8692781B2 (en) * | 2010-06-02 | 2014-04-08 | Pixart Imaging Inc. | Capacitive touchscreen system with multiplexers |
-
2011
- 2011-12-29 CN CN201110451266.4A patent/CN103186298B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101840293A (en) * | 2010-01-21 | 2010-09-22 | 宸鸿科技(厦门)有限公司 | Scanning method for projected capacitive touch panels |
TW201133319A (en) * | 2010-03-25 | 2011-10-01 | Novatek Microelectronics Corp | Touch sensing system, electronic touch apparatus, and touch sensing method |
Also Published As
Publication number | Publication date |
---|---|
CN103186298A (en) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI436263B (en) | Low power driving and sensing method and apparatus for capacitive touch panel | |
TWI472979B (en) | Touch panel device with reconfigurable sensing points and its sensing method | |
CN202142042U (en) | Touch Sensing Device | |
TWI470523B (en) | Noise reduction method and system for capacitive multi-touch panel | |
EP2184666B1 (en) | Multipoint sensing method applicable to capacitive touch panel | |
TWI447632B (en) | Driving frequency selection method for capacitive multi-touch system | |
TWI434207B (en) | Touch sensing system, electronic touch apparatus, and touch sensing method | |
CN103186298B (en) | Low standby power consumption driving method and device for capacitive multi-touch | |
CN104142766B (en) | Control point sensing method and device applied to capacitive panel | |
CN102662540B (en) | Driving frequency selection method of capacitive multi-touch system | |
US20150338989A1 (en) | Capacitive detecting circuit, touch detecting circuit and semiconductor integrated circuit using the same | |
CN102253771B (en) | Sensing unit, sensing circuit and sensing method of capacitive touch panel | |
TW201023012A (en) | Capacitive touch sensors | |
CN102214026B (en) | Touch sensing system, electronic touch device and touch sensing method | |
CN106030476B (en) | Equipment for improving the signal-to-noise performance of projection-type capacitive touch screen and panel | |
KR101397847B1 (en) | Apparatus and method for sensing capacitance, and touchscreen apparatus | |
TW201841100A (en) | Discriminative controller and driving method for touch panel with array electrodes | |
CN104714708B (en) | control point sensing panel and design method thereof | |
US20140035653A1 (en) | Capacitance sensing device and touchscreen | |
CN102033637B (en) | Touch screen position detection method | |
CN102662536B (en) | A switching mode driving method for capacitive multi-touch | |
US9513740B2 (en) | Chip architecture in improve the sensing latency time in projected capacitance touch | |
KR102175932B1 (en) | Touch sensing system and driving method thereof | |
US20130093700A1 (en) | Touch-control communication system | |
WO2016095385A1 (en) | Touch screen driving method, touch screen, and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |